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ABSTRACT

Recent advances in self-supervised learning (SSL) have shown remarkable progress
in representation learning. However, SSL models often exhibit shortcut learning
phenomenon, where they exploit dataset-specific biases rather than learning gen-
eralizable features, sometimes leading to severe over-optimization on particular
datasets. We present a theoretical framework that analyzes this shortcut learning
phenomenon through the lens of extent bias and amplitude bias. By investigating
the relations among extent bias, amplitude bias, and learning priorities in SSL,
we demonstrate that learning dynamics is fundamentally governed by the dimen-
sional properties and amplitude of features rather than their semantic importance.
Our analysis reveals how the eigenvalues of the feature cross-correlation matrix
influence which features are learned earlier, providing insights into why models
preferentially learn shortcut features over more generalizable features.

1 INTRODUCTION

While deep neural networks have shown remarkable success in various learning tasks, recent studies
have revealed a concerning trend: models often exploit unexpected learning behavior, particularly
shortcut learning, which tends to take easier but potentially less reliable paths to solve general tasks
(Geirhos et al., 2020). For example, in image classification tasks, models tend to learn earlier larger
background features than smaller foreground objects (Hermann et al.l[2023), potentially leading them
to classify cows based on whether they appear on grass rather than learning actual cow features, or
identify camels primarily by detecting desert backgrounds (Beery et al.,|2018). This phenomenon is
prevalent even in SSL (Doersch et al.,[2015bj [Noroozi et al., |2017; |Wei et al., 2018} [Doersch et al.,
2015a).

While previous research has shown that neural networks are vulnerable to spurious correlations in data
(Arjovsky et al.,|2019), several other contributing factors to shortcut learning have been identified.
Hermann et al.| (2023) find shortcuts emerging from color, size, and background. [Rahaman et al.
(2019); [Tancik et al.| (2020) find spectral bias that low-frequency features are learned faster than
high-frequency features. While significant progress has been achieved, current theoretical frameworks
provide insufficient explanations for why models consistently induce shortcuts.

Recent studies have demonstrated that SSL models with small weight initialization exhibit stepwise
learning dynamics, where features are learned sequentially based on the corresponding eigenvalues
of the feature cross-correlation matrix (Simon et al., |2023). Building on this insight, we analyze
the eigenvalue and eigenvector structure of the feature cross-correlation matrix. This approach
provides a novel theoretical framework for understanding why certain features, regardless of their
semantic importance, are consistently learned earlier in the training process. Our investigation focuses
particularly on how dimensional properties influence learning priority, potentially explaining some
observed shortcut learning phenomena beyond traditional spurious correlations.

The contributions of our work are as follows:

* We establish theoretical connections between shortcut learning phenomenon, stepwise
learning, and eigenvalue-eigenvector of feature cross-correlation matrix on SSL.

* We extend theoretical research on shortcut learning from supervised learning to SSL.
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* We characterize extent bias, a tendency to prioritize features based on their dimensional
extent or spatial coverage rather than their semantic importance.

* We analyze how amplitude and frequency determine which features are learned earlier
in SSL, and characterize amplitude bias, a tendency to prioritize features based on their
amplitude rather than their semantic importance.

2 RELATED WORKS

Self-supervised learning Early contrastive methods like SimCLR (Chen et al., 2020) required large
batches, motivating non-contrastive approaches like SimSiam (Chen & Hel, |[2021) and BYOL (Grill
et al., 2020). Subsequent methods introduced novel regularizers, such as the variance-invariance-
covariance in VICReg (Bardes et al.;, 202 1)) and the cross-correlation matrix in Barlow Twins (Zbontar
et al.}2021), to prevent representational collapse. DINO (Caron et al.,|2021)) advanced the field by
introducing self-distillation with no labels. The success of DINO v2 (Oquab et al.| 2023) sparked
interest in Joint Embedding Predictive Architectures (JEPA) (Assran et al., 2023)), with recent work
by [Littwin et al.| (2024) revealing JEPA’s tendency to prioritize learning “related” features over
“frequently” occurring ones.

Learning dynamics Following the introduction of Neural Tangent Kernel (NTK) (Jacot et al.,
2018)), researchers have discovered important connections between eigenvalue dynamics and learning
behavior, including spectral bias phenomena (Tancik et al.| 2020; [Halvagal et al.l [2022)). This
theoretical framework has enabled deeper analysis of loss function trajectories and saddle point
behaviors (Jacot et al.| 2021} [Pesme & Flammarion, |2023)). Notably, Simon et al.|(2023)) demonstrated
that these saddle-to-saddle dynamics appear not only in supervised learning but also extend to SSL
settings.

Shortcut learning Shortcut learning was first identified in |Geirhos et al.[(2020), describing how
neural networks take easier but incorrect paths to solve tasks. This phenomenon appears in various
ways: |Geirhos et al.[(2018)); Baker et al.|(2018)); Hermann & Lampinen|(2020) showed that CNN's
rely on object texture rather than object shape, Wu et al.| (2022) demonstrated that even a single
pixel can mislead model’s decisions, and [Hermann et al.| (2023) revealed that CNNs preferentially
learn salient but potentially irrelevant features like scale and background elements. These shortcuts
can arise from dataset properties, particularly through spurious correlations (Arjovsky et al.,[2019)
and implicit biases. Our work specifically examines how dataset correlations contribute to shortcut
learning.

3 BACKGROUND (STEPWISE NATURE OF SSL (SIMON ET AL.,[2023)))

In this section, following [Simon et al.| (2023)), we analyze the stepwise learning dynamics of SSL
systems through the lens of toy Barlow Twins models (Zbontar et al.,|2021). We first introduce the
loss function and gradient flow dynamics, then derive the connection between cross-correlation matrix
and feature learning. Finally, we examine how the eigendecomposition of feature cross-correlation
matrix connects to the theoretical foundation for our analysis of extent bias and amplitude bias.

Given training data {x(i) € R™ : 4 = 1,2,--- ,n}, the training loss of toy Barlow twins is
defined as £ = ||C — I,||%, where || - || p is Frobenius norm, C' = 5~ 37" (Wz®)(Wa'®)T 4+

(Wa'@O)(Wz®)T € R¥*? s cross-correlation matrix of Wz and Wz’ for another view «’ from z,
and W € R¥*™ represents learnable parameters. Using the feature cross-correlation matrix

= % i:1(m(t)x/(t)'l' + x/(z)x(z)—l—) e anXm’ 1)

we have
L=|WIWT - Ij]|%, C=WIWT'. )
The eigendecomposition of the feature cross-correlation matrix is I' = VFAFVFT with Ar =
diag(vy1, -+ ,Ym) and Vo = [v1 -+ vy,] € R™*™ where 1 > 2 > - -+ > 7, are eigenvalues of T’

and v;’s are the corresponding eigenvectors for v;’s.
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To analyze eigenvector dynamics of weights, we assume weight initialization is aligned.

Assumption 1 (Aligned Initialization (Simon et al.,[2023)). At the initialization, we assume that the
right-singular vectors of W (0) are aligned with the top d eigenvectors of I, i.e., the singular value

decomposition is W (0) = USy Vlfgd)T for a orthogonal matrix U € R%X4, the top-d eigenvector

matrix VF(Sd) = [v1 -+ vg] € R™*9, and a diagonal matrix Sy = diag(s1(0),- - ,54(0)) with a
small initialization s;(0) > 0.

