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ABSTRACT

Advances in generative models have made it possible for AI-generated text, code,
and images to mirror human-generated content in many applications. Watermark-
ing, a technique that aims to embed information in the output of a model to verify
its source, is useful for mitigating misuse of such AI-generated content. However,
existing watermarking schemes remain surprisingly susceptible to attack. In par-
ticular, we show that desirable properties shared by existing LLM watermarking
systems such as quality preservation, robustness, and public detection APIs can
in turn make these systems vulnerable to various attacks. We rigorously study
potential attacks in terms of common watermark design choices, and propose best
practices and defenses for mitigation—establishing a set of practical guidelines
for embedding and detection of LLM watermarks.

1 INTRODUCTION

Modern generative models have notably enhanced the quality of AI-produced content Brown et al.
(2020); Saharia et al. (2022); OpenAI (2023a; 2022). For example, large language models (LLMs)
like those powering ChatGPT OpenAI (2022) can generate text that closely resembles human-crafted
sentences. While this has led to exciting new applications of machine learning, there is also growing
concern around the potential for misuse of these models, leading to a flurry of recent efforts on
developing techniques to detect AI-generated content. A promising approach is to embed invisible
watermarks into model-derived content, which can then be extracted and verified using a secret
watermark key Kirchenbauer et al. (2023a); Fairoze et al. (2023); Christ et al. (2023); Kuditipudi
et al. (2023); Zhao et al. (2024); Kirchenbauer et al. (2023b); Hu et al. (2023); Wu et al. (2023).

In this work, we identify that many of the key properties that make existing LLM watermarks suc-
cessful also render them susceptible to attack. We study a number of simple, scalable attacks that
can take advantage of common properties of existing watermarking schemes, including:

1. Robustness of the watermarks to potential modifications in the output text, so that the watermarks
cannot be easily removed Kuditipudi et al. (2023); Kirchenbauer et al. (2023a); Zhao et al. (2024);
Kuditipudi et al. (2023); Christ et al. (2023); Hu et al. (2023);

2. Distribution preservation of the output watermarked tokens, whose distribution is often desired
to be close to the unwatermarked tokens to ensure the watermark does not degrade model util-
ity Kirchenbauer et al. (2023a); Fairoze et al. (2023); Kuditipudi et al. (2023); Christ et al. (2023);
Hu et al. (2023); Wu et al. (2023); and

3. Public detection APIs, which allow the general public to easily verify whether or not candidate
text is AI-generated Fairoze et al. (2023); Solaiman et al. (2019); Mitchell et al. (2023).

While these common properties of existing watermarking schemes have clear benefits, we demon-
strate that they can also enable malicious actors to easily launch two types of attacks: 1) watermark-
removal attacks, which remove the watermark from the watermarked content, and 2) spoofing at-
tacks, which create (toxic) content with a target watermark embedded, thus making the content
appear to be generated by a specific LLM when it is in fact not (see motivating examples in Table 1).

Our work rigorously explores removal and spoofing attacks for LLM watermarks. In doing so, we
identify a number of critical trade-offs between watermark security and utility that emerge as a result
of watermarking design choices. With these trade-offs in mind we propose potential defenses as well
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Prompt Alan Turing was born in ...

Unwatermarked Alan Turing was born in 1912 and died in 1954. He was an
English mathematician, logician, cryptanalyst, and
computer scientist. In 1938, Turing joined the Government
Code and Cypher School (GC&CS), where he contributed ...

Z-Score: 0.16 ↓
PPL: 3.19

Watermarked Alan Turing was born in 1912 and died in 1954, at the age
of 41. He was the brilliant British scientist and
mathematician who is largely credited with being the
father of modern computer science. He is known for ...

Z-Score: 5.98 ↑
PPL: 4.46

(a) Spoofing attack Alan Turing was born in 1950 and died in 1994, at the age
of 43. He was the brilliant American scientist and
mathematician who is largely credited with being the
father of modern computer science. He is known for ...

Exploiting robustness
Z-Score: 5.98 ↑

(b) Watermark-removal attack Alan Turing was born in 1912 and died in 1954. He was a
mathematician, logician, cryptologist and theoretical
computer scientist. He is famous for his work on
code-breaking and artificial intelligence, and his ...

