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Abstract
Agent-based models (ABMs) are a promising ap-
proach to modelling and reasoning about complex
systems, yet their application in practice is im-
peded by their complexity, discrete nature, and the
difficulty of performing parameter inference and
optimisation tasks. This in turn has sparked in-
terest in the construction of differentiable ABMs
as a strategy for combatting these difficulties, yet
a number of challenges remain. In this paper,
we discuss and present experiments that highlight
some of these challenges, along with potential
solutions.

1. Introduction
Agent-based models (ABMs, see Appendix A for a brief
overview) have gained considerable popularity across a
range of disciplines, due to their ability to accurately sim-
ulate complex systems at a granular level. While these
models offer unique advantages, their complexity presents
significant challenges, for example in terms of parameter
calibration (see e.g. Dyer et al., 2022a;b). For such tasks,
multiple factors contribute to their difficulty, including the
intractability of the ABM’s likelihood function, and the
often black-box and non-differentiable nature of the ABM.

These drawbacks of ABMs have motivated research into the
construction of differentiable ABMs (Chopra et al., 2023;
Quera-Bofarull, 2023), for example through the use of dif-
ferentiable programming and by exploiting automatic differ-
entiation (AD) frameworks. AD – a methodological corner-
stone in machine learning, largely underpinning the success
of deep learning paradigms due to its ability to accurately
compute derivatives within models – circumvents issues
present in alternative approaches to model differentiation by
applying the chain rule of differentiation at a computational
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level, resulting in exact derivatives.

Despite recent progress, the challenges involved in building
and benefitting from differentiable ABMs remain under-
explored, and there exists little guidance to practitioners
interested in implementing and exploiting differentiable
ABMs. The aim of this paper is therefore to discuss some
central challenges in applying AD to ABMs.

2. Challenges
2.1. Discrete randomness

The issue of differentiating through discrete structures is in-
herent in ABMs, which simulate discrete events, transitions,
and interactions that are incompatible with conventional
AD. Initial efforts to implement AD within ABMs have pri-
marily centred on transforming the ABMs’ discrete control
flow structure with continuous approximations (Andelfin-
ger, 2021). Furthermore, the use of the Gumbel-Softmax
(GS) reparametrisation trick (Jang et al., 2017) allows for
the differentiation of discrete randomness, and has been de-
ployed effectively in epidemiological ABMs (Chopra et al.,
2023). However, this approach does not provide an ideal
solution. While it allows for gradient calculations, GS does
not guarantee unbiased or low-variance gradients (Huijben
et al., 2022). Developing unbiased and lower variance meth-
ods such as StochasticAD (Arya et al., 2022) in the Julia
programming language (Bezanson et al., 2017) is currently
an active field of research, but we limit the scope of our
discussion here to GS-based methods for discrete ABMs.

Despite the potential lack of robustness of GS, GS-based dif-
ferentiable ABM implementations have shown great success
in improving the calibration (Chopra et al., 2023) and sensi-
tivity analyses (Quera-Bofarull et al., 2023) of ABMs. In the
Experiments section below, we further show that gradients
obtained using the GS trick are robust enough to enable fast
and accurate Bayesian inference (see subsection 3.2).

2.2. Reverse- vs. Forward-mode AD

In Reverse-mode AD (RMAD), a computation graph must
be stored that records all operations performed within the
model, such that the gradients of the model outputs with
respect to the input parameters can be obtained. This con-
trasts with Forward-mode AD (FMAD), where the gradients
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Figure 1. Training loss as a function of epochs for each gradient
estimation method and gradient horizon value. Solid line shows
10-step moving average; dashed lines are without averaging.

are computed during the forward simulation. There are two
important computational considerations when comparing
FMAD vs. RMAD. The first is that the computational time
associated with FMAD scales with the number of model
inputs, while that of RMAD scales with the number of
model outputs. In machine learning, the latter option is
more prevalent, since machine learning models often have
many more inputs than outputs. However, the computation
graph that RMAD must store in (often GPU) memory can
be extremely large, hindering the possibility of differenti-
ating through large models. This is particularly pertinent
for ABMs: the size of the computation graph grows with
the number of agents and time-steps, which can pose a chal-
lenge to the use of RMAD for ABMs with a large number
of agents and time-steps.

