
Offline Goal-conditioned Reinforcement Learning with
Quasimetric Representations

Vivek Myers Bill Chunyuan Zheng Benjamin Eysenbach† Sergey Levine

UC Berkeley †Princeton University

Abstract

Approaches for goal-conditioned reinforcement learning (GCRL) often use learned
state representations to extract goal-reaching policies. Two frameworks for rep-
resentation structure have yielded particularly effective GCRL algorithms: (1)
contrastive representations, in which methods learn “successor features” with a
contrastive objective that performs inference over future outcomes, and (2) tem-
poral distances, which link the (quasimetric) distance in representation space to
the transit time from states to goals. We propose an approach that unifies these
two frameworks, using the structure of a quasimetric representation space (triangle
inequality) with the right additional constraints to learn successor representations
that enable optimal goal-reaching. Unlike past work, our approach is able to
exploit a quasimetric distance parameterization to learn optimal goal-reaching
distances, even with suboptimal data and in stochastic environments. This gives
us the best of both worlds: we retain the stability and long-horizon capabilities of
Monte Carlo contrastive RL methods, while getting the free stitching capabilities of
quasimetric network parameterizations. On existing offline GCRL benchmarks, our
representation learning objective improves performance on stitching tasks where
methods based on contrastive learning struggle, and on noisy, high-dimensional
environments where methods based on quasimetric networks struggle.

1 Introduction

Learning temporal distances lies at the heart of many important problems in both control theory and
reinforcement learning. In control theory, such distances form important Lyapunov functions [1] and
control barrier functions [2], and are at the core of reachability analysis [3] and safety filtering [4]
In Reinforcement Learning (RL), such distances are important not just for safe RL [5], but also
for forming value functions in tasks ranging from navigation [6] to combinatorial reasoning [7] to
robotic manipulation [8, 9]. Ideally, these learned distances have two important properties: (i) they
can encode paths that are shorter than those demonstrated in the data (i.e., stitching); and (ii) they can
capture long-horizon distances with low variance.

Today, when selecting a method for learning temporal distances, practitioners typically have to
decide which of these desiderata they care more about and forgo the other. Methods based on
Q-learning [10, 11, 12] use Temporal Difference (TD) learning to stitch trajectories and find shortest
paths, yet TD learning results in compounding errors that make it challenging to apply to long-
horizon tasks [13]. Monte Carlo methods [14, 15] can directly learn goal-reaching value functions,
which can be connected to temporal distances [16], but their ability to find shortest paths remains
limited. Methods based on learning a quasimetric geometry [17, 18, 16], which impose a triangle
inequality over distances as an architectural invariance, do find shortest paths and don’t require

Website and code: https://tmd-website.github.io/
39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://tmd-website.github.io/

Extract goal-reaching policy Learn temporal distance representations

ω(s, a2)

ω(s, a1)

ω(s, a3)

ω(g)a2

ω(s) → a2⇒
mina dω(s,a)→ε(g)

ω, ε

triangle inequality with
quasimetric architecture

ω(g)

ω(s→)

ω(w)temporal
invariance

(T)

action
invariance

(I)

→

+ time-contrastive MC loss

predicts ω(st, a)ω(st+k)
(P-invariance)

+≤dω(s→) → ω(g) dω(s→) → ω(w) dω(w) → ω(g)

ω(s)
ω(s, a2)

ω(s, a3)

ω(s, a1)

Figure 1: (Left) TMD learns a temporal distance dθ that satisfies the triangle inequality and action
invariance. It does this by minimizing the distance between the learned distance and the distance
between the successor features of the states and actions in the dataset. (Right) The learned distance is
used to extract a goal-conditioned policy.

dynamic programming with compounding errors, but fail in stochastic settings and/or when learning
from off-policy (suboptimal) data.

The aim of this paper is to build a method for learning temporal distances that retains the long-horizon
estimation capabilities of Monte Carlo methods but nonetheless is able to compute shortest paths. We
take an invariance perspective to do this. Temporal distances satisfy various invariance properties.
Because they are value functions, they satisfy the Bellman equations. Prior work has also shown that
they satisfy the triangle inequality, even in stochastic settings [18, 16]. The triangle inequality, also a
form of invariance [19], is powerful because it lets us architecturally winnow down the hypothesis
space of temporal distances by only considering neural network architectures that satisfy the triangle
inequality [17, 20]. Importantly, the fact that temporal distances satisfy the triangle inequality holds
for any temporal distance, including both optimal temporal distances and those learned by Monte
Carlo methods. This raises an important question: might there be an additional invariance that is
satisfied by optimal temporal distances, but not those learned by Monte Carlo methods? Identifying
such invariance properties that would enable us to use Monte Carlo methods to architecturally winnow
the hypothesis space, and then use this additional invariance property to identify optimal temporal
distances within that space.

The key contribution of this paper is a method for learning temporal distances that relies primarily on
Monte Carlo learning, but nonetheless provably converges to optimal shortest paths. To enable this,
we use a quasimetric architecture that imposes the triangle inequality as an architectural constraint,
combined with two additional invariance properties that apply at the transition level. When these
invariances are enforced as constraints on features learned with Monte Carlo estimation, they impose
a structure roughly similar to the Bellman optimality equations across the space of goal-conditioned
(Kroenecker Delta) reward functions. We translate these invariance properties into a practical method
for Goal-Conditioned Reinforcement Learning (GCRL) that we call Temporal Metric Distillation
(TMD). To the best of our knowledge, TMD is the first GCRL method that uses a quasimetric value
parameterization to implicitly stitch behaviors, while also learning optimal policies in stochastic
settings with suboptimal data. On benchmark tasks of up to 21-dimensions as well as visual
observations, we demonstrate that our method achieves results that considerably outperforms that
of similar baselines. Additional experiments reveal the importance of the enforced invariances and
contrastive learning objective. Given the importance of long-horizon reasoning in many potential
applications of RL today, we believe our work is useful for thinking about how to learn optimal
temporal distances.

2

Stochastic Dynamics Optimal Policies Metric Architecture

ω(s, a)

ω(s→)

ω

ω(s)

P(s→ | s, a)

dωdωdω +≤

suboptimal
demos πβ

optimal 𝜋*

TMD (Ours) TMD (Ours) TMD (Ours)

CMD

GCIQL

QRL CMD

CRL

QRL

GCIQLCRL

CMD

prior work

this work

QRL

CRLGCIQL

Figure 2: TMD enables key capabilities over prior work: (Left) handling stochastic transition
dynamics, (Center) learning optimal policies from offline data, and (Right) stitching behaviors as a
property of network architecture.

2 Related Work

We provide a unifying framework that connects metric learning to (optimal) offline GCRL.

2.1 Metric Learning

We build on prior approaches to learning temporal distances, which reflect the reachability of
states [16]. Temporal distances are usually defined as the expected number of time steps to transit
from one state to another [21, 22]. Recent work has provided probabilistic definitions that are also
compatible with continuous state spaces and stochastic transition dynamics [16]. A key consideration
when thinking about temporal distance is which policy they reflect: is this an estimate of the number
of time steps under our current policy or under the optimal policy? We will use optimal temporal
distance to mean the temporal distance under the optimal (distance-minimizing) policy.

