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ABSTRACT

Systematic generalization is a critical property that most general deep learning al-
gorithms lack. In this paper, we investigate the relation between gradient directions
and systematic generalization. We propose a formulation to treat reducible training
loss as a resource, and the training process consumes it to reduce test loss. We
derive a bias that a training gradient is less efficient in using the resource at each
step than an alternative gradient that leads to systematic generalization. The bias is
avoided if and only if both gradients are zero or point in the same direction. We
demonstrate the bias in standard deep learning models, including fully connected,
convolutional, residual networks, LSTMs, and (Vision) Transformers. We also
discuss a requirement for the generalization. We hope this study provides novel
insights for improving systematic generalization. Source codes are available in the
supplementary material.

1 INTRODUCTION

Training loss reduction

Test loss reduction

Training
Alternative

Figure 1: Illustration of training
and test loss reductions. The hor-
izontal axis is the training loss re-
duction. The vertical axis is the test
loss reduction. A gradient changes
both training and test losses, ex-
pressed as an arrow. An arrow for a
training gradient points less upward
in direction at different places than
an alternative gradient that leads to
systematic generalization.

Deep learning has made remarkable progress across various
domains, spanning from natural language processing to com-
puter vision. Nevertheless, one of the biggest challenges in
deep learning is to generalize the model to out-of-distribution
(o.o.d.) data, which have zero probability in the training dis-
tribution. Systematic generalization (Fodor & Pylyshyn, 1988;
Lake & Baroni, 2018) is a type of o.o.d generalization. It usu-
ally requires that a sample has multiple explanatory factors of
variation (Bengio et al., 2013), and the generalization can pro-
duce an unseen combination of seen factor values. For example,
models trained on blue rectangles and green triangles predict
blue triangles. Systematic generalization is crucial for human
learning and supports efficient data use and creativity. We
hope machines acquire such generalization ability to achieve
human-like intelligence.

The advantages of deep learning include its performance and
generality. Many deep learning models achieve high accuracy
on i.i.d. problems, though they often do not perform well on sys-
tematic generalization, as reported in recent studies (Hendrycks
& Dietterich, 2019; Goyal et al., 2021b). Also, deep learning
does not require many task-specific designs for specific tasks.
Some standard networks, such as ResNets and Transformers,
generally work well in i.i.d. settings. To keep the advantage,
we discuss whether standard deep learning models achieve
systematic generalization.

If all factor combinations are available in training, a model is likely to work on the test combinations,
because they are included in training. It means the generalization problem can be regarded as whether
the training data can achieve the effect of all data. So we compare cases with training data and all
data. Also, gradient descent is a common training algorithm in deep learning. So we study systematic
generalization from a gradient perspective. We have a training gradient from training data and an
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alternative gradient from all data. We focus on how the difference in gradient directions reduces
generalization ability. If we assume the gradients have different directions in general deep learning
models, then these models are not likely to achieve systematic generalization.

We introduce the concept of treating reducible training loss as a resource, which is consumed during
the training process to reduce the test loss. We show that there is a bias in the training gradient,
which reduces its efficiency in using this resource compared to the alternative gradient that leads to
systematic generalization (please refer to Figure 1). The bias is only avoided when both gradients are
zero or point in the same direction. It is supported by the derived Theorem 1.

We run experiments on standard deep learning models, including fully connected, convolutional,
residual networks, LSTMs, and (Vision) Transformers. We demonstrate the existence of the bias
in these models. We also discuss that systematic generalization requires a network decomposed to
sub-networks, each with a seen test inputs.

In this paper, by investigating the relation between gradient directions and systematic generalization
and characterizing the bias in the training gradient, we provide a new perspective on the problem.
We hope our findings will inspire new research directions for improving systematic generalization
in deep learning, ultimately leading to more robust and reliable models. The contributions can be
summarized as follows.

• The main contribution is the proposed formulation: treat training loss as a resource; study
the efficiency of the gradients; and propose a metric DDR to evaluate the efficiency.

• Based on the formulation, we derive the relation between gradients and generalization.

• Experiments validate the result and demonstrate a bias in standard deep learning models.

• We discuss a requirement for systematic generalization, based on which we explain why
standard models do not achieve generalization and analyze existing approaches.

2 DEFINITIONS AND DERIVATIONS

We propose a framework to study the relationship between gradient directions and generalization.
The main idea is to compare a training gradient and an alternative gradient. The alternative gradient
is computed from all data, leading to systematic generalization. We look at the efficiency of gradients
to reduce test loss while reducing training loss.

We treat the reducible training loss as a fixed amount of resources. We assume the final training losses
have similar values when a model is trained well from the same initial parameters, which means the
reduced losses are similar. We define related concepts and the efficiency (Definition 2) of a gradient.

2.1 DEFINITIONS

We have training data Dtrain and test data Dtest, both non-empty. They are disjoint in a systematic
generalization setting. Their union is all data Dall, i.e., Dall = Dtrain∪̇Dtest. A loss for dataset D is the
average loss of samples in the dataset.

L(D) =
1

|D|
∑

(x,y)∈D

L(x, y) ∈ R

Accordingly, we have three losses Ltrain = L(Dtrain),Ltest = L(Dtest),Lall = L(Dall). Suppose the
model has n parameters θ ∈ Rn. We have three gradients ∇θLtrain,∇θLtest,∇θLall ∈ Rn. We use
∇θLall as the alternative gradient to compare with the training gradient.

Since we study the gradient of a loss w.r.t. parameters, the input space is the model parameter space
Rn, and the output is the loss R. We have a function f : Rn → R, an input variable θ ∈ Rn, an input
point θ0 ∈ Rn, a vector in input space u ∈ Rn and a scalar h ∈ R. We use the directional derivative1

(e.g., Strang (1991), p.490) to study the loss change when applying a gradient to update parameters.

1The definition sometimes requires u to be a unit vector. It is equivalent to using a unit vector û here.
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Definition 1 (Directional derivative). The directional derivative Duf is the rate at which the function
f changes at a point θ0 in the direction u. Suppose u ̸= 0.

Duf(θ0) = lim
h→0

f(θ0 + hû)− f(θ0)

h
= ∇θf · û ∈ R

Provided the limit exists. û = u
|u| is a unit vector.

Directional derivative means the amount of output change when an input point is moved to a direction
by a unit amount. We do not need the magnitude of the direction because the directional derivative
is used in two cases. The magnitude is canceled when the ratio of two directional derivatives is
computed. Only the sign (plus, minus, or zero) of the directional derivative is used.

We extend the definition for zero vector cases to cover zero gradients.

D(f,u) =

{
Duf, if u ̸= 0

0, if u = 0

It has the same sign as ∇θf · u. We will frequently use whether the alternative gradient reduces
training loss, so we name this threshold for convenience.