To address this, in subsection 3.2 we discuss a differentiating
strategy that alternates between FMAD and RMAD when
calibrating ABMs, and we apply it to an epidemiological
simulation involving 8 million agents.

2.3. Monte Carlo gradient estimation

Since ABMs are typically stochastic models, it can often be
the case that practitioners are interested in performing an
optimisation problem of the form

min
ω∈Ω

Ez∼pω [L(z)] , (1)

where pω ∈ {pω′ : ω′ ∈ Ω} is a probability distribution
on some domain Z indexed by a parameter ω belonging
to some set Ω, and L : Z → R is a loss function. For
example, certain parameter calibration procedures that seek
to identify the parameters θ in some set Θ that minimise
some discrepancy D(·,y) between the model output x and
real-world data y can be cast in the form

min
θ∈Θ

Ex∼p(·|θ) [D(x,y)] , (2)

where p(· | θ) is the ABM’s likelihood function. The gra-
dients of a differentiable ABM can then be exploited by
gradient-assisted methods for minimising the objective in
(1), by finding a Monte Carlo estimate of the expression

∇ωEz∼pω [L(z)] . (3)

For differentiable ABMs, a Monte Carlo estimate of this
gradient can be obtained using the path-wise derivative via
reparametrisation tricks (Mohamed et al., 2020). In such
cases, derivatives of the form ∂xt/∂ωi will contribute to
the estimate. To properly benefit from access to the dif-
ferentiable ABM’s gradients in these settings, it is critical
that low-variance, low-bias Monte Carlo estimates of (3)
are available. However, as we will demonstrate in subsec-
tion 3.1, naively estimating these gradients by accounting
for both (a) the explicit dependency of each xt on ωi, and
(b) the implicit dependency on ωi, mediated by the x1:t−1

that result from the recursive structure of ABMs, can re-
sult in unusable gradient estimates with prohibitively large
variances. Consequently, modifications to vanilla AD can
become necessary, as illustrated in subsection 3.1.

3. Experiments
In this section, we present experiments on the use of
gradient-assisted calibration methods for two ABMs, where
each experiment serves to highlight different combinations
of the challenges described in Section 2.

While there exist many different gradient-assisted cali-
bration methods, we focus on a variational approach to
Bayesian parameter inference termed Generalised Vari-
ational Inference (GVI, Knoblauch et al., 2022) – a
likelihood-free Bayesian inference approach that has pre-
viously been used to calibrate the parameters θ ∈ Rd of
a differentiable ABM (Quera-Bofarull et al., 2023). Here,
a variational procedure targets a “generalised” posterior
(Bissiri et al., 2016)

πw,y(θ) ∝ e−w·ℓ(y,θ)π(θ), (4)

where π(θ) is a prior distribution, ℓ(y,θ) is a loss function
capturing the compatibility between the observed data y
and the behaviour of the ABM at parameter vector θ, and
w > 0 is a hyperparameter. To target this posterior, we
train a normalising flow qϕ with trainable parameters ϕ
to minimise the Kullback-Liebler divergence KL(qϕ∥πw,y)
from qϕ to πw,y, yielding the minimising parameters

ϕw,y,π = argmin
ϕ

{
wEqϕ [ℓ(y,θ)] + KL (qϕ∥π)

}
. (5)

Further details are provided in Appendix D. Code to repro-
duce the results and perform GVI on differentiable ABMs
can be found at https://github.com/arnauqb/
blackbirds.
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Figure 2. Histograms of the standard deviations in estimates of ∂Eqϕℓ(y,θ)/∂ϕj for different gradient horizons and the score-based
method across all j for the Brock & Hommes model.

3.1. The Brock & Hommes model

The Brock & Hommes model (Brock & Hommes, 1998) is a
heterogeneous agent model for the price xt ∈ R of an asset
over time 1 ≤ t ≤ T . At each time step, the agents in the
model subscribe to one of a set of J > 1 trading strategies,
each of which is characterised by a trend-following param-
eter gj and bias parameter bj , j ∈ {1, . . . , J}. Following
Dyer et al. (2022a), we note that the price xt may be written
as deterministic transformations ft of the input parameters
θ = (g1, . . . , gJ , b1, . . . , bJ), auxiliary parameters α, and
standard Normal random variables:

xt = ft(ϵ1, . . . , ϵt,θ,α), ϵt ∼ N (0, 1). (6)

Further details are provided in Appendix B. Thus, provided
ℓ is chosen to be a differentiable function of θ, this enables
us to employ gradient-based approaches to minimising the
objective (5) that exploit the reparameterisation trick.

