STEPWISE FEATURE LEARNING IN SELF-SUPERVISED LEARNING

Anonymous authorsPaper under double-blind review

ABSTRACT

Recent advances in self-supervised learning (SSL) have shown remarkable progress in representation learning. However, SSL models often exhibit shortcut learning phenomenon, where they exploit dataset-specific biases rather than learning generalizable features, sometimes leading to severe over-optimization on particular datasets. We present a theoretical framework that analyzes this shortcut learning phenomenon through the lens of *extent bias* and *amplitude bias*. By investigating the relations among extent bias, amplitude bias, and learning priorities in SSL, we demonstrate that learning dynamics is fundamentally governed by the dimensional properties and amplitude of features rather than their semantic importance. Our analysis reveals how the eigenvalues of the feature cross-correlation matrix influence which features are learned earlier, providing insights into why models preferentially learn shortcut features over more generalizable features.

1 Introduction

While deep neural networks have shown remarkable success in various learning tasks, recent studies have revealed a concerning trend: models often exploit unexpected learning behavior, particularly shortcut learning, which tends to take easier but potentially less reliable paths to solve general tasks (Geirhos et al., 2020). For example, in image classification tasks, models tend to learn earlier larger background features than smaller foreground objects (Hermann et al., 2023), potentially leading them to classify cows based on whether they appear on grass rather than learning actual cow features, or identify camels primarily by detecting desert backgrounds (Beery et al., 2018). This phenomenon is prevalent even in SSL (Doersch et al., 2015b; Noroozi et al., 2017; Wei et al., 2018; Doersch et al., 2015a).

While previous research has shown that neural networks are vulnerable to spurious correlations in data (Arjovsky et al., 2019), several other contributing factors to shortcut learning have been identified. Hermann et al. (2023) find shortcuts emerging from color, size, and background. Rahaman et al. (2019); Tancik et al. (2020) find spectral bias that low-frequency features are learned faster than high-frequency features. While significant progress has been achieved, current theoretical frameworks provide insufficient explanations for why models consistently induce shortcuts.

Recent studies have demonstrated that SSL models with small weight initialization exhibit stepwise learning dynamics, where features are learned sequentially based on the corresponding eigenvalues of the feature cross-correlation matrix (Simon et al., 2023). Building on this insight, we analyze the eigenvalue and eigenvector structure of the feature cross-correlation matrix. This approach provides a novel theoretical framework for understanding why certain features, regardless of their semantic importance, are consistently learned earlier in the training process. Our investigation focuses particularly on how dimensional properties influence learning priority, potentially explaining some observed shortcut learning phenomena beyond traditional spurious correlations.

The contributions of our work are as follows:

- We establish theoretical connections between shortcut learning phenomenon, stepwise learning, and eigenvalue-eigenvector of feature cross-correlation matrix on SSL.
- We extend theoretical research on shortcut learning from supervised learning to SSL.

- We characterize *extent bias*, a tendency to prioritize features based on their dimensional extent or spatial coverage rather than their semantic importance.
- We analyze how amplitude and frequency determine which features are learned earlier in SSL, and characterize *amplitude bias*, a tendency to prioritize features based on their amplitude rather than their semantic importance.

2 RELATED WORKS

 Self-supervised learning Early contrastive methods like SimCLR (Chen et al., 2020) required large batches, motivating non-contrastive approaches like SimSiam (Chen & He, 2021) and BYOL (Grill et al., 2020). Subsequent methods introduced novel regularizers, such as the variance-invariance-covariance in VICReg (Bardes et al., 2021) and the cross-correlation matrix in Barlow Twins (Zbontar et al., 2021), to prevent representational collapse. DINO (Caron et al., 2021) advanced the field by introducing self-distillation with no labels. The success of DINO v2 (Oquab et al., 2023) sparked interest in Joint Embedding Predictive Architectures (JEPA) (Assran et al., 2023), with recent work by Littwin et al. (2024) revealing JEPA's tendency to prioritize learning "related" features over "frequently" occurring ones.

Learning dynamics Following the introduction of Neural Tangent Kernel (NTK) (Jacot et al., 2018), researchers have discovered important connections between eigenvalue dynamics and learning behavior, including spectral bias phenomena (Tancik et al., 2020; Halvagal et al., 2022). This theoretical framework has enabled deeper analysis of loss function trajectories and saddle point behaviors (Jacot et al., 2021; Pesme & Flammarion, 2023). Notably, Simon et al. (2023) demonstrated that these saddle-to-saddle dynamics appear not only in supervised learning but also extend to SSL settings.

Shortcut learning Shortcut learning was first identified in Geirhos et al. (2020), describing how neural networks take easier but incorrect paths to solve tasks. This phenomenon appears in various ways: Geirhos et al. (2018); Baker et al. (2018); Hermann & Lampinen (2020) showed that CNNs rely on object texture rather than object shape, Wu et al. (2022) demonstrated that even a single pixel can mislead model's decisions, and Hermann et al. (2023) revealed that CNNs preferentially learn salient but potentially irrelevant features like scale and background elements. These shortcuts can arise from dataset properties, particularly through spurious correlations (Arjovsky et al., 2019) and implicit biases. Our work specifically examines how dataset correlations contribute to shortcut learning.

3 BACKGROUND (STEPWISE NATURE OF SSL (SIMON ET AL., 2023))

In this section, following Simon et al. (2023), we analyze the stepwise learning dynamics of SSL systems through the lens of toy Barlow Twins models (Zbontar et al., 2021). We first introduce the loss function and gradient flow dynamics, then derive the connection between cross-correlation matrix and feature learning. Finally, we examine how the eigendecomposition of feature cross-correlation matrix connects to the theoretical foundation for our analysis of extent bias and amplitude bias.

Given training data $\{x^{(i)} \in \mathbb{R}^m : i = 1, 2, \cdots, n\}$, the training loss of toy Barlow twins is defined as $\mathcal{L} = ||C - I_d||_F^2$, where $||\cdot||_F$ is Frobenius norm, $C \equiv \frac{1}{2n} \sum_{i=1}^n (Wx^{(i)})(Wx'^{(i)})^\top + (Wx'^{(i)})(Wx^{(i)})^\top \in \mathbb{R}^{d \times d}$ is cross-correlation matrix of Wx and Wx' for another view x' from x, and $W \in \mathbb{R}^{d \times m}$ represents learnable parameters. Using the feature cross-correlation matrix

$$\Gamma \equiv \frac{1}{2n} \sum_{i=1}^{n} (x^{(i)} x'^{(i)\top} + x'^{(i)} x^{(i)\top}) \in \mathbb{R}^{m \times m}, \tag{1}$$

we have

$$\mathcal{L} = ||W\Gamma W^{\top} - I_d||_F^2, \ C = W\Gamma W^{\top}.$$
 (2)

The eigendecomposition of the feature cross-correlation matrix is $\Gamma = V_{\Gamma} \Lambda_{\Gamma} V_{\Gamma}^{\top}$ with $\Lambda_{\Gamma} = \operatorname{diag}(\gamma_1, \cdots, \gamma_m)$ and $V_{\Gamma} = [v_1 \cdots v_m] \in \mathbb{R}^{m \times m}$, where $\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_m$ are eigenvalues of Γ and v_i 's are the corresponding eigenvectors for γ_i 's.

To analyze eigenvector dynamics of weights, we assume weight initialization is aligned.

Assumption 1 (Aligned Initialization (Simon et al., 2023)). At the initialization, we assume that the right-singular vectors of W(0) are aligned with the top d eigenvectors of Γ , i.e., the singular value decomposition is $W(0) = US_0V_{\Gamma}^{(\leq d)\top}$ for a orthogonal matrix $U \in \mathbb{R}^{d \times d}$, the top-d eigenvector matrix $V_{\Gamma}^{(\leq d)} = [v_1 \cdots v_d] \in \mathbb{R}^{m \times d}$, and a diagonal matrix $S_0 = \operatorname{diag}(s_1(0), \cdots, s_d(0))$ with a small initialization $s_j(0) > 0$.

Under Assumption 1, the solution W(t) for gradient flow $\frac{dW}{dt} = -\nabla_W \mathcal{L} = -4(W\Gamma W^\top - I_d)W\Gamma$ can be expressed as follows (Simon et al., 2023, Proposition 4.1): $W(t) = US(t)V_{\Gamma}^{(\leq d)\top}$ for $S(t) = \operatorname{diag}(s_1(t), \cdots, s_d(t))$, where the singular values of W(t) evolve as $s_j(t) = \frac{e^{4\gamma_j t}}{\sqrt{s_j^{-2}(0) + (e^{8\gamma_j t} - 1)\gamma_j}}$

which has a limit of $\gamma_j^{-1/2}$ as $t\to\infty$ and nearly sigmoidal

$$s_j^2(t) \approx \frac{1}{\gamma_j + s_j^{-2}(0)e^{-8\gamma_j t}} =: \tilde{s}_j^2(t).$$
 (3)

Solving $\tilde{s}_{i}^{2}(t) = \frac{1}{2}s_{i}^{2}(\infty)$ at its critical time $t = \tau_{j}$, we have

$$\tau_j = -\log\left(s_j^2(0)\gamma_j\right)/8\gamma_j\tag{4}$$

around which $s_j(t)$ (or $\tilde{s}_j(t)$) passes $\frac{1}{2}\gamma_j^{-1/2}$ and rapidly increases from near zero to near the saturation $\gamma_j^{-1/2}$.

In this paper, we focus on the property that the eigenvector feature v_j corresponding to a larger γ_j leads to an earlier critical point τ_j from (4).

4 EXTENT BIAS

In computer vision tasks, backgrounds typically span larger regions while foreground objects occupy more concentrated areas. Recent work by Hermann et al. (2023) reveals that CNNs preferentially learn these background features over object-specific details, creating a specific form of spurious correlation between backgrounds and class labels. For example, cows are often classified based on grass backgrounds rather than their distinctive features, and camels are identified through desert scenes (Beery et al., 2018). This phenomenon points to a underlying learning mechanism we term *extent bias*, a fundamental tendency of neural networks to prioritize features based on their dimensional extent or spatial coverage rather than their semantic importance. The connection between extent bias and learning dynamics implies the need for understanding a more fundamental mechanism beyond traditional spurious correlations. While spurious correlations emerge from dataset-specific relationships, the bias toward learning background features is inherent in the learning dynamics of neural networks themselves. Through our analysis of SSL systems, we demonstrate that this bias for background features emerges naturally from how models learn earlier features with higher extent bias, independent of their semantic relevance or predictive power.

In this section, we investigate how different feature properties influence learning priorities in SSL. Through extent bias analysis, we demonstrate how features with larger dimensional coverage are learned before those with smaller coverage, regardless of their semantic importance.

We construct a theoretical framework that identifies dimensional effects in feature learning. By analyzing how SSL models process features of varying extent bias, we can directly observe how extent bias influences learning priority and connects to the background-foreground learning dynamics observed in practice.

4.1 SETTINGS

We first consider the following base input $x_{\text{base}} = [b_l \mathbf{1}_{m_l}^\top, b_s \mathbf{1}_{m_s}^\top]^\top \in \mathbb{R}^m$, where $b_l, b_s \overset{\text{i.i.d.}}{\sim} B(p = 0.5)$ follow the Bernoulli distribution and take the value ± 1 with the equal probability, m_l and m_s indicate the size of larger part and smaller part, respectively, i.e., $m_l > m_s$ and $m_l + m_s = m$, and

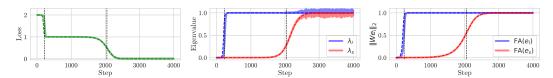


Figure 1: **Effects of extent bias on learning dynamics in SSL.** (Left) Stepwise learning curves of Barlow Twins. There are two (d=2) learning steps shown with two black dashed vertical lines (also shown in the other two panels) which indicate the time steps t_1 and t_2 with $t_1:t_2\approx\frac{1}{\gamma_l}:\frac{1}{\gamma_s}=\frac{1}{m_l}:\frac{1}{m_s}$. The predicted loss (dashed green) of $\mathcal{L}=\sum_{j=1}^d(\tilde{\lambda}_j(t)-1)^2=\sum_{j=1}^d(\tilde{s}_j^2(t)\gamma_j-1)^2$ using (3) match the empirical result (solid green). (Center) Evolution of eigenvalues λ_j 's of C during training. At the beginning, the first eigenvalue λ_1 (blue) increases to 1 and then later the second λ_2 (red) follows. We also compare them with the predicted evolution $\tilde{\lambda}_j(t)$ (dashed lines). (Right) Evolution of the feature alignment $||We||_2$ for $e=e_l$ (blue) and $e=e_s$ (red). It shows very similar behaviors with the eigenvalues $\tilde{\lambda}_j^{1/2}$ (dashed lines). See Theorem B.1. We use $m_l=9,\ m_s=1$. See Section D.1 for more detailed settings.

