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Abstract

Approaches for goal-conditioned reinforcement learning (GCRL) often use learned
state representations to extract goal-reaching policies. Two frameworks for rep-
resentation structure have yielded particularly effective GCRL algorithms: (1)
contrastive representations, in which methods learn “successor features” with a
contrastive objective that performs inference over future outcomes, and (2) tem-
poral distances, which link the (quasimetric) distance in representation space to
the transit time from states to goals. We propose an approach that unifies these
two frameworks, using the structure of a quasimetric representation space (triangle
inequality) with the right additional constraints to learn successor representations
that enable optimal goal-reaching. Unlike past work, our approach is able to
exploit a quasimetric distance parameterization to learn optimal goal-reaching
distances, even with suboptimal data and in stochastic environments. This gives
us the best of both worlds: we retain the stability and long-horizon capabilities of
Monte Carlo contrastive RL methods, while getting the free stitching capabilities of
quasimetric network parameterizations. On existing offline GCRL benchmarks, our
representation learning objective improves performance on stitching tasks where
methods based on contrastive learning struggle, and on noisy, high-dimensional
environments where methods based on quasimetric networks struggle.

1 Introduction

Learning temporal distances lies at the heart of many important problems in both control theory and
reinforcement learning. In control theory, such distances form important Lyapunov functions [1] and
control barrier functions [2], and are at the core of reachability analysis [3] and safety filtering [4]
In Reinforcement Learning (RL), such distances are important not just for safe RL [5], but also
for forming value functions in tasks ranging from navigation [6] to combinatorial reasoning [7] to
robotic manipulation [8, 9]. Ideally, these learned distances have two important properties: (i) they
can encode paths that are shorter than those demonstrated in the data (i.e., stitching); and (ii) they can
capture long-horizon distances with low variance.

Current methods for learning temporal distances typically only achieve one of these properties.
Methods based on Q-learning [10, 11, 12] stitch trajectories with Temporal Difference (TD) updates
to find shortest paths, but often produce compounding errors that make it challenging to apply
to long-horizon tasks [13]. Monte Carlo methods [14, 15] can directly learn goal-reaching value
functions, which can be connected to temporal distances [16], but their ability to find shortest paths
remains limited. Methods based on learning a quasimetric geometry [17, 18, 16], which impose
a triangle inequality over distances as an architectural invariance, do find shortest paths and don’t
require dynamic programming with compounding errors, but fail in stochastic settings and/or when
learning from off-policy (suboptimal) data.
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Figure 1: (Left) TMD learns a temporal distance dy that satisfies the triangle inequality and action
invariance. It does this by minimizing the distance between the learned distance and the distance
between the successor features of the states and actions in the dataset. (Right) The learned distance is
used to extract a goal-conditioned policy.
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The aim of this paper is to build a method for learning temporal distances that retains the long-horizon
estimation capabilities of Monte Carlo methods but nonetheless is able to compute shortest paths. We
take an invariance perspective to do this. Temporal distances satisfy various invariance properties.
Because they are value functions, they satisfy the Bellman equations. Prior work has also shown that
they satisfy the triangle inequality, even in stochastic settings [18, 16]. The triangle inequality, also a
form of invariance [19], is powerful because it lets us architecturally winnow down the hypothesis
space of temporal distances by only considering neural network architectures that satisfy the triangle
inequality [17, 20].

Importantly, the fact that temporal distances satisfy the triangle inequality holds for any temporal
distance, including both optimal temporal distances and those learned by Monte Carlo methods. This
raises an important question: might there be an additional invariance that is satisfied by optimal
temporal distances, but not those learned by Monte Carlo methods? Identifying such invariance
properties that would enable us to use Monte Carlo methods to architecturally winnow the hypothesis
space, and then use this additional invariance property to identify optimal temporal distances within
that space.

Our key contribution is a method for learning optimal goal-reaching distances that combines the long-
horizon, probabilistic inference of Monte Carlo temporal distances with the optimality and stitching
capabilities of quasimetric architectures. We use a quasimetric architecture that imposes the triangle
inequality as an architectural constraint, combined with two additional invariance properties that
apply at the transition level. When these invariances are enforced as constraints on features learned
with Monte Carlo estimation, they impose a structure roughly similar to the Bellman optimality
equations across the space of goal-conditioned (Kroenecker Delta) reward functions.

We translate these invariance properties into a practical method for Goal-Conditioned Reinforcement
Learning (GCRL) that we call Temporal Metric Distillation (TMD). To the best of our knowledge,
TMD is the first GCRL method that uses a quasimetric value parameterization to implicitly stitch
behaviors, while also learning optimal policies in stochastic settings with suboptimal data. On bench-
mark tasks of up to 21-dimensions as well as visual observations, we demonstrate that our method
achieves results that considerably outperforms that of similar baselines. Additional experiments
reveal the importance of the enforced invariances and contrastive learning objective. Given the
importance of long-horizon reasoning in many potential applications of RL today, we believe our
work is useful for thinking about how to learn optimal temporal distances.
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Figure 2: TMD enables key capabilities over prior work: (Left) handling stochastic transition
dynamics, (Center) learning optimal policies from offline data, and (Right) stitching behaviors as a
property of network architecture.

2 Related Work

Our method provides a unifying framework connecting temporal distance learning to (optimal) offline
GCRL. The resulting method gets the benefits of both, learning optimal goal-reaching policies from
offline data with stochastic dynamics, and using a quasimetric architecture to optimally stitch together
behaviors without the compounding errors of TD learning.