∆ = D(Ltrain,∇θLall) ∈ R

Note that a gradient is reversed by a negative sign when applied to update parameters. So the
alternative gradient reduces training loss if ∆ > 0, increases it if ∆ < 0, and keeps it if ∆ = 0.

θ0 u

∇f

∇g

Dug

Duf

Figure 2: Illustration in pa-
rameter space. f, g are loss
functions. u is a direction.
DDR(f, g,u) is the ratio of
Duf and Dug.

When a gradient updates parameters, both training and test losses
change. We define the directional derivative ratio to find the effi-
ciency by comparing two directional derivatives (Figure 2). Suppose
we have another function g : Rn → R.
Definition 2 (Directional derivative ratio, DDR). The directional
derivative ratio DDR(f, g,u) of two functions f, g and a direction
u is the ratio of their directional derivatives at a point θ0 in the
direction. Suppose u ̸= 0 and Dug(θ0) ̸= 0.

DDR(f, g,u) =
Duf(θ0)

Dug(θ0)
=

∇θf(θ0) · u
∇θg(θ0) · u

∈ R

If f is test loss, g is training loss, and u is a gradient, DDR means
the ratio of the changes in test and training losses when a gradient
is applied to update parameters. It is also the amount of test loss
change per unit training loss change. So it is the efficiency of the
gradient to reduce the test loss with training loss reduction.

We compare a training gradient and an alternative gradient at each training step. So we define criteria
(Definition 3,4) to tell whether a gradient is better than another. Please also refer to Figure 1 for
intuition. For simplicity, we call a case biased2 if the alternative gradient is better than the training
gradient. It is unbiased if both gradients are equally good. We will prove in Lemma 1 that the
definitions cover, or partition, all possible cases. Note that (3), (4), and (5) are numerically rare cases
because they require equal signs to hold.
Definition 3 (Biased cases). The following cases are biased.

(1) The alternative gradient reduces training loss, and it reduces more test loss per unit training
loss reduction than the training gradient does.

∆ > 0 and DDR(Ltest,Ltrain,∇θLtrain) < DDR(Ltest,Ltrain,∇θLall)

(2) The alternative gradient increases training loss and reduces test loss, while the training
gradient increases test loss.

∆ < 0 and D(Ltest,∇θLtrain) < 0 < D(Ltest,∇θLall)

2We use the word “bias” because the training gradient can be regarded as a biased or unbiased estimator of
the alternative gradient.
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(3) The alternative gradient keeps training loss and reduces/keeps test loss, while the training
gradient increases/keeps test loss. The two gradients do not keep test loss simultaneously.

∆ = 0 and D(Ltest,∇θLtrain) ≤ 0 ≤ D(Ltest,∇θLall), but not both equal

Definition 4 (Unbiased cases). The following cases are unbiased.

(4) The alternative gradient reduces training loss, and it reduces the same amount of test loss
per unit training loss reduction as the training gradient does.

∆ > 0 and DDR(Ltest,Ltrain,∇θLtrain) = DDR(Ltest,Ltrain,∇θLall)

(5) The alternative gradient keeps training loss, and both gradients keep test loss.

∆ = 0 and D(Ltest,∇θLtrain) = D(Ltest,∇θLall) = 0

For two reasons, DDR is not used for ∆ ≤ 0. First, we can define whether there is a bias without
DDR. Second, it is not straightforward to translate DDR as efficiency in such cases. It is because
we study the efficiency while reducing training loss, but the alternative gradient increases or keeps
training loss here. We will discuss more when defining Unified DDR (Definition 5).

2.2 DERIVATIONS

We compare the two gradients. We first derive propositions for different ∆ values. We then confirm
that the definition of biases is valid and derive a theorem. The proofs are in Appendix A.
Proposition 1 (Reduce training loss). If ∆ > 0,

DDR(Ltest,Ltrain,∇θLtrain) ≤ DDR(Ltest,Ltrain,∇θLall)

The equal sign holds if and only if ∇θLtest = 0 or sin(∇θLtrain,∇θLtest) = 0.

This proposition corresponds to the definitions (1) and (4). It tells that the two definitions cover all
cases for ∆ > 0 because the training gradient is at most equally efficient to the alternative gradient.
It also provides the conditions for equal efficiency.
Proposition 2 (Increase training loss). If ∆ < 0,

D(Ltest,∇θLtrain) < 0 < D(Ltest,∇θLall)

This proposition corresponds to definition (2). It tells that the bias always exists when ∆ < 0.
Proposition 3 (Keep training loss). If ∆ = 0,

D(Ltest,∇θLtrain) ≤ 0 ≤ D(Ltest,∇θLall)

The two equal signs hold simultaneously if and only if ∇θLtest = 0.

This proposition corresponds to definitions (3) and (5). The condition ∆ = 0 is rare to hold because
it requires an equation to hold. It also tells when the bias is avoided in such cases.

The propositions imply that there are constraints for possible cases. We consider all biased cases
as a set and all unbiased cases as another set. Then Lemma 1 says the two sets partition the set of
all available cases. The union of the two sets equals the set of all available cases. The two sets are
disjoint and both non-empty.
Lemma 1 (Partition). The set of biased cases and the set of unbiased cases are a partition of the set
of all available cases.

We then draw a theorem for the bias. i.e., an alternative gradient is better than a training one.
Theorem 1 (Bias). There is a bias if and only if neither of the following holds.

(A) ∇θLtrain = ∇θLall = 0 (B) cos(∇θLtrain,∇θLall) = 1

It means training and alternative gradients are either both zero or point in the same direction to avoid
bias. Both (A) and (B) contain equal signs, which are generally difficult to hold. Please refer to
Section 4 for more discussions.
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3 EXPERIMENTS

We run experiments to verify the derivations and observe differences between the training and the
alternative gradients. We cover different standard deep neural network models. The details of
networks and experiments can be found in Appendix B.

3.1 METRIC

In the previous section, we use DDR only for ∆ > 0, and still do not have a quantitative metric for
other cases. So we extend DDR to all cases by defining Unified DDR (UDDR).
Definition 5 (UDDR). If ∇θg(θ0) · u ̸= 0,

UDDR(f, g,u) =
Duf(θ0)

|Dug(θ0)|
=

∇θf(θ0) · u
|∇θg(θ0) · u|

∈ R

If ∇θg(θ0) · u = 0, UDDR(f, g,u) = +∞/0/−∞, for Duf(θ0) > / = / < 0, respectively.

It means the change of f when g moves to its original direction by a unit amount. When ∆ > 0,
UDDR equals DDR. UDDR maintains the inequality property.
Corollary 1 (UDDR inequality).

UDDR(Ltest,Ltrain,∇θLtrain) ≤ UDDR(Ltest,Ltrain,∇θLall)

The equal sign holds if and only if a case is unbiased.