 $\mathbf{1}_k$ is the k-dimensional all-one vector. From now on, we will use the subscript l and s for the indices with respect to the *larger*-part and *smaller*-part features, respectively.

Then, to obtain the augmented pair (x,x'), we introduce the following data augmentation $x=x_{\text{base}}+\varepsilon$ and $x'=x_{\text{base}}+\varepsilon'$, with the noise $\varepsilon,\varepsilon'\stackrel{\text{i.i.d.}}{\sim}\mathcal{N}(0_m,a^2I_m)$ for some a>0.

4.2 Learning Dynamics on extent bias

In this subsection, we discuss the relationship between γ_j and \mathcal{L} , focusing on which features are learned earlier. From Section 4.1, we can simplify the feature cross-correlation matrix Γ by analyzing the expected values of the augmented features. Based on the definition in (1), we have:

$$\Gamma = \frac{1}{2n} \sum_{i=1}^{n} (x^{(i)} x'^{(i)\top} + x'^{(i)} x^{(i)\top}) = \mathbb{E}[x_{\text{base}} x_{\text{base}}^{\top}].$$
 (5)

To identify which features drive the loss as stepwise phenomena, we consider basis vectors that disentangle individual features. Specifically, we define basis vectors e_l and e_s where each vector has ones only in the dimensions corresponding to its respective feature:

$$e_l = [\mathbf{1}_{m_l}^\top, \mathbf{0}_{m_s}^\top]^\top, e_s = [\mathbf{0}_{m_l}^\top, \mathbf{1}_{m_s}^\top]^\top \in \mathbb{R}^m.$$

By measuring the feature alignment $FA(e) = ||We||_2$ between the weight matrix and the basis vectors $e = e_l, e_s$, we can identify which features are being learned at each stage of the training process.

The eigendecomposition of Γ is given by the following proposition:

Theorem 4.1. The correlation matrix in (5) has the eigenvalue matrix Λ_{Γ} and eigenvector matrix V_{Γ} :

$$\Lambda_{\Gamma} = \operatorname{diag}\left(\left[m_{l}, m_{s}, \ \mathbf{0}_{m-2}\right]\right), V_{\Gamma}^{(\leq 2)} = \left[e_{l} / \sqrt{m_{l}} \ e_{s} / \sqrt{m_{s}}\right].$$

We defer the proof to Section A.1.

We hypothesize that features with larger dimensions are learned faster, regardless of their predictive power or potential to cause shortcuts. This is particularly relevant in vision tasks where such features might correspond to larger pixel regions. We experiment using a simple toy model to validate our theoretical analysis of dimensional influence on feature learning. In our experimental setup, we used two distinct features with different dimensional coverage ($m_l=9$ and $m_s=1$), allowing us to clearly observe the learning dynamics.

As shown in Figure 1, the model's stepwise learning dynamics are governed by the eigenvalues of the feature cross-correlation matrix, resulting in distinct loss drops. The evolution of eigenvalues (Center) and the feature alignments (Right) provide direct evidence of the learning order determined by the eigenvalue dynamics that the alignment with the higher-dimensional feature, e_l , increases first and the alignment with e_s follows. This result suggests that the spatial extent of features, rather than their semantic content, plays a crucial role in determining learning priority.

4.3 Cross-Correlation eigenvalue and Loss Relationship

In this subsection, we analyze the relationship between the eigenvalues λ_j of cross-correlation matrix. **Theorem 4.2.** Under Assumption 1, the eigenvalues λ_j of feature cross-correlation matrix C, using the approximation $s_j^2 \approx \tilde{s}_j^2$ in (3), are approximated as $\lambda_j = s_j^2 \gamma_j \approx \tilde{s}_j^2 \gamma_j =: \tilde{\lambda}_j$ which have

$$\tilde{\lambda}_{j}(\tau_{j}) = \frac{1}{2} \text{ and } \tilde{\lambda}'_{i}(\tau_{j}) \begin{cases} = 2\gamma_{j} & \text{if } i = j, \\ \approx 0 & \text{if } i \neq j \end{cases}$$
 (6)

at $\tau_j = -\log(s_j^2(0)\gamma_j)/8\gamma_j$ in (4). For the Barlow Twins loss $\mathcal{L} = \|C - I_d\|_F^2$, we have $\mathcal{L} = \sum_{j=1}^d (\lambda_j - 1)^2$ and $-\frac{d\mathcal{L}}{dt}(\tau_j) \approx \tilde{\lambda}_j'(\tau_j) = 2\gamma_j$.

We defer the proof to Section A.3.

Figure 15 in Section B.1.4 shows the relationship between the derivative of cross-correlation eigenvalues λ_j' and the loss derivative $-\frac{d\mathcal{L}}{dt}$. The close alignment between the loss derivative and λ_j' curves demonstrates that the decrease in loss is directly driven by λ_j , with larger m_l features learned, and smaller m_s features learned later. The curves' relative magnitudes show an approximate $m_l:m_s$ ratio, which matches our theoretical predictions.

4.4 WEIGHT SINGULAR VALUE EVOLUTION

To verify the dynamics of weight singular values s_j , we propose the following theorem:

Theorem 4.3. Using the approximation (3), the singular values of the weight matrix W satisfy

$$\tilde{s}_j(au_j) = 1/\sqrt{2\gamma_j}$$
 and $\tilde{s}_j'(au_j) = \sqrt{2\gamma_j}$

at the critical point $t = \tau_j$.

We defer the proof to Section A.4.

Figure 16 in Section B.1.4 shows two key aspects of singular value dynamics during training. First, the singular values s_j evolve to their theoretical limits $1/\sqrt{\gamma_j}$ and $1/\sqrt{\gamma_s}$, as predicted by our analysis. Second, the derivatives of these singular values exhibit peaks at their respective critical points, with magnitudes that follow the predicted $\sqrt{2\gamma_l}:\sqrt{2\gamma_s}$ ratio. These results provide strong empirical validation of our theoretical framework, demonstrating that both the convergence values and learning priority on different features are governed by their corresponding eigenvalues in the feature cross-correlation matrix Γ .

4.5 ALIGNED INITIALIZATION AND SUBSPACE ALIGNMENT

While Assumption 1 assumes perfect alignment at initialization, Simon et al. (2023) demonstrate that this assumption can be relaxed significantly. They show that even with generic small random initialization, the dynamics quickly converge to the aligned trajectory. This result significantly strengthens our analysis by showing that the aligned initialization assumption is not restrictive, any sufficiently small initialization will rapidly align with the top eigenvectors of Γ before substantial feature learning begins. To validate this theoretical assumption, we define the subspace alignment metric and measured in Section B.1.1.

5 AMPLITUDE BIAS

Building on our analysis of extent bias, we study amplitude bias—how feature magnitude affects learning priority. To isolate amplitude effects, we need features with identical spatial coverage but different magnitudes. Sinusoidal functions provide an ideal framework, as frequency components can have identical spatial extent while varying in amplitude through their coefficients, allowing us to disentangle amplitude from dimensional coverage effects. This approach connects with existing frequency-based learning research (Rahaman et al., 2019; Tancik et al., 2020; Wang et al., 2023), which has primarily focused on supervised learning. By studying sinusoidal features in SSL, we investigate whether amplitude or frequency characteristics more strongly determine learning priority while extending frequency-based analysis to self-supervised settings.

5.1 SETTINGS

To analyze how frequency and amplitude bias affect learning dynamics, we consider input data $x_{\text{base}} \in \mathbb{R}^m$ composed of two sinusoidal components with different frequencies:

$$x_{\text{base}}[t] = c_{ha}b_{ha}\sin(f_{ha}t) + c_{la}b_{la}\sin(f_{la}t),\tag{7}$$

where $f_{ha} = \frac{2\pi}{m}k$ and $f_{la} = \frac{2\pi}{m}k'$ represent different frequencies for some integers k and k', $b_{ha}, b_{la} \stackrel{\text{i.i.d.}}{\sim} B(p=0.5)$ follow the Bernoulli distribution and take the value ± 1 . Suppose $f_{ha} < f_{la}$ to examine the learning dynamics between low and high frequency components. The coefficients c_{ha} and c_{la} control the amplitude of each sinusoidal component, allowing us to investigate how magnitudes affect learning earlier. The Bernoulli variables b_{ha} and b_{la} introduce phase reversal in the signal. The time vector t spans the input dimension m. We use the same augmentation with (4.1) to generate augmented pairs (x, x') by adding Gaussian noise.

5.2 LEARNING DYNAMICS ON AMPLITUDE BIAS

Similar to Section 4.2, we consider basis vectors e_{ha} and e_{la} that isolate individual features: $e_{ha} = c_{ha} \sin(f_{ha}t)$ and $e_{la} = c_{la} \sin(f_{la}t)$, where $0 \le t \le m$. Note that these two are orthogonal since $f_{ha} = \frac{2\pi}{m}k$ and $f_{la} = \frac{2\pi}{m}k'$ with $k \ne k'$. Similar to Theorem 4.1, the cross-correlation matrix Γ for the data generated from (7) can be expressed as follows:

Theorem 5.1. *Under* (7), the correlation matrix Γ has

$$\Lambda_{\Gamma} = diag\left(\left[c_{ha}^{2} m/2, c_{la}^{2} m/2, \mathbf{0}_{m-2}\right]\right), V_{\Gamma}^{(\leq 2)} = \left[e_{ha} \ e_{la}\right]. \tag{8}$$

We defer the proof to Section A.2.

From Equation (8), we observe that eigenvalues are proportional to the squares of the coefficients c_{ha}^2 and c_{la}^2 . This implies that the learning dynamics are more strongly influenced by the amplitude rather than the underlying frequency.

To validate our theoretical analysis of amplitude bias effect on learning dynamics, we conduct experiments using input data defined in (7). Especially, we set $c_{ha} > c_{la}$. This configuration shown in Figure 10 in Section D, allows us to examine how high-amplitude $c_{ha}\sin(f_{ha}t)$ and low-amplitude $c_{la}\sin(f_{la}t)$ affects feature amplitude bias. More details about the experiment are in Section B.1.2.

Our analysis reveals two dominant eigenvalues corresponding to high-amplitude and low-amplitude components. The eigenvectors of Γ (shown in Figure 11, Section D) capture these oscillations: the first eigenvector corresponds to the dominant high-amplitude oscillation, the second to the low-amplitude oscillation, while other eigenvectors are noise with eigenvalues near zero.

5.3 DISCUSSION

Figure 12 in Section B.1.2 shows that a learning process is driven primarily by feature coefficient magnitude rather than frequency characteristics. The key observation is that the first learned features are those with large coefficients, independent of their spectral properties. This finding parallels frequency shortcut (Wang et al., 2023) in classification tasks, but reveals a different underlying mechanism. While frequency shortcut suggests models preferentially learn distinctive Fourier components, our results demonstrate that amplitude magnitude—not frequency characteristics—primarily determines feature learning priority. More detailed results in Section B.1.2.