2.1 Temporal Distances

We build on prior approaches to learning femporal distances, which reflect the reachability of
states [16]. Temporal distances are usually defined as the expected number of time steps to transit
from one state to another [21, 22]. Recent work has provided probabilistic definitions that are also
compatible with continuous state spaces and stochastic transition dynamics [16]. A key consideration
when thinking about temporal distance is which policy they reflect: is this an estimate of the number
of time steps under our current policy or under the optimal policy? We will use optimal temporal
distance to mean the temporal distance under the optimal (distance-minimizing) policy.

Algorithmically, this choice is often reflected in the algorithm one uses for learning temporal distances.
Methods based on Q-learning typically estimate optimal temporal distances [11, 23, 24], and are often
structurally similar to popular actor-critic methods. Some quasimetric methods also learn optimal
temporal distances in deterministic MDPs by enforcing the triangle inequality as an architectural
constraint, effectively computing shortest paths in a directed graph [17, 18]. Prior work has shown that
temporal distance learning can be important for finding paths that are better than those demonstrated
in the data, and can enable significantly more data efficient learning [25] (akin to standard results in
the theory of Q-learning [26]).

Methods based on Monte Carlo learning typically operate by sampling pairs of states that occur nearby
in time (though not necessarily temporally-adjacent); distances are minimized for such positive pairs,
and maximize for pairs of states that appear on different trajectories [27, 15]. These Monte Carlo
methods often estimate the temporal distance corresponding to the policy that collected the data.
Methods for goal-conditioned behavioral cloning [28, 29], though not directly estimating temporal
distances, are effectively working with this same behavioral temporal distance [7]. Despite the
fact that Monte Carlo methods do not estimate optimal temporal distances, they often outperform
their Q-learning counterparts, suggesting that it is at least unclear whether the errors from learning
the behavioral (rather than optimal) temporal distance are larger or smaller than those introduced
by TD learning’s compounding errors. Our work bridges these two notions of temporal distance,



providing a method that learns optimal temporal distances while reducing the reliance on TD learning
to propagate values (and accumulate errors).

2.2 Offline Reinforcement Learning

Our investigation into temporal distances closely mirrors discussions in the offline RL literature
about 2-step RL methods [30], which often use Monte Carlo value estimation, versus multi-step RL
methods [31], which often use Q-learning value estimation. These 1-step RL methods avoid the
compounding errors of Q-learning, yet are limited by their capacity to learn Q7 (s, a) rather than Q7.
However, their strong performance over the years [32, 15] suggests it is an open question whether the
compounding errors of Q-learning outweigh the benefits of learning the behavioral value function,
rather than the value function of the optimal policy.

3 Temporal Metric Distillation (TMD)

In this section, we formally define TMD in terms of the invariances it must enforce to recover optimal
distances, and by extension, the optimal policy. In Section 4 we will then show how these invariances
can be converted into losses which can be optimized with a quasimetric architecture that enforces the
triangle inequality.

3.1 Notation

We consider a controlled Markov process M with state space S, action space A, and dynamics
P(s’ | s,a). The agent interacts with the environment by selecting actions according to a policy
m(a | s), i.e., a mapping from S to distributions over .A. We further assume the state and action
spaces are compact.

Policies 7 € II are defined as distributions 7 (a | s) for s € S,a € A. When applicable, for a fixed
policy 7, we can denote the state and action at step ¢ as random variables s; and a;, respectively. We
will also use the shorthand

57 £ 54,k for K ~ Geom(1 — 7). )
We equip M with an additional notion of distances between states. At the most basic level, a distance
S x & — R must be non-negative and equal zero only when passed two identical states. We will
denote the set of all distances as D, defined as

DE{d:S xS —R:d(s,s)=0,d(s,s") > 0foreach s,s' € S}.

A desirable property for distances to satisfy is the triangle inequality, which states that the distance
between two states is no greater than the sum of the distances between the states and a waypoint [18].
A distance satisfying this property is known as a quasimetric. Formally, we construct

Q={deD:d(s,g) <d(s,w)+d(w,g) forall s,g,w € S}. )

If we further restrict distances to be symmetric (d(x,y) = d(y, z)), we obtain the set of traditional
metrics over S.

3.2 TMD Operators

TMD learns a distance parameterization that is made to satisfy two constraints: (i) the triangle
inequality,
d(z,z) < d(z,y) +d(y, z) forany z,y,z € S x AU S, 3)

and (ii) action invariance,
d(s,(s,a)) =0forany s € Sanda € A. €))
We will show that to ensure that we recover the optimal distance dgp [16] given the learned (backward

NCE) contrastive critic distance, the missing additional constraint is a form of consistency over
the environment dynamics with respect to the expected (exponentiated) distances. This constraint



resembles the “SARSA”-style Bellman consistency, which backs up values by averaging over
dynamics to learn on-policy values. So, what TMD is doing with these additional constraints is
weakening the form of Bellman consistency that is required to recover the optimal distance from the
standard max,c 4 Bellman operator to the weaker on-policy SARSA Bellman operator. TMD thus
turns on-policy SARSA into an off-policy algorithm through the metric constraints.

We can define this additional constraint as the fixed point of the following operator:

—log Ep(s/s,q) [e*d(s/’y)] —logy ifz=(s,a)eS x A,

T(d) (l’, y) = {d(:c, y) otherwise. (5)

The triangle inequality Eq. (3) and action invariance Eq. (4) properties can also be written in terms of
operator fixed points:

P(d)(,2) £ min[d(z,y) +d(y, 2)] ©)

0 ifr=(s,a)

Td(s,r) = {I(d)(s,x) otherwise. "

3.3 Properties of path relaxation

Path relaxation P [19] (Eq. 6) enforces invariance to the triangle inequality, i.e., P(d) = d if and
only ifd € Q.