Algorithmically, this choice is often reflected in the algorithm one uses for learning temporal distances.
Methods based on Q-learning typically estimate optimal temporal distances [11, 23, 24], and are
often structurally similar to popular actor-critic methods. Prior work has shown that temporal distance
learning can be important for finding paths that are better than those demonstrated in the data, and
can enable significantly more data efficient learning [25] (akin to standard results in the theory of
Q-learning [26]). Methods based on Monte Carlo learning typically operate by sampling pairs of
states that occur nearby in time (though not necessarily temporally-adjacent); distances are minimized
for such positive pairs, and maximize for pairs of states that appear on different trajectories [27, 15].
These Monte Carlo methods typically estimate the temporal distance corresponding to the policy that
collected the data. Methods for goal-conditioned behavioral cloning [28, 29], though not directly
estimating temporal distances, are effectively working with this same behavioral temporal distance [7].
Despite the fact that Monte Carlo methods do not estimate optimal temporal distances, they often
outperform their Q-learning counterparts, suggesting that it is at least unclear whether the errors
from learning the behavioral (rather than optimal) temporal distance are larger or smaller than those
introduced by TD learning’s compounding errors. Our work aims to bridge these two types of
temporal distances, providing a method that does learn optimal temporal distances while reducing the
reliance on TD learning to propagate values (and accumulate errors).

2.2 Offline Reinforcement Learning

Our investigation into temporal distances closely mirrors discussions in the offline RL literature
about 2-step RL methods [30], which often use Monte Carlo value estimation, versus multi-step RL
methods [31], which often use Q-learning value estimation. These 1-step RL methods avoid the

3

compounding errors of Q-learning, yet are limited by their capacity to learn Q∗
g(s, a) rather than

Qβ . However, their strong performance over the years [32] continues to suggest that it remains an
open question whether the compounding errors of Q-learning outweigh the benefits from learning the
behavioral value function, rather than the value function of the optimal policy.

3 Temporal Metric Distillation (TMD)

In this section, we formally define TMD in terms of the invariances it must enforce to recover optimal
distances, and by extension, the optimal policy. In Section 4 we will then show how these invariances
can be converted into losses which can be optimized with a quasimetric architecture that enforces the
triangle inequality.

3.1 Notation

We consider a controlled Markov process M with state space S, action space A, and dynamics
P(s′ | s, a). The agent interacts with the environment by selecting actions according to a policy
π(a | s), i.e., a mapping from S to distributions over A. We further assume the state and action
spaces are compact.

Policies π ∈ Π are defined as distributions π(a | s) for s ∈ S, a ∈ A. When applicable, for a fixed
policy π, we can denote the state and action at step t as random variables st and at, respectively. We
will also use the shorthand

s+t ≜ st+K for K ∼ Geom(1− γ). (1)

We equip M with an additional notion of distances between states. At the most basic level, a distance
S × S → R must be non-negative and equal zero only when passed two identical states. We will
denote the set of all distances as D, defined as

D ≜ {d : S × S → R : d(s, s) = 0, d(s, s′) ≥ 0 for each s, s′ ∈ S}.

A desirable property for distances to satisfy is the triangle inequality, which states that the distance
between two states is no greater than the sum of the distances between the states and a waypoint [18].
A distance satisfying this property is known as a quasimetric. Formally, we construct

Q ≜ {d ∈ D : d(s, g) ≤ d(s, w) + d(w, g) for all s, g, w ∈ S}.

If we further restrict distances to be symmetric (d(x, y) = d(y, x)), we obtain the set of traditional
metrics over S.

3.2 TMD Operators

TMD learns a distance parameterization that is made to satisfy two constraints: (i) the triangle
inequality,

d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ S ×A ∪ S, (2)
and (ii) action invariance,

d
(
s, (s, a)

)
= 0 for any s ∈ S and a ∈ A. (3)

We will show that to ensure that we recover the optimal distance dSD [16] given the learned (backward
NCE) contrastive critic distance, the missing additional constraint is a form of consistency over
the environment dynamics with respect to the expected (exponentiated) distances. This constraint
resembles the “SARSA”-style Bellman consistency, which backs up values by averaging over
dynamics to learn on-policy values. So, what TMD is doing with these additional constraints is
weakening the form of Bellman consistency that is required to recover the optimal distance from the
standard maxa∈A Bellman operator to the weaker on-policy SARSA Bellman operator. TMD thus
turns on-policy SARSA into an off-policy algorithm through the metric constraints.

We can define this additional constraint as the fixed point of the following operator:

T (d)(x, y) =
{
− logEP(s′|s,a)

[
e−d(s

′,y)
]
− log γ if x = (s, a) ∈ S ×A,

d(x, y) otherwise.
(4)

4

The triangle inequality Eq. (2) and action invariance Eq. (3) properties can also be written in terms of
operator fixed points:

P(d)(x, z) ≜ min
y∈S

[
d(x, y) + d(y, z)

]
(5)

Id(s, x) ≜
{
0 if x = (s, a)

I(d)(s, x) otherwise.
(6)

3.3 Properties of path relaxation

Path relaxation P [19] (Eq. 5) enforces invariance to the triangle inequality, i.e., P(d) = d if and
only if d ∈ Q.
Theorem 1. Take d ∈ D and consider the sequence

dn = Pn(d).
Then, dn converges uniformly to a fixed point d∞ ∈ Q.

In light of Theorem 1 we denote by P∗ = limn→∞ Pn the fixed point operator of P , and note that
P∗ is in fact a projection operator onto Q.

Proofs of Lemmas 5 to 7 and Theorem 1 can be found in Appendix C.

3.4 The modified successor distance

The modified successor distance dπSD ∈ D can be defined by [16]: 11.5

dπSD(x, y) ≜


0 if x = y,

− log pπ
(P(s+=g|s0=s,a0=a)

P(s+=g|s0=g)
)

for K ∼ γ if x = (s, a) ∈ S ×A, y = g ∈ S
− logEπ(a|s)

[
e−d

π
SD((s,a),g)

]
− log γ if x = s ∈ S, x ̸= y

dπSD(s, g)− log π(a | g) if y = (g, a) ∈ S ×A.

(7)

The optimal successor distance d∗SD can then be stated as
d∗SD(x, y) ≜ min

π∈Π
dπSD(x, y). (8)

This distance is useful since it lets us recover optimal goal-reaching policies. For any s, g ∈ S, a ∈ A,
the distance is proportional to the optimal goal-reaching value function

d∗SD((s, a), g) ∝a −Q∗
g(s, a) (9)

where Q∗
g(s, a) is defined as the standard optimal Q-function for reaching goal g [15]:

Q∗
g(s, a) ≜ max

π∈Π
E{si,ai}∼π

[∞∑
t=0

γt P(st = g | s0 = s, a0 = a)
]
. (10)

and
V ∗
g (s) ≜ max

a∈A
Q∗
g(s, a). (11)

In fact, we can equivalently define d∗SD

(
(s, a), g

)
in terms of Q∗:

d∗SD

(
(s, a), g

)
= log V ∗

g (g)− logQ∗
g(s, a). (12)

Similar to Myers et al. [16], we argue that contrastive learning can recover these distances, i.e.,
C(π) = dSD (13)

Then, through the operators in Section 3.2, we will extend this to the optimal distance d∗SD.

For convenience, we also define the set of realized successor distances
D̃ ≜ {dπSD : π ∈ Π}. (14)

Note that D̃ does not necessarily contain the optimal distance d∗SD, as no single policy is generally
optimal for reaching all goals.
Remark 2. The optimal successor distance d∗SD satisfies

dSD(s, (s, a)) = 0 for all s ∈ S and a ∈ A.