6 GENERAL SETTINGS

6.1 Redundancy reduction coefficient $\lambda \neq 1$

Proposition 1. For the general Barlow Twins loss, $L_{\lambda}=(1-\lambda)L_0+\lambda L_1$, the redundancy reduction coefficient λ governs the learning dynamics by balancing feature learning (L_0) and decorrelation (L_1) , creating a spectrum of behaviors. At the $\lambda=0$, only the top eigenvalue is learned $(s_1\to\sqrt{d/\gamma_1})$. Conversely, at $\lambda=1$, all features are learned independently $(s_k\to\sqrt{1/\gamma_k})$ for all k. For intermediate values, $0<\lambda<1$, the dynamics are coupled, where the learning of new features can suppress those previously acquired.

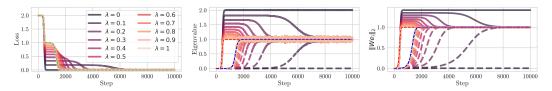


Figure 2: Effects of redundancy reduction coefficient λ of the general Barlow Twins loss on linear network dynamics with $m_l=6, m_s=2$. (Left) Training loss evolution: empirical results (solid lines) and theoretical prediction for $\lambda=1$ (green dashed). (Center) Eigenvalue dynamics: solid lines show λ_l (larger extent bias) and λ_s (smaller extent bias), with red/blue dashed lines as theoretical predictions for $\lambda=1$. (Right) Feature alignment evolution: solid/dashed lines show ${\rm FA}(e_l)$ and ${\rm FA}(e_s)$, with red/blue dashed lines as theoretical predictions for $\lambda=1$.

This analysis reveals that smaller λ promotes specialization to dominant features, while larger λ encourages learning of the full feature space. The detailed derivations are provided in Section A.6.

6.2 DEEP LINEAR NETWORKS (DLN)

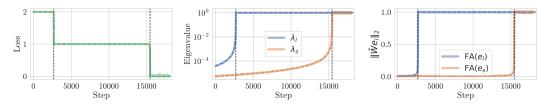
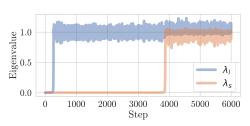


Figure 3: Ideal initialization condition in DLN, assumed in Section A.5. (Left) Stepwise learning curves of Barlow Twins. The predicted loss (dashed green) of $\mathcal{L} = \sum_{j=1}^d (\tilde{\lambda}_j(t)-1)^2 = \sum_{j=1}^d (\tilde{s}_j^2(t)\gamma_j-1)^2$ using (3) match the empirical result by approximation of differential equations (9) (solid green) (Center) Evolution of eigenvalues λ_j 's of C during training. We compare them with the predicted evolution $\tilde{\lambda}_j(t)$ (dashed lines). (Right) Evolution of the feature alignment $||We||_2$ for $e=e_l$ (blue) and $e=e_s$ (red). It shows very similar behaviors to the eigenvalues $\tilde{\lambda}_j^{1/2}$ (dashed lines).

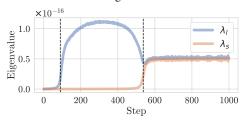
While we could analyze deep neural networks based on kernels as in our foundational work (Simon et al., 2023), kernel-based analysis has fundamental limitations in explaining feature learning dynamics. Even NTK analysis (Woodworth et al., 2020; Nam et al., 2025) cannot capture the feature learning that occurs rich regime. Although DLNs are linear networks, their learning dynamics is non-linear due to multiplicative weight interactions between layers. This enables feature learning while maintaining analytical tractability that kernel methods cannot provide (Ziyin et al., 2022). Similar to recent analysis of Littwin et al. (2024), we provide our analysis in Section A.5.

6.3 NON-LINEAR MODELS (LEAKY RELU, BATCH NORMALIZATION, AND SIMCLR)

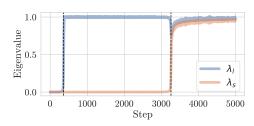
Figure 4 provides a more rigorous verification with the non-linear models (see Section G.2 for details). Standard Barlow Twins implementations with batch normalization exhibit similar cross-feature interactions even when $\lambda=1$. The normalization constraints couples between different singular values, causing later-learned features to suppress earlier ones, mimicking the mixed-case dynamics. Detailed experiments are provided in Section G.3. Similarly, the behaviors of SimCLR and VICReg suggests a similar coupling dynamic. The softmax and batch normalization components likely create implicit cross-feature dependencies, leading to a phenomenon where subsequent feature learning can diminish previously learned representations. This offers a potential explanation for why both methods show sequential feature learning patterns in practice.



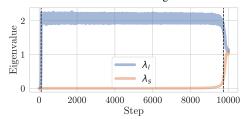
(a) **MLP with ReLU activation.** See Section B.3 for more detailed settings.



(c) **DLN with SimCLR.** See Section C.1 for more detailed settings.



(b) **DLN with BatchNorm** ($\lambda = 1$). See Section G.3 for more detailed settings.



(d) **DLN with VICReg.** See Section C.2 for more detailed settings.

Figure 4: Eigenvalue evolution for non-linear models.

7 PRACTICAL STUDY

To investigate the effect of extent bias in a more realistic setting, we conducted some experiments using semi-synthetic datasets.

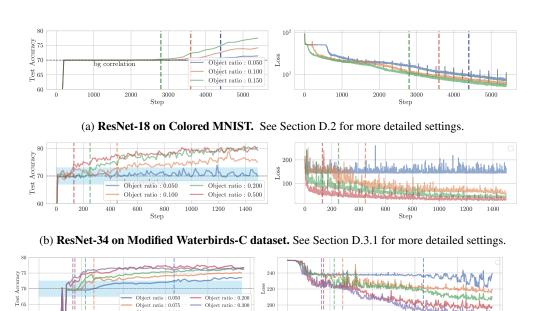
7.1 COLORED-MNIST DATASET

We conducted experiments using a Colored-MNIST dataset, where we adjusted the ratio of digits pixels relative to the total image pixels. We tested three different ratios: 0.05, 0.10, and 0.15. In this dataset, we set the correlation between background and label to 70% for both training and test sets, making it difficult for a model that predicts solely based on background to achieve accuracy higher than 70%. According to our hypothesis, since backgrounds have larger extent bias than objects, the test set accuracy would rapidly increase to 70% (as the model learns background features), then plateau for a period, before slowly rising higher (as it learns object features). We also hypothesized that this plateau period would be shortened as the spatial ratio of the object increases in the images.

Figure 5a supports our hypothesis. Across all object ratio conditions (0.05, 0.10, 0.15), test accuracy exhibited a consistent pattern: a rapid increase from initial 10% to 70%, followed by a plateau period, and then a gradual ascent. Notably, as the object pixel ratio increases, the duration of the plateau phase decreases. The loss function continues to decrease even when accuracy remains stagnant at 70%. This suggests the extent bias where larger objects are prioritized during the learning process. The pattern reflects how the model initially achieves 70% accuracy by relying on background features, which statistically occupy larger regions, before progressively learning object features. Furthermore, this indicates that larger extents occupy greater eigenvalues, implying a reduction in the critical point.

7.2 Modified Waterbirds Datasets

Similarly, to test whether the extent bias observed in Colored-MNIST generalizes to more complex scenarios, we performed experiments on modified versions of Waterbirds dataset (Sagawa et al., 2019). These modified datasets comprise two distinct configurations. First, following a similar setup to Colored-MNIST, we set background colors to blue/green while varying bird sizes across multiple scales (Modified Waterbirds-C). Second, we use complex natural backgrounds (forest and sea images) while maintaining consistent bird sizes as a fixed proportion of total image pixels (Modified Waterbirds-B). We observed a similar dynamics with the Colored-MNIST experiment. See Section D.3 for details.



(c) ResNet-34 on Modified Waterbirds-B dataset. See Section D.3.2 for more detailed settings.

Figure 5: **Extent bias effects on spurious dataset.** The dotted vertical lines indicate the transition points where the model shifts from background-only prediction to main object-based prediction, marked at (a) 70% accuracy with a 0.5% error tolerance (b) 70% accuracy with a $\pm 3\%$ (c) 70% accuracy with a $\pm 3\%$ error tolerance. (Left) The accuracy rate has a plateau at 70%, which corresponds to the correlation between background and object. The lengths of the plateaus become shorter as the object's pixel ratio increases. (Right) Loss decreases except ratio 0.05 in (b).

8 CONCLUSION

In this work, we establish a theoretical connection between eigendecomposition of the feature cross-correlation matrix, shortcut learning, and stepwise learning behavior in SSL. We provide insights into how dimensional feature properties influence the learning process in SSL frameworks. This work not only explains observed shortcut learning phenomena but also offers a theoretical lens for understanding and potentially mitigating such learning biases. This theoretical framework lays the groundwork for developing more robust SSL algorithms. Future work should focus on leveraging these insights to design mechanisms that encourage learning of generalizable features despite their potentially lower extent bias or amplitude bias.

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. *arXiv preprint arXiv:1907.02893*, 2019.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding predictive architecture. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15619–15629, 2023.

Nicholas Baker, Hongjing Lu, Gennady Erlikhman, and Philip J Kellman. Deep convolutional networks do not classify based on global object shape. *PLoS computational biology*, 14(12): e1006613, 2018.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization for self-supervised learning. *arXiv* preprint arXiv:2105.04906, 2021.

- Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In *Proceedings of the European Conference on Computer Vision (ECCV)*, September 2018.
 - Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.
 - Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pp. 1597–1607. PMLR, 2020.
 - Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15750–15758, 2021.
 - Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning by context prediction. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, December 2015a.
 - Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by context prediction. In *Proceedings of the IEEE international conference on computer vision*, pp. 1422–1430, 2015b.
 - Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. *arXiv preprint arXiv:1811.12231*, 2018.
 - Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature Machine Intelligence*, 2(11):665–673, 2020.
 - Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural information processing systems*, 33:21271–21284, 2020.
 - Manu Srinath Halvagal, Axel Laborieux, and Friedemann Zenke. Implicit variance regularization in non-contrastive ssl. *arXiv preprint arXiv:2212.04858*, 2022.
 - Katherine Hermann and Andrew Lampinen. What shapes feature representations? exploring datasets, architectures, and training. *Advances in Neural Information Processing Systems*, 33:9995–10006, 2020.
 - Katherine L Hermann, Hossein Mobahi, Thomas Fel, and Michael C Mozer. On the foundations of shortcut learning. *arXiv preprint arXiv:2310.16228*, 2023.
 - Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks. *Advances in neural information processing systems*, 31, 2018.
 - Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, and Franck Gabriel. Saddle-to-saddle dynamics in deep linear networks: Small initialization training, symmetry, and sparsity. *arXiv* preprint arXiv:2106.15933, 2021.
 - Etai Littwin, Omid Saremi, Madhu Advani, Vimal Thilak, Preetum Nakkiran, Chen Huang, and Joshua Susskind. How jepa avoids noisy features: The implicit bias of deep linear self distillation networks. *arXiv preprint arXiv:2407.03475*, 2024.
 - Yoonsoo Nam, Seok Hyeong Lee, Clementine CJ Domine, Yeachan Park, Charles London, Wonyl Choi, Niclas Goring, and Seungjai Lee. Position: Solve layerwise linear models first to understand neural dynamical phenomena (neural collapse, emergence, lazy/rich regime, and grokking). *arXiv* preprint arXiv:2502.21009, 2025.
 - Mehdi Noroozi, Hamed Pirsiavash, and Paolo Favaro. Representation learning by learning to count. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, Oct 2017.

- Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. *arXiv* preprint arXiv:2304.07193, 2023.
 - Scott Pesme and Nicolas Flammarion. Saddle-to-saddle dynamics in diagonal linear networks. *Advances in Neural Information Processing Systems*, 36:7475–7505, 2023.
 - Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International conference on machine learning*, pp. 5301–5310. PMLR, 2019.
 - Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. *arXiv* preprint arXiv:1911.08731, 2019.
 - James B Simon, Maksis Knutins, Liu Ziyin, Daniel Geisz, Abraham J Fetterman, and Joshua Albrecht. On the stepwise nature of self-supervised learning. In *International Conference on Machine Learning*, pp. 31852–31876. PMLR, 2023.
 - Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains. *Advances in neural information processing systems*, 33:7537–7547, 2020.
 - Shunxin Wang, Raymond Veldhuis, Christoph Brune, and Nicola Strisciuglio. What do neural networks learn in image classification? a frequency shortcut perspective. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 1433–1442, 2023.
 - Donglai Wei, Joseph J. Lim, Andrew Zisserman, and William T. Freeman. Learning and using the arrow of time. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2018.
 - Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In *Conference on Learning Theory*, pp. 3635–3673. PMLR, 2020.
 - Shutong Wu, Sizhe Chen, Cihang Xie, and Xiaolin Huang. One-pixel shortcut: on the learning preference of deep neural networks. *arXiv preprint arXiv:2205.12141*, 2022.
 - Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised learning via redundancy reduction. In *International conference on machine learning*, pp. 12310–12320. PMLR, 2021.
 - Liu Ziyin, Botao Li, and Xiangming Meng. Exact solutions of a deep linear network. *Advances in Neural Information Processing Systems*, 35:24446–24458, 2022.

A PROOFS

A.1 PROOF OF THEOREM 4.1

Using matrix analysis, we can express:

$$\Gamma = \mathbb{E}[x_{\text{base}}x_{\text{base}}^{\top}] = \begin{bmatrix} \mathbf{1}_{m_l \times m_l} & \mathbf{0}_{m_s \times m_l} \\ \mathbf{0}_{m_l \times m_s} & \mathbf{1}_{m_s \times m_s} \end{bmatrix},$$

which has two eigenvectors $e_l/\|e_l\|$ and $e_s/\|e_s\|$ corresponding to nonzero eigenvalues. We obtain the eigenvalues m_l and m_s from the following equation:

$$\det(\Gamma - \lambda I) = \det(\mathbf{1}_{m_l \times m_l} - \lambda I_{m_l \times m_l}) \det(\mathbf{1}_{m_s \times m_s} - \lambda I_{m_s \times m_s}) = 0.$$

Finally, we obtain the eigendecomposition $\Gamma = V_{\Gamma} \Lambda_{\Gamma} V_{\Gamma}$ where

$$\begin{split} & \Lambda_{\Gamma} = \operatorname{diag}\left(\left[m_{l}, m_{s}, \ \mathbf{0}_{m-2}\right]\right), \\ & V_{\Gamma}^{(\leq d)} = \left[\frac{1}{\sqrt{m_{l}}} e_{l} \ \frac{1}{\sqrt{m_{s}}} e_{s} \ \right]. \end{split}$$

A.2 PROOF OF THEOREM 5.1

The cross-correlation matrix Γ for this input can be expressed using (5):

$$\Gamma = \mathbb{E}[x_{\text{base}}x_{\text{base}}^{\top}]$$

$$= \mathbb{E}[c_{ha}^{2}b_{ha}^{2}\sin(f_{ha}t)\sin(f_{ha}t)^{\top} + c_{l}^{2}b_{ha}^{2}\sin(f_{la}t)\sin(f_{la}t)^{\top}$$

$$+ c_{ha}c_{la}b_{ha}b_{la}\sin(f_{ha}t)\sin(f_{la}t)^{\top} + c_{ha}c_{la}b_{ha}b_{la}\sin(f_{la}t)\sin(f_{ha}t)^{\top}]$$

$$= c_{ha}^{2}\sin(f_{ha}t)\sin(f_{ha}t)^{\top} + c_{la}^{2}\sin(f_{la}t)\sin(f_{la}t)^{\top}.$$

Using the orthogonality between $\sin(f_{ha}t)$ and $\sin(f_{la}t)$ $(f_{ha} \neq f_{la})$, where $t \in \mathbb{N}$,

$$\Gamma = c_{ha}^2 \sin(f_{ha}t) \sin(f_{ha}t)^{\top} + c_{la}^2 \sin(f_{la}t) \sin(f_{la}t)^{\top},$$

$$\Gamma \sin(f_{ha}t) = c_{ha}^2 ||\sin(f_{ha}t)||^2 \sin(f_{ha}t),$$

$$\Gamma \sin(f_{la}t) = c_{la}^2 ||\sin(f_{la}t)||^2 \sin(f_{la}t).$$

We find the eigenvectors and eigenvalues as:

$$\Lambda_{\Gamma} = \operatorname{diag}\left(\left[c_{ha}^{2}||\sin(f_{ha}t)||^{2}, c_{la}^{2}||\sin(f_{la}t)||^{2}, \mathbf{0}_{m-2}\right]\right), \ V_{\Gamma}^{(\leq 2)} = \left[e_{ha} \ e_{la}\right]^{\top}.$$

With $f = \frac{2\pi}{m}k$ for some integer k, we have

$$||\sin(fx)||^2 = \int_0^m \sin^2(fx)dx = \int_0^m \frac{1 - \cos(2fx)}{2}dx = \frac{1}{2} \left[x - \frac{\sin(2fx)}{2} \right]_0^m = \frac{m}{2} - \frac{\sin(2fm)}{4} = \frac{m}{2}.$$

Finally, we have

$$\Lambda_{\Gamma} = \operatorname{diag}\left(\left[c_{ha}^2 \frac{m}{2}, c_{la}^2 \frac{m}{2}, \mathbf{0}_{m-2}\right]\right), \ V_{\Gamma}^{(\leq 2)} = \left[e_{ha} \ e_{la}\right].$$

A.3 PROOF OF THEOREM 4.2

We have

$$\tilde{\lambda}_j(t) = \tilde{s}_j^2(t)\gamma_j = (1 + \lambda_j(0)^{-1}e^{-8\gamma_j t})^{-1},$$

and thus if we plug in $\tau_j = -\log(\lambda_j(0))/8\gamma_j$, i.e., $\exp(-8\gamma_j\tau_j) = \lambda_j(0)$, then we have $\tilde{\lambda}_j(\tau_j) = (1+1)^{-1} = \frac{1}{2}$. The derivative $\tilde{\lambda}_j'(t)$ at $t = \tau_j$ is given as follows:

$$\tilde{\lambda}_j'(t) = -(1 + \lambda_j(0)^{-1}e^{-8\gamma_j t})^{-2}(-8\gamma_j\lambda_j(0)^{-1}e^{-8\gamma_j t}) = -\tilde{\lambda}_j^2(t)(-8\gamma_j\lambda_j(0)^{-1}e^{-8\gamma_j t})$$

$$\tilde{\lambda}_j'(\tau_j) = -\tilde{\lambda}_j^2(\tau_j)(-8\gamma_j\lambda_j^{-1}(0)\lambda_j(0)) = 2\gamma_j.$$

Using the equations

$$C = \sum_{j=1}^d \lambda_j u_j u_j^{ op} \text{ and } C^2 = \sum_{j=1}^d \lambda_j^2 u_j u_j^{ op},$$

we get the loss

$$\mathcal{L} = ||C - I||_F^2 = \text{Tr}((C - I)(C - I)) = \text{Tr}(C^2) - 2 \text{Tr}(C) + d$$
$$= \sum_{j=1}^d \lambda_j^2 - 2 \sum_{j=1}^d \lambda_j + d = \sum_{j=1}^d (\lambda_j - 1)^2.$$

Thus, we get the following equation:

$$\frac{d\mathcal{L}}{dt}(\tau_j) = \sum_{i=1}^d 2(\lambda_i(\tau_j) - 1)\lambda_i'(\tau_j)$$

$$\approx \sum_{i=1}^d 2(\tilde{\lambda}_i(\tau_j) - 1)\tilde{\lambda}_i'(\tau_j)$$

$$\approx 2(\tilde{\lambda}_j(\tau_j) - 1)\tilde{\lambda}_j'(\tau_j)$$

$$= -\tilde{\lambda}_j'(\tau_j) = -2\gamma_j.$$

A.4 PROOF OF THEOREM 4.3

First, we have

$$\tilde{s}_j(t) = (\gamma_j + s_j^{-2}(0) \exp(-8\gamma_j t))^{-1/2},$$

$$\tilde{s}_j(\tau_j) = (\gamma_j + s_i^{-2}(0)\lambda_j(0))^{-1/2} = (2\gamma_j)^{-1/2}.$$

and its derivative is given as follows:

$$\begin{split} \tilde{s}_{j}'(t) &= -\frac{1}{2} (\gamma_{j} + s_{j}^{-2}(0) \exp(-8\gamma_{j}t))^{-3/2} (-8\gamma_{j}s_{j}^{-2}(0) \exp(-8\gamma_{j}t)), \\ \tilde{s}_{j}'(\tau_{j}) &= -\frac{1}{2} (\gamma_{j} + s_{j}^{-2}(0)\lambda_{j}(0))^{-3/2} (-8\gamma_{j}s_{j}^{-2}(0)\lambda_{j}(0)) \\ &= -\frac{1}{2} (2\gamma_{j})^{-3/2} (-8\gamma_{j}^{2}) \\ &= (2\gamma_{j})^{1/2}. \end{split}$$

A.5 PROOF OF DEEP LINEAR LAYER

In Deep Linear Networks (DLNs), We assume that, $\tilde{W} = W_L W_{L-1} \cdots W_2 W_1, \forall W_k \in \mathbb{R}^{m \times m}$. Under the toy Barlow Twins loss $\mathcal{L} = \|\tilde{W} \Gamma \tilde{W}^\top - I_m\|_F^2$, each layer has gradient of:

$$\frac{\partial \mathcal{L}}{\partial W_k} = -4 \left(\prod_{j=k+1}^L W_j \right)^{\top} (\tilde{W} \Gamma \tilde{W}^{\top} - I_d) \tilde{W} \Gamma \left(\prod_{j=1}^{k-1} W_j \right)^{\top}$$

If we assume: $W_k W_k^{\top} = W_{k+1}^{\top} W_{k+1}$, $\forall k \in [1, L-1]$ we derive same singular value on every layer,

$$W_k = U_k S U_{k+1}^{\top}, \quad \forall k \in [1, L-1]$$

where $S = \frac{1}{\sqrt{L}} \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_d)$,

$$U_1 = \tilde{U}, \quad U_{L+1} = \tilde{V}, \quad \forall k.$$

We assume the total weight $\tilde{W} = \tilde{U}\tilde{S}\tilde{V}^T$, $V = V_{\Gamma}$

$$\prod_{j=k+1}^{L} W_j = \prod_{j=k+1}^{L} U_j S U_{j+1}^{\top} = U_{k+1} S^{L-k} \tilde{V}^{\top},$$

$$\begin{split} \prod_{j=1}^{k-1} W_j &= \prod_{j=1}^{k-1} U_j S U_{j+1}^\top = \tilde{U} S^{k-1} U_k^\top. \\ \tilde{W} \Gamma &= \tilde{U} S^L \tilde{V}^\top \Gamma = \tilde{U} S^L \tilde{V}^T V_\Gamma \Lambda_\Gamma V_\Gamma^\top = \tilde{U} S^L \Lambda_\Gamma V_\Gamma^\top \\ \tilde{W} \Gamma \tilde{W}^T &= \tilde{U} S^L \Lambda_\Gamma S^L \tilde{U}^T = \tilde{U} S^{2L} \Lambda_\Gamma \tilde{U}^T \end{split}$$

$$\begin{split} \frac{\partial \mathcal{L}}{\partial W_k} &= -4(U_{k+1}S^{L-k}\tilde{V}^\top)^\top (\tilde{U}S^{2L}\Lambda_{\Gamma}\tilde{U}^\top - I_d)(\tilde{U}S^L\Lambda_{\Gamma}V_{\Gamma}^\top)(\tilde{U}S^{k-1}U_k^\top)^\top \\ &= -4(\tilde{V}S^{L-k}U_{k+1}^\top)(\tilde{U}S^{2L}\Lambda_{\Gamma}\tilde{U}^\top - \tilde{U}I_d\tilde{U}^\top)(\tilde{U}S^L\Lambda_{\Gamma}V_{\Gamma}^\top)(U_kS^{k-1}\tilde{U}^\top) \\ &= -4(\tilde{V}S^{L-k}U_{k+1}^\top)\tilde{U}(S^{2L}\Lambda_{\Gamma} - I_d)\tilde{U}^\top (\tilde{U}S^L\Lambda_{\Gamma}V_{\Gamma}^\top)(U_kS^{k-1}\tilde{U}^\top) \\ &= -4(\tilde{V}S^{L-k}U_{k+1}^\top)\tilde{U}(S^{2L}\Lambda_{\Gamma} - I_d)S^L\Lambda_{\Gamma}V_{\Gamma}^\top (U_kS^{k-1}\tilde{U}^\top) \end{split}$$