Theorem 1. Take d € D and consider the sequence
d, = P"(d).
Then, d.,, converges uniformly to a fixed point do, € Q.

In light of Theorem 1 we denote by P, = lim,,_,, P™ the fixed point operator of P, and note that
P.. is in fact a projection operator onto Q.

Proofs of Lemmas 5 to 7 and Theorem 1 can be found in Appendix C.

3.4 The modified successor distance

The modified successor distance df, € D can be defined by [16]: 11.5

0 ifz =y,
m (P(sT=glso=s,a0=0) P — —
dr (z,y) 2 —log p™ ( P(sfziglsoig) Jfor K~y ifz=(s,a)eSxAy=geS ®
—log Er(a|s) [e*dsv((s’“)’g)} — logy ifr=seS,x#y
dz,(s,g) —logm(a| g) ify=(g,a) €S x A
The optimal successor distance dg;, can then be stated as
dip (x,y) = min g, (x, 9). ©)

This distance is useful since it lets us recover optimal goal-reaching policies. For any s,g € S,a € A,
the distance is proportional to the optimal goal-reaching value function

d;D((saa)vg) Xa —Q;(S,G) (10)

where Q;(s, a) is defined as the standard optimal Q-function for reaching goal g [15]:

o0
Qy (s, a) = max]E{sna Yoo {Z V' P(s; =g | s0=s,a0 = a)] 11
t=0
and
V() = max Qy(s,a). (12)



In fact, we can equivalently define d3, ((s,a), g) in terms of Q*:
dsp ((s,a),9) =log V] (g) —log Qy(s, a). (13)

Similar to Myers et al. [16], we argue that contrastive learning can recover these distances, i.e.,
C(m) =dsp (14)

Then, through the operators in Section 3.2, we will extend this to the optimal distance d,.

For convenience, we also define the set of realized successor distances
D2 {dT, : 7 ell}. (15)

Note that D does not necessarily contain the optimal distance d3;,, as no single policy is generally
optimal for reaching all goals.

Remark 2. The optimal successor distance d3, satisfies

dsp(s,(s,a)) =0foralls € Sanda € A.

3.5 Convergence to the optimal successor distance

Applying the invariances in Section 3.2 to the contrastive distance Eq. (14), the TMD algorithm can
be defined symbolically as

M(x) 2 (P, o T 0 I)® C(n). (16)

In other words, TMD computes the initial 7g distance C(r), and then enforces the invariance
(architecturally or explicitly), as expressed with the iterative application of 7 o Z followed by
projection onto Q by P,.

Theorem 3. The TMD algorithm converges pointwise to the optimal successor distance dy, for any
policy w with full state and action coverage, i.e.,

lim (P, 0T 0 Z)" C(m) = di. (17)

Our approach for proving Theorem 3 will be to analyze the convergence properties of (P, o7 o T)
over the space of “suboptimal” distances D’ , defined as

D £{deD:d(z,y) > dj,(z,y) forallz,y € S x AUS}. (18)

Unfortunately, (P, o 7 o Z) is not a contraction on D7, so we cannot directly apply the Banach
fixed-point theorem as we would for the standard Bellman (optimality) operator. Instead, we will
show this operator induces a “more aggressive” form of tightening over D* , which will allow us to
prove convergence to d7,. We start by showing that d?, is a fixed point of (P, o T o Z) in Lemma 4.

Lemma 4. The optimal successor distance dg, is the unique fixed point of P, o T oL on D%

Proofs are in Appendix B.

4 Implementing TMD

We show that the backward NCE contrastive learning algorithm can recover an initial estimate of
dsp ™. As justified by Theorem 3, we can then enforce the invariances to recover the optimal distance
dgp-

The algorithm learns a distance dy parameterized by a quasimetric neural network 6 such as Metric

Residual Network (MRN) [17]. By construction, this distance is a quasimetric that is invariant to P,
i.e., Pdg = dg.



4.1 Initializing the Distance with Contrastive Learning

Defining the critic
f(57 a, g) £ 7d9 ((57 CL), g)v

the core contrastive objective is the backward NCE loss:

f(si,ai g
LNcE ((25 i {si,a4,5 mgz i= 1 210g<e>) (19)

ef(9 a1797)

which is enforced across batches of triplets {s;, a;, s;41 ., for k ~ Geom(1 — ) sampled from
the dataset generated by policy 7g.

The optimal solution to this objective is

P(st"=g|s=s,a=a)
=1 20
f(s,a,9) og( Per = 10(g) ) (20)
for some C(g) [33].
The parameterization f (s, a,g) = —dy ((s, a), g) where dy is a quasimetric-enforcing parameteriza-

tion (see [17, 18]) ensures that

P(st =g|s=g)
P(st =g)

Clg) =

so the only valid quasimetric satisfying Eq. (20) is dg = dgp™®
Optimality of £ in Eq. (19) implies that the learned distance dy = C(mg) = dsp™

The additional invariance constraints Z and 7 can be directly enforced by regressing ||dg — Zdg||co
and ||dp — T dy||co to zero. Theorem 3 guarantees that if we can enforce those constraints and enforce
invariance to P by using a quasimetric architecture (e.g., MRN [17]), we can recover the optimal
distance dg,.