5

3.5 Convergence to the optimal successor distance

Applying the invariances in Section 3.2 to the contrastive distance Eq. (13), the TMD algorithm can
be defined symbolically as

M(π) ≜ (P∗ ◦ T ◦ I)∞ C(π). (15)
In other words, TMD computes the initial πβ distance C(π), and then enforces the invariance
(architecturally or explicitly), as expressed with the iterative application of T ◦ I followed by
projection onto Q by P∗.
Theorem 3. The TMD algorithm converges pointwise to the optimal successor distance d∗SD for any
policy π with full state and action coverage, i.e.,

lim
n→∞

(P∗ ◦ T ◦ I)n C(π) = d∗SD. (16)

Our approach for proving Theorem 3 will be to analyze the convergence properties of (P∗ ◦ T ◦ I)
over the space of “suboptimal” distances D∗

+, defined as

D∗
+ ≜ {d ∈ D : d(x, y) ≥ d∗SD(x, y) for all x, y ∈ S ×A ∪ S}. (17)

Unfortunately, (P∗ ◦ T ◦ I) is not a contraction on D∗
+, so we cannot directly apply the Banach

fixed-point theorem as we would for the standard Bellman (optimality) operator. Instead, we will
show this operator induces a “more aggressive” form of tightening over D∗

+, which will allow us to
prove convergence to d∗SD. We start by showing that d∗SD is a fixed point of (P∗ ◦ T ◦ I) in Lemma 4.
Lemma 4. The optimal successor distance d∗SD is the unique fixed point of P∗ ◦ T ◦ I on D∗

+.

Proofs are in Appendix B.

4 Implementing TMD

We show that the backward NCE contrastive learning algorithm can recover an initial estimate of dπβ

SD .
As justified by Theorem 3, we can then enforce the invariances to recover the optimal distance d∗SD.

The algorithm learns a distance dθ parameterized by a quasimetric neural network θ such as Metric
Residual Network (MRN) [17]. By construction, this distance is a quasimetric that is invariant to P ,
i.e., Pdθ = dθ.

4.1 Initializing the Distance with Contrastive Learning

Defining the critic
f(s, a, g) ≜ −dθ

(
(s, a), g

)
,

the core contrastive objective is the backward NCE loss:

LNCE
(
ϕ, ψ; {si, ai, s′i, gi}Ni=1

)
=

N∑
i=1

log

(
ef(si,ai,gi)∑N
j=1 e

f(sj ,aj ,gi)

)
(18)

which is enforced across batches of triplets {si, ai, si+k}Ni=1 for k ∼ Geom(1− γ) sampled from
the dataset generated by policy πβ .

The optimal solution to this objective is

f(s, a, g) = log
(P(s+ = g | s = s, a = a)

P(s+ = g)C(g)

)
. (19)

for some C(g) [33].

The parameterization f(s, a, g) = −dθ
(
(s, a), g

)
where dθ is a quasimetric-enforcing parameteriza-

tion (see [17, 18]) ensures that

C(g) =
P(s+ = g | s = g)

P(s+ = g)
,

6

so the only valid quasimetric satisfying Eq. (19) is dθ = d
πβ

SD .

Optimality of L in Eq. (18) implies that the learned distance dθ = C(πβ) = d
πβ

SD .

The additional invariance constraints I and T can be directly enforced by regressing ∥dθ − Idθ∥∞
and ∥dθ−T dθ∥∞ to zero. Theorem 3 guarantees that if we can enforce those constraints and enforce
invariance to P by using a quasimetric architecture (e.g., MRN [17]), we can recover the optimal
distance d∗SD.

In practice, we will directly enforce the constraints across the batches used in our contrastive loss.
We will use the MRN parameterization for dθ for θ = (ψ, ϕ) on learned representations of states (ψ)
and state-action pairs (ϕ):

dθ
(
s, g

)
≜ dMRN(ψ(s), ψ(g)) dθ

(
(s, a), g

)
≜ dMRN(ϕ(s, a), ψ(g))

dθ
(
s, (s, a)

)
≜ dMRN(ψ(s), ϕ(s, a)) dθ

(
(s, a), (s′, a′)

)
≜ dMRN(ϕ(s, a), ϕ(s

′, a′))

where

dMRN(x, y) ≜
1

K

K∑
k=1

max
m=1...M

max(0, xkM+m − ykM+m) (20)

4.2 Action I-Invariance

Invariance to the I backup operator in Eq. (6) gives the following update across s, a ∈ S ×A
dθ
(
ψ(s), ϕ(s, a)

)
← 0, (21)

which can be directly enforced with the following loss across the batch:

LI
(
ϕ, ψ; {si, ai, s′i, gi}Ni=1

)
=

N∑
i,j=1

dMRN

(
ψ(si), ϕ(si, aj)

)
. (22)

4.3 Temporal T -Invariance

Invariance to the T backup operator in Eq. (4) corresponds to the following update performed with
respect to ϕ(s, a):

e−dMRN(ϕ(s,a),ψ(g)) ← EP(s′|s,a)
[
elog γ−dMRN(ψ(s

′),ψ(g))
]
. (23)

This update is enforced by minimizing a divergence between the LHS and samples from the RHS
expectation. Classic approaches for backups in deep RL include the ℓ2 distance to the target
(RHS) [34], or when values can be interpreted as probabilities, a binary cross-entropy loss [35].

We use the following Bregman divergence [36], which we find empirically is more stable for learning
the update in Eq. (23) (c.f. the Itakura-Saito distance [37] and Linex losses [38, 39]).

DT (d, d
′) ≜ exp(d− d′)− d. (24)

We discuss this divergence and prove correctness in Appendix E. With the divergence, the T -
invariance loss is:

LT
(
ϕ, ψ; {si, ai, s′i, gi}Ni=1

)
=

N∑
i=1

N∑
j=1

DT

(
dMRN(ϕ(si, ai), ψ(gj)), dMRN(ψ(s

′
i), ψ(gj))− log γ

)
(25)

We minimize this loss only with respect to ϕ, stopping the gradient through ψ. This avoids the moving
target that classically necessitates learning separate target networks in RL [34].

4.4 The Overall Distance Learning Objective

We can express the overall critic loss as:

LTMD
(
ϕ, ψ;ψ,B

)
= LNCE (ϕ, ψ;B) + ζ

(
LI (ϕ, ψ;B) + LT

(
ϕ, ψ;B

))
(26)

for batch B ∼ πβ = {si, ai, s′i, gi}Ni=1

7

Table 1: OGBench Evaluation
Methods

Dataset TMD CMD CRL QRL GCBC GCIQL GCIVL

humanoidmaze_medium_navigate 64.6(±1.1) 61.1(±1.6) 59.9(±1.3) 21.4(±2.9) 7.6(±0.6) 27.3(±0.9) 24.0(±0.8)

humanoidmaze_medium_stitch 68.5(±1.7) 64.8(±3.7) 36.2(±0.9) 18.0(±0.7) 29.0(±1.7) 12.1(±1.1) 12.3(±0.6)

humanoidmaze_large_stitch 23.0(±1.5) 9.3(±0.7) 4.0(±0.2) 3.5(±0.5) 5.6(±1.0) 0.5(±0.1) 1.2(±0.2)

humanoidmaze_giant_navigate 9.2(±1.1) 5.0(±0.8) 0.7(±0.1) 0.4(±0.1) 0.2(±0.0) 0.5(±0.1) 0.2(±0.1)

humanoidmaze_giant_stitch 6.3(±0.6) 0.2(±0.1) 1.5(±0.5) 0.4(±0.1) 0.1(±0.0) 1.5(±0.1) 1.7(±0.1)

pointmaze_teleport_stitch 29.3(±2.2) 15.7(±2.9) 4.1(±1.1) 8.6(±1.9) 31.5(±3.2) 25.2(±1.0) 44.4(±0.7)

antmaze_medium_navigate 93.6(±1.0) 92.4(±0.9) 94.9(±0.5) 87.9(±1.2) 29.0(±1.7) 12.1(±1.1) 12.3(±0.6)

antmaze_large_navigate 81.5(±1.7) 84.1(±2.1) 82.7(±1.4) 74.6(±2.3) 24.0(±0.6) 34.2(±1.3) 15.7(±1.9)