For analytical tractability, we assume $W_k(0) = S_0 I$, $\tilde{W}_k(0) = S_0^L I = \tilde{S}_0 I$. Under this condition, $U_k(0)V_k(0)^\top = I$, $\tilde{U}(0)\tilde{V}(0)^\top = I$.

$$\begin{split} \frac{\partial \mathcal{L}}{\partial W_k} &= -4(\tilde{V}S^{L-k}U_{k+1}^\top)\tilde{U}(S^{2L}\Lambda_{\Gamma} - I_d)S^L\Lambda_{\Gamma}\tilde{V}^\top(U_kS^{k-1}\tilde{U}^\top) \\ &= -4\tilde{V}S^{L-k}(S^{2L}\Lambda_{\Gamma} - I_d)S^L\Lambda_{\Gamma}S^{k-1}\tilde{U}^\top \\ &= -4\tilde{V}(S^{2L}\Lambda_{\Gamma} - I_d)S^{2L-1}\Lambda_{\Gamma}\tilde{U}^\top \\ &= -4\sum_i (\sigma_i^{2L}\gamma_i - 1)\sigma_i^{2L-1}\gamma_i v_i u_i^\top \end{split}$$

Using chain rule,

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \sigma_j} &= \operatorname{Tr} \left[\left(\frac{\partial \mathcal{L}}{\partial W_k} \right)^\top \frac{\partial W_k}{\partial \sigma_j} \right] = \operatorname{Tr} \left[\left(-4 \sum_i (\sigma_i^{2L} \gamma_i - 1) \sigma_i^{2L-1} \gamma_i v_i u_i^\top \right) u_j v_j^\top \right] \\ &= \operatorname{Tr} \left[-4 (\sigma_i^{2L} \gamma_i - 1) \sigma_i^{2L-1} \gamma_i \right] = -4 (\sigma_i^{2L} \gamma_i - 1) \sigma_i^{2L-1} \gamma_i \end{split}$$

$$\tilde{\sigma}_{j} = (\sigma_{j})^{L}$$

$$\frac{d\tilde{\sigma}_{j}}{dt} = L(\sigma_{j})^{L-1} \frac{d\sigma_{j}}{dt} = -L(\sigma_{j})^{L-1} \frac{\partial \mathcal{L}}{\partial \sigma_{j}}$$

$$= L(\sigma_{j})^{L-1} 4\sigma_{j}^{2L-1} \gamma_{j} (1 - \sigma_{j}^{2L} \gamma_{j}) = 4L\sigma_{j}^{3L-2} \gamma_{j} (1 - \sigma_{j}^{2L} \gamma_{j}) = 4L\tilde{\sigma}_{j}^{(3L-2)/L} \gamma_{j} (1 - \tilde{\sigma}_{j}^{2} \gamma_{j})$$

$$= 4L\tilde{\sigma}_{j}^{3-2/L} \gamma_{j} (1 - \tilde{\sigma}_{j}^{2} \gamma_{j})$$
(9)

A.6 Proof of λ effect in Barlow twins

First we consider general Barlow Twins loss:

$$L_{\lambda} = \sum_{i} ([W \Gamma W^{\top}]_{ii} - 1)^{2} + \lambda \sum_{i \neq j} [W \Gamma W^{\top}]_{ij}^{2} = (1 - \lambda)L_{0} + \lambda L_{1}.$$

Thus it exhibits a mixed dynamics between the L_0 and L_1 . Therefore, we first consider the dynamics of L_0 and L_1 :

 L_1 case

$$L_{1} = ||W\Gamma W^{\top} - I_{d}||_{F}^{2} = \sum_{j} (s_{j}^{2} \gamma_{j} - 1)^{2},$$
$$\frac{dL_{1}}{ds_{k}} = 4s_{k} \gamma_{k} (\sum_{j} \delta_{kj} s_{j}^{2} \gamma_{j} - 1).$$

 L_0 case

$$\begin{split} L_0 &= \sum_i ([W\Gamma W^\top]_{ii} - 1)^2 = \sum_i (e^{(i)\top} W\Gamma W^\top e^{(i)} - 1)^2 = \sum_i (u^{(i)\top} S\Lambda_\Gamma S^\top u^{(i)} - 1)^2 \\ &= \sum_i (\sum_j u_j^{(i)2} s_j^2 \gamma_j - 1)^2 \\ \frac{dL_0}{ds_k} &= \sum_i 2(\sum_j u_j^{(i)2} s_j^2 \gamma_j - 1) u_k^{(i)2} 2s_k \gamma_k = 4s_k \gamma_k \sum_i (\sum_j u_j^{(i)2} s_j^2 \gamma_j - 1) u_k^{(i)2}. \end{split}$$

If $u_j^{(i)2} = \delta_{ij}$ ($U = I_d$), then $L_0 = L_1$. If not, $\sum_j u_j^{(i)2} = 1$ and each $u_j^{(i)2}$ acts as an averaging weight 1/d.

We now investigate the dynamics of s_k 's: Initially, all singular values grow with exponential dynamics as $s_i \approx 0$ and $\delta_{kj} = 0$ for $j \neq k$.

$$\dot{s}_k = -\frac{dL_0}{ds_k} = -4s_k \gamma_k \sum_i (\sum_j u_j^{(i)2} s_j^2 \gamma_j - 1) u_k^{(i)2} = 4s_k \gamma_k + O(s_k^3)$$
$$\dot{s}_k = -\frac{dL_1}{ds_k} = -4s_k \gamma_k (\sum_j \delta_{kj} s_j^2 \gamma_j - 1) = 4s_k \gamma_k + O(s_k^3)$$

After a few steps, the first singular value s_1 increases (since γ_1 is the largest) and then,

$$\dot{s}_1 = -\frac{dL_0}{ds_1} = -4s_1\gamma_1 \sum_i \left(\sum_j u_j^{(i)2} s_j^2 \gamma_j - 1\right) u_1^{(i)2} = 4s_1\gamma_1 \left(1 - \sum_j \left(\sum_i u_j^{(i)2} u_1^{(i)2}\right) s_j^2 \gamma_j\right)$$

$$= 4s_1\gamma_1 \left(1 - \sum_i u_1^{(i)4} s_1^2 \gamma_1\right) + O\left(\max_{j>1} s_j^2\right) \approx 4s_1\gamma_1 \left(1 - \frac{1}{d} s_1^2 \gamma_1\right)$$

$$\dot{s}_1 = -\frac{dL_1}{ds_1} = -4s_1\gamma_1 \left(\sum_j \delta_{1j} s_j^2 \gamma_j - 1\right) = 4s_1\gamma_1 \left(1 - s_1^2 \gamma_1\right)$$

 $[\lambda = 0] s_1$ saturates as $s_1^2 \gamma_1$ reaches d.

 $[0<\lambda<1]$ s_1 saturates as $s_1^2\gamma_1$ reaches the harmonic mean $\frac{1}{\lambda+(1-\lambda)\frac{1}{2}}$ of 1 and d.

 $[\lambda=1]$ s_1 saturates as $s_1^2\gamma_1$ reaches 1.

After the first loss drops where s_k 's are still small except for s_1

$$\dot{s}_k = -\frac{dL_0}{ds_k} = -4s_k \gamma_k \sum_i (\sum_j u_j^{(i)2} s_j^2 \gamma_j - 1) u_k^{(i)2} = O(s_k)$$

$$\dot{s}_k = -\frac{dL_1}{ds_k} = -4s_k \gamma_k (\sum_i \delta_{kj} s_j^2 \gamma_j - 1) = 4s_k \gamma_k (1 - s_k^2 \gamma_k)$$

 $[\lambda=0]$ \dot{s}_k becomes nearly zero, effectively stopping the growth of other singular values. Each s_k $(k \neq 1)$ stays near zero.

 $[0 < \lambda < 1]$ First, s_k exponentially grows with the following dynamics:

$$\dot{s}_k = -4s_k \gamma_k \sum_i \left(\sum_j u_j^{(i)2} s_j^2 \gamma_j - 1 \right) u_k^{(i)2} = 4s_k \gamma_k \left(1 - \sum_i \sum_{j \neq k} u_j^{(i)2} u_k^{(i)2} s_j^2 \gamma_j \right) + O(s_k^3)$$

with the growth rate smaller than that of $\lambda = 1$:

$$4\gamma_k \left(1 - \sum_{i} \sum_{j \neq k} u_j^{(i)2} u_k^{(i)2} s_j^2 \gamma_j \right) < 4\gamma_k.$$

Then, each s_k follows sigmoidal dynamics and saturates near some value larger than $\sqrt{1/\gamma_k}$. But after saturation s_k decreases again since the dynamics of s_k is coupled with other singular values. As other singular value increases, the sum $\sum_i \sum_{j \neq k} u_j^{(i)2} u_k^{(i)2} s_j^2 \gamma_j$ grows and exceeds 1, which causes s_k to decrease as the exponent becomes negative. Note that the principle "features with larger eigenvalues are learned earlier" still holds. $[\lambda=1]$ Each s_k exhibits independent sigmoidal dynamics and saturates as $s_k^2 \gamma_k$ reaches 1. $\lambda = 0$ Case Dynamics of $s_k(t)$ is almost only s_1 changes. In the beginning s_1 shows sigmoidal dynamics, increases and saturates near $\sqrt{d/\gamma_1}$. $\tau_1 \sim \frac{-\log(s_1^2(0)\gamma_1/d)}{8\gamma_1}$. After the first drop $\dot{s}_k \approx 0$ and s_k stays near zero for $k=2,3,\cdots,\tau_k \infty$

 $\lambda=1$ Case Dynamics of $s_k(t)$ is each s_k affects each other. In the beginning s_1 shows sigmoidal dynamics, increases and saturates at $\sqrt{\frac{1}{(\lambda+(1-\lambda)\frac{1}{d})\gamma_1}}$. $\tau_1\sim\frac{-\log(s_1^2(0)\gamma_1)}{8\gamma_1}$. After the first drop s_k shows independent sigmoidal dynamics, increases and saturates at $\sqrt{1/\gamma_k}$, starting from smaller $k=2,3,\cdots$. $\tau_k\propto\frac{1}{\gamma_k}$

 $0<\lambda<1$ **Case** In case of loss = $(1-\lambda)L_0+\lambda L_1$, dynamics of $s_k(t)$ is independent sigmoidal dynamics. In the beginning s_1 shows sigmoidal dynamics, increases and saturates at $\sqrt{1/\gamma_1}$. $\tau_1\sim \frac{-\log\left(s_1^2(0)\gamma_1(\lambda+(1-\lambda)\frac{1}{d})\right)}{8\gamma_1}$. After the first drop s_k increases sigmoidally and saturates near some value larger than $\sqrt{1/\gamma_k}$ (and decreases slowly when the next singular value s_{k+1} increases) τ_k relatively later than the $\lambda=1$ case.

B MAIN RESULTS EXPERIMENT

B.1 LINEAR NETWORK

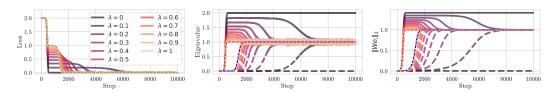


Figure 6: **Effect of redundancy reduction coefficient** λ **on linear network.** Experimental investigation of extent bias.