Exploiting distribution-preserving
PPL: 4.05, Z-Score: 2.40 ↓

(c) Watermark-removal attack Alan Turing was born in 1912 and died in 1954. He was an
English mathematician, computer scientist, cryptanalyst
and philosopher. Turing was a leading mathematician and
cryptanalyst. He was one of the key players in ...

Exploiting public detection API
PPL: 4.57, Z-Score: 1.47 ↓

Table 1: Examples generated using Llama-2-7B with/without the KGW watermark Kirchenbauer et al. (2023a)
under various attacks. We mark the tokens in the green and red lists (see Appendix C). Z-score reflects the
confidence of the watermark and perplexity (PPL) indicates the quality of the text. (a) In the spoofing attack, we
exploit the robustness property of LLMs by generating incorrect content that appears as watermarked (matching
the z-score of the watermarked baseline), potentially damaging the reputation of the LLM. Incorrect tokens
modified by the attacker are marked in orange and watermarked tokens in blue. (b-c) In watermark-removal
attacks, attackers can effectively lower the z-score below the detection threshold while preserving a high quality
(low PPL) by exploiting either the (b) distribution-preserving property or (c) public watermark detection API.

as general guidelines to better enhance the security of next-generation LLM watermarking systems.
Overall, we make the following contributions:

• We study how watermark robustness, despite being a desirable property to mitigate watermark
removal attacks, can make the resulting systems highly susceptible to spoofing attacks, and show
that challenges exist in detecting these attacks given that a single token can render an entire
sentence inaccurate (Sec. 2).

• We demonstrate that preserving distribution of the output by using multiple watermarking keys
can make the system susceptible to watermark-removal attacks (Sec. 3). We show both theoreti-
cally and empirically that a smaller number of keys may be necessary to defend against removal
attacks, potentially at the cost of output quality.

• Finally, we identify that public watermark detection APIs can be exploited by attackers to launch
both watermark-removal and spoofing attacks (Appendix D). We propose a defense using tech-
niques from differential privacy to effectively counteract spoofing attacks, and recommend setting
query rate limits on the detection API and verifying the identity of users as simple mitigations.

Throughout, we explore our attacks on three state-of-the-art watermarks Kirchenbauer et al. (2023a);
Zhao et al. (2024); Kuditipudi et al. (2023) and two LLMs (Llama-2-7B Touvron et al. (2023) and
OPT-1.3B Zhang et al. (2022))—demonstrating that these vulnerabilities are common to existing
LLM watermarks, and providing caution for the field in deploying current solutions.

2 ATTACKING ROBUST WATERMARKS

Developing a watermark that is robust to output perturbations to defend against watermark-removal
has been the inspiration for recent works Zhao et al. (2024); Kirchenbauer et al. (2023a); Kuditipudi
et al. (2023); Sadasivan et al. (2023); Kirchenbauer et al. (2023b); Piet et al. (2023).

A more robust watermarking scheme can better defend against watermark-removal attacks. How-
ever, we note that this same property can be misused by malicious users to launch spoofing attacks.
E.g., a small portion of toxic or incorrect content can be inserted into watermarked material, making
it seem like generated by a specific watermarked LLM. With a robust watermark embedded, the
entire toxic content will still seem watermarked, potentially damaging the reputation of the LLM.
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Threat Model. We assume that the attacker can make poly(l) queries to the target watermarked
LLM, where l is the token length of the generated content. We also assume that the attacker can edit
the generated sentence (e.g., insert or substitute tokens).

Attack Procedure. 1) The attacker queries the target watermarked LLM to receive a high-entropy
watermarked sentence xwm, 2) The attacker edits xwm and forms a new piece of text x′ and claims
that x′ is generated by the target LLM. The editing method can be defined by the attacker. Simple
strategies could be inserting toxic tokens into the watermarked sentence xwm at random positions
to make the whole content harmful or editing the tokens to make the sentence inaccurate (see the
example in Table 1). Please refer to Appendix E for our analysis of the attack feasibility.