antmaze_large_stitch 37.3(±2.7) 29.0(±2.3) 10.8(±0.6) 18.4(±0.7) 3.4(±1.0) 7.5(±0.7) 18.5(±0.8)

antmaze_teleport_explore 49.6(±1.5) 0.2(±0.1) 19.5(±0.8) 2.3(±0.7) 2.4(±0.4) 7.3(±1.2) 32.0(±0.6)

antmaze_giant_stitch 2.7(±0.6) 2.0(±0.5) 0.0(±0.0) 0.4(±0.2) 0.0(±0.0) 0.0(±0.0) 0.0(±0.0)

scene_noisy 19.6(±1.7) 4.0(±0.7) 1.2(±0.3) 9.1(±0.7) 1.2(±0.2) 25.9(±0.8) 26.4(±1.7)

visual_antmaze_teleport_stitch 38.5(±1.5) 36.0(±2.1) 31.7(±3.2) 1.4(±0.8) 31.8(±1.5) 1.0(±0.2) 1.4(±0.4)

visual_antmaze_large_stitch 26.6(±2.8) 8.1(±1.3) 11.1(±1.3) 0.6(±0.3) 23.6(±1.4) 0.1(±0.0) 0.8(±0.3)

visual_antmaze_giant_navigate 40.1(±2.6) 37.3(±2.4) 47.2(±0.9) 0.1(±0.1) 0.4(±0.1) 0.1(±0.2) 1.0(±0.4)

visual_cube_triple_noisy 17.7(±0.7) 16.1(±0.7) 15.6(±0.6) 8.6(±2.1) 16.2(±0.7) 12.5(±0.6) 17.9(±0.5)

We bold the best performance. Success rate (%) is presented with the standard error across six seeds. All datasets contain
5 separate tasks each. We record the aggregate across all 5 tasks.

We minimize Eq. (26) with respect to ϕ and ψ, where ψ is a separate copy of the representation
network ψ (stop-gradient). Here, ζ controls the weight of the contrastive loss and invariance
constraints, and batches are sampled

{si, ai, s′i, gi}Ni=1 ∼ πβ ,

for s′i the state following si, and gi the state K steps ahead of si for K ∼ Geom(1− γ). In theory,
ζ−1 should be annealed between 1 at the start of training (to extract the distance C(π)), toward 0 at
the end of training to enforce invariance to (T ◦ I), though in practice we find it suffices to keep ζ
constant in the environments we tested.

In practice, we pick ζ based on how much stitching and stochasticity we expect in the environment
— when ζ is large, we more aggressively try and improve on the initial distance C(πβ) describing the
dataset policy πβ .

4.5 Policy Extraction

We finally extract the goal-conditioned policy π(s, g) : S2 → A with the learned distance dθ:

min
π

E{si,ai,s′i,gi}N
i=1∼πβ

[N∑
i,j=1

dθ
(
(si, π(si, gj)), gj

)]
. (27)

For conservatism [40], we augment Eq. (27) with a behavioral cloning loss against πβvia behavior-
constrained deep deterministic policy gradient [41]. Using additional goals gi sampled from the same
trajectory as si in Eq. (27) could also be done through an extra tuned parameter (cf. Bortkiewicz et al.
[42], Park et al. [43]). Denoting these hyperparameters as λ and α respectively, the overall policy
extraction objective is:

min
π

E{si,ai,s′i,gi}N
i=1∼πβ

[
Lπ

(
π;ϕ, ψ, {si, ai, s′i, gi}Ni=1

)]
(28)

Lπ ≜
N∑

i,j=1

(1− λ)dMRN

(
ϕ(si, âij), ψ(gj)), ψ(gj)

)
+ λdMRN

(
ϕ(si, âii), ψ(gi)

)
+ α

∥∥âii − ai∥∥22
where âij = π(si, gj). (29)

Prior offline RL methods use similar α and λ hyperparameters, which must be tuned per environ-
ment [43].

8

5 Experiments

In our experiments, we evaluate the performance of TMD on tasks from the OGBench benchmark [43].
We aim to answer the following questions:

1. Do the invariance terms in Eq. (5) improve performance quantitatively in offline RL settings?
2. Is the contrastive loss in Eq. (18) necessary to facilitate learning these tasks?
3. What capabilities does TMD enable for compositional task learning?

5.1 Experimental Results

We evaluate TMD across evaluation tasks in OGBench for the environments and datasets listed in
Table 1. The experiments use 6 seeds in all environments, and report the success rates aggregated
across the 5 evaluation tasks (goals) provided with each environment. Of particular interest are the
“teleport” and “stitch” environments, which respectively test the ability to handle stochasticity
and composition.

0 70 140

Predicted Distance to Goal ()

Figure 3: An example distance
heatmap learned by TMD in
pointmaze_large_stitch. Darker
colors indicate larger distances.

We compare against the Goal-Conditioned Behavioral
Cloning (GCBC), Goal-Conditioned Implicit Q-Learning
(GCIQL), Goal-Conditioned Implicit Value Learning
(GCIVL), Contrastive Reinforcement Learning (CRL),
and Quasimetric Reinforcement Learning (QRL) algo-
rithms, using the reference results provided by OG-
Bench [43]. We implement and evaluate Contrastive Met-
ric Distillation (CMD) [16], which also learns a quasimet-
ric temporal distance, but does not enforce the constraint
of T or I invariance and uses a separate critic architecture.
GCBC uses imitation learning to learn a policy that fol-
lows the given trajectories within a dataset [44]. CRL [15]
performs policy improvement by fitting a value function
via contrastive learning. QRL [18] learns a quasimetric
value function to recover optimal distances in determinis-
tic settings. GCIQL and GCIVL use expectile regression
to fit a value function [45].

TMD consistently outperforms QRL and CRL in the stitch-
ing environments. In the stochastic teleport environ-
ments, TMD outperforms both CRL and QRL by a con-
siderable margin — in pointmaze_teleport_stitch

TMD outperforms CRL and QRL by over 3x. An example distance learned by TMD in
antmaze_large_stitch is visualized as a heatmap in Fig. 3.

5.2 Ablation Study

We perform an ablation study on the pointmaze_teleport_stitch environment to evaluate the
importance of the invariance terms and the contrastive initialization loss in TMD. We separately
disable the contrastive, T invariance, and I invariance component during training and observe its
effects. We also examine the empirical effects of stopping gradients when calculating LT . We log
the corresponding success rate for each of the ablations in 4.

Our ablation studies answer questions 2 and 3, in which we demonstrate that by removing some
of the invariances or removing the contrastive loss, the performance of TMD decreases to levels
similar to CRL and QRL. Similarly, we see the importance of keeping the contrastive objective, as
the performance of TMD degrades even more despite the presence of other loss components. We also
note the empirical performance of TMD is better when we stop gradients on LT . We provide further
ablation details in Appendix D.2.

6 Discussion

9

In this work, we introduce Temporal Metric Distillation (TMD), an offline goal-conditioned rein-
forcement learning method that learns representations which exploit the quasimetric structure of
temporal distances. Our approach unifies quasimetric, temporal-difference, and Monte Carlo learning
approaches to GCRL by enforcing a set of invariance properties on the learned distance function.
To the best of our knowledge, TMD is the first method that can exploit the quasimetric structure of
temporal distances to learn optimal policies from offline data, even in stochastic settings (see Fig. 2).
On a standard suite of offline GCRL benchmarks, TMD outperforms prior methods, in particular
on long-horizon tasks that require stitching together trajectories across noisy dynamics and visual
observations.

6.1 Limitations and Future Work

0 0.1 0.2 0.3 0.4

no T loss

no I loss

no LNCE loss

no LT stopgrad

TMD (Ours)

Success Rate

Ablations of the LTMD loss

Figure 4: We ablate the loss components of TMD
in the pointmaze_teleport_stitch environ-
ment.