An unbiased case means (A) or (B) in Theorem 1 holds. We also derive the difference in UDDR
values between the alternative and the training gradients (Section 4.1).

3.2 DATA

We use image and text datasets. Image datasets include human faces (CelebA) and natural scenes
(NICO++). Text datasets have sequence prediction (CFQ) and classification (Amazon reviews). We
also has experiments with disentangled input data (Appendix B.3), which corresponds to oracle
pre-training of representation learning.

Multi-class classification We run experiments for multi-class classification tasks with two network
outputs. For image data, we use the NICO++ dataset (Zhang et al., 2022). We use five foregrounds as
the first output label and five backgrounds as the second. For text data, we use Amazon reviews (Ni
et al., 2019). We use five categories as the first output label and five ratings as the second. We use the
Fashion dataset (Xiao et al., 2017) with ten classes for fully connected networks and render them
with ten colors as the second label. Please refer to Figure 3 and Table 1 for examples.

We design training and test label combinations for systematic generalization. A combination with
output y1 and y2 is a training one, if y2 is one of k classes {y1, y1 + 1, . . . , y1 + k − 1} (we use
modular for the class labels). k is five if there are ten classes and three if there are five classes. The
test label combinations are the remaining ones. Training and test label combinations are mutually
exclusive, but test labels for each output factor are seen in training.

CelebA and CFQ We also run experiments on the CelebA dataset (Liu et al., 2015) and the CFQ
dataset (Keysers et al., 2020). CelebA is used for fully connected, convolutional, residual networks
and Vision Transformer. CFQ dataset is used for LSTM and Transformer.

CelebA dataset has face images of various celebrities. We follow the setup from previous
work (Sagawa et al., 2020; Yao et al., 2022) and use two attributes as factors. The first factor
is hair color “blond” or “non-blond”. The second factor is male or female. The test data is “blond
hair male,” and the training data is the other three combinations.

Compositional Freebase Questions (CFQ) is a large realistic semantic parsing dataset for systematic
generalization. The inputs are natural language questions (e.g., Who directed Elysium), and the
outputs are SPARQL queries for the Freebase knowledge base. Samples are generated from rules.
“Maximum compound divergence” (MCD) splits maximize the rule combination divergence while
keeping a small rule divergence between train and test sets. The results for the first MCD split are in
Figure 5, and the others are in Appendix B.

5



Under review as a conference paper at ICLR 2024

(a) cat, grass (b) cat, rock (c) bus, grass (d) bus, rock

Figure 3: Examples of image data.

Category Rating Review
Book 5 quick read from the most excellent author. fun
Book 1 It had tears, some label covering a defect and also wrinkled pages.
Electronics 5 Works perfectly, better than the original cable.
Electronics 1 DID NOT fit as described to accommodate the TV size!

Table 1: Examples of text data.

3.3 RESULTS

Fully Connected Network: We use a five-layer fully connected neural network with a flattened
image input.

Convolutional Network: We use a convolutional neural network with three convolutional layers and
two fully connected layers.

Residual Network: We use ResNet50 (He et al., 2016).

Vision Transformer: We use Vision Transformer (Dosovitskiy et al., 2021) with one fully connected
layer for each patch, three attention layers, and one fully connected layer.

LSTM: For classification problems, we use stacked LSTM models with an embedding layer, three
bidirectional LSTM layers, and one fully connected layer. For sequence prediction problems, we use
an embedding layer, a single-layer bidirectional LSTM as an encoder, and a single-layer LSTM with
attention as a decoder.

Transformer: We use Transformer (Vaswani et al., 2017). For classification problems, we only use
the encoder. It has one embedding layer, three hidden layers, and one fully connected layer. For
sequence prediction problems, we use one embedding layer and four hidden layers.

Summary of results Figure 4 and Figure 5 contain the results3. We repeat each experiment with
different random seeds five times and plot the means and the standard deviations. It shows that, for
each evaluation, the UDDR value is higher for the alternative gradient than the training gradient. It
verifies the derivations with different architectures. It also shows significant differences between the
scores in general, which indicates that bias is common in deep learning.

4 DISCUSSIONS

We discuss more details of the bias, and derive the difference in the UDDR between the alternative
and the training gradients. We also propose a requirement on models for systematic generalization.
Please also refer to variants of gradients in Appendix C.

4.1 UDDR GAP

We have the expression of the UDDR gap between the alternative and training gradient. When ∆ > 0,
it is the expression of the DDR gap.

3We smooth the values for visualization. We compute the average for every 50 iterations. We then convert
with function f(x) = sign(x)[ln(|x|+ 1)], which log scales and is monotonic.
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Figure 4: UDDR during training for multi-class classification datasets. We plot in log scale while
keeping signs. In general, the score is significantly larger for alternative gradients than for training
gradients in each experiment. It indicates that bias is common in deep learning training.
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Figure 5: UDDR during training for CelebA dataset (Liu et al., 2015) and CFQ dataset, MCD
split (Keysers et al., 2020).
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Lemma 2 (UDDR gap).

∆UDDR =UDDR(Ltest,Ltrain,∇θLall)− UDDR(Ltest,Ltrain,∇θLtrain)

=


0, if ∇θLtest = 0, otherwise
|b|2 sin2(a,b)
(a+b)T a

, if ∆ > 0
|b|2 sin2(a,b)−2(a+b)T b

(a+b)T a
, if ∆ < 0

+∞, if ∆ = 0

Where a = |Dtrain|∇θLtrain and b = |Dtest|∇θLtest.

4.2 A REQUIREMENT FOR SYSTEMATIC GENERALIZATION

We propose a requirement for systematic generalization. Based on it, we discuss why standard models
do not generalize, and analyze methods that meet the requirement.

A neural network can be decomposed into sub-networks. If a sub-network has unseen test input, the
input corresponds to a new factor combination, so the sub-network still has a systematic generalization
problem. So we propose the following requirements. Note that it is a necessary requirement, so it
alone may not achieve the generalization.

Requirement Systematic generalization requires that a model can be decomposed into sub-
networks, each with seen test inputs.

Why standard models do not achieve systematic generalization We consider standard models
without special design of architecture or regularization. For example, in a fully connected network, a
node in the first hidden layer is the output of a sub-network whose input is the model input. Since this
sub-network is not further decomposable and has unseen test inputs, it does not meet the requirement.
In such cases, the trained models cannot be decomposed into sub-networks with seen test inputs. So,
these designs are not likely to achieve systematic generalization. Also, the experiments in Sections 3
show that the training and alternative gradients have different UDDR values, so they do not point in
the same direction.

Methods that meet the requirements With neural networks, the approaches to systematic general-
ization include hybrid approaches and connectionist approaches.

Hybrid methods (Liu et al., 2020; Chen et al., 2020) combine symbol processing and neural networks.
Symbols keep the (pre-defined) representations across training and test data, so the sub-network has
seen test inputs.