Fixing g1 = b1 = b4 = 0 and g4 = 1.01, we consider
the task of calibrating parameters g2, g3, b2, b3 given syn-
thetic data y = (y1, . . . ,yT ) generated from the model at
(g2, g3, b2, b3) = (0.9, 0.9, 0.2,−0.2) with T = 100. We
follow Cherief-Abdellatif & Alquier (2020) and target the
generalised posterior (4) given by the choice

ℓ(y,θ) = MMD2(PT ,Pθ), (7)

where MMD2(PT ,Pθ) is the maximum mean discrep-
ancy between the empirical measure of returns PT =
(y1, . . . ,yT ) and the distribution Pθ of returns implied by
the simulator at parameters θ. Using a Gaussian kernel
within the MMD computation, the operations comprising
evaluation of ℓ(y,θ) are also all differentiable and deter-
ministic, enabling evaluation of the term ∇ϕEθ∼qϕℓ(y,θ)
in (5) using the reparameterisation trick (see Appendix B.1).

Despite our ability to compute the partial derivatives
∂xt/∂ϕi exactly, the posterior estimator qϕ struggles to
train with a gradient-assisted approach to minimising (5).
This can be seen in Figure 1, in which the objective function
decreases slowly with the number of epochs when trained
with AdamW (Loshchilov & Hutter, 2017) and using the

vanilla pathwise derivative (red curve). Indeed, we see
in this case that the access to the simulator’s gradients ap-
pears to offer no improvement over the score-based gradient,
shown with the purple curve and obtained as

∇ϕEqϕ [ℓ(y,θ)] = Eqϕ [ℓ(y,θ)∇ϕ log qϕ(θ)] . (8)

Drawing inspiration from the literature on backpropagation-
through-time (e.g. truncated back-propagation in the con-
text of RNN training, see Sutskever (2013)), we consider
pruning a subset of the paths in the computation graph that
contribute to each of the ∂xt/∂θi as a possible solution
to this problem. We achieve this by invoking an appro-
priate stop gradient operation (e.g. .detach() in
pytorch, Paszke et al. (2019)) on terms xt′ that (a) con-
tribute directly/explicitly to the evaluation of xt and (b) for
which t′ < t − H for some “gradient horizon” H ≥ 0.
As evident from Figure 1, we observe that a finite gradi-
ent horizon can dramatically improve the gradient-assisted
training of qϕ. In this experiment, the best performance was
observed while using a gradient horizon of H = 0.

We posit that this is a manifestation of a bias-variance trade-
off in the Monte Carlo gradient estimation step: pruning
a subset of paths in the computation graph with the use of
a finite gradient horizon may introduce some bias in, but
can significantly reduce the variance of, Monte Carlo es-
timates of the gradient ∇ϕEqϕ [ℓ(y,θ)] when employing
the pathwise derivative. This hypothesis is supported by
Figure 2, which shows histograms of the standard deviation
of the estimates of ∂Eqϕ [ℓ(y,θ)] /∂ϕj across all j for gra-
dient horizons H ∈ {0, 1, 2, 100}, and for the score-based
estimator. There, we see that the histogram shifts towards
larger values as H increases. Further results supporting this
hypothesis are given in Appendix B.2.

3.2. The JUNE model

The JUNE model (Aylett-Bullock et al., 2020) is a large-
scale epidemiological ABM of England based on a realistic
synthetic population constructed from the English census.
Calibrating the original implementation required the con-
struction of a surrogate model due to its high computational
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Figure 3. Memory consumption of running AD in the JUNE model
per 1,000 agents, for the Forward and Reverse mode of AD.

cost (Vernon et al., 2022). The GRADABM-JUNE model
(Quera-Bofarull, 2023) is a differentiable implementation
of JUNE which employs the GS reparameterisation trick to
differentiate through discrete randomness. Compared to its
non-differentiable counterpart, GRADABM-JUNE has been
used to more efficiently generate parameter point estimates,
as well as sensitivity analyses (Quera-Bofarull et al., 2023).