2.1 EVALUATION

Observation #1
Robust watermarks are susceptible to spoofing attacks.

Experiment Setup. We assess the effectiveness of the spoofing attack by determining the maximum
portion of toxic tokens that can be inserted into the watermarked text without altering the watermark
detection result. Specifically, we generate a list of 200 toxic tokens and insert them at random posi-
tions of the watermarked outputs. We utilize 500 prompts data from OpenGen Krishna et al. (2023)
dataset and query the watermarked language models (including Llama-2-7B Touvron et al. (2023)
and OPT-1.3B Zhang et al. (2022)) to generate the watermarked outputs. We evaluate three SOTA
watermarks including KGW Kirchenbauer et al. (2023a), Unigram Zhao et al. (2024), and Exp Ku-
ditipudi et al. (2023). We choose the default watermarking hyperparameters (see Appendix C).
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Figure 1: The LHS shows the maxi-
mum portion of toxic tokens permit-
ted for insertion. The RHS shows
the OpenAI moderation’s confidence
in detecting the toxic content.

Evaluation Result. In Fig. 1, we report the maximum portion
of the inserted toxic tokens and the confidence of the OpenAI
moderation model OpenAI (2023b) in identifying the content as
violating their usage policy due to the inserted toxic tokens.

Our findings show that we can insert a significant number of
toxic tokens into content generated by all the robust watermarks,
with a median portion higher than 20%, i.e., for a 200-token sen-
tence, the attacker can insert a median of 40 toxic tokens into
it. These toxic sentences are then identified as violating Ope-
nAI policy rules with high confidence scores, whose median is
higher than 0.8 for all the watermarks we study. Please refer to
Appendix E and F for more results on analyzing the attack fea-
sibility. This attack can be generalized to all robust watermarks.

2.2 DISCUSSION

Guideline #1
Robust watermarks may need to compromise on robustness to mitigate the possibility of spoofing attacks.

Spoofing attacks are easy to execute in practice. No existing watermarks consider such attacks
during the design or deployment, and existing robust watermarks are inherently vulnerable to such
attacks. In particular, we highlight the contradiction between the watermark robustness and the
spoofing feasibility: Enhancing robustness makes it more difficult to remove watermarks from edited
sentences. However, this feature can be exploited as an attack vector, where the attacker might em-
bed harmful contents into a watermarked sentence and claim that the whole sentence is watermarked.
We deem that this attack is challenging to defend against, especially considering the spoofing ex-
ample in Table 1, where by only editing a single token, the whole content becomes incorrect. It
is hard, if not impossible, to detect whether a particular token is from the attacker by using robust
watermark detection algorithms. Thus, practitioners should weigh the risks of removal vs. spoofing
attacks, and consider reducing watermark robustness to mitigate the possibility of spoofing.
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3 ATTACKING DISTRIBUTION-PRESERVING WATERMARKS

SOTA watermarking schemes Kirchenbauer et al. (2023a); Fairoze et al. (2023); Christ et al. (2023);
Kuditipudi et al. (2023); Zhao et al. (2024); Kirchenbauer et al. (2023b) aim to ensure the water-
marked text retains its unwatermarked distribution by maintaining an “unbiasedness” property.

As a common practice in cryptography and also suggested by KGW or inherent in prior watermarks
(e.g., Exp), the LLM service provider may use multiple watermark keys to enhance security against
brute-force attacks in distinguishing the watermarked tokens Sadasivan et al. (2023); Jovanović et al.
(2024). However, we demonstrate that using multiple keys can potentially introduce new vulnera-
bilities and allow malicious users to remove watermarks with only a few queries to the watermarked
LLM. The intuition is that, given the quality-preserving nature, attackers can estimate the unwa-
termarked distribution by making multiple queries to the watermarked LLM under different keys
for each token. As this attack estimates the original, unwatermarked distribution, the quality of the
generated content is preserved.

Threat Model. We assume multiple watermark keys are utilized to embed the watermark to provide
distortion-free guarantees in preserving the output quality or improve the security against brute-force
attacks in distinguishing the watermarked tokens’ distribution. For a sentence of length l, we assume
the attacker can make poly(l) queries to the watermarked LLM under different watermark keys.