Future work could examine more principled
ways to set the ζ parameter in our method, or
if there are ways to more directly integrate the
contrastive and invariance components of the
loss function. Future work could also explore
integrating the policy extraction objective more
directly into the distance learning to enable de-
sirable properties (stitching through architecture,
horizon generalization) at the level of the policy.
While we used the MRN [17] architecture in our
experiments, alternative architectures such as
Interval Quasimetric Embedding (IQE) [20] that
enforce the triangle inequality could be more
expressive. While the size of models studied
in our experiments make them unlikely to pose
any real-world risks, methods which implicitly
enable long-horizon decision making could have unintended consequences or poor interpretability.
Future work should consider these implications.

Acknowledgements

We would like to thank Seohong Park, Qiyang (Colin) Li, Catherine Ji, Cameron Allen, and Kyle
Stachowicz for relevant discussions and feedback on this work. This research was partly supported
by AFOSR FA9550-22-1-0273, DARPA TIAMAT, and the DoD NDSEG fellowship.

References
[1] Eduardo D. Sontag. A ‘Universal’ Construction of Artstein’s Theorem on Nonlinear Stabiliza-

tion. Systems & Control Letters, 13(2):117–123, 1989.
[2] Aaron D. Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath,

and Paulo Tabuada. Control Barrier Functions: Theory and Applications. European Control
Conference, pp. 3420–3431, 2019.

[3] Matthias Althoff. Reachability Analysis and Its Application to the Safety Assessment of Au-
tonomous Cars. phdthesis, 2010.

[4] Kai-Chieh Hsu, Haimin Hu, and Jaime F Fisac. The Safety Filter: A Unified View of Safety-
Critical Control in Autonomous Systems. Annual Review of Control, 7, 2023.

[5] Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
Review of Safe Reinforcement Learning: Methods, Theory and Applications. arXiv:2205.10330,
2022.

[6] Dhruv Shah, Blazej Osinski, Brian Ichter, and Sergey Levine. LM-Nav: Robotic Navigation
With Large Pre-Trained Models of Language, Vision, and Action. Conference on Robot
Learning, 2022.

[7] Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the Gap
Between TD Learning and Supervised Learning – a Generalisation Point of View. International
Conference on Learning Representations, 2024.

10

https://www.sciencedirect.com/science/article/pii/0167691189900285
https://www.sciencedirect.com/science/article/pii/0167691189900285
https://ieeexplore.ieee.org/abstract/document/8796030
http://arxiv.org/abs/2207.04429
http://arxiv.org/abs/2207.04429
http://arxiv.org/abs/2401.11237
http://arxiv.org/abs/2401.11237

[8] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and
Amy Zhang. VIP: Towards Universal Visual Reward and Representation via Value-Implicit
Pre-Training. International Conference on Learning Representations, 2023.

[9] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A
Universal Visual Representation for Robot Manipulation. Conference on Robot Learning, pp.
892–909, 2022.

[10] Long-Ji Lin. Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and
Teaching. 1992.

[11] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience
Replay. Neural Information Processing Systems, volume 30, 2017.

[12] Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal Difference Mod-
els: Model-Free Deep RL for Model-Based Control. International Conference on Learning
Representations, 2018.

[13] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing Off-
Policy Q-Learning via Bootstrapping Error Reduction. Neural Information Processing Systems,
32, 2019.

[14] Alexey Dosovitskiy and Vladlen Koltun. Learning to Act by Predicting the Future. International
Conference on Learning Representations, 2017.

[15] Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive
Learning as Goal-Conditioned Reinforcement Learning. Neural Information Processing Systems,
volume 35, pp. 35603–35620, 2022.

[16] Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learn-
ing Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for
Decision-Making. International Conference on Machine Learning, 2024.

[17] Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric Residual Network for Sample
Efficient Goal-Conditioned Reinforcement Learning. AAAI Conference on Artificial Intelligence,
volume 37, pp. 8799–8806, 2023.

[18] Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal Goal-Reaching
Reinforcement Learning via Quasimetric Learning. International Conference on Machine
Learning, pp. 36411–36430, 2023.

[19] Vivek Myers, Catherine Ji, and Benjamin Eysenbach. Horizon Generalization in Reinforcement
Learning. International Conference on Learning Representations, 2025.

[20] Tongzhou Wang and Phillip Isola. Improved Representation of Asymmetrical Distances With
Interval Quasimetric Embeddings. NeurIPS 2022 NeurReps Workshop Proceedings Track, 2022.

[21] Junik Bae, Kwanyoung Park, and Youngwoon Lee. TLDR: Unsupervised Goal-Conditioned RL
via Temporal Distance-Aware Representations. Conference on Robot Learning, 2024.

[22] Stephen Tian, Suraj Nair, Frederik Ebert, Sudeep Dasari, Benjamin Eysenbach, Chelsea Finn,
and Sergey Levine. Model-Based Visual Planning With Self-Supervised Functional Distances.
International Conference on Learning Representations, 2021.

[23] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error
in Actor-Critic Methods. International Conference on Machine Learning, 2018.

[24] Leslie Pack Kaelbling. Learning to Achieve Goals. International Joint Conference on Artificial
Intelligence, volume 2, pp. 1094–1098, 1993.

[25] Chongyi Zheng, Ruslan Salakhutdinov, and Benjamin Eysenbach. Contrastive Difference
Predictive Coding. International Conference on Learning Representations, 2023.

[26] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement Learning: Theory
and Algorithms. CS Dept, 32:96, 2019.

[27] Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical Distance
Learning for Semi-Supervised and Unsupervised Skill Discovery. International Conference on
Learning Representations, 2020.

[28] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to Reach Goals via Iterated Supervised Learning. International
Conference on Learning Representations, 2021.

11

http://arxiv.org/abs/2210.00030
http://arxiv.org/abs/2210.00030
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
http://arxiv.org/abs/1802.09081
http://arxiv.org/abs/1802.09081
http://arxiv.org/abs/1611.01779
https://arxiv.org/abs/2206.07568
https://arxiv.org/abs/2206.07568
https://arxiv.org/pdf/2406.17098
https://arxiv.org/pdf/2406.17098
https://arxiv.org/pdf/2406.17098
https://ojs.aaai.org/index.php/AAAI/article/view/26058
https://ojs.aaai.org/index.php/AAAI/article/view/26058
https://proceedings.mlr.press/v202/wang23al.html
https://proceedings.mlr.press/v202/wang23al.html
https://arxiv.org/pdf/2501.02709
https://arxiv.org/pdf/2501.02709
http://arxiv.org/abs/2211.15120
http://arxiv.org/abs/2211.15120
http://arxiv.org/abs/2407.08464
http://arxiv.org/abs/2407.08464
http://arxiv.org/abs/2012.15373
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6df43f70f383007a946448122b75918e3a9d6682
https://openreview.net/forum?id=0akLDTFR9x
https://openreview.net/forum?id=0akLDTFR9x
http://arxiv.org/abs/1907.08225
http://arxiv.org/abs/1907.08225
http://arxiv.org/abs/1912.06088

[29] Vivek Myers, Andre He, Kuan Fang, Homer Walke, Phillipe Hansen Estruch, Ching-An Cheng,
Mihai Jalobeanu, Andrey Kolobov, Anca Dragan, and Sergey Levine. Goal Representations
for Instruction Following: A Semi-Supervised Language Interface to Control. Conference on
Robot Learning, 2023.

[30] Benjamin Eysenbach, Matthieu Geist, Sergey Levine, and Ruslan Salakhutdinov. A Connection
Between One-Step RL and Critic Regularization in Reinforcement Learning. Th International
Conference on Machine Learning, pp. 9485–9507, 2023.