3.2.1. REDUCING MEMORY CONSUMPTION THROUGH
FORWARD-MODE AD

GRADABM-JUNE can simulate the entire English popula-
tion at a scale of 1:1 — 53 million people at the time of the
2011 census. As discussed in subsection 2.2, differentiating
through this model using RMAD is challenging due to the
high memory demand to store the computation graph. To
perform GVI for this model, we implement a hybrid AD
technique: we use FMAD to obtain the Jacobian Jθ of the
ABM outputs with respect to the ABM parameters, and
combine it with RMAD through the flow qϕ, yielding

∇ϕEqϕ [ℓ(y,θ)] = Jθ(Eqϕ [ℓ(y,θ)]) · ∇ϕθ, with (9)

Jθ(Eqϕℓ(y,θ)) =
∂Eqϕℓ(y,θ)

∂θ
∈ R1×d. (10)

Here, (10) is the Jacobian obtained through FMAD and
∇ϕθ ∈ Rd×F is the gradient, obtained with RMAD, of the
d ABM parameters generated by the normalising flow with
parameters ϕ ∈ RF .

In Figure 3, we plot the memory costs of employing FMAD
and RMAD to compute the ABM’s Jacobian. We see that
the cost of FMAD is independent of the number of time-
steps, since no computation graph is stored. In contrast, the
cost of RMAD scales linearly with the number of time-steps
and agents. Simulating the entire English population for 300
time-steps would require 5TB of memory, while doing so
with FMAD would require merely 18GB, regardless of the
number of time-steps. The increase in computational time
of FMAD comes at an increase of computational cost since
it requires d evaluations of the model for θ ∈ Rd; however,
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Figure 4. Cumulative infections over time. Black: synthetic
ground truth; green, orange, blue: runs obtained from samples
from the prior, untrained flow, and trained flow, respectively.

since these evaluations are embarrassingly parallelisable,
the impact on performance can be minimal.

With the above in mind, we set up an experiment with the
London’s population (8.1 million people) in GRADABM-
JUNE. We generate a synthetic time-series of daily infec-
tions for 50 days using some assumed parameters that we
aim to recover through our calibration process. The parame-
ters that we vary are the contact intensities at 10 different
locations, as well as the number of initial cases. Further
details of the experimental setup are shown in Appendix C.

We apply the GVI procedure to calibrate the JUNE model
with 11 free parameters. The flow converges after approxi-
mately 3,000 model evaluations, highlighting the potential
for simulation-efficient calibration with gradient-assisted
methods. In Figure 4, we show a comparison of runs ob-
tained by sampling the ABM parameters from the trained
flow, the untrained flow, and the prior. This demonstrates
that the trained flow generates parameters that result in
close agreement between the simulator and ground truth
data, while providing useful uncertainty quantification.

4. Conclusions and discussion
This study examines some challenges that arise from the
application of vanilla AD to ABMs, such as overcoming the
inherent discreteness of ABMs and the variance and high
computational requirements of passing gradients through
large simulators. We have shown that these challenges can
be overcome to some extent with different modifications
to vanilla AD. As supporting evidence, we successfully
calibrate differentiable implementations of the Brock &
Hommes and JUNE models with these modifications, the
latter involving over eight million agents and discrete ran-
domness. In this way, this study helps to pave the way
towards robust calibration of large-scale agent-based mod-
els.
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A. Agent-based models
Agent-based modelling is the name given to a broad approach to modelling complex systems that consist of multiple discrete,
autonomous, and heterogeneous interacting components – the “agents” of the system. Examples of such complex systems
include the housing market (Baptista et al., 2016), in which a large collection of renters, homeowners, financial institutions
etc. interact and take actions which affect, for example, the availability of housing and mortgage rates. An agent-based
approach to modelling such a system would model the system at the level of these individual agents in the system, often
with the intention of observing how aggregate, macroscopic properties of the system emerge from the microscopic details of
the system.