Extent bias We train a linear layer with a batch size of 1000. $m_l = 6, m_s = 2$. Learning rate $\eta = 8 \times 10^{-4}$, a scaling factor is 5×10^{-4} . We trained 10,000 steps.

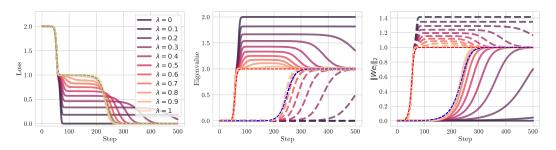


Figure 7: **Effect of redundancy reduction coefficient** λ **on linear network.** Experimental investigation of amplitude bias.

Amplitude bias We trained a 4-layer mlp with leaky ReLU as activation function. We use a batch size of 1000. The hidden layer width is the same as the input size. $m_l = 6, m_s = 2$. Learning rate $\eta = 10^{-3}$, a scaling factor is 10^{-4} . We trained 500 steps.

B.1.1 DETAILED THEORETICAL RESULT ON EXTENT BIAS

Orthogonal Feature Learning Our analysis shows that features are learned as orthogonal to each other, where each feature is acquired independently without interference from others. This orthogonal learning pattern is particularly evident in the evolution of the model's weight matrix singular vectors. To formalize this observation, we analyze how the left singular vectors of the weight matrix align with the feature vectors during training.

Theorem B.1. *Under Assumption 1, the left singular vectors* u *of* W(t) *learn features orthogonally:*

$$\begin{split} \textit{Proj}_{U^{(\leq 2)}}(We_l) &:= (u_l^\top We_l, u_s^\top We_l) = (\sqrt{\lambda_l}, 0), \\ \textit{Proj}_{U^{(\leq 2)}}(We_s) &:= (u_l^\top We_s, u_s^\top We_s) = (0, \sqrt{\lambda_s}), \end{split}$$

where u_l, u_s are the corresponding left singular vectors for the singular values s_l, s_s .

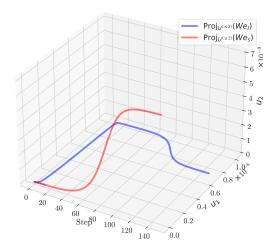


Figure 8: Visualization of the trajectory of We_l and We_s on the subspace spanned by u_1, u_2 during training. The high-dimensional feature We_h (blue solid line) aligns with u_1 and the low-dimensional feature We_l (red solid line) aligns with u_2 . Dashed lines are predicted trajectory (see Theorem B.1).

Figure 8 shows orthogonal learning pattern that features are learned independently and sequentially, supporting our theoretical analysis of stepwise learning dynamics.

Aligned Initialization and Subspace Alignment While Assumption 1 assumes perfect alignment at initialization, Simon et al. (2023) demonstrate that this assumption can be relaxed significantly. They show that even with generic small random initialization, the dynamics quickly converge to the aligned trajectory. This result significantly strengthens our analysis by showing that the aligned initialization assumption is not restrictive, any sufficiently small initialization will rapidly align with the top eigenvectors of Γ before substantial feature learning begins.

To validate this theoretical assumption, we measure the subspace alignment metric as:

Definition 1 (Subspace Alignment). We define subspace alignment of Im(A) and Im(B):

$$SA(A, B) = ||A^{\top}B||_F^2/d,$$

where $\operatorname{Im}(A) = \{Av \in \mathbb{R}^m : v \in \mathbb{R}^d\}, A = [a_1 \cdots a_d], B = [b_1 \cdots b_d] \in \mathbb{R}^{m \times d}, a_i \perp a_j, b_i \perp b_j \ (i \neq j) \text{ and } a_i, b_i \in \mathbb{R}^m \text{ are unit vectors.}$

Note that $0 \le \mathrm{SA}(A,B) \le 1$ and it attains $\mathrm{SA}(A,B) = 0$ when $\mathrm{Im}(A) \perp \mathrm{Im}(B)$, and $\mathrm{SA}(A,B) = 1$ when $\mathrm{Im}(A) = \mathrm{Im}(B)$. Figure 14 (Top) in Section B.1.3 empirically validates Assumption 1 using the subspace alignment metric. The model becomes aligned rapidly in the early stages of training, satisfying the assumption.

B.1.2 DETAILED THEORETICAL RESULT ON AMPLITUDE BIAS

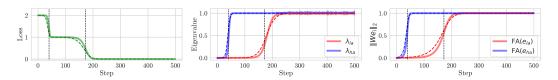


Figure 9: **Amplitude bias effects on learning dynamics in SSL.** See the caption of Figure 1. Note that the time steps t_1 and t_2 with $t_1:t_2\approx\frac{1}{\gamma_h}:\frac{1}{\gamma_l}=\frac{1}{c_h^2}:\frac{1}{c_l^2}$. We use $c_h=1,\ c_l=1/2$. See Section B.1.2 for more detailed settings.

Amplitude Experiment For the amplitude experiment shown in Section 5.1, we train the model using 500 steps. The augmentation noise parameter a is set to 0.1. We use a dataset size of n=1000 samples with feature frequency $f_{ha}=2\frac{2\pi}{24}, f_{la}=32\frac{2\pi}{24}$. We also use a learning rate $\eta=5\cdot 10^{-5}$, a scaling factor $3\cdot 10^{-3}$ and m=96.

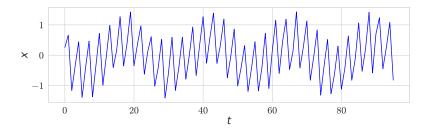


Figure 10: Input data $x = x_{base} + \epsilon$. $x_{base}[t] = b_{ha}c_{ha}\sin(f_{ha}t) + b_{la}c_{la}\sin(f_{la}t)$, where $c_{ha} = 1$, $c_{la} = 0.5$, $f_{ha} = \frac{2\pi}{m}32$, $f_{la} = \frac{2\pi}{m}8$, m = 96.

Right Singular Vectors of W

Cross-Correlation eigenvalue λ and Loss Relationship We analyze how the eigenvalues λ relate to the loss dynamics. The relationship follows similar patterns to those observed in Section 4.3, but with coefficients c_h and c_l rather than m_l and m_s .

Figure 17 in Section B.1.4 shows the close relationship between the derivatives of cross-correlation eigenvalues $\frac{d\lambda_{ha}}{dt}$, $\frac{d\lambda_{la}}{dt}$ and $\frac{d\mathcal{L}}{dt}$. The peaks in these derivatives occur at the critical points with

Figure 11: The eigenvectors v_i 's of Γ for i=1,2,3 (from Left to Right). (Left) The first eigenvector that corresponds to the largest eigenvalue indicates the (high frequency) feature with a high amplitude $c_{ha} \sin{(f_{ha}t)}$, (Center) the second the (low frequency) feature with a low amplitude feature $c_{la} \sin{(f_{la}t)}$, (Right) the third (and beyond) noise, where $c_{la} < c_{ha}$.

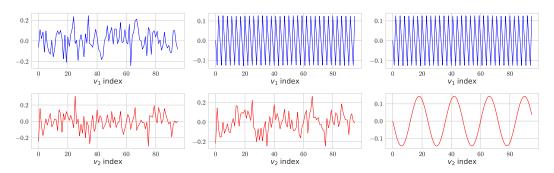


Figure 12: The first two right singular vectors (Top/Bottom) of W during training (from Left to Right). (Left) At t=0, the two singular vectors are just noise. (Center) A little after $t=\tau_1$, the first singular value reaches the plateau as shown in Figure 9 and only the (high frequency) feature with a high amplitude is learned. (Right) At the convergence, the model learns the two features.

magnitudes proportional to the corresponding coefficients $\gamma_{ha}: \gamma_{la}=c_{ha}^2: c_{la}^2$ (see (8)). This shows our theoretical predictions Theorem 4.2 matches empirical result.

Weight Singular Value Evolution We analyze how the singular values of the weight matrix evolve during training. Similarly to the extent bias case, we expect the singular values s_j to converge to theoretical limits determined by the feature coefficients.

Figure 18 in Section B.1.4 shows the evolution of singular values s_{ha} and s_{la} of weight matrix W (Left) and their derivatives (Right). The singular values converge to their theoretical limits $1/\sqrt{\gamma_j}$ predicted by Theorem 4.3, where $\gamma_j = c_j^2 \frac{m}{2}$. At the critical points τ_j , the derivatives achieve their maximum values of $\sqrt{2\gamma_j}$, showing that rates of feature learning are proportional to the coefficients. These results confirm that the feature coefficients, rather than their frequencies, govern both the convergence values and rates of feature learning.

Aligned Initialization and Subspace Alignment To validate Assumption 1 about alignment between the weight matrix singular vectors and eigenvectors of Γ , we measure the subspace alignment metric as defined in the extent case Definition 1. Figure 14 (Bottom) in Section B.1.3 empirically validates our assumption through subspace alignment measurements. As discussed in Section B.1.1, the model achieves alignment rapidly in the early stages of training, even with small random initializations.

Orthogonal Feature Learning Similar to the extent case, we investigate how the weight matrix learns different frequency components orthogonally as shown in Theorem B.1. The orthogonal learning pattern reveals how frequency features are acquired independently despite their different spectral characteristics.

Figure 13 shows the trajectories of weight matrix in terms of their alignments with frequency components e_{ha} and e_{la} . The blue trajectory shows the first learning phase where u_1 aligns with the high-amplitude feature $(c_{ha}\sin(f_{ha}t))$, followed by the red trajectory showing u_2 aligning with the low-amplitude feature $(c_{la}\sin(f_{la}t))$. This sequential, orthogonal learning pattern demonstrates that

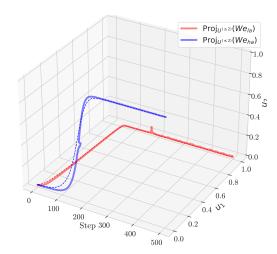
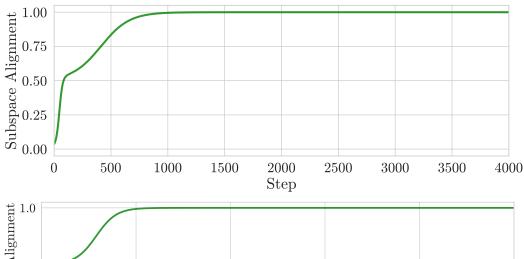


Figure 13: Visualization of the trajectory of We_{ha} and We_{la} on the subspace spanned by u_1, u_2 during training. See the caption of Figure 8.

feature learning is primarily determined by coefficient magnitudes rather than frequency characteristics, supporting our analysis in Theorem B.1.

B.1.3 SUBSPACE ALIGNMENT



1.0 200 Step Step

Figure 14: Evolution of subspace alignment $\mathrm{SA}(V^{(\leq d)},V^{(\leq d)}_{\Gamma})$ (d=2) between the top-d right singular vectors of W and eigenvectors of Γ . We use data (Top) from Section 4.1 and (Bottom) from Section 5.1. See Section D.

B.1.4 DERIVATIVES

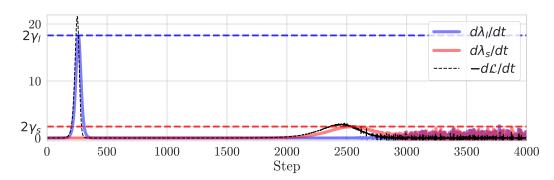


Figure 15: **Derivatives** $\frac{d\lambda_l}{dt}$ (blue), $\frac{d\lambda_s}{dt}$ (red), and $-\frac{d\mathcal{L}}{dt}$ (black dashed). The derivative $\frac{d\lambda_l}{dt}(\tau_l)$ (solid blue), $\frac{d\lambda_s}{dt}(\tau_s)$ (solid red) are approximately equal to $2\gamma_l = 2m_l$ (dashed blue), $2\gamma_s = 2m_s$ (dashed red).