Under Assumption the solution W (¢) for gradient flow 4V = —Vy £ = —4(WITW T — I,)WT

can be expressed as follows (Simon et al., 2023} Proposition 4.1): W (t) = US(t)VF(Sd)T for S(t) =

eAjt

diag(s1(t),- -, sa(t)), where the singular values of W (t) evolve as s;(t) = ST,

/

which has a limit of 7, "2 ast — oo and nearly sigmoidal

1
2(t) ~ =: §2(¢). 3
() v+ 8;2(0)6*8%% 55(0) 3)

Solving E?(t) = %s?(oo) at its critical time ¢ = 7, we have

7 = —log (s7(0);) /8 (4)

/

around which s;(t) (or §;(t)) passes %fy;l ® and rapidly increases from near zero to near the

saturation yj_l/ 2,
In this paper, we focus on the property that the eigenvector feature v; corresponding to a larger -,
leads to an earlier critical point 7; from (@).

4 EXTENT BIAS

In computer vision tasks, backgrounds typically span larger regions while foreground objects occupy
more concentrated areas. Recent work by [Hermann et al.| (2023 reveals that CNNs preferentially
learn these background features over object-specific details, creating a specific form of spurious
correlation between backgrounds and class labels. For example, cows are often classified based on
grass backgrounds rather than their distinctive features, and camels are identified through desert scenes
(Beery et al.| 2018)). This phenomenon points to a underlying learning mechanism we term extent
bias, a fundamental tendency of neural networks to prioritize features based on their dimensional
extent or spatial coverage rather than their semantic importance. The connection between extent
bias and learning dynamics implies the need for understanding a more fundamental mechanism
beyond traditional spurious correlations. While spurious correlations emerge from dataset-specific
relationships, the bias toward learning background features is inherent in the learning dynamics of
neural networks themselves. Through our analysis of SSL systems, we demonstrate that this bias for
background features emerges naturally from how models learn earlier features with higher extent
bias, independent of their semantic relevance or predictive power.

In this section, we investigate how different feature properties influence learning priorities in SSL.
Through extent bias analysis, we demonstrate how features with larger dimensional coverage are
learned before those with smaller coverage, regardless of their semantic importance.

We construct a theoretical framework that identifies dimensional effects in feature learning. By
analyzing how SSL models process features of varying extent bias, we can directly observe how
extent bias influences learning priority and connects to the background-foreground learning dynamics
observed in practice.

4.1 SETTINGS

We first consider the following base input Zyae = [by1,,,,b51,,, ]T € R™, where by, b, i B(p =

0.5) follow the Bernoulli distribution and take the value 41 with the equal probability, m; and m
indicate the size of larger part and smaller part, respectively, i.e., m; > ms and m; + ms = m, and
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Figure 1: Effects of extent bias on learning dynamics in SSL. (Left) Stepwise learning curves of
Barlow Twins. There are two (d = 2) learning steps shown with two black dashed vertrcal hnes (also

shown in the other two panels) which indicate the time steps t1 and to with 1 : to ~ w : % =
nl” : —. The predicted loss (dashed green) of £ = Zj L) —1)2 = Z;j 1( 2(t)y; — 1)?

using . 3) match the empirical result (solid green). (Center) Evolution of eigenvalues \;’s of C' during
training. At the beginning, the first eigenvalue \; (blue) increases to 1 and then later the second
A2 (red) follows. We also compare them with the predicted evolution \;(t) (dashed lines). (Right)
Evolution of the feature alignment ||We||2 for e = ¢; (blue) and e = e, (red). It shows very similar

behaviors with the eigenvalues ;\jl./ 2 (dashed lines). See Theorem Weuse m; =9, ms = 1. See
Section [D.1]for more detailed settings.

1 is the k-dimensional all-one vector. From now on, we will use the subscript [ and s for the indices
with respect to the larger-part and smaller-part features, respectively.

Then, to obtain the augmented pair (z,z’), we introduce the following data augmentation © =

. . Lid.
Tpase + € and &’ = Tpase + €', with the noise €,¢' '~ N (0,,, a1,,) for some a > 0.

4.2 LEARNING DYNAMICS ON EXTENT BIAS

In this subsection, we discuss the relationship between -y; and L, focusing on which features are
learned earlier. From Section[4.1] we can simplify the feature cross-correlation matrix I' by analyzing
the expected values of the augmented features. Based on the definition in (I)), we have:
1 n . AT . AT -

=3 (x(z)x/(l) OO ) = E[Zbase Togee)- 5)

~ oy i=1
To identify which features drive the loss as stepwise phenomena, we consider basis vectors that
disentangle individual features. Specifically, we define basis vectors e¢; and e; where each vector has
ones only in the dimensions corresponding to its respective feature:

T T T 4T
[1771[ ) 0 } [O’rﬂl ? 1 ] € Rm

By measuring the feature ahgnment FA(e) = ||We||2 between the weight matrix and the basis vectors
e = ey, e5, we can identify which features are being learned at each stage of the training process.

The eigendecomposition of I is given by the following proposition:

Theorem 4.1. The correlation matrix in (B)) has the eigenvalue matrix Ar and eigenvector matrix
Vr‘ N

Ar = diag ([my,ms, Op—a]), V=2 = [ey/ /i es/\/ms).
We defer the proof to Section [A.T]

We hypothesize that features with larger dimensions are learned faster, regardless of their predictive
power or potential to cause shortcuts. This is particularly relevant in vision tasks where such features
might correspond to larger pixel regions. We experiment using a simple toy model to validate our
theoretical analysis of dimensional influence on feature learning. In our experimental setup, we used
two distinct features with different dimensional coverage (m; = 9 and m,; = 1), allowing us to
clearly observe the learning dynamics.

As shown in Figure[l] the model’s stepwise learning dynamics are governed by the eigenvalues of the
feature cross-correlation matrix, resulting in distinct loss drops. The evolution of eigenvalues (Center)
and the feature alignments (Right) provide direct evidence of the learning order determined by the
eigenvalue dynamics that the alignment with the higher-dimensional feature, e;, increases first and
the alignment with e, follows. This result suggests that the spatial extent of features, rather than their
semantic content, plays a crucial role in determining learning priority.
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4.3 CROSS-CORRELATION EIGENVALUE AND L0OSS RELATIONSHIP

In this subsection, we analyze the relationship between the eigenvalues \; of cross-correlation matrix.

Theorem 4.2. Under Assumption|l| the eigenvalues \; of feature cross-correlation matrix C, using
the approximation s? R 53 in , are approximated as \; = s?*yj ~ éffyj =: \j which have

~ 1. =2y ifi=,
ar, - —log(S?(O)’Yﬂ’)/SW in (EI) For the Barlow Twins loss L = ||C — Id”%?; we have L =

d <
S (N = 1)? and — %2 (1) = Nj(75) = 2v;.
We defer the proof to Section|A.3

Figure[T3]in Section [B.T.4]shows the relationship between the derivative of cross-correlation eigen-
values )\;- and the loss derivative —Cfi—f. The close alignment between the loss derivative and /\;- curves
demonstrates that the decrease in loss is directly driven by A;, with larger m; features learned, and
smaller m, features learned later. The curves’ relative magnitudes show an approximate m; : mg

ratio, which matches our theoretical predictions.