While this is often a natural approach to modelling systems of this kind, the inherently discrete nature of the model’s
components and dynamics give rise to difficulties in applying gradient-based optimisation and calibration techniques. We
expand on these difficulties in section 2.

B. The Brock & Hommes model
The dynamics of the Brock and Hommes model are often expressed as the following system of coupled equations:

xt =
1

R

 J∑
j=1

(gjxt−1 + bj)nj,t + σϵt

 , ϵt ∼ N (0, 1), (11)

nj,t =
exp (βUj,t−1)∑J

j′=1 exp (βUj′,t−1)
, (12)

Uj,t−1 = (xt−1 −Rxt−2) (gjxt−3 + bj −Rxt−2) , (13)

where R, β, σ are auxiliary parameters. We fix J = 4, R = 1.01, σ = 0.04, g1 = b1 = b4 = 0, g4 = 1.01, and β = 120 for
the experiment presented in the main body of the paper. By rewriting the above system of equations, we are able to find the
transition density for observation xt+1 as

p(xt+1 | x1:t,θ,α) = N
(
f(xt−2:t,θ,α), σ2/R2

)
(14)

where

f (xt−2:t,θ,α) =
1

R

J∑
j=1

exp [β (xt −Rxt−1) (gjxt−2 + bj −Rxt−1)]∑J
j′=1 exp [β (xt −Rxt−1) (gj′xt−2 + bj′ −Rxt−1)]

(gjxt + bj) (15)

and α = (R, β, σ). The model is taken to be initialised with x−2 = x−1 = x0 = 0.

B.1. The asset prices as differentiable and deterministic transformations of input noise

We claim in the main body that we may rewrite the xt as deterministic transformations of standard Normal random variables.
By exploiting the autoregressive structure of the model, we explicitly provide these forms for x1 and x2 below to demonstrate
this claim. Throughout, ϵt ∼ N (0, 1) are iid standard Normal random variables. They are as follows:

x1 =
1

R

 J∑
j=1

bj
J

+ σϵ1

 := f1(ϵ1,θ,α) (16)

x2 =
1

R

J∑
j=1

exp
[
βbj
R

(∑J
j′′=1

bj′′

J + σϵ1

)]
∑J

j′=1 exp
[
βbj′

R

(∑J
j′′=1

bj′′

J + σϵ1

)] +
σ

R
ϵ2 := f2(ϵ1:2,θ,α). (17)

Repeating this process, we find that the xt may all be expressed in the form xt = ft(ϵ1:t,θ,α) for a deterministic mapping
ft : Rt × R2J × R3 → R.
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Taking

ℓ(y,θ) = MMD2(PT ,Pθ) (18)
= Ex,x′∼Pθ

[k(x, x′)] + Ey,y′∼PT
[k(y, y′)]− 2Ex∼Pθ,y∼PT

[k(x, y)] (19)

≈ 1

T (T − 1)

∑
t ̸=t′

k(xt,xt′) +
1

T (T − 1)

∑
t ̸=t′

k(yt,yt′)−
2

T 2

T∑
t,t′=1

k(xt,yt′) (20)

with a Gaussian kernel k, the loss ℓ(y,θ) is a deterministic and differentiable transformation of the noise drawn from the
base distribution ρ of the normalising flow and of the separate noise source with distribution ν given as input to the simulator.
This permits us to estimate the gradient of the first term in (5) as

∇ϕEqϕ [ℓ(y,θ)] = ∇ϕEu∼ρ [ℓ(y,θϕ(u))] (21)
= Eu∼ρ [∇ϕℓ(y,θϕ(u))] (22)

= Eu∼ρ

 1

T (T − 1)

∑
t ̸=t′

∇ϕk (ft(ϵ1:t,θϕ(u),α), ft′(ϵ1:t′ ,θϕ(u),α))−

2

T 2

T∑
t,t′=1

∇ϕk(ft(ϵ1:t,θϕ(u),α),yt′)

 (23)

where in the first line we use the Law of the Unconscious Statistician and assume throughout that the order of derivatives
and integrals can be exchanged freely.

B.2. Further experimental results for the Brock & Hommes model

B.2.1. CALIBRATION RESULTS WITH GRADIENT HORIZON H = 0

In Figure 5, we show the generalised posterior approximated by the converged normalising flow and with gradient horizon
H = 0, which achieved a loss close to 0. Since the objective function is lower-bounded by 0, this posterior can be taken to
be a good approximation to the generalised posterior it targets.

