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ABSTRACT

This study investigates the effect of neural network architecture on the accuracy
of data-driven modeling of thermal explosions in a hydrogen–oxygen–air mix-
ture. Using a reduced kinetic mechanism for 11 reagents, the thermal explosion
process is simulated under specified initial pressure and temperature conditions,
generating time-resolved data. We compare three architectures: a standard multi-
layer perceptron (MLP), a DeepONet–inspired model, and our U-Net–style resid-
ual network, evaluating their ability to capture transient dynamics and key reac-
tion regimes. Our results demonstrate that network architecture has an important
impact on predictive performance. The U-Net architecture consistently outper-
formed the other models, achieving a mean squared error (MSE) of 0.0013 with
a standard deviation (STD) of 0.0218, demonstrating high fidelity in capturing
both rapid transients and slower reaction dynamics. In contrast, the DeepONet-
inspired model and the MLP achieved MSEs of 0.0181 (STD 0.0581) and 0.0202
(STD 0.0682), respectively, indicating reduced accuracy and greater variability in
predictions. The large spread in error is due to the fact that neural networks are
not always able to accurately approximate the various modes of the combustion
process. Despite testing various architectures and using a fairly large dataset, the
problem remains unresolved. These findings indicate the importance of selecting
appropriate network architectures to combine deep learning with chemically de-
tailed kinetic modeling. Such careful selection open the way for more reliable and
interpretable predictive models in combustion and reactive-flow applications.

1 INTRODUCTION

The numerical simulation of gas-dynamic processes in high-energy systems, such as engines, gas
turbines, and other propulsion or power-generation devices, requires a detailed description of com-
plex physicochemical phenomena. These include turbulent combustion, shock wave interactions,
and multiphase flows, all of which are strongly influenced by chemical kinetics. Modern computa-
tional fluid dynamics (CFD) approaches employ high-fidelity reaction mechanisms that account for
hundreds or even thousands of elementary chemical reactions among dozens of interacting species.
Such detailed models are essential for accurately predicting critical processes like ignition delay,
flame stabilization, deflagration-to-detonation transition (DDT), and detonation wave propagation.

However, the high level of detail in these simulations comes at a considerable computational cost.
Resolving all relevant spatial and temporal scales in 3D simulations demands immense computa-
tional resources, making such calculations impractical for routine engineering analyses or real-time
applications. To address this challenge, researchers employ various acceleration techniques, includ-
ing reduced-order modeling, adaptive mesh refinement, and hybrid combustion models that balance
accuracy and efficiency. Despite these advancements, the trade-off between computational feasibil-
ity and predictive accuracy remains a key research focus in computational combustion and reactive
gas dynamics (Pantano et al., 2004; Smirnov et al., 2015).

The main computational bottleneck in coupling hydrodynamics with chemical kinetics lies in solv-
ing stiff systems of ordinary differential equations (ODEs) that describe the temporal evolution of
temperature and species concentrations.
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Despite advances in mechanism reduction techniques (Løvås, 2009; Koniavitis et al., 2016; Lu et al.,
2021) and tabular approaches (Pope, 1997), the computational cost of detailed chemical kinetics still
constitutes a substantial fraction of the total simulation time. In recent years, machine learning tech-
niques, in particular neural network models, have attracted growing interest as a means to accelerate
reactive flow simulations. Training a neural network to approximate the thermochemical evolution
of a reactive medium can reduce computational demands while maintaining acceptable accuracy
(Tonse et al., 1999; Ji & Deng, 2021).

In this context, the selection of neural network architecture plays a decisive role in achieving an
appropriate balance between predictive accuracy, generalization capability, and computational effi-
ciency. A growing body of research indicates that architectural features—such as network depth,
width, residual connections, and hierarchical representations—exert a profound influence on both
the stability of predictions. For chemically reactive systems, architectures capable of capturing
multiscale dependencies are particularly critical, as the temporal evolution of species involves both
ultrafast radical-mediated pathways and comparatively slow thermodynamic relaxation processes.
Consequently, network design should be regarded not only as an implementation detail, but as a fun-
damental determinant of whether a model can faithfully reproduce combustion phenomena across a
broad spectrum of operating conditions.