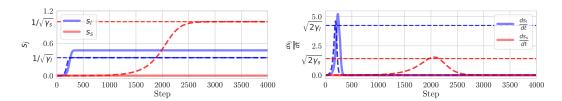


Figure 16: **Evolution of** $s_j(t)$ **and** $s_j'(t)$. (Left) Evolution of singular values s_l (solid blue) and s_s (solid red) of W during training. They converge near to $1/\sqrt{\gamma_l}=1/3$ (dashed horizontal blue) and $1/\sqrt{\gamma_s}=1$ (dashed horizontal red), respectively. The predicted singular values (dashed blue, dashed red) match the empirical result. (Right) Evolution of the derivatives $\frac{ds_l}{dt}$ (solid blue) and $\frac{ds_s}{dt}$ (solid red). The derivatives $\frac{ds_l}{dt}(\tau_l)$, $\frac{ds_s}{dt}(\tau_s)$ are approximately equal to $\sqrt{2\gamma_l}$ (dashed horizontal blue), $\sqrt{2\gamma_s}$ (dashed horizontal red). The predicted derivatives of singular values (dashed blue, dashed red) also match the empirical result. We use $m_l=9$ and $m_s=1$.

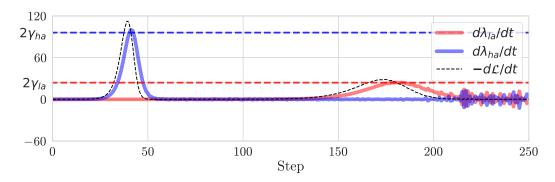


Figure 17: **Derivatives** $\frac{d\lambda_{ha}}{dt}$ (blue), $\frac{d\lambda_{la}}{dt}$ (red), and $-\frac{d\mathcal{L}}{dt}$ (black dashed). The derivative $\frac{d\lambda_{ha}}{dt}(\tau_{ha})$ (solid blue), $\frac{d\lambda_{la}}{dt}(\tau_{la})$ (solid red) are approximately equal to $2\gamma_{ha}=2c_{ha}^2$ (dashed blue), $2\gamma_{la}=2c_{la}^2$ (dashed red). See Figure 15 together.

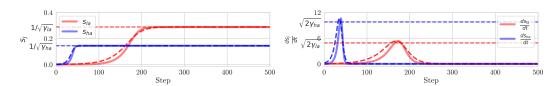


Figure 18: **Evolution of** $s_j(t)$ **and** $s_j'(t)$. See the caption of Figure 16. (Left) They converge near to $1/\sqrt{\gamma_{ha}}=1/\sqrt{c_{ha}^2\frac{m}{2}}$ and $1/\sqrt{\gamma_{la}}=1/\sqrt{c_{la}^2\frac{m}{2}}$. (Right) The derivatives $\frac{ds_{ha}}{dt}(\tau_{ha})$, $\frac{ds_{la}}{dt}(\tau_{la})$ are approximately equal to $\sqrt{2\gamma_{ha}}$, $\sqrt{2\gamma_{la}}$. We use $c_{ha}=1$ and $c_{la}=1/2$.

B.2 DEEP LINEAR NETWORK

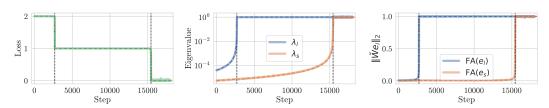


Figure 19: Ideal initialization condition in DLN, assumed in Section A.5. (Left) Stepwise learning curves of Barlow Twins. The predicted loss (dashed green) of $\mathcal{L} = \sum_{j=1}^d (\tilde{\lambda}_j(t)-1)^2 = \sum_{j=1}^d (\tilde{s}_j^2(t)\gamma_j-1)^2$ using (3) match the empirical result (solid green) (Center) Evolution of eigenvalues λ_j 's of C during training. We compare them with the predicted evolution $\tilde{\lambda}_j(t)$ (dashed lines). (Right) Evolution of the feature alignment $||We||_2$ for $e=e_l$ (blue) and $e=e_s$ (red). It shows very similar behaviors to the eigenvalues $\tilde{\lambda}_j^{1/2}$ (dashed lines).

Ideal Deep Linear Network Under ideal initialization conditions assumed in Section A.5, established to verify (9), the results are in exact agreement with the predictions in Figure 19.

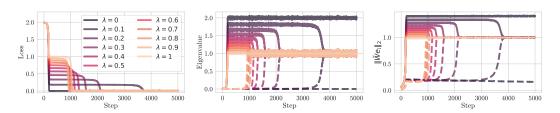


Figure 20: Training loss and eigenvalue of DLN on extent bias. (Left) Training loss curve showing the relationship between λ and convergence behavior. (Right) Corresponding eigenvalue variations demonstrating the impact of the redundancy reduction term.

Extent bias We trained 4 linear layers. We use a batch size of 1000, The hidden layer width is the same as the input size. $m_l = 6, m_s = 2$. Learning rate $\eta = 10^{-2}$, a scaling factor is 6×10^{-1} . We trained 18,000 steps.

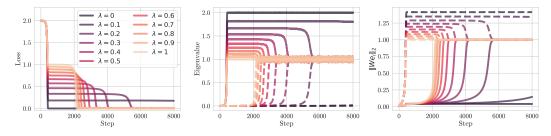


Figure 21: Training loss and eigenvalue of DLN on extent bias. (Left) Training loss curve showing the relationship between λ and convergence behavior. (Right) Corresponding eigenvalue variations demonstrating the impact of the redundancy reduction term.

Amplitude bias We trained 4 linear layers. We use batch size as 2000, The hidden layer width is 8. $m_l = 6, m_s = 2$. Learning rate $\eta = 1 \times 10^{-3}$, a scaling factor is 4×10^{-1} . We trained 8,000 steps.

B.3 MULTI-LAYER PERCEPTRON

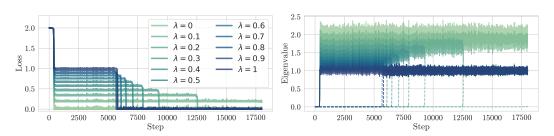


Figure 22: Training loss and eigenvalues of an MLP network with Leaky ReLu as activation on extent bias. (Left) Training loss curve showing the relationship between λ and convergence behavior. (Right) Corresponding eigenvalue variations demonstrating the impact of the redundancy reduction term on.

Extent bias We trained a 4-layer mlp with leaky ReLU as activation function. We use a batch size of 1000, The hidden layer width is the same as the input size. $m_l = 6, m_s = 2$. Learning rate $\eta = 10^{-2}$, a scaling factor is 6×10^{-1} . We trained 18,000 steps.

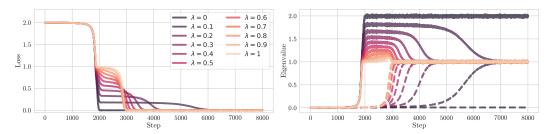


Figure 23: Training loss and eigenvalues of an MLP network with Leaky ReLu as activation on amplitude bias. (Left) Training loss curve showing the relationship between λ and convergence behavior. (Right) Corresponding eigenvalue variations demonstrating the impact of the redundancy reduction term.

Amplitude bias We trained a 4-layer mlp with leaky ReLU as activation function. We use a batch size of 1000, The hidden layer width is 8. $c_{ha}=0.5, c_{la}=1, f_{ha}=2\pi/24, f_{la}=16\pi/24, m=96$. Learning rate $\eta=10^{-3}$, a scaling factor is 8×10^{-1} . We trained 8,000 steps.

C GENERALIZATION TO OTHER SSL ALGORITHMS

C.1 SIMCLR

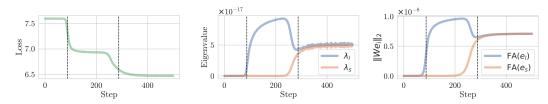


Figure 24: Trained linear layer with batch size as 1000. $m_l = 6, m_s = 2$. Learning rate $\eta = 1 \times 10^{-18}$, a scaling factor is 1×10^{-16} . We trained 500 steps.

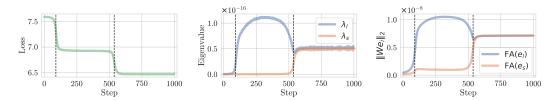


Figure 25: We trained a DLN with 4 layers. The hidden layer width is the same as the input size. The batch size is 1000, $m_l=6, m_s=2$. Learning rate $\eta=5\times 10^{-3}$, a scaling factor is 6×10^{-1} . We trained 5,000 steps.

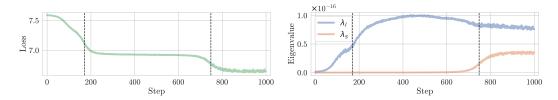


Figure 26: Trained MLP with 4 layer, with LeakyReLU activation. The hidden layer width is the same as the input size. The batch size is 1000, $m_l = 6, m_s = 2$. Learning rate $\eta = 2 \times 10^{-6}$, a scaling factor is 4×10^{-8} . We trained 5,000 steps.

C.2 VICREG

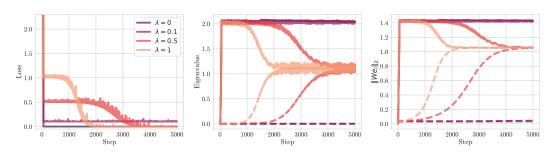


Figure 27: Trained linear layer with batch size as 1000. $m_l=6, m_s=2$. Learning rate $\eta=4\times 10^{-4}$, a scaling factor is 1×10^{-10} . We trained 5,000 steps.

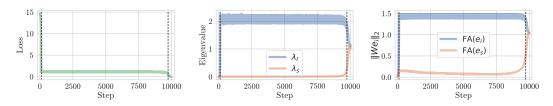


Figure 28: We trained a DLN with 4 layers. The hidden layer width is the same as the input size. The batch size is 1000, $m_l=6, m_s=2$. Learning rate $\eta=9\times 10^{-4}$, a scaling factor is 3×10^{-1} . We trained 10,000 steps.

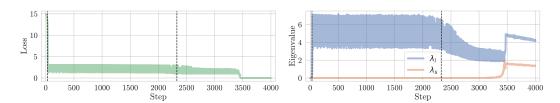


Figure 29: Trained MLP with 4 layer, with LeakyReLU activation. The hidden layer width is the same as the input size. The batch size is 1000, $m_l = 6, m_s = 2$. Learning rate $\eta = 8 \times 10^{-3}$, a scaling factor is 7×10^{-1} . We trained 5,000 steps.

D EXPERIMENTAL DETAILS

D.1 EXTENT BIAS EXPERIMENT

For the extent bias experiment shown in Section 4.1, we train the model using 400 steps. The augmentation noise parameter a was set to 0.01. We use a dataset size of n=1000 samples with feature dimension m=10. We also use a learning rate $\eta=6\cdot 10^{-4}$ and a scaling factor $5\cdot 10^{-1}$.

D.2 COLORED MNIST EXPERIMENT

For the Colored MNIST shown in Section 7.1, we train the model using default augmentation (RandomResizedCrop[0.7, 1.0], GaussianNoise(sigma=0.1) with randomapply(p=0.5), Normalize) with augmentated image size 48×48 . We use background colors as [255, 0, 0], [0, 255, 0], [0, 0, 255],[180.31, 180.31, 0], [180.31, 0, 180.31], [0, 180.31, 180.31], [228.07, 114.03, 0], [228.07, 0, 114.03], [114.03, 228.07, 0], [0.0000, 114.03, 228.07][digit]. We trained ResNet-18 with 70 epochs, SGD with learning rate $\eta = 7 \times 10^{-5}$, momentum 0.9, weightdecay 10^{-6} . Batch size is 256, a scaling factor is 10^{-1} .

D.3 WATERBIRDS EXPERIMENTS

D.3.1 MODIFIED WATERBIRDS-C

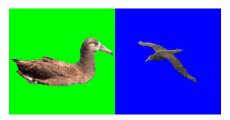


Figure 30: Example of Modified Waterbirds-C dataset.