B.2.2. FURTHER EVIDENCE IN SUPPORT OF THE BIAS-VARIANCE TRADE-OFF IN THE REPARAMETERISED MONTE
CARLO GRADIENT ESTIMATOR AT DIFFERENT GRADIENT HORIZONS

To further test the hypothesis that the Monte Carlo gradient estimators at different gradient horizons result in a bias-variance
trade-off that can result in favourable performance at finite gradient horizons, we inspect the empirical distribution of the
estimates ηN of the gradient (23) based on N Monte Carlo samples,

ηN :=
1

N

N∑
n=1

 1

T (T − 1)

∑
t ̸=t′

∇ϕk (xt,xt′)−
2

T 2

T∑
t,t′=1

∇ϕk (xt,yt′)

 (24)

where here we take a diagonal Gaussian distribution over R4 as the posterior estimator qϕ. In this experiment, therefore,
ϕ = (µ1, . . . , µ4, σ1, . . . , σ4), where µi and σi are the mean and standard deviation in each dimension of this choice of qϕ.

When implemented in the form given by Equations (14) and (15) – as is necessary to avoid the cumbersome task of finding
the explicit form of ft(ϵ1:t,θ,α) for each t – the xt depend on θ both explicitly and implicitly via xt−3:t−1. Thus in general
we have

∂xt

∂θi
=

∞∑
l=1

∑
Length l paths

v=(v0,v1,...,vl−1,vl)
with v0=xt,vl=θi

l−1∏
i=0

∂vi
∂vi+1

, (25)

where we abuse notation by taking the derivative on the left-hand side to mean “holding only (θ1, . . . ,θi−1,θi+1, . . . ,θd)
constant” while the partial derivatives on the right-hand side are partial derivatives in the true sense of the term (or
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Figure 5. The inferred generalised posterior for the Brock & Hommes model using a gradient horizon H = 0.

equivalently the xt on the left-hand side is viewed only as a function of θ, while on the right-hand side they are viewed
as functions of both θ and x1:t). Choosing a gradient horizon of H > 0 then amounts to retaining paths of length greater
than 1 if their first edge corresponds to an edge connecting xt to any node in XH := {xt−h : h ∈ HH}, where H0 = ∅ and
Hj = {1, . . . , j} when j > 0. In this way, the derivative (25) is then taken instead as

∂xt

∂θi
=
∂xt

∂θi
+

∞∑
l=2

∑
Length l paths

v=(v0,v1,...,vl−1,vl)
with v0=xt,v1∈XH ,vl=θi

l−1∏
i=0

∂vi
∂vi+1

, (26)

where the same abuse of notation is once again used. This elimination of terms from the summation can be expected to
reduce the variance since for two random variables X0, X1, it is the case that

Var(X0 +X1) = Var(X0) + Var(X1) + 2Cov(X0, X1), (27)

which can be greater than Var(X0) if Var(X1) + 2Cov(X0, X1) > 0. It may also be preferable to stricter truncation of the
computation graph – for example, by pruning all paths beyond a certain length – as it retains information on long-range
dependencies while still potentially reducing variance.

We plot in Figure 6 boxplots for the distribution of ηN obtained with N = 5 and with different values of H , obtained at a
fixed value for ϕ (the results were qualitatively similar for different ϕ we tried, and so we show only the results from one
settings). We also show the same boxplots for the gradient estimate obtained with the score-based estimator,

∇ϕEqϕ [ℓ(y,θ)] = Eqϕ [ℓ(y,θ)∇ϕ log qϕ(θ)] ≈
1

N

N∑
n=1

ℓ(y,θ(n))∇ϕ log qϕ(θ
(n)). (28)

Orange (green) dashed lines show the mean (median) of the distributions. The blue crosses show the mean of the distribution
of the gradient estimate (28) obtained using N = 1000, which provide a good estimate of the target value (since the
score-based estimator is unbiased). We see from this that, generally speaking, the variance of these estimates increase
as H increases, while the bias in the estimates do not degrade substantially. This highlights the possibility that using a
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finite gradient horizon can be beneficial when performing Monte Carlo gradient estimation for differentiable time series
simulation models, such as ABMs, when reparameterisation is possible. Further work will be required to establish the
general applicability and suitability of this technique.
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Figure 6. Boxplots for the empirical distribution of Monte Carlo gradient estimates from gradient horizons H = 0, 1, 2, 100, and from the
score-based gradient estimate, (28). Orange (green) dashed lines show the mean (median) of the distributions. Blue crosses show the
mean of the distribution of the gradient estimate (28) obtained using N = 1000.