In practice, we will directly enforce the constraints across the batches used in our contrastive loss.
We will use the MRN parameterization for dy for 6 = (1, ¢) on learned representations of states (1))
and state-action pairs (¢):

d@(sag) = darn (¥(8),1(9)) de(( S, )»9) £ durn(9(8,a),1(9g))
d9 (55 (Sva)) £ dMRN(d)(S)aQS(Saa)) (( )7 (Slaa/)) £ dMRN(¢(5’a)7¢(5/’a/))

where
K

dyrn (7, Y) Z _max max(0, Tka4m — YkM4m) 1)
K 2t

4.2 Action Invariance (7)

Invariance to the Z backup operator in Eq. (7) gives the following update across s,a € S x A

do(¢(s), d(s,a)) < 0, (22)

which can be directly enforced with the following loss across the batch:

L1 (6.9 {85, 0,8}, 9 }ir1) Z dyrn (¥ (s4), (s, a5)). (23)

i,j=1

4.3 Temporal Invariance (7))

Invariance to the 7 backup operator in Eq. (5) corresponds to the following update performed with
respect to ¢(s, a):

o~ (6(s,0),8(9)) Ep(ajs.a) [elog’Y*dMRN(d’(s’)W(g))]_ (24)



This update is enforced by minimizing a divergence between the LHS and samples from the RHS
expectation. Classic approaches for backups in deep RL include the ¢ distance to the target
(RHS) [34], or when values can be interpreted as probabilities, a binary cross-entropy loss [35].

We use the following Bregman divergence [36], which we find empirically is more stable for learning
the update in Eq. (24) (c.f. the Itakura-Saito distance [37] and Linex losses [38, 39]).
Dr(d,d’) = exp(d — d') — d. (25)

We discuss this divergence and prove correctness in Appendix E. With the divergence, the 7T -
invariance loss is:

(¢ ¢7 {517 au z) gl 1= ]_ = Z Z DT dMRN Sza ai)) ¢(93))a dMRN(w(S;;)7 1/}(97)) - IOg 7)
i=1 j=1
(26)
We minimize this loss only with respect to ¢, stopping the gradient through . This avoids the moving
target that classically necessitates learning separate target networks in RL [34].

4.4 The Overall Distance Learning Objective

We can express the overall critic loss as:

Lovp (¢, 130, B) = Lnce (6,93 B) + C(ﬁz (¢.9;B) + L7 (¢, U3 B)) (27)
forbatch B~ 15 = {s;,a;,5}, 9 }1vy

We minimize Eq. (27) with respect to ¢ and v, where 1) is a separate copy of the representation
network v (stop-gradient). Here, ¢ controls the weight of the contrastive loss and invariance
constraints, and batches are sampled

{Si>ai7 S{L?gl}f\il ~Tg,
for s, the state following s;, and g; the state K steps ahead of s; for K ~ Geom(1 — «). In theory,

¢~ should be annealed between 1 at the start of training (to extract the distance C (7)), toward 0 at
the end of training to enforce invariance to (7 o Z), though in practice we find it suffices to keep ¢
constant in the environments we tested.

In practice, we pick ¢ based on how much stitching and stochasticity we expect in the environment
— when ( is large, we more aggressively try and improve on the initial distance C(7) describing the
dataset policy mg.

4.5 Policy Extraction

We finally extract the goal-conditioned policy (s, g) : S* — A with the learned distance dp:

mln]E{S“a“Swgl}z L~ { Z dg (si, m(si,95)), gj)} (28)
4,j=1
For conservatism [40], we augment Eq. (28) with a behavioral cloning loss against 7gvia behavior-
constrained deep deterministic policy gradient [41]. Using additional goals g; sampled from the same
trajectory as s; in Eq. (28) could also be done through an extra tuned parameter (cf. Bortkiewicz et al.
[42], Park et al. [43]). Denoting these hyperparameters as A and « respectively, the overall policy
extraction objective is:

min ]E{S,-,a,l,él7gl}l L~ [ T (ﬂ—? ¢7 ¢7 {Si7 (D) Sfi? 91}7{\;1)] (29)

s

N
. Z N s (6(i, @ij), 10(95)), 1(95)) + Adurn (D(54, @3i), ¥(9:)) + cv|ais — ai”;

where CALZ‘]‘ = 7'('(81', gj). (30)

Prior offline RL methods use similar o and A hyperparameters, which must be tuned per environ-
ment [43].



Table 1: OGBench Evaluation

Methods

Dataset TMD CMD CRL QRL GCBC GCIQL GCIVL
humanoidmaze_medium_navigate 64.6051)  L1END)  599(EFID 9y 4(E29)  76(F06)  973(E09) o4 ((F08)
humanoidmaze_medium_stitch 68551 ag(F3) 362(F09  4g (R0 29 g(FLD  qp (FLD 13 3(206)
humanoidmaze_large_stitch 23.0(519 9 3(F0D 4 (#02) 3503 56(EL0) g 5(E0D 1202
humanoidmaze_giant_navigate 92051 50 08) g g(FOD g g(FOD (00 g 50D (0D
humanoidmaze_giant_stitch 6.3(+06) 0.2(£0.D 1.5(£09) 0.4(F0D 0.1(£00 1.5(+0 1.7(F0D
pointmaze_teleport_stitch 293(F22)  57(F29) 4 (EFLD g e(E1) 353D 95510 gg4(+07)
antmaze_medium_navigate 93.6(F10) 9 4(F09)  9q9(£05) g7 (1) g (L) g j(ELD  yp 3(£06)
antmaze_large_navigate 81.5(H17) g (2D ga g (F14) 94 6(£23)  9q (F06) 34 5(E13) - 57(£19)
antmaze_large_stitch 3730527 99 0(F2) 1o g(F06) g 40N 34(F10) g 5(E07) g 5(£08)
antmaze_teleport_explore 49.6(+1%) 0.2(+0D 19.5(£08) 23(£07) 2.4(F04) 73(£12) 32.0(+00)
antmaze_giant_stitch 2700 20F0 g FMD) 0 g(F0D) g FM0) g (E0) (00
scene_noisy 196D 40D pEe) g (RN p(E0) 59208 96 4(ELD)
visual_antmaze_teleport_stitch 38.5(t19)  360(F2D  317(£32) 408 3y g(ELS) g (£02) 1.4(F08
visual_antmaze_large_stitch 2660528 g 1(ED g ED) g e(F0D a36(E) 0 (F00) o g(£03)
visual_antmaze_giant_navigate 40.1(F26)  373(£24) 47,5(109) 0.1(+0D 0.4(F0D 0.1(+02) 1.0(F0H
visual_cube_triple_noisy 1770500 16 1(F0 156(F00) g e(F2D o0 1 5(H00) 7 g(£05)