Attack Procedure. An attacker queries a watermarked model with an input x of length t under
n different watermark keys, observing n subsequent tokens xt+1. They then create a frequency
histogram of these tokens and sample the most frequent one. This sampled token matches the
result of greedy sampling on an unwatermarked output distribution with a nontrivial probability.
Consequently, the attacker can progressively eliminate watermarks while maintaining a high quality
of the synthesized content. We analyze the number of keys/queries required in Appendix G and H.

3.1 EVALUATION

Observation #2
Increasing the number of watermark keys reduces the output distribution shifting and enhances brute-force
attack security, but increases vulnerability to watermark-removal attacks.
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Figure 2: Watermark-removal on KGW and Llama-2-7B with differ-
ent numbers of watermark keys n. Higher z-score reflects more con-
fidence in watermark and lower PPL indicates better sentence quality.

Experiment Setup. Similar to
Sec. 2.1, we evaluate three SOTA
watermarks, KGW, Unigram, and
Exp on Llama-2-7B and Opt-1.3B
models, and OpenGen dataset.
We test the detection scores (z-
score or p-value) and the output
perplexity (PPL) evaluated using
GPT3 Ouyang et al. (2022) (see
the introduction of PPL in Ap-
pendix C). We use the default wa-
termark hyperparameters.

Evaluation Result. As shown in Fig. 2a, we significantly reduce the detection confidence by us-
ing more keys. We also present the median detection scores of the unwatermarked content using
different numbers of keys in Fig. 2a. Since the detection algorithm returns the highest z-score
among all the keys Kirchenbauer et al. (2023a); Kuditipudi et al. (2023), the expected z-scores of
unwatermarked content become higher if using more keys. The scores of the watermark-removal
closely resemble those of unwatermarked content detection results when we use more than 7 keys.
In essence, to remove the watermark, an attacker only needs to query the watermarked LLM 7 times
for each token under different keys. Fig. 2b suggests that using more keys improves the output
content quality. This is because, with a greater number of keys, there’s a higher probability for an
attacker to accurately estimate the unwatermarked distribution, which is consistent with our analysis
in Appendix G. We observe that in practice, 7 keys suffice to produce high-quality content compa-
rable to the unwatermarked content. This observation remains consistent across various watermarks
and models, we defer more results to Appendix J.
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3.2 DISCUSSION

Guideline #2
Using fewer keys, can potentially introduce distribution shifting and weaken security against brute-force
attacks, but it may be necessary to mitigate the watermark-removal attack.

Many watermarking schemes recommend using multiple keys to ensure distortion-free watermarks
and enhance security against brute-force attacks. However, we reveal a conflict between preserving
output distribution, enhancing security, and the feasibility of removing watermarks in this study.
We suggest using fewer keys and compromising slightly on distribution preservation and security
against brute-force attacks in practice to achieve a balanced trade-off. Additionally, we recommend
that LLM service providers identify potential malicious users and limit their query rates.

4 CONCLUSION & DISCUSSION

In this work, we reveal and evaluate new attack vectors that exploit the common properties of LLM
watermarks. In particular, while these properties may enhance robustness, output quality, and public
detection ease, they also allow malicious actors to launch attacks that can easily remove the wa-
termark or damage the model’s reputation. Based on the theoretical and empirical analysis of our
attacks, we suggest guidelines for designing and deploying LLM watermarks along with possible
defenses to establish more reliable watermark embedding and detection systems.

Our work studies the security implications of common LLM watermarking design choices. By de-
veloping realistic attacks and defenses and a simple set of guidelines for watermarking in practice,
we aim for the work to serve as a resource for the development of secure LLM watermarking sys-
tems. Of course, we note that by outlining such attacks, there is a risk that our work may in fact
increase the prevalence of watermark removal or spoofing attacks performed in practice. We believe
that this is nonetheless an important step towards educating the community about potential risks in
watermarking systems and ultimately creating more effective defenses for secure LLM watermark-
ing.