Connectionist approaches encourage neural networks to map different representations to the same
one. For example, reduce representation entropy (Li et al., 2019) or use discrete representations (Liu
et al., 2021). Also, attention mechanism reduces input size, making it easier to have a seen test input.

4.3 I.I.D. CASES

The theorem also applies to i.i.d. generalization problems as a special case. In i.i.d. settings, both
training and test data are independently drawn from the identical distribution. It means that the
expectations of the training and the alternative gradients are the same. So, the gradients are either
both zero or point in the same direction. By Theorem 1, the bias is avoided.

5 RELATED WORK

Systematic generalization and deep learning Systematic generalization (Fodor & Pylyshyn, 1988;
Lake & Baroni, 2018; Bahdanau et al., 2019), or compositional generalization, is considered the
“Great Move” of evolution, caused by the need to process an increasing amount and diversity of
environmental information (Newell, 1990). Cognitive scientists see it as central for an organism to
view the world (Gallistel & King, 2011). Studies indicate it is related to the prefrontal cortex (Robin
& Holyoak, 1995). It was discussed that commonsense is critical (Mccarthy, 1959; Lenat et al., 1986)
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for systematic generalization, and recent works aim to find general prior knowledge (Goyal & Bengio,
2020), e.g., Consciousness Prior (Bengio, 2017). Levels of systematicity were defined (Hadley, 1992;
Niklasson & van Gelder, 1994), and types of tests were summarized (Hupkes et al., 2020). We focus
on the primary case with an unseen combination of seen factor values.

A closely related field is causal learning, rooted in the eighteenth-century (Hume, 2003) and classical
fields of AI (Pearl, 2003). It was mainly explored from statistical perspectives (Pearl, 2009; Peters
et al., 2016; Greenland et al., 1999; Pearl, 2018) with do-calculus (Pearl, 1995; 2009) and interven-
tions (Peters et al., 2016). The causation forms Independent Causal Mechanisms (ICMs) (Peters et al.,
2017; Schölkopf et al., 2021). Systematic generalization is the counterfactual when the joint input
distribution is intervened to have new values with zero probability in training (covariate shift). This
work indicates that standard neural networks do not prefer to learn ICMs.

Parallel Distributed Processing (PDP) models (Rumelhart et al., 1986) use Connectionist models
with distributed representations, which describe an object in terms of a set of factors. Though they
have the potential to combine the factors to create unseen object representations (Hinton, 1990),
it was criticized that they do not address systematic generalization in general (Fodor & Pylyshyn,
1988; Marcus, 1998). Deep learning is a recent PDP model with many achievements (LeCun et al.,
2015; He et al., 2016). The improvements in i.i.d. problems encourage to equip deep learning with
systematic generalization.

Recent directions In addition to architecture design (Russin et al., 2019; Andreas et al., 2016) and
data augmentation (Andreas, 2020; Akyürek et al., 2021; Jia & Liang, 2016), the main perspectives
for systematic generalization approaches include disentangled representation learning, attention
mechanism, and meta-learning.

Disentangled representation (Bengio et al., 2013) is learned in unsupervised manners. Early methods
learn the representation from statistical independence (Higgins et al., 2017; Locatello et al., 2019).
Later, the definition of disentangled representation was proposed with symmetry transformation (Hig-
gins et al., 2018). It leads to Symmetry-based Disentangled Representation Learning (Caselles-Dupré
et al., 2019; Painter et al., 2020; Pfau et al., 2020). A disentangled representation learning model can
be used as a feature extractor for other systematic generalization tasks.

Attention mechanisms are widely used in neural networks (Bahdanau et al., 2015). Transform-
ers (Vaswani et al., 2017) are modern neural network architectures with self-attention. Recurrent
Independent Mechanisms (Goyal et al., 2021b) use attention and the name of the incoming nodes for
variable binding. Global workspace (Goyal et al., 2021a) improves them by using limited-capacity
global communication to enable the exchangeability of knowledge. Discrete-valued communication
bottleneck (Liu et al., 2021) further enhances systematic generalization ability.

Meta-learning (Lake, 2019) usually designs a series of training tasks for learning a meta-learner and
uses it in a target task. Each task has training and test data, where test data requires systematic gener-
alization from training data. When ICMs are available, they can be used to generate meta-learning
tasks (Schölkopf et al., 2021). Meta-reinforcement learning was used for causal reasoning (Dasgupta
et al., 2019). Meta-learning can also capture the adaptation speed to discover causal relations (Bengio
et al., 2020; Ke et al., 2019).

Deep learning is a fast-growing field, and many efforts focus on designing architectures and algorithms
to improve its performance. This paper studies from a gradient perspective, by looking at the relation
between gradient directions and the generalization.

6 CONCLUSION

This paper investigates the relation between gradient directions and systematic generalization. We
propose a formulation to treat training loss as a resource and define DDR to measure the efficiency
of consuming it. We derive that there is a bias in generalization if the training and the alternative
gradients have different directions. We show the bias in various standard deep neural networks. We
also discuss a requirement for the generalization. We hope this study provides a new understanding
of systematic generalization mechanisms in deep learning and helps to improve machine learning
algorithms for a higher level of artificial intelligence.
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A PROOFS

Symbols have the following correspondence in the proofs.

a = |Dtrain|∇θLtrain b = |Dtest|∇θLtest

A.1 PROPOSITION 1

Lemma 3 (Difference). ∀a, b ∈ Rn, if (a+ b)Ta ̸= 0, then the following equation holds.

(a+ b)T b

(a+ b)Ta
− aT b

aTa
=

{
|b|2 sin2(a,b)
(a+b)T a

, If b ̸= 0

0, If b = 0

Proof.

(a+ b)Ta ̸= 0 =⇒ a ̸= 0 =⇒ aTa ̸= 0

So aT b
aT a

is well-defined. If b = 0, the result is 0. If b ̸= 0,

(a+ b)T b

(a+ b)Ta
− aT b

aTa
=
(a+ b)T baTa− aT b(a+ b)Ta

(a+ b)TaaTa

=
aT baTa+ bT baTa− aT baTa− aT bbTa

(a+ b)TaaTa

=
bT baTa− aT bbTa

(a+ b)TaaTa

=
|b|2|a|2 − |a||b| cos(a, b)|a||b| cos(a, b)

|a|2(a+ b)Ta

=
|a|2|b|2(1− cos2(a, b))

|a|2(a+ b)Ta

=
|b|2 sin2(a, b)
(a+ b)Ta

Lemma 4 (Inequality). ∀a, b ∈ Rn, if (a+ b)Ta > 0, then the following inequation holds.

aT b

aTa
≤ (a+ b)T b

(a+ b)Ta

The equal sign holds if and only if b = 0 or sin(a, b) = 0.