Among the emerging operator-learning paradigms, DeepONet has attracted substantial attention.
By decomposing the mapping into a branch network (encoding input functions) and a trunk network
(encoding target coordinates), DeepONet has demonstrated considerable success in learning non-
linear input–output operators, making it attractive for stiff ODEs and parametric PDEs (Lu et al.,
2021; Wang et al., 2021; Li et al., 2020). Nevertheless, most existing studies have focused on
relatively simplified scenarios—such as narrow ranges of boundary or initial conditions, reduced-
dimensional systems, or short integration horizons—which restricts their direct applicability to re-
alistic combustion environments. In many studies with DeepONet, the training datasets and tem-
poral discretization are chosen in an artificial way, not reflecting realistic combustion conditions.
For example, in Goswami et al. (2024), the syngas dataset was generated at a fixed chemistry
timestep (∆tchm = 10−8 s) and the model was trained only to predict four pre-selected future in-
stants (ti + 250, 500, 750, 1000), rather than learning dynamics at arbitrary temporal resolutions.
Such limitations arise because the branch–trunk decomposition tends to smooth operator mappings,
whereas combustion dynamics often exhibit strongly localized nonlinearities and discontinuities.

This suggests a fundamental open question: can operator-learning architectures such as DeepONet
provide superior accuracy and robustness compared to conventional hierarchical models (e.g., U-
Net–style residual networks) when applied to reactive flow simulations that more closely approxi-
mate real-world scenarios, characterized by extreme transients, multiscale coupling, and broad pa-
rameter variations. Addressing this question forms the motivation for the present comparative inves-
tigation, in which we systematically evaluate three representative neural architectures—a plain mul-
tilayer perceptron (MLP), our custom-designed U-Net–inspired residual network, and a DeepONet-
style operator-learning model—on the same high-dimensional dataset.

2 PROBLEM STATEMENT

In the present work, the thermal explosion of a hydrogen-oxygen mixture in air is modeled. Hav-
ing set the initial pressure and temperature, the combustion of the mixture is calculated at regular
intervals. The reduced kinetic mechanism proposed in (Tereza et al., 2019) is used to calculate the
chemical transformations. During the mechanism 9 hydrogen-oxygen compounds are formed (H2,
O2, H2O, OH, H, O, HO2, H2O2, OH*), as well as nitrogen and argon, which affect the dynamics
of gases and reaction rates, but do not form compounds, their concentration is a constant value.
Chemical kinetics describes the reactions of decay and association of chemical elements at every
point in space, described by a system of differential equations:

∂X

∂t
= f (p, T,X) (1)

where p is the pressure, T is the temperature, X is the vector of molar densities of elements. Com-
putation of system (1) by numerical methods takes about 90 percent of time resources. The use of
neural network models makes it possible to significantly speed up the process of data generation and
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calculations, which is important for practical application of combustion and detonation calculations.
At the same time, high speed should not reduce the accuracy of predictions, since the physical va-
lidity and suitability of the model depend on it. Enhancing predictive accuracy can involve several
strategies, including expanding and diversifying the training dataset. Nevertheless, the architecture
of the neural network remains the primary determinant of performance, and this study focuses on
elucidating its impact.

3 DATA FOR TRAINING AND TESTING OF NEURAL NETWORK

The governing equation (1) possesses a unique solution that can be obtained numerically using the
stiff ODE solver developed by (Novikov, 2007). This model describes the autoignition process of
a preheated hydrogen-air mixture, characterized by a rapid transition to combustion under nearly
adiabatic conditions in a confined volume. A key feature of the numerical algorithm is the semi-
analytical computation of the Jacobian matrix of the system’s right-hand side, which significantly
improves computational efficiency and ensures numerical stability when dealing with strongly stiff
kinetics.

Direct simulation of the complete gas-dynamic evolution inside the combustion chamber is com-
putationally extremely demanding, even if simplified two-dimensional models are employed. To
mitigate this difficulty while preserving accuracy, the computational domain is discretized into uni-
form volumetric cells. Chemical kinetics are then solved independently within each cell, provided
with a set of initial conditions (pressure, temperature, and molar densities of chemical species). The
stiff ODE solver computes the temporal evolution of the chemical system efficiently within each
cell.

For the present investigation, this solver was used to generate a large database of chemical states at
discrete time intervals under a wide variety of randomized thermodynamic conditions. The sampling
space was designed to cover practically relevant ranges of parameters:

T ∈ [250, 5000] K,

p ∈ [104, 2× 107] Pa,

∆t ∈ [10−10, 10−5] s.

This strategy ensured that extreme combustion regimes were included, in terms of capturing the
full diversity of chemical behavior: from slow reaction zones to sudden autoignition and explosive
events.