We bold the best performance. Success rate (%) is presented with the standard error across six seeds. All datasets contain
5 separate tasks each. We record the aggregate across all 5 tasks.

5 Experiments

In our experiments, we evaluate the performance of TMD on tasks from the OGBench benchmark [43].

We aim to answer the following questions:

1. Do the invariance terms in Eq. (6) improve performance quantitatively in offline RL settings?

2. Is the contrastive loss in Eq. (19) necessary to facilitate learning these tasks?
3. What capabilities does TMD enable for compositional task learning?

5.1 Experimental Results

We evaluate TMD across evaluation tasks in OG-
Bench for the environments and datasets listed
in Table 1. The experiments use 6 seeds in all
environments, and report the success rates ag-
gregated across the 5 evaluation tasks (goals)
provided with each environment. Of particular
interest are the “teleport” and “stitch” en-
vironments, which respectively test the ability
to handle stochasticity and composition.

We compare against the Goal-Conditioned
Behavioral Cloning (GCBC), Goal-Conditioned
Implicit  Q-Learning  (GCIQL), Goal-
Conditioned Implicit Value Learning (GCIVL),
Contrastive Reinforcement Learning (CRL),
and Quasimetric Reinforcement Learning
(QRL) algorithms, using the reference results
provided by OGBench [43]. We implement
and evaluate Contrastive Metric Distillation
(CMD) [16], which also learns a quasimetric
temporal distance, but does not enforce the
constraint of 7 or Z invariance and uses
a separate critic architecture. GCBC uses
imitation learning to learn a policy that follows

Predicted Distance to Goal ( * )

0

70

140

Figure 3: An example distance heatmap learned
by TMD in pointmaze_large_stitch. Darker

colors indicate larger distances.

the given trajectories within a dataset [44]. CRL [15] performs policy improvement by fitting a value
function via contrastive learning. QRL [18] learns a quasimetric value function to recover optimal



distances in deterministic settings. GCIQL and GCIVL use expectile regression to fit a value function
[45].

TMD consistently outperforms QRL and CRL in the stitching environments. In the stochastic
teleport environments, TMD outperforms both CRL and QRL by a considerable margin — in
pointmaze_teleport_stitch TMD outperforms CRL and QRL by over 3x. An example distance
learned by TMD in antmaze_large_stitch is visualized as a heatmap in Fig. 3.

5.2 Ablation Study

We perform an ablation study on
the pointmaze_teleport_stitch
environment to evaluate the impor-
tance of the invariance terms and the

contrastive initialization loss in TMD. TMD (Ours) _

We separately disable the contrastive,

Ablations of the Ltyp loss

L OVre e no L7 stopgrad ——
7T invariance, and Z invariance com- 7 SOPg
ponent during training and observe no Lnce loss —
its effects. We also examine the em-
pirical effects of stopping gradients no 7 loss /I
when ca}culatmg L. We log the cor- no T loss /.
responding success rate for each of
the ablations in 4. 0 0.1 0.9 0.3
Our ablation studies answer questions Success Rate

2 and 3, in which we demonstrate that

by removing some of the invariances Figure 4: We ablate the loss components of TMD in the
or removing the contrastive loss, the pointmaze_teleport_stitch environment.

performance of TMD decreases to lev-

els similar to CRL and QRL. Simi-

larly, we see the importance of keeping the contrastive objective, as the performance of TMD
degrades even more despite the presence of other loss components. We also note the empirical
performance of TMD is better when we stop gradients on £5. We provide further ablation details in
Appendix D.2.

6 Discussion

In this work, we introduce Temporal Metric Distillation (TMD), an offline goal-conditioned rein-
forcement learning method that learns representations which exploit the quasimetric structure of
temporal distances. Our approach unifies quasimetric, temporal-difference, and Monte Carlo learning
approaches to GCRL by enforcing a set of invariance properties on the learned distance function.
To the best of our knowledge, TMD is the first method that can exploit the quasimetric structure of
temporal distances to learn optimal policies from offline data, even in stochastic settings (see Fig. 2).
On a standard suite of offline GCRL benchmarks, TMD outperforms prior methods, in particular
on long-horizon tasks that require stitching together trajectories across noisy dynamics and visual
observations.

6.1 Limitations and Future Work

Future work could examine more principled ways to set the  parameter in our method, or if there are
ways to more directly integrate the contrastive and invariance components of the loss function. Future
work could also explore integrating the policy extraction objective more directly into the distance
learning to enable desirable properties (stitching through architecture, horizon generalization) at
the level of the policy. While we used the MRN [17] architecture in our experiments, alternative
architectures such as Interval Quasimetric Embedding (IQE) [20] that enforce the triangle inequality
could be more expressive. While the size of models studied in our experiments make them unlikely to
pose any real-world risks, methods which implicitly enable long-horizon decision making could have
unintended consequences or poor interpretability. Future work should consider these implications.
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A Code

Code and videos can be found at https://tmd-website.github.io/. The evaluation and base
agent structure follows the OGBench codebase [43]. The TMD agent is implemented in https:
//github.com/vivekmyers/tmd-release/blob/master/impls/agents/tmd.py.