4.4 WEIGHT SINGULAR VALUE EVOLUTION

To verify the dynamics of weight singular values s;, we propose the following theorem:
Theorem 4.3. Using the approximation (B)), the singular values of the weight matrix W satisfy

at the critical point t = ;.
We defer the proof to Section

Figure[16]in Section[B.T.4] shows two key aspects of singular value dynamics during training. First,
the singular values s; evolve to their theoretical limits 1/ V7 and 1 /\/7s» as predicted by our
analysis. Second, the derivatives of these singular values exhibit peaks at their respective critical
points, with magnitudes that follow the predicted 1/27; : /27 ratio. These results provide strong
empirical validation of our theoretical framework, demonstrating that both the convergence values
and learning priority on different features are governed by their corresponding eigenvalues in the
feature cross-correlation matrix I'.

4.5 ALIGNED INITIALIZATION AND SUBSPACE ALIGNMENT

While Assumption E] assumes perfect alignment at initialization, |[Simon et al.| (2023)) demonstrate
that this assumption can be relaxed significantly. They show that even with generic small random
initialization, the dynamics quickly converge to the aligned trajectory. This result significantly
strengthens our analysis by showing that the aligned initialization assumption is not restrictive, any
sufficiently small initialization will rapidly align with the top eigenvectors of I' before substantial
feature learning begins. To validate this theoretical assumption, we define the subspace alignment
metric and measured in Section[B.1.11

5 AMPLITUDE BIAS

Building on our analysis of extent bias, we study amplitude bias—how feature magnitude affects
learning priority. To isolate amplitude effects, we need features with identical spatial coverage but
different magnitudes. Sinusoidal functions provide an ideal framework, as frequency components
can have identical spatial extent while varying in amplitude through their coefficients, allowing us
to disentangle amplitude from dimensional coverage effects. This approach connects with existing
frequency-based learning research (Rahaman et al., 2019} Tancik et al., [2020; [Wang et al., [2023)),
which has primarily focused on supervised learning. By studying sinusoidal features in SSL, we
investigate whether amplitude or frequency characteristics more strongly determine learning priority
while extending frequency-based analysis to self-supervised settings.
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5.1 SETTINGS

To analyze how frequency and amplitude bias affect learning dynamics, we consider input data
Thase € R™ composed of two sinusoidal components with different frequencies:

Thase [t} = Chabha Sin(fhat) + Clabla Sin(flat)a (7)

where fp, = %’Tk and f;, = %’Tk’ represent different frequencies for some integers k and k/,
bhasbia i B(p = 0.5) follow the Bernoulli distribution and take the value +1. Suppose frq < fia
to examine the learning dynamics between low and high frequency components. The coefficients
Chq and c;, control the amplitude of each sinusoidal component, allowing us to investigate how
magnitudes affect learning earlier. The Bernoulli variables by, and b, introduce phase reversal in the
signal. The time vector ¢ spans the input dimension m. We use the same augmentation with (@.I)) to
generate augmented pairs (z, ') by adding Gaussian noise.

5.2 LEARNING DYNAMICS ON AMPLITUDE BIAS

Similar to Section .2 we consider basis vectors ey, and e;, that isolate individual features: ej, =
Cha SIn( frat) and e, = ¢ sin(fiqt), where 0 < ¢ < m. Note that these two are orthogonal since
Jrha = 25k and fi, = %’k’ with k # k’. Similar to Theorem the cross-correlation matrix I for
the data generated from (7) can be expressed as follows:

Theorem 5.1. Under ([Z), the correlation matrix I has
Ar = diag ([¢},m/2,¢E;m /2,00 2]) , V=P = [ena era] ®)

We defer the proof to Section[A.2]

From Equation , we observe that eigenvalues are proportional to the squares of the coefficients 3,
and ¢7,. This implies that the learning dynamics are more strongly influenced by the amplitude rather
than the underlying frequency.

To validate our theoretical analysis of amplitude bias effect on learning dynamics, we conduct
experiments using input data defined in (7). Especially, we set cj, > ¢;,. This configuration shown in
Figurein Section allows us to examine how high-amplitude ¢y, sin(fr.t) and low-amplitude
Clq Sin( fi4t) affects feature amplitude bias. More details about the experiment are in Section[B.1.2

Our analysis reveals two dominant eigenvalues corresponding to high-amplitude and low-amplitude
components. The eigenvectors of I' (shown in Figure[IT] Section[D) capture these oscillations: the first
eigenvector corresponds to the dominant high-amplitude oscillation, the second to the low-amplitude
oscillation, while other eigenvectors are noise with eigenvalues near zero.

5.3 DISCUSSION

Figure[I2]in Section[B.T.2]shows that a learning process is driven primarily by feature coefficient mag-
nitude rather than frequency characteristics. The key observation is that the first learned features are
those with large coefficients, independent of their spectral properties. This finding parallels frequency
shortcut (Wang et al., [2023) in classification tasks, but reveals a different underlying mechanism.
While frequency shortcut suggests models preferentially learn distinctive Fourier components, our
results demonstrate that amplitude magnitude—not frequency characteristics—primarily determines
feature learning priority. More detailed results in Section[B.1.2]

6 GENERAL SETTINGS

6.1 REDUNDANCY REDUCTION COEFFICIENT \ # 1

Proposition 1. For the general Barlow Twins loss, Ly = (1 — \)Lg + AL1, the redundancy
reduction coefficient A\ governs the learning dynamics by balancing feature learning (Lg) and
decorrelation (L1 ), creating a spectrum of behaviors. At the A = 0, only the top eigenvalue is learned
(s1 — \/d/v1). Conversely, at X = 1, all features are learned independently (s, — +/1/vy, for all
k). For intermediate values, 0 < \ < 1, the dynamics are coupled, where the learning of new features
can suppress those previously acquired.
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Figure 2: Effects of redundancy reduction coefficient A of the general Barlow Twins loss on linear
network dynamics with m; = 6, ms; = 2. (Left) Training loss evolution: empirical results (solid
lines) and theoretical prediction for A = 1 (green dashed). (Center) Eigenvalue dynamics: solid lines
show \; (larger extent bias) and \¢ (smaller extent bias), with red/blue dashed lines as theoretical
predictions for A = 1. (Right) Feature alignment evolution: solid/dashed lines show FA(e;) and
FA (e;), with red/blue dashed lines as theoretical predictions for A = 1.

This analysis reveals that smaller A\ promotes specialization to dominant features, while larger A
encourages learning of the full feature space. The detailed derivations are provided in Section[A.6]

6.2 DEEP LINEAR NETWORKS (DLN)
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Figure 3: Ideal initialization condition in DLN, assumed in Section (Left) Stepwise learn-

ing curves of Barlow Twins. The predicted loss (dashed green) of £ = Z?Zl(/\j(t) -1)? =

Z?Zl(éf(t)vj — 1) using (3) match the empirical result by approximation of differential equations
@[) (solid green) (Center) Evolution of eigenvalues A;’s of C' during training. We compare them with
the predicted evolution \;(t) (dashed lines). (Right) Evolution of the feature alignment ||We||5 for
e = e; (blue) and e = e, (red). It shows very similar behaviors to the eigenvalues 5\31/ 2 (dashed lines).