The resulting dataset provides a classical reference collection of kinetic trajectories. The generated
data (see Fig. 1) were represented as 13-dimensional vectors, each comprising the time step ∆t, the
system temperature, and the molar concentrations of 11 chemical species.
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Figure 1: Sample kinetic trajectories from Dataset showing temporal evolution of concentrations
and temperature.

Both the input and the output of the neural network therefore had dimension 13. The dataset is
split into 50,000 training, 15,000 validation, 5,000 test samples. Dataset represents a broad and
relatively unbiased sampling of the chemical system, containing numerous examples of trajectories
with long induction times, abrupt ignition events, and smooth transitions to equilibrium. It serves as
a general-purpose training dataset for building machine learning models of combustion dynamics.

4 NEURAL NETWORK ARCHITECTURES

Figure 2 illustrates the three neural network architectures explored in this work: (A) a plain multi-
layer perceptron (MLP), (B) a U-Net–like residual network, and (C) a DeepONet–style model. All
three accept the same 13-dimensional input vector

X =
(
dt, T, C1, . . . , C11

)
,

where dt is the time increment, T the temperature, and C1 . . . C11 the species concentrations (the
last two being N2 and Ar). Despite this common input and the shared training procedure, each
architecture has distinctive structural features.
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Figure 2: Neural network architectures: (A) plain MLP, (B) U-Net–like residual network, (C) Deep-
ONet–style model.

4.1 PLAIN MLP

The simplest model is a deep fully connected network with five dense layers: input 13 × 100 →
100× 120 → 120× 120 → 120× 100 → 100× 13 output. A Leaky ReLU activation with negative
slope 10−2 follows every hidden layer. The first and last layers perform dimensional expansion and
reduction, while the middle layers provide nonlinear mixing of features. To preserve physically in-
variant quantities, the output components for dt and the last two concentrations (N2, Ar) are directly
copied from the input.

4.2 U-NET–LIKE RESIDUAL NETWORK

This architecture adds hierarchical skip connections. The 13-dimensional input is first expanded
through a 13 × 100 layer, then passed through three dense blocks: 100 × 120 → 120 × 120 →
120× 100 with Leaky ReLU activations. The block output is added to the expansion output (a local
skip), followed by a compression layer (100 → 13) and a global skip that adds the original input
vector to the final output. As in the MLP, dt and N2/Ar are enforced to match the input, and the
output is clamped to the range [−10, 10].

4.3 DEEPONET–STYLE MODEL

This network separates processing of the scalar dt from the remaining 12 variables. One branch
maps the 12 state variables through layers 12× 120→120× 120→120× 120, reshaping the result
to a 12 × 10 matrix. The second branch maps dt through 1 × 32→ 32 × 32→ 32 × 10. A matrix
product of these branch outputs yields a 12-component fused vector, which is concatenated with
dt to form the 13-dimensional output. The dt and N2/Ar components are again fixed to their input
values. This design follows the operator-learning principle of DeepONet, where the trunk network
(for dt) provides coefficients for the basis generated by the branch network.

4.4 TRAINING DETAILS

Each layer in all models is a linear transformation

hl = Wlhl−1 + bl, (2)

where Wl and bl are trainable weights and biases. The hidden activations are Leaky ReLU,

LeakyReLU(z) = max{0.01z, z}. (3)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

All models are trained with the Adam optimizer using a learning rate of 0.001, a batch size of 5,000,
and were trained for 100 epochs. During training, each network minimizes the multi-step prediction
error by recursively forecasting the state vector up to thirty steps ahead:

Loss =

nsteps∑
k=1

1

k
MSE

(
Xt+k∆t, X̂t+k∆t

)
, (4)

where nsteps = 30. This strategy encourages the models to account for error accumulation while
retaining their architectural differences.

5 RESULTS

A systematic comparison of three neural network architectures shows how model design directly
affects the accuracy of data-driven combustion-dynamics approximation. Performance was quan-
tified using the mean squared error (MSE) on an identical test set to ensure fairness of evaluation.
Statistical metrics for all three models are summarized in Table 1. The table includes not only the
mean MSE and the standard deviation, but also the 95% confidence intervals (CI) for each model
under identical testing conditions.