[31] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
Dimensional Continuous Control Using Generalized Advantage Estimation. arXiv:1506.02438,
2018.

[32] Cassidy Laidlaw, Banghua Zhu, Stuart Russell, and Anca Dragan. The Effective Horizon
Explains Deep RL Performance in Stochastic Environments. International Conference on
Learning Representations, 2024.

[33] Zhuang Ma and Michael Collins. Noise Contrastive Estimation and Negative Sampling for
Conditional Models: Consistency and Statistical Efficiency. Empirical Methods in Natural
Language Processing, pp. 3698–3707, 2018.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, et al. Human-Level Control Through Deep Rein-
forcement Learning. Nature, volume 518, pp. 529–533, 2015.

[35] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine.
Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. Conference on
Robot Learning, pp. 651–673, 2018.

[36] L. M. Bregman. The Relaxation Method of Finding the Common Point of Convex Sets and
Its Application to the Solution of Problems in Convex Programming. USSR Computational
Mathematics and Mathematical Physics, 7(3):200–217, 1967.

[37] Fumitada Itakura. Analysis Synthesis Telephony Based on the Maximum Likelihood Method.
Reports of the 6th Int. Cong. Acoust, 1968.

[38] Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme Q-Learning: MaxEnt
RL Without Entropy. International Conference on Learning Representations, 2023.

[39] Ahmad Parsian and Snua Kirmani. Estimation Under LINEX Loss Function. Handbook of
Applied Econometrics and Statistical Inference, pp. 75–98. CRC Press, 2002.

[40] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-Learning
for Offline Reinforcement Learning. Neural Information Processing Systems, volume 33, pp.
1179–1191, 2020.

[41] Scott Fujimoto and Shixiang Shane Gu. A Minimalist Approach to Offline Reinforcement
Learning. arXiv:2106.06860, 2021.

[42] Michał Bortkiewicz, Władek Pałucki, Vivek Myers, Tadeusz Dziarmaga, Tomasz Arczewski,
Łukasz Kuciński, and Benjamin Eysenbach. Accelerating Goal-Conditioned RL Algorithms
and Research. International Conference on Learning Representations, 2025.

[43] Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Bench-
marking Offline Goal-Conditioned RL. International Conference on Learning Representations,
2025.

[44] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-Conditioned Imitation
Learning. Neural Information Processing Systems, volume 32, 2019.

[45] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning With Implicit
Q-Learning. arXiv:2110.06169, 2021.

[46] Yim-Ming Wong and Kung-Fu Ng. On a Theorem of Dini. Journal of the London Mathematical
Society, s2-11(1):46–48, 1975.

[47] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: Composable Transformations of Python+NumPy Programs. 2018.

[48] Arindam Banerjee, Srujana Merugu, Inderjit Dhillon, and Joydeep Ghosh. Clustering With
Bregman Divergences. SIAM International Conference on Data Mining, pp. 234–245, 2004.

12

https://proceedings.mlr.press/v229/myers23a.html
https://proceedings.mlr.press/v229/myers23a.html
https://proceedings.mlr.press/v202/eysenbach23a.html
https://proceedings.mlr.press/v202/eysenbach23a.html
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/2312.08369
http://arxiv.org/abs/2312.08369
http://aclweb.org/anthology/D18-1405
http://aclweb.org/anthology/D18-1405
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://www.sciencedirect.com/science/article/pii/0041555367900407
https://www.sciencedirect.com/science/article/pii/0041555367900407
https://cir.nii.ac.jp/crid/1570854175842518528
http://arxiv.org/abs/2301.02328
http://arxiv.org/abs/2301.02328
https://www.taylorfrancis.com/chapters/edit/10.1201/9780203911075-11/estimation-linex-loss-function-ahmad-parsian-kirmani
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://arxiv.org/abs/2106.06860
https://arxiv.org/abs/2106.06860
https://arxiv.org/pdf/2408.11052
https://arxiv.org/pdf/2408.11052
http://arxiv.org/abs/2410.20092
http://arxiv.org/abs/2410.20092
https://proceedings.neurips.cc/paper_files/paper/2019/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2110.06169
http://dx.doi.org/10.1112/jlms/s2-11.1.46
http://github.com/google/jax
https://epubs.siam.org/doi/10.1137/1.9781611972740.22
https://epubs.siam.org/doi/10.1137/1.9781611972740.22

A Code

Code and videos can be found at https://tmd-website.github.io/. The evaluation and base
agent structure follows the OGBench codebase [43]. The TMD agent is implemented in https:
//github.com/vivekmyers/tmd-release/blob/master/impls/agents/tmd.py.

B Analysis of TMD

This section provides the proofs of the results in Section 3.5. The main result is Theorem 3, which
shows that enforcing the TMD constraints on a learned quasimetric distance recovers the optimal
distance d∗SD.
Theorem 1. Take d ∈ D and consider the sequence

dn = Pn(d).

Then, dn converges uniformly to a fixed point d∞ ∈ Q.

Proof. From Lemma 7, we have that dn+1(s, g) ≤ dn(s, g) for all s, g ∈ S . Thus, the sequence {dn}
is monotonically decreasing (and positive). By the monotone convergence theorem, the sequence
converges pointwise to a limit d∞. Since S is compact, by Dini’s theorem [46], the convergence is
uniform, i.e., dn → d∞ under the L∞ topology over D.

To see that d∞ is a fixed point of P , we note that if Pd∞ = d′ ̸= d∞, we can construct disjoint
neighborhoods N of d∞ and N ′ of d′ (since L∞(D) is normed vector space and thus Hausdorff).
By construction, the preimage P−1(N ′) contains d∞ and is open by Lemma 6. Thus, we can define
another, smaller open neighborhood N ′′ = N ∩ P−1(N ′) of d∞. Now, since dn → d∞, there exists
some k so dk, dk+1 ∈ N ′′ ⊂ N . But then since dk ∈ P−1(N ′), we have that dk+1 ∈ N ′. This is a
contradiction as N and N ′ were disjoint by construction.

Thus, we have that d∞ is a fixed point of P . That d∞ ∈ Q follows from Lemma 5.

Theorem 3. The TMD algorithm converges pointwise to the optimal successor distance d∗SD for any
policy π with full state and action coverage, i.e.,

lim
n→∞

(P∗ ◦ T ◦ I)n C(π) = d∗SD. (16)

Proof of Theorem 3. The initial distance C(π) = dπSD ≥ d∗SD for any policy π. So, C(π) ∈ D∗
+.

Define the sequence of distances dn = (P∗ ◦ T ◦ I)nC(π) in D∗
+. Note that P∗ and I are monotone

decreasing. So, the restriction (dn)|X is monotonically decreasing on the domainX = S×(S∪S×A),
and thus converges pointwise on X as n→∞.

Since T and P∗ are continuous operators (Lemma 6 and Eq. (4)), and T is fully-determined by
the restriction to X , the sequence (P ◦ T)dn = dn+1 converges pointwise on its full domain. The
pointwise limit of dn is a fixed point of (P∗ ◦ T ◦ I), which must be the unique fixed point d∗SD on
D∗

+ by Lemma 4.

Lemma 4. The optimal successor distance d∗SD is the unique fixed point of P∗ ◦ T ◦ I on D∗
+.