While we could analyze deep neural networks based on kernels as in our foundational work (Simon
et al., [2023), kernel-based analysis has fundamental limitations in explaining feature learning dy-
namics. Even NTK analysis (Woodworth et al., 2020; Nam et al., |2025)) cannot capture the feature
learning that occurs rich regime. Although DLNSs are linear networks, their learning dynamics is
non-linear due to multiplicative weight interactions between layers. This enables feature learning
while maintaining analytical tractability that kernel methods cannot provide (Ziyin et al., [2022]).
Similar to recent analysis of [Littwin et al.|(2024), we provide our analysis in Section@

6.3 NON-LINEAR MODELS (LEAKY RELU, BATCH NORMALIZATION, AND SIMCLR)

Figure[d provides a more rigorous verification with the non-linear models (see Section|G.2] for details).
Standard Barlow Twins implementations with batch normalization exhibit similar cross-feature
interactions even when A = 1. The normalization constraints couples between different singular
values, causing later-learned features to suppress earlier ones, mimicking the mixed-case dynamics.
Detailed experiments are provided in Section[G.3] Similarly, the behaviors of SimCLR and VICReg
suggests a similar coupling dynamic. The softmax and batch normalization components likely create
implicit cross-feature dependencies, leading to a phenomenon where subsequent feature learning can
diminish previously learned representations. This offers a potential explanation for why both methods
show sequential feature learning patterns in practice.
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Figure 4: Eigenvalue evolution for non-linear models.

7 PRACTICAL STUDY

To investigate the effect of extent bias in a more realistic setting, we conducted some experiments
using semi-synthetic datasets.

7.1 COLORED-MNIST DATASET

We conducted experiments using a Colored-MNIST dataset, where we adjusted the ratio of digits
pixels relative to the total image pixels. We tested three different ratios: 0.05, 0.10, and 0.15. In this
dataset, we set the correlation between background and label to 70% for both training and test sets,
making it difficult for a model that predicts solely based on background to achieve accuracy higher
than 70%. According to our hypothesis, since backgrounds have larger extent bias than objects, the
test set accuracy would rapidly increase to 70% (as the model learns background features), then
plateau for a period, before slowly rising higher (as it learns object features). We also hypothesized
that this plateau period would be shortened as the spatial ratio of the object increases in the images.

Figure [5a] supports our hypothesis. Across all object ratio conditions (0.05, 0.10, 0.15), test accuracy
exhibited a consistent pattern: a rapid increase from initial 10% to 70%, followed by a plateau period,
and then a gradual ascent. Notably, as the object pixel ratio increases, the duration of the plateau
phase decreases. The loss function continues to decrease even when accuracy remains stagnant at
70%. This suggests the extent bias where larger objects are prioritized during the learning process.
The pattern reflects how the model initially achieves 70% accuracy by relying on background features,
which statistically occupy larger regions, before progressively learning object features. Furthermore,
this indicates that larger extents occupy greater eigenvalues, implying a reduction in the critical point.

7.2  MODIFIED WATERBIRDS DATASETS

Similarly, to test whether the extent bias observed in Colored-MNIST generalizes to more complex
scenarios, we performed experiments on modified versions of Waterbirds dataset (Sagawa et al.
2019). These modified datasets comprise two distinct configurations. First, following a similar
setup to Colored-MNIST, we set background colors to blue/green while varying bird sizes across
multiple scales (Modified Waterbirds-C). Second, we use complex natural backgrounds (forest and sea
images) while maintaining consistent bird sizes as a fixed proportion of total image pixels (Modified
Waterbirds-B). We observed a similar dynamics with the Colored-MNIST experiment. See Section
D3l for details.
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(c) ResNet-34 on Modified Waterbirds-B dataset. See Sectionfor more detailed settings.

Figure 5: Extent bias effects on spurious dataset. The dotted vertical lines indicate the transition
points where the model shifts from background-only prediction to main object-based prediction,
marked at (a) 70% accuracy with a 0.5% error tolerance (b) 70% accuracy with a +3% (c) 70%
accuracy with a 3% error tolerance. (Left) The accuracy rate has a plateau at 70%, which corresponds
to the correlation between background and object. The lengths of the plateaus become shorter as the
object’s pixel ratio increases. (Right) Loss decreases except ratio 0.05 in (b).

8 CONCLUSION

In this work, we establish a theoretical connection between eigendecomposition of the feature cross-
correlation matrix, shortcut learning, and stepwise learning behavior in SSL. We provide insights
into how dimensional feature properties influence the learning process in SSL frameworks. This
work not only explains observed shortcut learning phenomena but also offers a theoretical lens for
understanding and potentially mitigating such learning biases. This theoretical framework lays the
groundwork for developing more robust SSL algorithms. Future work should focus on leveraging
these insights to design mechanisms that encourage learning of generalizable features despite their
potentially lower extent bias or amplitude bias.
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A  PROOFS

A.1 PROOF OF THEOREM [4.]]
Using matrix analysis, we can express:

_ T _ 1mz><ml Omsxml
I'= E[xbasexbase] ~lo

mpXmsg ]-m3><mS

which has two eigenvectors e;/||¢;|| and e;/||es|| corresponding to nonzero eigenvalues. We obtain
the eigenvalues m; and mg from the following equation:

det(T' — AI) = det(Lmy, xm, — Mmyxcm,) det(Lm, xm. — Mm.xm.) = 0.
Finally, we obtain the eigendecomposition I' = V- Ar V1 where

AF = dlag ([mh mg, 0m72]) 5

V(<d) Lel Le .
: Vi ymg

A.2 PROOF OF THEOREM[3.]]

The cross-correlation matrix I" for this input can be expressed using (3):
I = E[ZyaseTpyee)
=E[c3 bz, sin( frat) sin(frat) " + 202, sin( fiat) sin(fiat) "
+ ChaClabhabia SIn(frat) sin(fiat) " + ChaClabhabia sin(fiat) sin(frat) ']
=2, sin(frat) sin(frat) " + 2, sin(fat) sin( fiat) "
Using the orthogonality between sin( frot) and sin(fiot) (fha # fia), Where t € N,
T = ¢}, sin(frat) sin(frat) " + c2, sin(fiat) sin( fiat) ",
[sin(fhat) = chall sin(faat)||” sin(faat),
Tsin(fiat) = ¢z, || sin(fiat)||? sin( fiat).
We find the eigenvectors and eigenvalues as:
Ar = diag ([}, ]| sin(frat)||%, &l sin(fiat)|[, Om—2]) , V= = [ena e1a]”

With f = %’Tkz for some integer k, we have

|| sin(fz)||? = /Om sin?(fz)dz = /Om L= cos@fa)

2 2 4

1 sin(2fz)]™  m  sin(2fm)
[t

Finally, we have

. m m
Ar = diag ([cfmg,cfag, 0,,— QD VF( - = [eha €la] -

A.3 PROOF OF THEOREM [4.2]
‘We have
Aj(t) =& (t)y; = (14 X1;(0) e 8107,

and thus if we plug in 7; = —log(};(0))/8;, i.e., exp(—87;7;) = A;(0), then we have \(15) =
(14 1)~! = 1. The derivative )\ 7(t) att = 7; is given as follows:

N0 = —(1 Ay (0) 7619728y (0) 1) = N8y, (0) e
X (13) = =23 (m) (=83, (01, (0)) = 275
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Using the equations
d d
C= Z )\juju;-r and C? = Z)\?uju;-r,
Jj=1 Jj=1
we get the loss
L=|C—1I||%=Te((C—-1I)(C—1I))=Tr(C% —2Tr(C)+d

d d d
=D N2> Ntd=> (N -1
j=1 j=1 j=1

Thus, we get the following equation:

A.4 PROOF OF THEOREM [4.3]

First, we have
§5(t) = (v + 55 2(0) exp(—8;t)) /2,
§i(1j) = (v + 572(0);(0)) /2 = (2;) /2.
and its derivative is given as follows:

53 (t) = —%(’yj + S;Q(O) exp(—8’yjt))*3/2(—8%-5;2(0) exp(—8v;t)),

§j(rj) = —%(% +552(0)2(0) %2 (=855, 2(0)X,(0))

1

= —5(2%) 7 (=8%)

= (29;)"/%.
A.5 PROOF OF DEEP LINEAR LAYER

In Deep Linear Networks (DLNs), We assume that, W = WiWrpr_1--- WoW1, VW, € Rm>™,
Under the toy Barlow Twins loss £ = |[WT'W T — I,,,||%, each layer has gradient of:

or L T o 5 k—1
o~ I w; | ovow?™ —ywr [ T[] w;
j=k+1 j=1

If we assume: W, W,| = W, W11, Vk € [1, L — 1] we derive same singular value on every layer,
Wi, = UxSU/,, Vke[l,L-1]

where S = %diag(al,oz, ey 04),

We assume the total weight W = USVT, V = W}

L L
I wi= 1] U;sU/1 = Upa S VT,
j=k+1 j=k+1

13
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k—1 k—1
[Tw;=1lvisuf, =0s""u/.
j=1 j=1
WD =USIVT = USLVT Ve Ar Vi = USEARV
WIW?T = USEArSLUT = USHArUT

;—Vﬁk —A(Up 1 SEFV YOS AU T — 1) (USEA V) (OSFU, )T
4(f/ SERUL )OS ArUT — UL,U ) (US ARV ) (URSH1TT)
—4(VSLRU L )O(S* A — 1)U T (USEAr VT ) (URSH 1T T)

= —4(VSEFU L )U(S* Ar — 1) SE ALV (UL SF10T)
For analytical tractability, we assume Wy (0) = So, Wi (0) = SET = SyI. Under this condition,
Up(0)V(0)T = LUO)V(0)T = 1.
oL

i = —4(VSERU L VU (S* Ar — 1) SE ALV T (UL S*1TT)
k

= 4V SR (S2LAp — 1) SEARSEIUT
= —4V(S*FAr — )SZL—IAFUT
= —42 oty = Dot Iy

Using chain rule,

oL oL\ " oWy, 2L71 T T
2 [ ()] ] (et vt
=Tr [*4(01‘2%71 1) b 1%] 4(0 v — o 'QL_I%'
Gj = (o;)"
da; L-140; -1 9L
Y5 _ (o i _ _I(os i
di (o) dt (o) 0,
= L(Uj)L_14aj2-L71'yj(1 — U?L'yj) = 4LU§-’L72%—(1 — U?L'yj) =4Lo (SL /L 75 (1 — 02.%)
= 4L5] (1 = 63y) ©)

A.6 PROOF OF )\ EFFECT IN BARLOW TWINS

First we consider general Barlow Twins loss:
Ly=Y (WIWT]; = 1)+ A [WIW ]} = (1 - A)Lo + ALy
i i#]
Thus it exhibits a mixed dynamics between the Ly and L1. Therefore, we first consider the dynamics
of Lo and Ly:

L case
Ly =[[WIWT = I[[3 =Y (s]v; = 1)%,
J
dL, ,
Tor 48Wk~(z Okjsjvi — 1)

J

14
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Lo case
Ly = Z([WFWT] -1)2= Z(e(i)TWFWTe(i) 1= Z(u(i)TsAFSTu(i) 12

S
dL i) i i
K}S = 22(; ug. 23?%’ —Du ( )2 28k ve = 45,7k ; ; ()2 ?WJ 1)“12)2'

1f u{"? = 6;; (U = Iy, then Lo = Ly. If not, 3°, u{”® = 1 and each u{"?
weight 1/d.
We now investigate the dynamics of s;’s: Initially, all singular values grow with exponential dynamics
as s; = 0 and 0; = 0 for j # k.

dLg

. _ (12 2 (2 _ 3
i Z(Z uj sy — D = A + O(s)

acts as an averaging

) dL
S = —g; = —4Sk’yk(z (5@8?’7‘7‘ - 1) = dspyk + O(S%)
J

After a few steps, the first singular value s; increases (since ; is the largest) and then,

. dLg (i)2 2 (i)2 Z Z ()2 ()2
S1 = 7d781 = 7451’71 EZ ( Ej ’LL] Sj")/j - 1)“1 = 481’)/1 1-— U
i 1
=4s1m <1 — g Uy MS%%) + O (mafcs ) ~ 4s171 ( ds%’n)

) dLy 2 2
S1 = _disl = —481’}/1(%: (51]'8]-’}/]' — 1) = 481’)/1 (]. - 81’}/1)
[A = 0] sy saturates as 5%71 reaches d.

[0 < X\ < 1] s saturates as s%'yl reaches the harmonic mean m of 1 and d.

[A = 1] s; saturates as 3%71 reaches 1.

After the first loss drops where s;’s are still small except for s;

: dLo (22, uld?

S = I — 48Kk Z Zu » = O(sg)
) dL

5k = _E;: = —dsp(D_ dkgsiy; — 1) = dsiye(l — sp)

J

[A = 0] s becomes nearly zero, effectively stopping the growth of other singular values. Each sy,
(k # 1) stays near zero.

[0 < XA < 1] First, s, exponentially grows with the following dynamics:

= —43%2 Zu (0)2 ] vi — () =dspy | 1— ZZU Qu,(; 232% +0(s})

i jF#k

with the growth rate smaller than that of A = 1:

dyp [ 1 - ZZu(Z 12,9 282% < Avg.

R E
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Then, each sy, follows sigmoidal dynamics and saturates near some value larger than /1 /. But
after saturation s decreases again since the dynamics of s is coupled with other singular values.
As other singular value increases, the sum ), > itk ugz)Zu,gz)Qs?yj grows and exceeds 1, which

causes sy, to decrease as the exponent becomes negative. Note that the principle "features with larger
eigenvalues are learned earlier" still holds.

[XA = 1] Each s, exhibits independent sigmoidal dynamics and saturates as sy reaches 1.

A =0 Case Dynamics of si(t) is almost only s; changes. In the beginning s; shows sigmoidal

—108(s101/4)  After the first drop $3, ~ 0 and

dynamics, increases and saturates near \/d/y;. T ~ o

Sk stays near zero for k = 2,3,---. 7 00

A =1Case Dynamics of si(t) is each sj, affects each other. In the beginning s; shows sigmoidal
2
dynamics, increases and saturates at , / (>\+(1—1A)l)71~ T~ —1og(gss;1(0)71)_ After the first drop sy,
d

shows independent sigmoidal dynamics, increases and saturates at /1/~y, starting from smaller

k:2,3,~-~.¢ko<,}7

0 < A < 1Case Incaseofloss=(1— \)Lg+ ALy, dynamics of sj(t) is independent sigmoidal

dynamics. In the beginning s; shows sigmoidal dynamics, increases and saturates at \/1/7y1. 71

 —log(s1(0)m(A+(1-1F))
871

value larger than /1/~, (and decreases slowly when the next singular value sy increases) 7j

relatively later than the A = 1 case.