C. The JUNE model
The JUNE model (Aylett-Bullock et al., 2020) is an agent-based epidemiological model that generates a synthetic population
at a highly detailed level using the English census data. This model has been applied in various scenarios, including
analyzing the impact of the first and second waves of SARS-CoV2 in England (Vernon et al., 2022) and devising strategies
to control disease transmission in refugee settlements (Aylett-Bullock et al., 2021).

To enhance its performance and enable gradient-based calibration, the JUNE model has been incorporated into the
GRADABM framework (Chopra et al., 2023; Quera-Bofarull et al., 2023). This integration allows for faster execution and
more efficient parameter calibration. The JUNE model offers a wide range of configurable parameters related to disease
transmission and progression, vaccination, and non-pharmaceutical interventions.

Given a susceptible agent exposed to an infection at location L, the probability of that agent getting infected is given b

p = 1− exp

−ψs βL ∆t
∑
i∈g

Ii(t)

, (29)

where the summation is conducted over all contacts an agent has with infected individuals at the given location L. The term
Ii(t) represents the time-dependent infectious profile of each infected agent, while ∆t is the duration of the interaction.
Additionally, βL corresponds to a location-specific parameter that captures the variation in the nature of interactions across
different locations.

Since the βL parameters are not directly measurable physical quantities, they are typically calibrated using available data
on the number of cases or fatalities over a specific time period. For the current work we consider the calibration of 11 βL
parameters corresponding to the contact intensity at households, companies, schools, universities, pubs and restaurants,
gyms, cinemas, shops, care homes, and residence visits. Additionally, we also calibrate the initial number of infections, I0,
which are distributed randomly across the population. The synthetic ground truth data is generated by using I0 = 10−3.5Na

where Na is the number of agents, and βhousehold = βcarehome = 0.6, βschool = βcompany = βuniversity = 0.4, βpub =
βshop = βgym = βcinema = βvisit = 0.1.

The normalising flow is trained setting ℓ(y,θ) to be the squared distance between the log10 of the infection time-series.
This choice of loss function keeps the training robust against outliers, since the number of infections can oscillate between
several orders of magnitude. The specific training parameters are described in Appendix D.

C.1. Further experimental results for the JUNE model

We show in Figure 7 the loss as a function of epoch when performing SVI with GRADABM-JUNE. We observe a rapid
convergence after 600 epochs. Since we are sampling 5 Monte Carlo samples to estimate Equation 3, this results in 3,000

10



model evaluations. We also make a corner plot of the train and untrained normalising flow which we show in Figure 8,
where the solid black line denotes the prior density. We observe that the flow is very confident about the value of more
sensitive parameters such as the initial number of infections and the contact intensity at companies, while it is less certain for
venues which have a low impact in the overall number of infections, such as cinemas. It is worth noting that this calibration
challenge is very underdetermined, that is, it is quite difficult by just observing the overall number of infections over time to
infer the contact intensities at each location. Nonetheless, the flow fits well the synthetic ground truth data.

D. Further experimental details
We use the NORMALIZING-FLOWS library (Stimper et al., 2023) to implement the normalising flows in PyTorch. All models
are trained using the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 10−3.

To calibrate the Brock & Hommes and JUNE models, we employ a masked affine autoregressive flow (Papamakarios et al.,
2017) with 16 transformations, each parametrized by 2 blocks with 20 hidden units. We also set the regularisation weight to
w = 10−3 for both models and estimate Equation 3 using 5 Monte Carlo samples.
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Figure 7. Loss function per epoch for the JUNE calibration.
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Figure 8. Corner plot of samples from the untrained normalising flow, the trained normalising flow, and the prior for the JUNE model
calibration.
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