Proof. We use Lemma 3 and suppose (a+ b)Ta > 0. If b ̸= 0, we have

(a+ b)T b

(a+ b)Ta
− aT b

aTa
=
|b|2 sin2(a, b)
(a+ b)Ta

≥ 0

The equal sign holds if and only if sin(a, b) = 0. If b = 0, (a+b)T b
(a+b)T a

− aT b
aT a

= 0.

Therefore, aT b
aT a

≤ (a+b)T b
(a+b)T a

, and the equal sign holds if and only if b = 0 or sin(a, b) = 0.

Lemma 5 (Gradient relations).

|Dall|∇θLall = |Dtrain|∇θLtrain + |Dtest|∇θLtest
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Proof. By definition, we have Dall = Dtrain∪̇Dtest.

=⇒
∑

(x,y)∈Dall

L(x, y) =
∑

(x,y)∈Dtrain

L(x, y) +
∑

(x,y)∈Dtest

L(x, y)

=⇒ |Dall|Lall = |Dtrain|Ltrain + |Dtest|Ltest

=⇒ |Dall|∇θLall = |Dtrain|∇θLtrain + |Dtest|∇θLtest

Lemma 6 (Coefficients).

∀α, β, γ ∈ R, β ̸= 0, γ ̸= 0 : DDR(αa, βb, γc) =
α

β
DDR(a, b, c)

Proof.

DDR(αa, βb, γc) =
(α∇a)T (γc)

(β∇b)T (γc)
=

α

β

(∇a)T c

(∇b)T c
=

α

β
DDR(a, b, c)

Proposition 1 (Reduce training loss). If ∆ > 0,

DDR(Ltest,Ltrain,∇θLtrain) ≤ DDR(Ltest,Ltrain,∇θLall)

The equal sign holds if and only if ∇θLtest = 0 or sin(∇θLtrain,∇θLtest) = 0.

Proof. This proposition is equivalent to the following inequation because of Lemma 6.

DDR(|Dtest|Ltest, |Dtrain|Ltrain, |Dtrain|∇θLtrain) ≤ DDR(|Dtest|Ltest, |Dtrain|Ltrain, |Dall|∇θLall)

With Lemma 5, Lemma 4 applies.

A.2 PROPOSITION 2

Lemma 7 (Inequality).

∀a, b ∈ Rn : (a+ b)Ta < 0 =⇒ aT b < 0 < (a+ b)T b

Proof. Given (a+ b)Ta < 0,

aT b ≤ aTa+ bTa = (a+ b)Ta < 0

(a+ b)T b > (a+ b)T b+ (a+ b)Ta = (a+ b)T (a+ b) ≥ 0

Therefore, aT b < 0 < (a+ b)T b.

Proposition 2 (Increase training loss). If ∆ < 0,

D(Ltest,∇θLtrain) < 0 < D(Ltest,∇θLall)

Proof. With Lemma 5 and Lemma 7, we have

|Dtest|∇θLtest · |Dtrain|∇θLtrain < 0 < |Dtest|∇θLtest · |Dall|∇θLall

The sample numbers are all positive, so they do not change the comparison with zero. Therefore,
∇θLtest · ∇θLtrain < 0 < ∇θLtest · ∇θLall.
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A.3 PROPOSITION 3

Lemma 8 (Equality).
∀a, b ∈ Rn : (a+ b)Ta = 0 =⇒ aT b ≤ 0 ≤ (a+ b)T b

The two equal signs hold simultaneously if and only if b = 0.

Proof. Given (a+ b)Ta = 0,

aT b ≤ aTa+ bTa = (a+ b)Ta = 0

(a+ b)T b = (a+ b)T b+ (a+ b)Ta = (a+ b)T (a+ b) ≥ 0

Therefore, aT b ≤ 0 ≤ (a+ b)T b.

To prove equality,

b = 0 =⇒ aT b = 0 = (a+ b)T b

aT b = 0 = (a+ b)T b =⇒ bT b = 0 =⇒ b = 0

So the two equal signs hold simultaneously if and only if b = 0.

Proposition 3 (Keep training loss). If ∆ = 0,

D(Ltest,∇θLtrain) ≤ 0 ≤ D(Ltest,∇θLall)

The two equal signs hold simultaneously if and only if ∇θLtest = 0.

Proof. With Lemma 5 and Lemma 8, we have
|Dtest|∇θLtest · |Dtrain|∇θLtrain ≤ 0 ≤ |Dtest|∇θLtest · |Dall|∇θLall

The two equal signs hold simultaneously if and only if |Dtest|Ltest = 0. The sample numbers are all
positive, so they do not change the comparison with zero.

Therefore, ∇θLtest · ∇θLtrain ≤ 0 ≤ ∇θLtest · ∇θLall. The two equal signs hold simultaneously if
and only if ∇θLtest = 0.

A.4 LEMMA 1

Lemma 1 (Partition). The set of biased cases and the set of unbiased cases are a partition of the set
of all available cases.

Proof. We prove the union has a full cover, the intersection is disjoint, and the two sets are non-empty.
(1) (2) (3) are from Definition 3, and (4) (5) are from Definition 4.

(a) Union has a full cover
There are three disjoint cases, and we look into each of them.
If ∆ > 0, by Proposition 1, (1) and (4) cover all the cases.
If ∆ < 0, by Proposition 2, (2) covers all the cases.
If ∆ = 0, by Proposition 3, (3) and (5) covers all the case.
Therefore, all the cases are covered by the definitions.

(b) Intersection is disjoint
If ∆ > 0, (1) and (4) are disjoint.
If ∆ < 0, there are only biased cases (2), so the intersection is empty.
If ∆ = 0, (3) and (5) are disjoint.
Therefore, biased and unbiased cases do not overlap.

(c) Non-empty
Biased case: we consider a case of ∇θLtest = − 2|Dtrain|

|Dtest| ∇θLtrain ̸= 0.

∇θLtrain · ∇θLall = ∇θLtrain ·
1

|Dall|
(|Dtrain|∇θLtrain + |Dtest|∇θLtest) = −|Dtrain|

|Dall|
|∇θLtrain|2 < 0

It follows that ∆ < 0. By Definition 3 (2) and Proposition 2, it is a biased case.
Unbiased case: ∇θLtest = 0 is an unbiased case because of Definition 3 (5) and Proposition 3.
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A.5 THEOREM 1

Lemma 9 (Equivalence when reducing training loss).