. After the first drop sy increases sigmoidally and saturates near some
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B MAIN RESULTS EXPERIMENT

B.1 LINEAR NETWORK

20 = — A=0 — A=0.6
)
Rl — A=01 A=07 o5
L5 — A=02 r=08 = 10 7,
g I 2=0.9 Z 10 I - ——— o i
S0 " : g {. i = 2 0 Myt ! /
, =1 R MITS 2o f Al ;o s
05 O My R4 i ;d/ VAR
00 ; o YR, I A A e — 00 -l = ————
0 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Step tep

Figure 6: Effect of redundancy reduction coefficient )\ on linear network. Experimental investiga-
tion of extent bias.

Extent bias We train a linear layer with a batch size of 1000. m; = 6, ms = 2. Learning rate
n =8 x 1074, a scaling factor is 5 x 10~*. We trained 10,000 steps.

— A =0 2.0 1.4
2.0 === — =
3 A=0.1 12
‘ll‘ — A =0.2 15
15 1 — A=0.3 1.0
' i A=04 2 i
] — A=0. g - if
™ \ = f =0.8 1
] | = A=0.5 PP / — ey 9 H
3 { g et et
=10 % i 6t /’ 06 i
[ s
- ", Ji ! ,I / 0.4 i
5 I ; " i
05 03 ! R i
0.2 /’l
00 0.0 0.0
0 0 100 200 300 400 500
Step

Figure 7: Effect of redundancy reduction coefficient \ on linear network. Experimental investiga-
tion of amplitude bias.

Amplitude bias We trained a 4-layer mlp with leaky ReL.U as activation function. We use a batch
size of 1000. The hidden layer width is the same as the input size. m; = 6, ms = 2. Learning rate
n = 1073, a scaling factor is 10~%. We trained 500 steps.
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B.1.1 DETAILED THEORETICAL RESULT ON EXTENT BIAS

Orthogonal Feature Learning Our analysis shows that features are learned as orthogonal to each
other, where each feature is acquired independently without interference from others. This orthogonal
learning pattern is particularly evident in the evolution of the model’s weight matrix singular vectors.
To formalize this observation, we analyze how the left singular vectors of the weight matrix align
with the feature vectors during training.

Theorem B.1. Under Assumption the left singular vectors u of W (t) learn features orthogonally:
Projy <y (Wep) := (u] Wey,ul Wep) = (v, 0),
Projy<a(Wes) := (u] Weg,ul Wey) = (0, /),

where uy, us are the corresponding left singular vectors for the singular values sy, Ss.

= Projy=2(We))
Projyi=a(Wes)
1.1
< X
=5
4
~3
~2
-1
~0
100
- N
: 08+
TS 0.6
0 , £
20 o 0.4 Y
60 o ~
stef” 109 < /02
140 0.0

Figure 8: Visualization of the trajectory of We; and We, on the subspace spanned by w1, us
during training. The high-dimensional feature We,, (blue solid line) aligns with u; and the low-
dimensional feature We, (red solid line) aligns with uy. Dashed lines are predicted trajectory (see

Theorem .

Figure [8| shows orthogonal learning pattern that features are learned independently and sequentially,
supporting our theoretical analysis of stepwise learning dynamics.
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Aligned Initialization and Subspace Alignment While Assumption|l|assumes perfect alignment
at initialization, \Simon et al.| (2023)) demonstrate that this assumption can be relaxed significantly.
They show that even with generic small random initialization, the dynamics quickly converge to
the aligned trajectory. This result significantly strengthens our analysis by showing that the aligned
initialization assumption is not restrictive, any sufficiently small initialization will rapidly align with
the top eigenvectors of I' before substantial feature learning begins.

To validate this theoretical assumption, we measure the subspace alignment metric as:

Definition 1 (Subspace Alignment). We define subspace alignment of Im(A) and Im(B):
SA(A, B) = || A B|[7/d,

where Im(A) = {Av € R™ : v € R}, A = [a1---aq),B = [b1--bg) € R™% a; L ay,

b; L bj (i # j) and a;, b; € R™ are unit vectors.

Note that 0 < SA(A, B) < 1 and it attains SA(A, B) = 0 whenIm(A4) L Im(B), and SA(A, B) =
when Im(A) = Im(B). Figure|14|(Top) in Section empirically validates Assumption|l|using
the subspace alignment metric. The model becomes aligned rapidly in the early stages of training,
satisfying the assumption.

B.1.2 DETAILED THEORETICAL RESULT ON AMPLITUDE BIAS

f = f i

if 5 ]

il 0.5 i

b ra 2 A FA(er)
— Ana g = FA(ens)

' 0.0 jme=i |

i ——
0 100 200 300 400 500 200 300 400 500 0 100 200 300 400 500
Step Step Step

Eigenvalue
o

Figure 9: Amplitude bias effects on learnlng dynamlcs m SSL See the caption of Figure l 1} Note
that the time steps ¢; and to with ¢; : 7 L =1 2 Weuse ¢, = 1, ¢ = 1/2. See

'Yh 71, c
Section[B.T.2|for more detailed settmgs.

Amplitude Experiment For the amplitude experiment shown in Section[5.1} we train the model
using 500 steps. The augmentation noise parameter a is set to 0.1. We use a dataset size of n = 1000
samples with feature frequency fr, = 257, fia = 323—1. We also use a learning rate n = 5 - 107°, a
scaling factor 3 - 1073 and m = 96.

t

Figure 10: Input data © = Zpase + €. Toase[t] = OraCha SIN(frat) + biaCla sin( fiat), where ¢ =
1acla = 0-57f}m = %327.]?[@ = %Sam = 96.

Right Singular Vectors of W

Cross-Correlation eigenvalue )\ and Loss Relationship We analyze how the eigenvalues A relate
to the loss dynamics. The relationship follows similar patterns to those observed in Section[4.3] but
with coefficients ¢, and ¢; rather than m; and m.

Figure[T7]in Section[B:T.4] shows the close relationship between the derivatives of cross-correlation

eigenvalues d?i:“, dgé" and . The peaks in these derivatives occur at the critical points with
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Figure 11: The eigenvectors v;’s of I" for i = 1,2,3 (from Left to Right). (Left) The first
eigenvector that corresponds to the largest eigenvalue indicates the (high frequency) feature with a
high amplitude ¢ sin (fqt), (Center) the second the (low frequency) feature with a low amplitude
feature ¢, sin (fi4t), (Right) the third (and beyond) noise, where ¢;, < Cpq.
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Figure 12: The first two right singular vectors (Top/Bottom) of W during training (from Left to
Right). (Left) At ¢ = 0, the two singular vectors are just noise. (Center) A little after ¢ = 7, the first
singular value reaches the plateau as shown in Figure[9]and only the (high frequency) feature with a
high amplitude is learned. (Right) At the convergence, the model learns the two features.

magnitudes proportional to the corresponding coefficients Yq : Yia = 3, : C7, (see ). This shows
our theoretical predictions Theorem .2 matches empirical result.

Weight Singular Value Evolution We analyze how the singular values of the weight matrix evolve
during training. Similarly to the extent bias case, we expect the singular values s; to converge to
theoretical limits determined by the feature coefficients.

Figure[I8]in Section[B.1.4]shows the evolution of singular values s, and s, of weight matrix W
(Left) and their derivatives (Right). The singular values converge to their theoretical limits 1/ Vi

predicted by Theorem where v; = c?% At the critical points 7;, the derivatives achieve their

maximum values of ,/2;, showing that rates of feature learning are proportional to the coefficients.
These results confirm that the feature coefficients, rather than their frequencies, govern both the
convergence values and rates of feature learning.