Table 1: Comparison of MSE statistics for the three architectures on the identical test set

Model Mean MSE Std. Dev. 95% CI

MLP 2.029× 10−2 6.829× 10−2 [1.840× 10−2, 2.218× 10−2]
U-Net 1.374× 10−3 2.183× 10−2 [7.692× 10−4,1.980× 10−3]
DeepONet 1.808× 10−2 5.812× 10−2 [1.647× 10−2, 1.969× 10−2]

The comparatively large spread of errors for all three networks indicates that certain test trajectories
remain challenging to approximate. Combustion dynamics often involve abrupt temperature rises,
nonlinear chemical–kinetic feedback, and multi-scale temporal behavior. These features can pro-
duce regimes that are difficult for purely data-driven models to capture accurately, even when the
training dataset is extensive and diverse.

Despite identical training conditions and data preprocessing, the difference in MSE demonstrates
that network architecture is an important factor. Direct comparison of the 95% CIs shows that the
U-Net’s interval [7.692× 10−4, 1.980× 10−3] does not overlap with the intervals of either MLP or
DeepONet, confirming a statistically significant improvement. In contrast, the DeepONet and MLP
intervals [1.647 × 10−2, 1.969 × 10−2] and [1.840 × 10−2, 2.218 × 10−2] overlap substantially,
suggesting comparable performance between these two architectures within the test conditions.

The standard deviation of U-Net (2.183 × 10−2) is also much smaller in absolute terms than that
of MLP (6.829 × 10−2) and DeepONet (5.812 × 10−2), indicating more stable predictions across
diverse trajectories. The U-Net’s encoder–decoder design with skip connections appears to capture
both global trends and localized transients without increasing computational cost relative to the
simpler models. This multi-scale representation likely underlies its lower MSE, narrower CI, and
reduced variability, making it the most reliable architecture among those tested.

A detailed analysis of individual test cases further supports this conclusion. All trajectories in the
figures (Figure 3 and Figure 4) are plotted in the same normalized space that was used to train the
networks. Thus, the vertical axis in each subplot represents the dimensionless normalized value
ensuring direct comparability of predicted and reference profiles.

Figure 3 illustrates a representative high-quality prediction: this trajectory belongs to the lowest
10% of test-sample MSE values (i.e., among the best cases for each model). The U-Net captures
both transient peaks and long-term plateaus more accurately than the other models, with its output
remaining phase-aligned with the true dynamics—peaks, plateaus, and sharp decays occur at the
correct times.
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Figure 3: Comparison of predicted time evolution of normalized temperature and normalized con-
centrations for a representative test trajectory with low MSE. Black solid lines – reference numerical
solution; red dashed – DeepONet predictions; blue dashed – U-Net; green dotted – MLP.

By contrast, Figure 4 shows a trajectory from the upper quartile of the MSE distribution, representing
a more difficult case. Even in this challenging example, the U-Net output remains aligned with the
true temporal trends, preserving ignition peaks and decay phases, whereas the DeepONet and MLP
predictions gradually drift away and exhibit phase lag.

Figure 4: Representative predictions of normalized temperature and key species concentrations for
a trajectory with comparatively high MSE. Black solid lines – reference solution; red dashed –
DeepONet; blue dashed – U-Net; green dotted – MLP.

These findings emphasize that, for stiff chemical–kinetic systems, incorporating hierarchical feature
extraction and residual connections—as in the U-Net—substantially enhances both accuracy and
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robustness. Such design choices are as important as dataset size or optimizer tuning and should
guide future efforts to create reliable, physics-aware surrogates for combustion simulations.

6 CONCLUSIONS

This study demonstrates that neural network architecture plays a key role in the accuracy and ro-
bustness of data-driven modeling of reactive kinetics. Among the tested models, the U-Net–style
residual network consistently outperformed both the MLP and the DeepONet-inspired architecture,
achieving substantially lower mean squared error and reduced variability in predictions. Importantly,
this improvement was not limited to absolute accuracy: the U-Net preserved the correct qualitative
dynamics of combustion processes, maintaining synchrony with reference trajectories across sharp
transients and plateau-like regimes, whereas the other architectures tended to drift away and lose
physical consistency.

Our comparative analysis illustrates that the choice of architecture can be as critical as the size or
the diversity of the dataset. While MLP and DeepONet-based models captured only partial aspects
of the dynamics, the U-Net–style design provided stable and physically meaningful approximations
without requiring additional data or computational cost. These findings illustrate the importance of
architectural design in constructing reliable neural network surrogates for complex chemical sys-
tems.

Overall, the results confirm the promise of U-Net–based architectures and emphasize the poten-
tial of combining deep learning with physically motivated design principles to create interpretable,
accurate, and robust tools for chemical kinetics.
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