∆ > 0 and [∇θLtest = 0 or sin(∇θLtrain,∇θLtest) = 0] ⇐⇒ cos(∇θLtrain,∇θLall) = 1

Proof. To prove “ =⇒ ”,

∆ > 0 =⇒ ∇θLtrain · ∇θLall > 0 =⇒ cos(∇θLtrain,∇θLall) > 0

If ∇θLtest = 0,

∇θLall =
|Dtrain|
|Dall|

∇θLtrain +
|Dtest|
|Dall|

∇θLtest =
|Dtrain|
|Dall|

∇θLtrain =⇒ cos(∇θLtrain,∇θLall) = 1

If sin(∇θLtrain,∇θLtest) = 0, then cos(∇θLtrain,∇θLall) = 1.

To prove “ ⇐= ”,

cos(∇θLtrain,∇θLall) = 1 > 0 =⇒ ∇θLtrain · ∇θLall > 0 =⇒ ∆ > 0

cos(∇θLtrain,∇θLall) = 1 =⇒ ∃α > 0 : ∇θLall = α∇θLtrain

=⇒ ∇θLtest =
|Dall|
|Dtest|

∇θLall −
|Dtrain|
|Dtest|

∇θLtrain =
α|Dall| − |Dtrain|

|Dtest|
∇θLtrain

If α|Dall| − |Dtrain| = 0, ∇θLtest = 0. Otherwise, sin(∇θLtrain,∇θLtest) = 0.

Lemma 10 (Equivalence when keeping training loss).

∆ = 0 and ∇θLtest = 0 ⇐⇒ ∇θLtrain = ∇θLall = 0

Proof. To prove “ =⇒ ”,

∆ = 0 =⇒ ∇θLtrain · ∇θLall = ∇θLtrain · (
|Dtrain|
|Dall|

∇θLtrain −
|Dtest|
|Dtrain|

∇θLtest)

= ∇θLtrain ·
|Dall|
|Dtrain|

∇θLtrain = 0 =⇒ ∇θLtrain = 0

∇θLall =
|Dtrain|
|Dall|

∇θLtrain +
|Dtest|
|Dall|

∇θLtest = 0

To prove “ ⇐= ”,

∇θLtrain · ∇θLall = 0 =⇒ ∆ = 0

∇θLtest =
|Dall|
|Dtest|

∇θLall −
|Dtrain|
|Dtest|

∇θLtrain = 0

Theorem 1 (Bias). There is a bias if and only if neither of the following holds.

(A) ∇θLtrain = ∇θLall = 0 (B) cos(∇θLtrain,∇θLall) = 1

Proof. By Lemma 1, we only need to prove a case is unbiased (Definition 4) if and only if condition
(A) or (B) holds. By Proposition 3 and Lemma 10, (A) ⇐⇒ (5). By Proposition 1 and Lemma 9,
(B) ⇐⇒ (4). Therefore, the conclusion holds.
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A.6 COROLLARY 1

Corollary 1 (UDDR inequality).

UDDR(Ltest,Ltrain,∇θLtrain) ≤ UDDR(Ltest,Ltrain,∇θLall)

The equal sign holds if and only if a case is unbiased.

Proof. If ∆ > 0, UDDR equals DDR, so Theorem 1 applies.

If ∆ < 0, by Proposition 2,

aT b < 0 < (a+ b)T b =⇒ aT b

|aTa|
< 0 <

(a+ b)T b

|(a+ b)Ta|

Otherwise, the case ∆ = 0 in Lemma 2 applies.

A.7 LEMMA 2

Lemma 11 (UDDR difference). ∀a, b ∈ Rn, if (a+ b)Ta < 0, then the following equation holds.

(a+ b)T b

|(a+ b)Ta|
− aT b

|aTa|
=

{
|b|2 sin2(a,b)−2(a+b)T b

(a+b)T a
, If b ̸= 0

0, If b = 0

Proof.

(a+ b)Ta ̸= 0 =⇒ a ̸= 0 =⇒ |aTa| ≠ 0

So aT b
|aT a| is well-defined. If b = 0, the result is 0. If b ̸= 0, we use Lemma 3.

(a+ b)T b

|(a+ b)Ta|
− aT b

|aTa|
=− (a+ b)T b

(a+ b)Ta
− aT b

aTa

=
(a+ b)T b

(a+ b)Ta
− aT b

aTa
− 2

(a+ b)T b

(a+ b)Ta

=
|b|2 sin2(a, b)
(a+ b)Ta

− 2
(a+ b)T b

(a+ b)Ta

=
|b|2 sin2(a, b)− 2(a+ b)T b

(a+ b)Ta

Lemma 2 (UDDR derivation).

∆UDDR =UDDR(Ltest,Ltrain,∇θLall)− UDDR(Ltest,Ltrain,∇θLtrain)

=


0, if ∇θLtest = 0, otherwise
|b|2 sin2(a,b)
(a+b)T a

, if ∆ > 0
|b|2 sin2(a,b)−2(a+b)T b

(a+b)T a
, if ∆ < 0

+∞, if ∆ = 0

Where a = |Dtrain|∇θLtrain and b = |Dtest|∇θLtest.

Proof.

|Dall||Dtrain|∆ = (a+ b)Ta =⇒ ∆ and (a+ b)Ta have the same sign.
|Dtest|∇θLtest = b =⇒ ∇θLtest and b have the same sign.

We use Definition 5.

If ∆ > 0, we use Lemma 3.
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If ∆ < 0, we use Lemma 11.

If ∆ = 0, we use Lemma 8. If ∇θLtest ̸= 0, we have three possible cases.

aT b < 0 < (a+ b)T b =⇒ ∆UDDR = +∞−−∞ = +∞
aT b < 0 ≤ (a+ b)T b =⇒ ∆UDDR = +∞− 0 = +∞
aT b ≤ 0 < (a+ b)T b =⇒ ∆UDDR = 0−−∞ = +∞

Therefore, ∆UDDR = +∞.

If ∇θLtest = 0, we have the following.

aT b = 0 = (a+ b)T b =⇒ ∆UDDR = 0− 0 = 0

B DETAILS IN EXPERIMENTS

B.1 DATA

The CelebA dataset contains 202,599 face images of various celebrities4. The samples for each group
are 89,931 “dark hair, female”, 82,685 “dark hair, male”, 28,234 “blond hair, female”, 1,749 “blond
hair, male”. In the CFQ dataset5, each MCD split has 95,743 training samples and 11,968 samples.
For the NICO++ dataset, we aggregated foregrounds into five abstract classes, e.g., mammal and
vehicle. It contains 72,176 image samples. For the Amazon review dataset, we randomly select
100,000 samples for each category, with a length limit of 100 tokens. For image data, each input
element is linearly scaled to [-0.5, 0.5] for image input. Text inputs are preprocessed with the NLTK
toolkit6.

B.2 SETTINGS

We use GeForce GTX 1080 or GeForce GTX 1050 Ti GPU for single GPU experiments. We use
TensorFlow (Abadi et al., 2015) for implementation. The assets have public licenses. Each experiment
requires around half an hour to two hours.