Proof of Lemma 4. For existence, we note

(P∗ ◦ T ◦ I)d∗SD = (P∗ ◦ T)(Id∗SD) (Remark 2)
= (P∗ ◦ T)d∗SD (Bellman optimality of Q∗

g)

= P∗d
∗
SD. (Lemma 5)

= d∗SD. (30)

For uniqueness, we need to show that (P∗ ◦ T ◦ I) has no fixed points besides d∗SD in D∗
+. Suppose

there exists some d ∈ D∗
+ such that (P∗ ◦ T ◦ I)d = d. Then, we have for x ∈ S ∪ S ×A, s, g ∈ S ,

and a ∈ A:

(P∗ ◦ T ◦ I)d
(
x, (g, a)

)
= d

(
x, (g, a)

)
= d(x, g). (31)

13

https://tmd-website.github.io/
https://github.com/vivekmyers/tmd-release/blob/master/impls/agents/tmd.py
https://github.com/vivekmyers/tmd-release/blob/master/impls/agents/tmd.py

Denote by Q(s, a) = e−d((s,a),g), and let B be the goal-conditioned Bellman operator defined as

BQ(s, a) ≜ EP(s′|s,a)
[
1{s′ = g}+ γQ(s′, g)

]
(32)

At any fixed point d ∈ D∗
+, we have

(P∗ ◦ T ◦ I)d
(
(s, a), g

)
= d

(
(s, a), g

)
(33)

This last expression implies that

Q(s, a) = exp
[
−d

(
(s, a), g

)]
= exp

[
−(P∗ ◦ T ◦ I)d

(
(s, a), g

)]
≤ EP(s′|s,a)

[
min
a′∈A

exp d
(
(s′, a′), g

)]
− log γ

= BQ(s, a). (34)

Since B is a contraction on the exponentiated distance space, and d
(
(s, a), g

)
≥ d∗SD

(
(s, a), g

)
,

Eq. (34) is only consistent with Q(s, a) = Q∗
g(s, a). This implies that

d
(
(s, a), g

)
= d∗SD

(
(s, a), g

)
. (35)

We also know that at this fixed point, d(s, (s, a)) = 0, and thus from Eq. (35) we have

d(s, g) = d∗SD(s, g). (36)

So, d = d∗SD must be the unique fixed point of (P∗ ◦ T ◦ I).

C Path Relaxation and Quasimetric Distances

We provide short proofs of the claims in Section 3.2

Lemma 5. We have P(d) = d if and only if d ∈ Q.

Proof. P(d)(s, g) = min
w∈S

[
d(s, w) + d(w, g)

]
≤ d(s, s) + d(s, g)

= d(s, g).

Lemma 6. The path relaxation operator P is continuous with respect to the L∞ topology over D.

Proof. Let d, d′ ∈ D and ϵ > 0. We have∣∣P(d)(s, g)− P(d′)(s, g)∣∣ = ∣∣∣min
w∈S

[
d(s, w) + d(w, g)

]
−min
w∈S

[
d′(s, w) + d′(w, g)

]∣∣∣
≤ min
w∈S

∣∣d(s, w) + d(w, g)− d′(s, w)− d′(w, g)
∣∣

≤ min
w∈S

∣∣d(s, w)− d′(s, w)∣∣+min
w∈S

∣∣d(w, g)− d′(w, g)∣∣
≤ ∥d− d′∥∞ + ∥d− d′∥∞
= 2∥d− d′∥∞.

Thus, if ∥d− d′∥∞ < ϵ/2, we have
∥∥P(d)− P(d′)∥∥∞ < ϵ.

Lemma 7. For any s, g ∈ S and d ∈ D we have that P(d)(s, g) ≤ d(s, g).

14

Table 2: Hyperparameters for TMD
Hyperparameter Value

batch size 256
learning rate 3 · 10−4

discount factor 0.995
invariance weight ζ 0.01 in medium locomotion environments, 0.1 otherwise

Proof. Let d, d′ ∈ D and ϵ > 0. We have∣∣P(d)(s, g)− P(d′)(s, g)∣∣ = ∣∣∣min
w∈S

[
d(s, w) + d(w, g)

]
−min
w∈S

[
d′(s, w) + d′(w, g)

]∣∣∣
≤ min
w∈S

∣∣d(s, w) + d(w, g)− d′(s, w)− d′(w, g)
∣∣

≤ min
w∈S

∣∣d(s, w)− d′(s, w)∣∣+min
w∈S

∣∣d(w, g)− d′(w, g)∣∣
≤ ∥d− d′∥∞ + ∥d− d′∥∞
= 2∥d− d′∥∞.

Thus, if ∥d− d′∥∞ < ϵ/2, we have
∥∥P(d)− P(d′)∥∥∞ < ϵ.

Lemma 5. We have P(d) = d if and only if d ∈ Q.

Proof. (⇒) Suppose P(d) = d. Then, for all s, g, w ∈ S we have

d(s, g) = P(d)(s, g) = min
w∈S

[
d(s, w) + d(w, g)

]
≤ d(s, w) + d(w, g).

Thus, d ∈ Q.

(⇐) Suppose d ∈ Q. Then, for all s, g ∈ S we have

d(s, g) ≤ min
w∈S

[
d(s, w) + d(w, g)

]
= P(d)(s, g).

We also have P(d)(s, g) ≤ d(s, g) by Lemma 7. Thus, P(d) = d.

D Experimental Details

General hyperparameters are provided in Table 2.

We implemented TMD using JAX [47] within the OGBench [43] framework. OGBench requires a
per-environment hyperparameter α controlling the behavioral cloning weight to be tuned for each
method based on the scale of its losses. We generally found TMD to work well with similar α values
to those used by CRL. We used the same values of α as CMD’s implementation. For a complete list
of alpha values, please refer to the code release of the paper.

To prevent gradients from overflowing, we clip the T invariance loss per component to be no more
than 5. We also found using a slightly smaller batch size of 256 compared to 512 to be helpful for
reducing memory usage.

D.1 Implementation Details

The network architecture for TMD is described in Table 3. The “MRN components” refers to the
number of ensemble terms K in Eq. (20). We found K = 8 components enabled stable learning
and expressive distances. We weigh the off-diagonal element, corresponding to the product of the
marginals p(s)p(g), on a 0-1 scale compared to the diagonal elements, corresponding to the joint
distribution p(s, g). A scale of 0 corresponds to the off-diagonal elements weighing the same as the
diagonal elements, and a scale of 1 means that only diagonal elements will matter for T -operator.

15

Table 3: Network configuration for TMD.
Configuration Value

latent dimension size 512
encoder MLP dimensions (512, 512, 512)

policy MLP dimensions (512, 512, 512)
layer norm in encoder MLPs True

visual encoder (visual- envs) impala-small
MRN components 8

T weighting on diagonal elements 1 (navigation, play)
0.5 (stitch, explore, noisy)

Table 4: Ablation Success rate.
Ablation Success Rate

None 29.3(±2.2)

No gradient stopping in LT 18.7(±1.8)

No contrastive loss 9.8(±1.7)

No I loss 13.3(±2.9)

No T loss 18.5(±2.1)

D.2 Ablations

The full ablation results for TMD in the pointmaze-teleport-stitch are presented in Table 4
with success rates and standard errors.

D.3 Computational Resources

Experiments were run using NVIDIA A6000 GPUs with 48GB of memory, and 4 CPU cores and 1
GPU per experiment. Each state-based experiment took around 2 hours to run with these resources,
and each pixel-based experiment took around 4 hours.

E Bregman Divergence in T -invariance

Recall the divergence used in Eq. (24):

DT (d, d
′) ≜ exp(d− d′)− d. (24)

This divergence is proportional to the Bregman divergence [36] for the function F (x) = − log(x),
similar to the Itakura-Saito divergence [37].

DF (e
−d′ , e−d) = F (e−d

′
)− F (e−d)− F ′(e−d)(e−d

′
− e−d)

= d′ − d+ 1

e−d
(e−d

′
− e−d)

= d′ − d+ exp(d− d′)− 1

= DT (d, d
′) + d′ − 1. (37)

The minimizer of Eq. (24) satisfies

argmin
d≥0

Ed′ [DT (d, d
′)] = − logEd′ [e−d

′
] (38)

when d′ is a random “target” distance [48]. In other words, using Eq. (24) as a loss function regresses
e−d onto the expected value of e−d

′
(or onto the expected value of elog γ−d

′
as used in Eq. (25)).