B Analysis of TMD

This section provides the proofs of the results in Section 3.5. The main result is Theorem 3, which
shows that enforcing the TMD constraints on a learned quasimetric distance recovers the optimal
distance dg,.

Theorem 1. Take d € D and consider the sequence
d, = P"(d).
Then, d,, converges uniformly to a fixed point do, € Q.

Proof. From Lemma 7, we have that d,,+1(s, g) < d, (s, g) forall s, g € S. Thus, the sequence {d,, }
is monotonically decreasing (and positive). By the monotone convergence theorem, the sequence
converges pointwise to a limit d... Since S is compact, by Dini’s theorem [46], the convergence is
uniform, i.e., d,, = d under the L>° topology over D.

To see that d, is a fixed point of P, we note that if Pdy, = d’ # d.., We can construct disjoint
neighborhoods N of d, and N’ of d’ (since L°°(D) is normed vector space and thus Hausdorff).
By construction, the preimage P~ (N’) contains d,, and is open by Lemma 6. Thus, we can define
another, smaller open neighborhood N” = N N P~1(N") of ds. Now, since d,, — dwo, there exists
some k so dy, d4+1 € N” C N. But then since dy, € P~1(N’), we have that dy; € N’. Thisis a
contradiction as NV and N’ were disjoint by construction.

Thus, we have that d, is a fixed point of P. That d, € Q follows from Lemma 5. O
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Theorem 3. The TMD algorithm converges pointwise to the optimal successor distance dy, for any
policy m with full state and action coverage, i.e.,

lim (PyoT oI)"C(m) = dy,. (17)

Proof of Theorem 3. The initial distance C(m) = dsp" > dg, for any policy 7. So, C(m) € D3.
Define the sequence of distances d,, = (P, o T o Z)"C(w) in D7.. Note that P, and Z are monotone
decreasing. So, the restriction (d,, )y is monotonically decreasing on the domain X' = Sx (SUS x A),
and thus converges pointwise on X as n — oo.

Since 7 and P. are continuous operators (Lemma 6 and Eq. (5)), and 7T is fully-determined by
the restriction to X, the sequence (P o T')d,, = d,+1 converges pointwise on its full domain. The
pointwise limit of d,, is a fixed point of (P, o T o Z), which must be the unique fixed point d}, on
D} by Lemma 4.

Lemma 4. The optimal successor distance d, is the unique fixed point of P, o T o L on DX

Proof of Lemma 4. For existence, we note

(ProT oZ)dy, = (PxoT)(Zdyy) (Remark 2)
= (P.oT)d%, (Bellman optimality of Q7)
= P.ds,. (Lemma 5)
=d,. 31)

For uniqueness, we need to show that (P, o 7 o Z) has no fixed points besides d;, in D7 . Suppose
there exists some d € D such that (P, o T oZ)d = d. Then, we have forz € SUS x A, 5,9 € S,
and a € A:

(PioT oI)d(x, (g, a)) = d(a:, (g, a)) =d(z,9). (32)

Denote by Q(s,a) = e~4(5:2):9) and let B be the goal-conditioned Bellman operator defined as
BQ(Sa a) £ EP(S’\s,a) [1{8/ = g} + 7@(5/3 g)] (33)
At any fixed point d € D7, we have

(Ps oToI)d((s,a),g) = d((s,a),g) (34)
This last expression implies that
Q(s,a) = exp [—d((s,a),g)}
=exp[—(P. o T 0 Z)d((s,a),g)]
< Ep(ss,a) [min expd((s',a’), g)| —logy
= BQ(s,a). (35)

Since B is a contraction on the exponentiated distance space, and d((s,a),g) > d%,((s,a),9),

Eq. (35) is only consistent with Q(s,a) = Q} (s, a). This implies that

d((s,a), 9) = d5, ((s,0), 9)- (36)
We also know that at this fixed point, d(s, (s,a)) = 0, and thus from Eq. (36) we have
d(s, 9) = dsp (5, 9)- 37)

So, d = df, must be the unique fixed point of (P, o T o 7).
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C Path Relaxation and Quasimetric Distances

We provide short proofs of the claims in Section 3.2
Lemma 5. We have P(d) = d ifand only if d € Q.

Proof P(d)(s.g) = min[d(s,w) +d(w,g)] O
< d(
—d

s,8) +d(s,9)
(s,9)

Lemma 6. The path relaxation operator P is continuous with respect to the L topology over D.

Proof. Letd,d' € D and € > 0. We have
[P(d)(s,9) ~ P(d)(s,9)| = [min[d(s, w) + d(uw, )] — min[d (s, w) + ! (w, )]
< mei{51|d(s,w) +d(w,g) — d'(s,w) — d'(w,g)|
< . o . o
< wm€12|d(s,w) d'(s,w)| + glég’d(w,g) d'(w,g)|

<|ld=dloc + lld = d'lloc
= 2[|d — d'[| oo

Thus, if ||d — d'||oc < €/2, we have ||P(d) — 77(d’)||oo < e O

Lemma 7. Forany s,g € S and d € D we have that P(d)(s,g) < d(s, g).

Proof. Letd,d' € D and € > 0. We have
[P(d)(s.9) = P(d') (5. 9)| = |[min[d(s, w) + d(w, g)] — min[d'(s,w) + d'(w,)]|
< meig|d(s,w) +d(w,g) — d'(s,w) — d'(w,g)|
< . o . o
< glég|d(s,w) d'(s,w)| + wmélg’d(w,g) d'(w,g)|

< ld = d'lloc + lld = d'l|o
=2||d — d'||w.