Fully Connected Network The input shape is 28 × 28 × 3 for the Fashion data and 64 × 64 ×
3 for the CelebA data. It is flattened to a vector. There are five fully connected layers. Each of
them has 256 hidden nodes and ReLU activation. The output layer has Softmax activation. We use
cross-entropy loss and Adam optimizer with a learning rate of 0.001. We also experiments with
stochastic gradient descent (Appendix B.3). The batch size is 256, and we train 2,000 iterations.
Evaluation at each step uses 1,000 samples.

Convolutional Network The input shape is 64 × 64 × 3. There are three convolutional layers.
Each has 3 × 3 kernel size with 16 channels. Then the layer is flattened. We have two fully connected
layers and ReLU activation. The first one has 32, and the second one has 16 nodes. The output layer
has Softmax activation. We use cross-entropy loss and Adam optimizer with a learning rate of 0.001.
We also experiments with stochastic gradient descent (Appendix B.3). The batch size is 256, and we
train 2,000 iterations. Evaluation at each step uses 1,000 samples.

Residual Network The input is the same as CNN. The model is the standard ResNet50 implemen-
tation. The output layer has Softmax activation. We use cross-entropy loss and Adam optimizer with
a learning rate of 0.001. The batch size is 256, and we train 2,000 iterations. Evaluation at each step
uses 256 samples. For CelebA data, the batch size is 128, and the test samples at each step are 128.

4Data is downloaded from www.kaggle.com/datasets/jessicali9530/celeba-dataset
5In CFQ, test samples may not all have zero probability in the training distribution. It is designed to maximize

the difference between training and test datasets.
6www.nltk.org
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Vision Transformer The input is the same as CNN. The model is the standard Vision Transformer
implementation with five hidden layers. The hidden layer size is 64. The output layer has Softmax
activation. We use cross-entropy loss and Adam optimizer with a learning rate of 0.001. The batch
size is 256, and we train 2,000 iterations. Evaluation at each step uses 256 samples.

LSTM The input length is 100. The embedding size is 128. There are three stacked bidirectional
LSTM layers, each with 64 hidden nodes for each direction. Then the output is flattened. The
output layer is a fully-connected layer with Softmax activation. We use cross-entropy loss and
Adam optimizer with a learning rate of 0.001. The batch size is 256, and we train 2,000 iterations.
Evaluation at each step uses 256 samples. For the sequence prediction problem, hidden nodes are
128, the batch size is 32, and test samples at each step are 64.

Transformer The input is the same as that of LSTM. The embedding size is 256. There are
three hidden groups. The hidden layer size is 256. The output is flattened. The output layer is a
fully-connected layer with Softmax activation. We use cross-entropy loss and Adam optimizer with a
learning rate of 0.001. The batch size is 256, and we train 2,000 iterations. Evaluation at each step
uses 256 samples. For the sequence prediction problem, hidden nodes are 128, the batch size is 32,
and test samples at each step are 64.

B.3 MORE RESULTS

CFQ MCD splits We also have results for MCD2 and MCD3 splits (Figure 6).
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Figure 6: UDDR during training for more MCD splits. We plot in log scale while keeping signs.

Stochastic gradient descent We run additional experiments with vanilla stochastic gradient descent,
which are consistent with the derivation in Section 2. We use the Fashion dataset for both fully
connected and convolutional networks. The learning rate is 0.1, and other settings are the same as the
corresponding multi-class classification tasks in the experiment section.
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(b) Convolutional network

Figure 7: UDDR during training for additional experiments. The score is significantly larger for
alternative gradients than for training gradients in each experiment.

Disentangled inputs Unsupervised pre-training methods, such as variational auto encoder (VAE)
methods, aim at learning disentangled representations. We assume that the disentangled rep-
resentations Z are perfectly learned, and we have identical hidden representation and output
Z = Y = Y1, . . . , Yn. Each Yi is a one-hot representation. We use the labels in the Fashion
dataset, which has two 10-class outputs. We train fully connected models to predict output from the
representations. The model and training settings are the same as the experiment section. The result in
Figure 8 shows the bias, similar to previous experiments.

20



Under review as a conference paper at ICLR 2024

0 500 1000 1500
Iterations

2.5

0.0

2.5

5.0

7.5

10.0

U
D

D
R

Train
Alternative

(a) Fully connected network

Figure 8: UDDR during training for disentangled experiments. The score is significantly larger for
alternative gradients than for training gradients in each experiment.

C MORE DISCUSSION

C.1 VARIANTS OF GRADIENTS

In practice, variants of gradient, e.g., Adam, are used to update parameters. Also, stochastic sampling
may modify gradients. We discuss that the bias still exists under some conditions (Proposition 4).
The proof is in the following subsection.

Suppose utrain is the modified training gradient ∇θLtrain and utest is the modified test gradient ∇θLtest.
We then define the modified alternative gradient as follows.

uall =
1

|Dall|
(|Dtrain|utrain + |Dtest|utest) ∈ Rn

Similar to ∆, we have a threshold.

∆′ = D(Ltrain,uall) ∈ R

We have the following conditions.
Proposition 4 (Gradient variant). Bias exists if one of the following conditions holds.

(1) ∆′ > 0 D(Ltrain,utrain) > 0 and ∇θLtest ̸= 0 and utest ̸= 0 and
cos(∇θLtest,utrain) cos(∇θLtrain,utest) < cos(∇θLtrain,utrain) cos(∇θLtest,utest)

(2) ∆′ < 0 D(Lall,utrain) < 0 and D(Ltrain,utrain) ≥ 0 and D(Lall,uall) ≥ 0

(3) ∆′ = 0 D(Lall,utrain) ≤ 0 and D(Ltrain,utrain) ≥ 0 and D(Lall,uall) ≥ 0 and
not D(Ltest,utrain) = D(Ltest,utest) = 0

We mainly discuss (1) and (2) since (3) is a numerically rare case. A type of condition is the relation
between a gradient and its modification, including D(Ltrain,utrain), D(Ltest,utest) and D(Lall,uall).
They are required to be equal to or above zero. Such conditions hold when the original and the
modified gradients point in a close direction.

In (1), there are two types of cosine terms. The first type is the cosine value of an angle between a
gradient and its modification, including cos(∇θLtrain,utrain) and cos(∇θLtest,utest). They are close to
1 if a gradient and its modification are close in direction. Another type is the cosine value of an angle
between a training and a test gradient, one original and one modified, including cos(∇θLtest,utrain)
and cos(∇θLtrain,utest). Their product is close to 0 if the training and test gradients are close to
perpendicular. So the condition is likely to hold if the original and modified gradients are non-zero
and close in direction, and the training and test gradients are close to perpendicular.

For (2), D(Lall,utrain) is likely to have the same sign as ∆′ if the training and alternative gradients
are close to their modifications, respectively (all non-zero). The other two conditions in (2) also hold
in such cases.