Aligned Initialization and Subspace Alignment To validate Assumption[T]about alignment be-
tween the weight matrix singular vectors and eigenvectors of I', we measure the subspace alignment
metric as defined in the extent case Definition [I] Figure [T4] (Bottom) in Section [B.1.3]empirically
validates our assumption through subspace alignment measurements. As discussed in Section [B.T.T}
the model achieves alignment rapidly in the early stages of training, even with small random initial-
izations.

Orthogonal Feature Learning Similar to the extent case, we investigate how the weight matrix
learns different frequency components orthogonally as shown in Theorem The orthogonal
learning pattern reveals how frequency features are acquired independently despite their different
spectral characteristics.

Figure [I3]| shows the trajectories of weight matrix in terms of their alignments with frequency com-
ponents e, and e;,. The blue trajectory shows the first learning phase where u; aligns with the
high-amplitude feature (cp, sin(frqt)), followed by the red trajectory showing us aligning with the
low-amplitude feature (¢;, sin( fit)). This sequential, orthogonal learning pattern demonstrates that
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Projyc=»(Weys)
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Figure 13: Visualization of the trajectory of We,;, and We;, on the subspace spanned by w1, us
during training. See the caption of Figure @

feature learning is primarily determined by coefficient magnitudes rather than frequency characteris-
tics, supporting our analysis in Theorem [B.1]
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B.1.3 SUBSPACE ALIGNMENT

—
o
o

e
N
ot

Subspace Alignment
=

0.25
0.00
0 500 1000 1500 2000 2500 3000 3500 4000
Step
1.0
[«5]
g
c
.20
< 0.5
(<]
2
&
=
n 0.0
0 100 200 300 400 500
Step

Figure 14: Evolution of subspace alignment SA(V(Sd), Vr(gd)) (d = 2) between the top-d right

singular vectors of W and eigenvectors of I'. We use data (Top) from Section@ and (Bottom) from
Section[5.1} See Section D}
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B.1.4 DERIVATIVES
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Figure 15 Derivatives L (blue), £ and —2£ (black dashed). The derivative £ (7;) (solid

blue), & dt = (1) (solid red) are appr0x1mately equal to 2’71 = 2m, (dashed blue), 2+, = 2mS (dashed
red).
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Figure 16: Evolution of s;(¢) and s; (t). (Left) Evolution of singular values s; (solid blue) and s
(solid red) of W during training. They converge near to 1/,/9; = 1/3 (dashed horizontal blue) and
1/,/7s = 1 (dashed horizontal red), respectively. The predicted singular values (dashed blue, dashed

red) match the empirical result. (Right) Evolution of the derivatives ds’ (solid blue) and dgs (solid

red). The derivatives %(n), %(Ts) are approximately equal to +/ 27 (dashed horlzontal blue),

v/27s (dashed horizontal red). The predicted derivatives of singular values (dashed blue, dashed red)
also match the empirical result. We use m; = 9 and my = 1.
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Figure 17: Derivatives 22« (blue), 3!« (red), and —2% (black dashed). The derivative 3= (7,,,)

(solid blue), M(Tla) (sohd red) are approx1mately equal to 29, = 2c7 ,(dashed blue), 271a =
2¢}, (dashed red). See Flgure.together
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Figure 18: Evolution of s;(t) and s(¢). See the caption of Figureﬁ 16| (Left) They converge near to

1/\/ha = 1/y/c3, B and 1/\/1q = 1/4/c}, % . (Right) The derivatives %(Tha) Ela (1y4) are
approximately equal to /274, v/2714. We use ¢p, = 1 and ¢ = 1/2.
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B.2 DEEP LINEAR NETWORK
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Figure 19: Ideal initialization condition in DLN, assumed in Section (Left) Stepwise learn-
ing curves of Barlow Twins. The predicted loss (dashed green) of £L = Z?Zl(Aj(t) - 1) =
Z;l:l(é?(t)vj —1)2 using lb match the empirical result (solid green) (Center) Evolution of eigen-

values A;’s of C during training. We compare them with the predicted evolution 5\j (t) (dashed lines).
(Right) Evolution of the feature alignment ||Wel|; for e = e; (blue) and e = e, (red). It shows very

similar behaviors to the eigenvalues 5\}/ 2 (dashed lines).

Ideal Deep Linear Network Under ideal initialization conditions assumed in Section[A.5] estab-
lished to verify (9), the results are in exact agreement with the predictions in Figure [T9]
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Figure 20: Training loss and eigenvalue of DLN on extent bias. (Left) Training loss curve showing
the relationship between A and convergence behavior. (Right) Corresponding eigenvalue variations
demonstrating the impact of the redundancy reduction term.

Extent bias We trained 4 linear layers. We use a batch size of 1000, The hidden layer width is the
same as the input size. m; = 6, m, = 2. Learning rate 7 = 102, a scaling factor is 6 x 107!, We
trained 18,000 steps.
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Figure 21: Training loss and eigenvalue of DLN on extent bias. (Left) Training loss curve showing
the relationship between A and convergence behavior. (Right) Corresponding eigenvalue variations
demonstrating the impact of the redundancy reduction term.

Amplitude bias We trained 4 linear layers. We use batch size as 2000, The hidden layer width is 8.
m; = 6, ms = 2. Learning rate n = 1 x 1073, a scaling factor is 4 x 10~!. We trained 8,000 steps.
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B.3 MULTI-LAYER PERCEPTRON
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Figure 22: Training loss and eigenvalues of an MLP network with Leaky ReLu as activation on extent
bias. (Left) Training loss curve showing the relationship between )\ and convergence behavior. (Right)
Corresponding eigenvalue variations demonstrating the impact of the redundancy reduction term on.

Extent bias We trained a 4-layer mlp with leaky ReLU as activation function. We use a batch
size of 1000, The hidden layer width is the same as the input size. m; = 6, ms = 2. Learning rate
n = 1072, a scaling factor is 6 x 10~!. We trained 18,000 steps.
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Figure 23: Training loss and eigenvalues of an MLP network with Leaky ReLu as activation on
amplitude bias. (Left) Training loss curve showing the relationship between A and convergence
behavior. (Right) Corresponding eigenvalue variations demonstrating the impact of the redundancy
reduction term.

Amplitude bias We trained a 4-layer mlp with leaky ReLU as activation function. We use a batch

size of 1000, The hidden layer width is 8. cpq = 0.5, ¢1q = 1, fra = 27/24, fio = 167/24, m = 96.
Learning rate n = 1073, a scaling factor is 8 x 10~L. We trained 8,000 steps.
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C GENERALIZATION TO OTHER SSL ALGORITHMS
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Figure 24: Trained linear layer with batch size as 1000. m; = 6, m, = 2. Learning rate = 1x 10718,
a scaling factor is 1 x 10716, We trained 500 steps.
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Figure 25: We trained a DLN with 4 layers. The hidden layer width is the same as the input size. The
batch size is 1000, m; = 6, m, = 2. Learning rate n = 5 x 1073, a scaling factor is 6 x 10~'. We
trained 5,000 steps.
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Figure 26: Trained MLP with 4 layer, with LeakyReLU activation. The hidden layer width is the
same as the input size. The batch size is 1000, m; = 6,m, = 2. Learning rate n = 2 x 1076, a
scaling factor is 4 x 1078, We trained 5,000 steps.
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C.2 VICREG
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Figure 27: Trained linear layer with batch size as 1000. m; = 6, m, = 2. Learning rate n = 4 x 10™%,

a scaling factor is 1 x 10710, We trained 5,000 steps.
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Figure 28: We trained a DLN with 4 layers. The hidden layer width is the same as the input size. The
batch size is 1000, m; = 6, m, = 2. Learning rate n = 9 x 10™%, a scaling factor is 3 x 10~'. We
trained 10,000 steps.