Thus, if ||d — d'[|oc < €/2, we have ||P(d) — ’P(d')”oo <e O

Lemma 5. We have P(d) = d ifand only if d € Q.

Proof. (=) Suppose P(d) = d. Then, for all s, g, w € S we have
d(s, g) = P(d)(s,9) = min [d(s,w) +d(w, g)] < d(s,w) +d(w, g).
Thus, d € Q.

(<) Suppose d € Q. Then, for all s,g € S we have
(s, 9) < min[d(s,w) + d(w, g)] = P(d)(s,).

We also have P(d)(s, g) < d(s,g) by Lemma 7. Thus, P(d) = d.
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Table 2: Hyperparameters for TMD

Hyperparameter Value
batch size 256
learning rate 3-1074
discount factor 0.995

invariance weight ¢ 0.01 in medium locomotion environments, 0.1 otherwise

Table 3: Network configuration for TMD.
Configuration Value

latent dimension size 512
encoder MLP dimensions (512, 512,512)
policy MLP dimensions (512,512, 512)
layer norm in encoder MLPs  True
visual encoder (visual- envs) impala-small
MRN components 8
T weighting on diagonal elements 1 (navigation, play)
0.5 (stitch, explore, noisy)

D Experimental Details

General hyperparameters are provided in Table 2.

We implemented TMD using JAX [47] within the OGBench [43] framework. OGBench requires a
per-environment hyperparameter o controlling the behavioral cloning weight to be tuned for each
method based on the scale of its losses. We generally found TMD to work well with similar « values
to those used by CRL. We used the same values of o as CMD’s implementation. For a complete list
of alpha values, please refer to the code release of the paper.

To prevent gradients from overflowing, we clip the 7 invariance loss per component to be no more
than 5. We also found using a slightly smaller batch size of 256 compared to 512 to be helpful for
reducing memory usage.

D.1 Implementation Details

The network architecture for TMD is described in Table 3. The “MRN components” refers to the
number of ensemble terms K in Eq. (21). We found K = 8 components enabled stable learning
and expressive distances. We weigh the off-diagonal element, corresponding to the product of the
marginals p(s)p(g), on a 0-1 scale compared to the diagonal elements, corresponding to the joint
distribution p(s, g). A scale of 0 corresponds to the off-diagonal elements weighing the same as the
diagonal elements, and a scale of 1 means that only diagonal elements will matter for 7 -operator.

D.2 Ablations

The full ablation results for TMD in the pointmaze-teleport-stitch are presented in Table 4
with success rates and standard errors.

Table 4: Ablation Success rate.
Ablation Success Rate

None 29.3(+22)

No gradient stopping in £+ 18.7(E!®)
No contrastive loss 9.8(+17

No 7 loss 13.3(+29)

No 7 loss 18.5(*21)
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D.3 Computational Resources

Experiments were run using NVIDIA A6000 GPUs with 48GB of memory, and 4 CPU cores and 1
GPU per experiment. Each state-based experiment took around 2 hours to run with these resources,
and each pixel-based experiment took around 4 hours.

Comparison of Bregman divergences for fitting distances

o
2 1 l
2 |
- \ .
0 S /
0 1 2 3 4 5 6
d

— Dy, (d,d) = (e — e ?)?
—— Dgce(d,d) = (1 —e %) log(1 — e~ %) — de ¢
— Dy(d,d') = exp(d—d') —d

Figure 5: Comparison of Bregman divergences for e~ onto e~ in expectation. All losses are

minimized at d = d’, and share the property that they will be minimized in expectation when
e~? = E[e~7]. But only the Dy (d, d’) loss has non-vanishing gradients d > d’ for large .

E Bregman Divergence in 7 -invariance

Recall the divergence used in Eq. (25):
Dr(d,d') £ exp(d —d') — d. (25)

This divergence is proportional to the Bregman divergence [36] for the function F'(z) = — log(z),
similar to the Itakura-Saito divergence [37].

Dp(e? ey = F(e™) = F(e™) = F'(e”")(e ™" — e
1 /
— dl _d - —d _ —d
+ g (e e )
=d —d+exp(d—d)-1
= Dy(d,d') +d — 1. (38)
The minimizer of Eq. (25) satisfies

argmin Ey [Dr(d, d')] = —log Eg /e~ (39)
d>0
when d’ is a random “target” distance [48]. In other words, using Eq. (25) as a loss function regresses
e~ onto the expected value of e=% (or onto the expected value of €874 as used in Eq. (26)).
The key advantage of this divergence when backing up temporal distances is that the gradients do not
vanish when either d, d’, or the difference between them is small or large. This property is not shared

by more standard loss functions like the squared loss or binary cross-entropy loss when applied to the
probability space and the models (distances) are in log-probability space.
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Algorithm 1: Temporal Metric Distillation (TMD)

input: dataset D, learning rate n
initialize representations ¢, v, policy 7
while training do
sample B = {s;,a;, s}, g;}}L; ~ D
by -
(¢7 ’IZ}) «— (¢a ¢) - 77V¢,¢£TMD(¢a 11217 'sza B) > E‘/- (27)
=7 —=NVaLlr(9,,m; B) > Eq. (28)
return m

A A S ol ey

Table 5: Ablation of T -invariance loss in antmaze-teleport-stitch

Loss | Success Rate
Dy (Ours) 29.3(+22)
Dy, 16.119)
Dgce 15.1F9

E.1 Empirical Comparison

In practice, we found it was important to use this divergence in TMD for stable learning (Table 5). Ths
loss could also be applied to other GCRL algorithms where learned value functions are probabilities
but are predicted in log-space to improve gradients. Future work should explore this divergence in
other GCRL algorithms to improve training compared to the more commonly used squared loss or
binary cross-entropy loss [35].