C.2 PROOFS

We use the following symbols for convenience in the proofs.

a = |Dtrain|∇θLtrain b = |Dtest|∇θLtest a′ = |Dtrain|utrain b′ = |Dtest|utest
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Lemma 12 (Difference). ∀a, a′, b, b′ ∈ Rn, if (a′ + b′)Ta ̸= 0 and a′Ta ̸= 0, then the following
equation holds.

(a′ + b′)T b

(a′ + b′)Ta
− a′T b

a′Ta
=

|b||b′|(cos(a, a′) cos(b, b′)− cos(a′, b) cos(a, b′))

cos(a, a′)(a′ + b′)Ta

Proof.

a′Ta ̸= 0 =⇒ a′ ̸= 0, a ̸= 0 =⇒ a′Ta = |a′||a| cos(a, a′) ̸= 0 =⇒ cos(a, a′) ̸= 0

(a′ + b′)T b

(a′ + b′)Ta
− a′T b

a′Ta
=
(a′ + b′)T ba′Ta− a′T b(a′ + b′)Ta

(a′ + b′)Taa′Ta

=
a′T ba′Ta+ b′T ba′Ta− a′T ba′Ta− a′T bb′Ta

(a′ + b′)Taa′Ta

=
b′T ba′Ta− a′T bb′Ta

(a′ + b′)Taa′Ta

=
|b||b′| cos(b, b′)|a||a′| cos(a, a′)− |a′||b| cos(a′, b)|a||b′| cos(a, b′)

|a||a′| cos(a, a′)(a′ + b′)Ta

=
|b||b′|(cos(a, a′) cos(b, b′)− cos(a′, b) cos(a, b′))

cos(a, a′)(a′ + b′)Ta

Lemma 13 (Reduce training loss). Suppose ∆′ > 0.

If D(Ltrain,utrain) > 0 and
cos(∇θLtest,utrain) cos(∇θLtrain,utest) ≤ cos(∇θLtrain,utrain) cos(∇θLtest,utest)

Then DDR(Ltext,Ltrain,utrain) ≤ DDR(Ltext,Ltrain,uall)

The equal sign holds if and only if

∇θLtest = 0 or utest = 0 or
cos(∇θLtrain,utrain) cos(∇θLtest,utest) = cos(∇θLtest,utrain) cos(∇θLtrain,utest)

Proof. Suppose ∆′ > 0. We use Lemma 12.

If b = 0 or b′ = 0, DDR(Ltext,Ltrain,uall)− DDR(Ltext,Ltrain,utrain) = 0.

Otherwise,

D(Ltrain,utrain) > 0 =⇒ cos(a, a′) > 0

So we have

DDR(Ltext,Ltrain,uall)− DDR(Ltext,Ltrain,utrain)

=α(cos(∇θLtrain,utrain) cos(∇θLtest,utest)− cos(∇θLtest,utrain) cos(∇θLtrain,utest)) ≥ 0

Where α > 0. So the result follows. The equal sign holds if and only if

∇θLtest = 0 or utest = 0 or
cos(∇θLtrain,utrain) cos(∇θLtest,utest) = cos(∇θLtest,utrain) cos(∇θLtrain,utest)

Lemma 14 (Increase training loss). Suppose ∆′ < 0.

If D(Lall,utrain) < 0 and D(Ltrain,utrain) ≥ 0 and D(Lall,uall) ≥ 0

Then D(Ltest,utrain) < 0 < D(Ltest,uall)
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Proof. To prove 0 < D(Ltest,uall),

∆′ < 0 =⇒ (a′ + b′)Ta < 0

D(Lall,uall) ≥ 0 =⇒ (a′ + b′)T (a+ b) ≥ 0

We then have
(a′ + b′)T b > (a′ + b′)Ta+ (a′ + b′)T b = (a′ + b′)T (a+ b) ≥ 0

To prove D(Ltest,utrain) < 0,

D(Lall,utrain) < 0 =⇒ (a+ b)Ta′ < 0

D(Ltrain,utrain) ≥ 0 =⇒ aTa′ ≥ 0

We then have
a′T b ≤ a′T b+ a′Ta = (a+ b)Ta′ < 0

Therefore,
D(Ltest,utrain) < 0 < D(Ltest,uall)

Lemma 15 (Keep training loss). Suppose ∆′ = 0.
If D(Lall,utrain) ≤ 0 and D(Ltrain,utrain) ≥ 0 and D(Lall,uall) ≥ 0

Then D(Ltest,utrain) ≤ 0 ≤ D(Ltest,uall)

The two equal signs hold simultaneously if and only if D(Ltest,utrain) = D(Ltest,utest) = 0.

Proof. To prove 0 ≤ D(Ltest,uall),

∆′ = 0 =⇒ (a′ + b′)Ta = 0

D(Lall,uall) ≥ 0 =⇒ (a′ + b′)T (a+ b) ≥ 0

We then have
(a′ + b′)T b = (a′ + b′)Ta+ (a′ + b′)T b = (a′ + b′)T (a+ b) ≥ 0

To prove D(Ltest,utrain) ≤ 0,

D(Lall,utrain) ≤ 0 =⇒ (a+ b)Ta′ ≤ 0

D(Ltrain,utrain) ≥ 0 =⇒ aTa′ ≥ 0

We then have
a′T b ≤ a′T b+ a′Ta = (a+ b)Ta′ ≤ 0

Therefore,
D(Ltest,utrain) ≤ 0 ≤ D(Ltest,uall)

To prove the equal signs.
bTa′ = bT b′ = 0 =⇒ bT (a′ + b′) = bTa′ + bT b′ = 0

bTa′ = 0 = bT (a′ + b′) =⇒ bT b′ = bT (a′ + b′)− bTa′ = 0

Therefore,
D(Ltest,utrain) = 0 = D(Ltest,uall) ⇐⇒ D(Ltest,utrain) = D(Ltest,utest) = 0

Proposition 4 (Gradient variant). Bias exists if one of the following conditions holds.
(1) ∆′ > 0 D(Ltrain,utrain) > 0 and ∇θLtest ̸= 0 and utest ̸= 0 and

cos(∇θLtest,utrain) cos(∇θLtrain,utest) < cos(∇θLtrain,utrain) cos(∇θLtest,utest)

(2) ∆′ < 0 D(Lall,utrain) < 0 and D(Ltrain,utrain) ≥ 0 and D(Lall,uall) ≥ 0

(3) ∆′ = 0 D(Lall,utrain) ≤ 0 and D(Ltrain,utrain) ≥ 0 and D(Lall,uall) ≥ 0 and
not D(Ltest,utrain) = D(Ltest,utest) = 0

Proof. (1), (2), and (3) hold because of Lemma 13, Lemma 14, and Lemma 15, respectively.
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