We train the model using default augmentation (RandomResizedCrop[0.7, 1.0], RandomHorizontalFlip, ColorJitter, Normalize) with augmentated image size 96×96 . We trained ResNet-34 with 100 epochs, SGD with learning rate $\eta = 5 \times 10^{-5}$, momentum 0.9, weightdecay 10^{-6} . Batch size is 32, a scaling factor is 2.7×10^{-1} .

D.3.2 MODIFIED WATERBIRDS-B

Figure 31: Example of Modified Waterbirds-B dataset.

We train the model using default augmentation (RandomResizedCrop[0.7, 1.0], RandomHorizontalFlip, ColorJitter, Normalize) with augmentated image size 96×96 . We trained ResNet-34 with 100 epochs, SGD with learning rate $\eta = 5 \times 10^{-6}$, momentum 0.9, weightdecay 10^{-6} . Batch size is 128, a scaling factor is 7×10^{-2} .

E DIFFERENCE IN CRITICAL POINTS BETWEEN LOSS AND EIGENVALUE

The eigenvalue $\lambda_j(\tau)=1/3$ at τ (where $\frac{d^2\mathcal{L}}{dt^2}(\tau)=0$) and $\lambda_j(\tau_j)=1/2$ (where $\frac{d^2\lambda_j}{dt^2}(\tau_j)=0$). For the single-mode loss $\mathcal{L}(t)=(1-\gamma_js_j^2(t))^2$, setting the second derivative of the loss to zero at the critical point τ :

$$\left. \frac{d^2 \mathcal{L}}{dt^2} \right|_{t=\tau} = \left. -16\gamma_j \frac{d((1-\lambda_j(t))^2 \lambda_j(t))}{dt} \right|_{t=\tau} = 0$$

which yields $2\lambda_j(\tau)-(1-\lambda_j(\tau))=0$ and $\lambda_j(\tau)=\frac{1}{3}$. According to Theorem 4.2, we have $\lambda_j(\tau_j)=\frac{1}{2}$

F LIMITATIONS

 Our study has several limitations due to its simplified assumptions. While our theoretical analysis provides valuable insights into the relationship between extent bias and shortcut learning, several limitations should be acknowledged:

- Feature Independence: Our assumption of independent features may not reflect the complex interdependencies in practical scenarios.
- Augmentation Limitations: Augmentation Limitations: Our basic augmentation approach may not fully represent the sophisticated strategies used in modern SSL methods.

Future work could address these limitations by extending the theoretical framework incorporating feature interactions, and analyzing the impact of more complex augmentation strategies.

G SUPPLEMENTARY STUDIES

G.1 EIGENVALUES ON SHIFT AUGMENTATION

$$x_{base} = c_a \sin(f_a t + \epsilon_a) + c_b \sin(f_b t + \epsilon_b)$$

$$\epsilon_a, \epsilon_b \overset{\text{i.i.d.}}{\sim} U(-\pi, \pi)$$

$$\Gamma = \mathbb{E}[x_{base} x_{base}^{\top}]$$

$$\Gamma_{ij} = \mathbb{E}[c_a^2 \sin(f_a i + \epsilon_a) \sin(f_a j + \epsilon_a) + c_a c_b \sin(f_a i + \epsilon_a) \sin(f_b j + \epsilon_b)$$

$$+ c_a c_b \sin(f_b i + \epsilon_b) \sin(f_a j + \epsilon_a) + c_b^2 \sin(f_b i + \epsilon_b) \sin(f_b j + \epsilon_b)]$$

$$\mathbb{E}_{\epsilon_a, \epsilon_b}[\sin(\theta_a + \epsilon_a) \sin(\theta_b + \epsilon_b)] = \mathbb{E}_{\epsilon_a, \epsilon_b}[\text{Im}(\exp(i(\theta_a + \epsilon_a)))) \text{Im}(\exp(i(\theta_b + \epsilon_b)))]$$

$$= \mathbb{E}_{\epsilon_a}[\text{Im}(\exp(i(\theta_a + \epsilon_a)))] \mathbb{E}_{\epsilon_b}[\text{Im}(\exp(i(\theta_b + \epsilon_b)))]$$

$$= \text{Im}(\mathbb{E}_{\epsilon_a}[\exp(i(\theta_a + \epsilon_a))]) \text{Im}(\mathbb{E}_{\epsilon_b}[\exp(i(\theta_b + \epsilon_b))])$$

$$= \text{Im}(\mathbb{E}_{\epsilon_a}[\exp(i(\theta_a))) \text{Im}(\mathcal{E}_{\epsilon_b}[\exp(i(\theta_b)))]$$

$$= \text{Im}(\varphi(1) \exp(i(\theta_a))) \text{Im}(\varphi(1) \exp(i(\theta_b))$$

We can define u, d as $u = \mu + \alpha, d = \mu - \alpha, \alpha = 2\pi$.

$$\varphi(1) = \frac{\exp(iu) - \exp(id)}{i(u - d)} = \frac{\exp(i\mu)}{\alpha i} \frac{\exp(i\alpha) - \exp(-i\alpha)}{2i} = \frac{\exp(i\mu)}{\alpha i} \sin(\alpha) = 0$$

So,

$$\mathbb{E}_{\epsilon} \left[\sin(\theta_a + \epsilon_a) \sin(\theta_b + \epsilon_b) \right] = 0$$

Similar,

$$\mathbb{E}[\sin(\theta_{a} + \epsilon_{a})\sin(\theta_{b} + \epsilon_{a})] = -\frac{1}{2}\mathbb{E}[\cos(\theta_{a} + \theta_{b} + 2\epsilon_{a}) - \cos(\theta_{a} - \theta_{b})]$$

$$= -\frac{1}{2}\mathbb{E}[\cos(\theta_{a} + \theta_{b} + 2\epsilon_{a})] + \frac{1}{2}\cos(\theta_{a} - \theta_{b})$$

$$= -\frac{1}{2}\int_{a}^{b} \left[\frac{1}{b-a}\cos(\theta_{a} + \theta_{b} + 2x)dx\right] + \frac{1}{2}\cos(\theta_{a} - \theta_{b})$$

$$= -\frac{1}{4}\frac{1}{b-a}[\sin(\theta_{a} + \theta_{b} + 2b) - \sin(\theta_{a} + \theta_{b} + 2a)] + \frac{1}{2}\cos(\theta_{a} - \theta_{b})$$

$$= -\frac{1}{4}\frac{1}{b-a}[2\cos(\theta_{a} + \theta_{b} + a + b)\sin(b-a)] + \frac{1}{2}\cos(\theta_{a} - \theta_{b})$$

we assumed $b - a = 2\pi$,

$$\mathbb{E}[\sin(\theta_a + \epsilon_a)\sin(\theta_b + \epsilon_a)] = \frac{1}{2}\cos(\theta_a - \theta_b)$$

finally, we get

$$\Gamma_{ij} = \frac{c_a^2}{2}\cos(f_a(i-j)) + \frac{c_b^2}{2}\cos(f_b(i-j))$$

is a symmetric circulant matrix when $f_a = a \frac{2\pi}{N}$, $f_b = b \frac{2\pi}{N}$,

$$c_j = \frac{c_a^2}{2}\cos(f_a j) + \frac{c_b^2}{2}\cos(f_b j)$$

$$\Lambda_{\Gamma,k} = \sum_{j=0}^{N-1} c_j \omega^{-kj}$$

$$V_{\Gamma,k} = \frac{1}{\sqrt{N}} \left[1, \omega^k, \omega^{2k}, \dots, \omega^{(N-1)k} \right]^\top$$

$$\omega = \exp(\frac{2\pi i}{n}) = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$$

This is symmetric, so eigenvalues are real. The eigenvectors can be expressed either in complex form or as pairs of real vectors. Using properties of Discrete Fourier Transform (DFT) matrix on $\Lambda_{\Gamma,k}$,

$$\Lambda_{\Gamma,k} = \begin{cases} 0 \ (k \neq l_a, N - l_a, l_b, N - l_b) \\ \frac{c_a^2}{2} \ (k = l_a \text{ or } k = N - l_a) \\ \frac{c_b^2}{2} \ (k = l_b \text{ or } k = N - l_b) \end{cases}$$

Finally, we can derive as:

$$\begin{split} & \Lambda_{\Gamma} = \operatorname{diag}\left(\left[\frac{c_a^2}{2}, \frac{c_a^2}{2}, \frac{c_b^2}{2}, \frac{c_b^2}{2}, \; \mathbf{0}_{m-2}\right]\right), \\ & V_{\Gamma}^{(\leq 4)} = \left[\frac{1}{\sqrt{N}}e_{h,\cos}\; \frac{1}{\sqrt{N}}e_{h,\sin}\; \frac{1}{\sqrt{N}}e_{l,\cos}\; \frac{1}{\sqrt{N}}e_{l,\sin}\right]. \end{split}$$

where

$$e_{h,\cos} = c_a \cos(f_a t),$$

$$e_{h,\sin} = c_a \sin(f_a t),$$

$$e_{l,\cos} = c_b \cos(f_b t),$$

$$e_{l,\sin} = c_b \sin(f_b t).$$

G.2 ABLATION STUDIES ON LEAKY RELU

We confirmed that nonlinearity has the effect of reducing the initial eigenvalue λ by varying the slope of the leaky ReLU activation function. Figure 32 shows as the slope approaches zero, the function converges to ReLU, and it can be observed that τ exhibits slower dynamics.

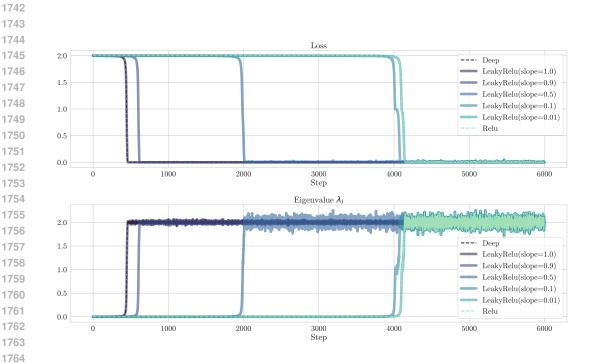


Figure 32: Variation of loss and eigenvalue λ_l as a function of Leaky ReLU slope parameter on $\lambda=0$ Barlow Twins Loss.

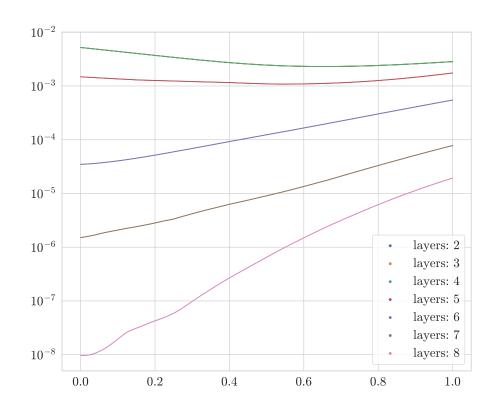


Figure 33: Initial top eigenvalue of correlation matrix C as a function of Leaky ReLU slope parameter. A slope of 0 corresponds to ReLU activation, while a slope of 1 represents the Deep Linear Network case. As the number of layers increases, the reduction in initial eigenvalue λ due to decreasing slope leads to slower learning dynamics.

G.3 BATCHNORM EFFECTS

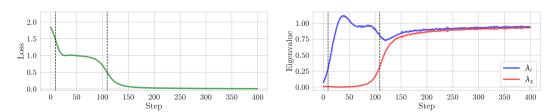


Figure 34: Effects of batch normalization on learning dynamics in $\lambda=1$ non-linear network. (Left) Stepwise learning curves of Barlow Twins showing two distinct learning phases with vertical dashed lines marking critical transition points during training. The green line shows empirical loss decreasing in two clear stages. (Right) Evolution of eigenvalues λ_j of correlation matrix C during training. The eigenvalue λ_l (blue) increases first, followed by the eigenvalue λ_s (red). We use same inputs in Figure 1.

H LLM USAGE

LLMs were used solely for language editing (grammar, spelling, and style improvements) and code generating, but not for generating research ideas, experimental design, or scientific content. All LLM-generated content was verified and validated by the authors.