F Algorithm Pseudocode

Full pseudocode for TMD is provided in Algorithm 1. We provide the full TMD loss function in
Eq. (27) and the policy extraction loss in Eq. (28) below for reference:
Lrwn (6,939, B) = Lxce (6,0:8) + ¢ (L2 (6,038) + L1 (6,8:B)) €D

N

Lm0, {si,ai, 85, g} ,) = Z (1 = Ndurn (0(54, G35), ¥(95)), 95)

ij=1
R . 2
+ Adyirn (B(54, @i),10(9)) + |G — agl|,  (28)
where a;; = 7(s;, g;), batch B ~ p™® = {s;, a;, sg,gi}ﬁil.

The components of Eq. (27) are (see Section 4):

ef(si ez -gi)
LNcE (¢ ¥ {si,ai, 8}, gi }im 1 ZlOg(W> (19)
((b M{Suau ,,gz i= 1 Z dMRN (Sua])) (23)
1,7=1

N
T ((b?w;{si?ahs;agi 7{\;1) = Z DT(dMRN((b(Sual)vw(gj))ﬂdMRN(w(s;)aw(g])) _1Og’7)

i,j=1

(26)

Glossary

Q? The behavioral Q-function under policy m3. 4
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Qy (s,a) the optimal goal-conditioned Q-function for reaching goal g. 4, 5
Vy (s) the optimal goal-conditioned value function for reaching goal g. 5

IT All policies 7(a | s) mapping states to distributions over actions. 4

C(m) the outcome of running CRL with policy 7, equivalent to dsp, under suitable assumptions. 6
D the set of all distances that upper bound the optimal successor distance dg,. 6, 14

D the set of all distances over states S. 4, 5, 13

Q the set of all quasimetrics over states S. 4, 5

A the action space. 4-8, 14, 19

T the action invariance operator defined in Eq. (7). 5-8, 14

‘P the path relaxation operator defined in Eq. (6). 5, 15

S the state space. 4-8, 13-15, 19

T the backup operator defined in Eq. (5). 5-8, 14

‘P.. the projection operator onto the set of quasimetrics O, defined as the fixed point of path. 5, 6, 14
mg the behavior policy used to collect the offline dataset. 68, 18

a; the action at time step ¢ (random variable). 4

5 the state at time step ¢ (random variable). 4

s/

the state at a random future time step ¢t + K where K ~ Geom(1 — ). 4

D the set of all realized successor distances d, under policies 7 € 1I. 6

D1 The Bregman divergence defined in Eq. (25), analogous to the Linex loss [38, 39]. 8, 17, 18
L7 The action invariance loss defined in Eq. (23). 7, 8, 18

L+ The T -invariance loss defined in Eq. (26). 8, 18

Lnce The backward NCE loss defined in Eq. (19). 7, 8, 18

M a controlled Markov process with state space S, action space A, and dynamics P(s’ | s,a). 4
¢ learned state-action representation network. 7, 8, 18

1 learned state representation network. 7, 8, 18

¢ weight of the invariance losses in the overall distance learning objective defined in Eq. (27). 8, 16,
18

dyrn an ensemble version of the MRN [17] quasimetric parameterization defined in Eq. (21). 7, 8,
18

dg, the optimal successor distance, defined in Eq. (9). 5-7, 13, 14, 19
dg, the modified successor distance under policy 7, defined in Eq. (8). 5, 6, 19

dgp the successor distance [16]. 6, 7, 14, 19

action invariance the property that the distance between a state and a state-action pair with that
state is zero, d(s, (s,a)) = 0foralls € S,a € A. 4,5

OGBench A benchmark for offline goal-conditioned reinforcement learning [43]. 9, 13, 16
quasimetric a distance satisfying the triangle inequality (see Eq. (2)). 1-4, 6, 7,9, 10, 13, 19
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Acronyms

CMD Contrastive Metric Distillation. 9, 16
CRL Contrastive Reinforcement Learning. 9, 10, 16, 19

GCBC Goal-Conditioned Behavioral Cloning. 9

GCIQL Goal-Conditioned Implicit Q-Learning. 9, 10

GCIVL Goal-Conditioned Implicit Value Learning. 9, 10
GCRL Goal-Conditioned Reinforcement Learning. 2, 3, 10, 18

IQE Interval Quasimetric Embedding. 10

MLP Multi-Layer perceptron. 16
MRN Metric Residual Network. 6, 10, 16

QRL Quasimetric Reinforcement Learning. 9, 10
RL Reinforcement Learning. 1, 2, 4, 8, 9

TD Temporal Difference. 1, 3, 4
TMD Temporal Metric Distillation. 2, 4-6, 9, 10, 13, 14, 16, 18
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we show with theoretical justification (Section 3.4) and experiments
(Section 5) that our method outperforms the baselines and enables the capabilities discussed
in the introduction.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
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 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Yes, full proofs are in Appendices B and C.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide an implementation of our method and experimental details in
the code

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, code is referenced in Appendix A and datasets used from Park et al. [43]
are openly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]
Justification: Yes, experimental details are discussed in Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, we report error bars across seeds in our results.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we provide compute resources in Appendix D.3.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All components of the NeurIPS Code of Ethics are respected.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, we discuss both positive and negative societal impacts in Section 6.1.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The models and datasets used in this paper do not pose a high risk for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we credit the source of the datasets and baseline implementations used in
our experiments [43].

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or human subjects were used in this research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing or human subjects were used in this research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLMs were used in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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