15 4 i
| § 3 .
U | 5 |
& i ! 24 ‘ |
S H i [5)
a | =E u i
! . As
0 ! i 0 4
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Step Step

Figure 29: Trained MLP with 4 layer, with LeakyReLU activation. The hidden layer width is the
same as the input size. The batch size is 1000, m; = 6, m; = 2. Learning rate n = 8 X 1073, a
scaling factor is 7 x 10~!. We trained 5,000 steps.
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D EXPERIMENTAL DETAILS

D.1 EXTENT BIAS EXPERIMENT

For the extent bias experiment shown in Section 4.1} we train the model using 400 steps. The
augmentation noise parameter a was set to 0.01.We use a dataset size of n = 1000 samples with
feature dimension m = 10. We also use a learning rate 7 = 6 - 10~* and a scaling factor 5 - 101,

D.2 CoOLORED MNIST EXPERIMENT

For the Colored MNIST shown in Section [/} we train the model using default augmentation
(RandomResizedCrop[0.7, 1.0], GaussianNoise(sigma=0.1) with randomapply(p=0.5), Normalize)
with augmentated image size 48 x 48. We use background colors as [255, 0, 0], [ 0, 255, 0], [ O, O,
255],[180.31, 180.31, 0], [180.31, 0, 180.31], [ 0, 180.31, 180.31], [228.07, 114.03, 0], [228.07, O,
114.03], [114.03, 228.07, 0], [0.0000, 114.03, 228.07][digit]. We trained ResNet-18 with 70 epochs,
SGD with learning rate 7 = 7 x 1075, momentum 0.9, weightdecay 10~°. Batch size is 256, a
scaling factor is 1071

D.3 WATERBIRDS EXPERIMENTS

D.3.1 MODIFIED WATERBIRDS-C

Figure 30: Example of Modified Waterbirds-C dataset.

We train the model using default augmentation (RandomResizedCrop[0.7, 1.0], RandomHorizon-
talFlip, ColorlJitter, Normalize) with augmentated image size 96 x 96. We trained ResNet-34 with
100 epochs, SGD with learning rate 7 = 5 x 10~°, momentum 0.9, weightdecay 10~°. Batch size is
32, a scaling factor is 2.7 x 1071,

D.3.2 MODIFIED WATERBIRDS-B

Figure 31: Example of Modified Waterbirds-B dataset.

We train the model using default augmentation (RandomResizedCrop[0.7, 1.0], RandomHorizon-
talFlip, ColorlJitter, Normalize) with augmentated image size 96 x 96. We trained ResNet-34 with
100 epochs, SGD with learning rate n = 5 x 10~%, momentum 0.9, weightdecay 10~°. Batch size is
128, a scaling factor is 7 x 1072.
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E DIFFERENCE IN CRITICAL POINTS BETWEEN LOSS AND EIGENVALUE

The eigenvalue A;(7) = 1/3 at 7 (where %(T) = 0) and \;(7;) = 1/2 (where %(Tj) = 0). -
For the single-mode loss £(t) = (1 — v;s53(t))?, setting the second derivative of the loss to zero at
the critical point 7:
d? d((1 =X (8)*N(¢
cLp 16y, (1= A1) A (1))
dt2 t=r1

which yields 2X;(7) — (1 — A;(7)) = 0 and \;(7) = . According to Theorem 4.2, we have
Xi(1j) =3
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F LIMITATIONS

Our study has several limitations due to its simplified assumptions. While our theoretical analysis
provides valuable insights into the relationship between extent bias and shortcut learning, several

limitations should be acknowledged:

* Feature Independence: Our assumption of independent features may not reflect the complex
interdependencies in practical scenarios.

* Augmentation Limitations: Augmentation Limitations: Our basic augmentation approach
may not fully represent the sophisticated strategies used in modern SSL methods.

Future work could address these limitations by extending the theoretical framework incorporating
feature interactions, and analyzing the impact of more complex augmentation strategies.

G SUPPLEMENTARY STUDIES

Zhase = Cq SIN(fol + €,) + cpsin(ft + €)
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G.1 EIGENVALUES ON SHIFT AUGMENTATION
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we assumed b — a = 2,

E[sin(8, + €,) sin(0p + €4)] = %cos((‘)a —6)

finally, we get
c2 i
Ly = S cos(fali = §)) + 2 cos(fi(i = )

is a symmetric circulant matrix when f, = a%, fo= b%”,

2 2

co ) c .
G =5 cos(faj) + Eb cos(fp7)
N-1
Ar = Z cjw ki
j=0
1 T
VFJC - \/N |:17wk7w2k7 7W(N Dk
211 2

This is symmetric, so eigenvalues are real. The eigenvectors can be expressed either in complex form
or as pairs of real vectors. Using properties of Discrete Fourier Transform (DFT) matrix on Ar g,
0(k#1la, N—1lg,lp, N —1p)
2
Arp =< 3 (k=l,ork=N—1,)
5 (k‘:lbOI'k‘ZN—lb)

2}

2
b

Finally, we can derive as:
62 C2 C2 C2
Ar = di Za Za b b o
T 1ag(|:272a2a2a m—2 )
V(<4) |: 1 1 1 1 :|
- = | —==€ s ——=C€h sin ——=¢€ s ——=C€sin| -
T N h,co \/N h, \/N l,co \/N l,

where

€h,cos = Ca COS(fal),
€h,sin = Ca Sin(fat),
(fot),
(fot)

€l,sin = Cp sin(fot).

€l,cos = Cp COS

G.2 ABLATION STUDIES ON LEAKY RELU
We confirmed that nonlinearity has the effect of reducing the initial eigenvalue \ by varying the slope

of the leaky ReLU activation function. Figure [32]shows as the slope approaches zero, the function
converges to ReLU, and it can be observed that 7 exhibits slower dynamics.
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Figure 33: Initial top eigenvalue of correlation matrix C' as a function of Leaky ReL.U slope parameter.
A slope of 0 corresponds to ReLU activation, while a slope of 1 represents the Deep Linear Network
case. As the number of layers increases, the reduction in initial eigenvalue \ due to decreasing slope
leads to slower learning dynamics.
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G.3 BATCHNORM EFFECTS
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Figure 34: Effects of batch normalization on learning dynamics in A = 1 non-linear network.
(Left) Stepwise learning curves of Barlow Twins showing two distinct learning phases with vertical
dashed lines marking critical transition points during training. The green line shows empirical loss
decreasing in two clear stages. (Right) Evolution of eigenvalues \; of correlation matrix C during
training. The eigenvalue \; (blue) increases first, followed by the eigenvalue A, (red). We use same
inputs in Figure|[T]

H LLM USAGE

LLMs were used solely for language editing (grammar, spelling, and style improvements) and code
generating, but not for generating research ideas, experimental design, or scientific content. All
LLM-generated content was verified and validated by the authors.
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