The key advantage of this divergence when backing up temporal distances is that the gradients do not
vanish when either d, d′, or the difference between them is small or large. This property is not shared
by more standard loss functions like the squared loss or binary cross-entropy loss when applied to the
probability space and the models (distances) are in log-probability space.

16

0 1 2 3 4 5 6

0

2
d′

d

L
os

s

Comparison of Bregman divergences for fitting distances

Dℓ2(d, d
′) = (e−d − e−d′)2

DBCE(d, d
′) = (1− e−d′) log(1− e−d)− de−d′

DT (d, d
′) = exp(d− d′)− d

Figure 5: Comparison of Bregman divergences for e−d onto e−d
′

in expectation. All losses are
minimized at d = d′, and share the property that they will be minimized in expectation when
e−d = E[e−d′]. But only the DT (d, d

′) loss has non-vanishing gradients d≫ d′ for large d′.

Algorithm 1: Temporal Metric Distillation (TMD)

1: input: dataset D, learning rate η
2: initialize representations ϕ, ψ, policy π
3: while training do
4: sample B = {si, ai, s′i, gi}Ni=1 ∼ D
5: ψ ← ψ

6: (ϕ, ψ)← (ϕ, ψ)− η∇ϕ,ψLTMD(ϕ, ψ;ψ,B) ▷ Eq. (26)

7: π ← π − η∇πLπ(ϕ, ψ, π;B) ▷ Eq. (27)
8: return π

E.1 Empirical Comparison

Table 5: Ablation of T -invariance loss in pointmaze-teleport-stitch

Loss Success Rate

DT (Ours) 29.3(±2.2)

Dℓ2 16.1(±1.9)

DBCE 15.1(±1.9)

In practice, we found it was important to use this divergence in TMD for stable learning (Table 5). Ths
loss could also be applied to other GCRL algorithms where learned value functions are probabilities
but are predicted in log-space to improve gradients. Future work should explore this divergence in
other GCRL algorithms to improve training compared to the more commonly used squared loss or
binary cross-entropy loss [35].

17

F Algorithm Pseudocode

Full pseudocode for TMD is provided in Algorithm 1. We provide the full TMD loss function in
Eq. (26) and the policy extraction loss in Eq. (27) below for reference:

LTMD
(
ϕ, ψ;ψ,B

)
= LNCE (ϕ, ψ;B) + ζ

(
LI (ϕ, ψ;B) + LT

(
ϕ, ψ;B

))
(26)

Lπ
(
π;ϕ, ψ, {si, ai, s′i, gi}Ni=1

)
=

N∑
i,j=1

(1− λ)dMRN

(
ϕ(si, âij), ψ(gj)), gj

)
+ λdMRN

(
ϕ(si, âii), ψ(gi)

)
+ α

∥∥âii − ai∥∥22 (27)

where âij = π(si, gj), batch B ∼ pπβ = {si, ai, s′i, gi}Ni=1.

The components of Eq. (26) are (see Section 4):

LNCE
(
ϕ, ψ; {si, ai, s′i, gi}Ni=1

)
=

N∑
i=1

log

(
ef(si,ai,gi)∑N
j=1 e

f(sj ,aj ,gi)

)
(18)

LI
(
ϕ, ψ; {si, ai, s′i, gi}Ni=1

)
=

N∑
i,j=1

dMRN

(
ψ(si), ϕ(si, aj)

)
(22)

LT
(
ϕ, ψ; {si, ai, s′i, gi}Ni=1

)
=

N∑
i,j=1

DT

(
dMRN(ϕ(si, ai), ψ(gj)), dMRN(ψ(s

′
i), ψ(gj))− log γ

)
.

(25)

Glossary

Qβ The behavioral Q-function under policy πβ thereafter. 4
Q∗
g(s, a) the optimal goal-conditioned Q-function for reaching goal g. 4, 5

V ∗
g (s) the optimal goal-conditioned value function for reaching goal g. 5

Π All policies π(a | s) mapping states to distributions over actions. 4
C(π) the outcome of running CRL with policy π, equivalent to dSD under suitable assumptions. 5
D∗

+ the set of all distances that upper bound the optimal successor distance d∗SD. 6, 13
D the set of all distances over states S. 4, 5, 13
Q the set of all quasimetrics over states S. 4, 5
dπSD the modified successor distance under policy π, defined in Eq. (7). 5
A the action space. 4–8, 13, 14, 19
I the action invariance operator defined in Eq. (6). 5–8, 13, 14
P the path relaxation operator defined in Eq. (5). 5, 14, 15
S the state space. 4–8, 13–15, 18, 19
T the backup operator defined in Eq. (4). 4, 6–8, 13, 14
P∗ the projection operator onto the set of quasimetricsQ, defined as the fixed point of path. 5, 6, 13
πβ the behavior policy used to collect the offline dataset. 6, 7, 18
at the action at time step t (random variable). 4
st the state at time step t (random variable). 4
s+t the state at a random future time step t+K where K ∼ Geom(1− γ). 4

D̃ the set of all realized successor distances dπSD under policies π ∈ Π. 5
DT The Bregman divergence defined in Eq. (24), analogous to the Linex loss [38, 39]. 7, 16–18
LI The action invariance loss defined in Eq. (22). 7, 18

18

d∗SD the optimal successor distance,defined in Eq. (8). 5, 6, 13, 18
M a controlled Markov process with state space S, action space A, and dynamics P(s′ | s, a). 4
ζ weight of the invariance losses in the overall distance learning objective defined in Eq. (26). 7, 8,

15, 18
dMRN an ensemble version of the MRN [17] quasimetric parameterization defined in Eq. (20). 7, 8,

18

action invariance the property that the distance between a state and a state-action pair with that
state is zero, d(s, (s, a)) = 0 for all s ∈ S, a ∈ A. 4, 5

OGBench A benchmark for offline goal-conditioned reinforcement learning [43]. 9, 13, 15

Acronyms

CMD Contrastive Metric Distillation. 8, 9, 15
CRL Contrastive Reinforcement Learning. 8, 9, 15, 18

GCBC Goal-Conditioned Behavioral Cloning. 8, 9
GCIQL Goal-Conditioned Implicit Q-Learning. 8, 9
GCIVL Goal-Conditioned Implicit Value Learning. 9
GCRL Goal-Conditioned Reinforcement Learning. 2, 3, 10, 17

IQE Interval Quasimetric Embedding. 10

MLP Multi-Layer perceptron. 16
MRN Metric Residual Network. 6, 10, 15, 16

QRL Quasimetric Reinforcement Learning. 8, 9

RL Reinforcement Learning. 1, 3

TD Temporal Difference. 1
TMD Temporal Metric Distillation. 2, 4, 6, 8–10, 13, 15–18

19

	Introduction
	Related Work
	Metric Learning
	Offline Reinforcement Learning

	Temporal Metric Distillation (TMD)
	Notation
	TMD Operators
	Properties of path relaxation
	The modified successor distance
	Convergence to the optimal successor distance

	Implementing TMD
	Initializing the Distance with Contrastive Learning
	Action I-Invariance
	Temporal T-Invariance
	The Overall Distance Learning Objective
	Policy Extraction

	Experiments
	Experimental Results
	Ablation Study

	Discussion
	Limitations and Future Work

	Code
	Analysis of TMD
	Path Relaxation and Quasimetric Distances
	Experimental Details
	Implementation Details
	Ablations
	Computational Resources

	Bregman Divergence in T-invariance
	Empirical Comparison

	Algorithm Pseudocode