More generally, our work shows that a number of trade-offs exist in LLM watermarking (e.g., be-
tween quality, robustness, detection effectiveness, and susceptibility to removal or spoofing attacks).
The guidelines we propose provide rough proposals for considering these trade-offs, but we note that
how to best navigate each trade-off will depend on the application at hand. Considering strategies
to best navigate this space for specific LLM watermarking applications is an important direction for
future study.
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A RELATED WORK

Advances in large language models (LLMs) have given rise to increasing concerns that such mod-
els may be misused for applications including misinformation, phishing, and academic cheating.
In response, numerous recent works have proposed watermarking schemes as a tool for detecting
LLM-generated text to mitigate potential misuse Kirchenbauer et al. (2023a); Fairoze et al. (2023);
Christ et al. (2023); Kuditipudi et al. (2023); Zhao et al. (2024); Kirchenbauer et al. (2023b); Hu
et al. (2023); Wu et al. (2023); Wang et al. (2023). These approaches involve embedding invisi-
ble watermarks into the model-generated content, which can then be extracted and verified using a
secret watermark key.

Existing watermarking schemes share a few natural goals: (1) the watermark should be robust in that
it cannot be easily removed; (2) the watermark should preserve the quality of the output text (usually
quantified via unbiasedness in terms of the token distribution); and (3) the watermark should be easy
to detect when given new candidate text. Unfortunately, we show that existing methods that aim to
achieve these goals also render the resulting systems susceptible to watermark-removal or spoofing
attacks.

Removal attacks. Several recent works have highlighted that paraphrasing methods may be used to
evade the detection of AI-generated text Krishna et al. (2023); Iyyer et al. (2018); Li et al. (2018);
Lin et al. (2021); Zhang et al. (2023), with Krishna et al. (2023); Zhang et al. (2023) demonstrating
effective watermark removal using a local LLM. However, these methods require expensive addi-
tional training for sentence paraphrasing which significantly impacts sentence quality, or assume a
high-quality oracle model to guarantee the output quality is preserved. More importantly, our work
differs in that we aim to directly connect and study how the inherent properties of watermarking
schemes (such as quality preservation and detection APIs) can inform such removal attacks.

Spoofing attacks. Sadasivan et al. (2023); Gu et al. (2023) are the only works we are aware of that
explore spoofing on watermarked LLMs. However, the work of Sadasivan et al. (2023) requires an
unrealistic number of queries from attackers (1 million), limiting their method to one watermarking
scheme Kirchenbauer et al. (2023a) and making it difficult to generalize to other watermarks. Gu
et al. (2023) train a new model to learn the watermarked token distribution, which can be infeasible
for computation-bounded attackers, especially given the large number of queries to construct the
training data and the cost of training a new LLM. The spoofing attacks we propose in the public
detection setting can be generalized across all types of watermarks while requiring only a handful of
queries to identify each token. Additionally, we are the first to explore the natural tension that occurs
between watermark robustness, which aims to mitigate the potential for removal attacks discussed
above, and spoofing—showing that robust watermarks are at an increased risk for spoofing attacks.

B PRELIMINARIES

Notations. We use x to denote a sequence of tokens, xi ∈ V is the i-th token in the sequence, and V
is the vocabulary. Morig denotes the original model without a watermark, Mwm is the watermarked
model, and sk ∈ S is the watermark secret key sampled from the key space S.

Language Models. The current state-of-the-art (SOTA) LLMs are auto-regressive models, which
predict the next token based on the prior tokens. Below, we define language models (LM):
Definition 1 (LM). We define a LM without a watermark:

Morig : V∗ → V, (1)

where the input is a sequence of length t tokens x. Morig(x) firstly returns the probability distribution
for the next token xt+1 and then the LLM samples xt+1 from this distribution.

Watermarks for LLMs. In this work, we focus on three SOTA decoding-based watermarking
schemes: KGW Kirchenbauer et al. (2023a), Unigram Zhao et al. (2024) and Exp Kuditipudi et al.
(2023). Informally, the decoding-based watermark is embedded by perturbing the output distribu-
tion of the original LLM. The perturbation is determined by secret watermark keys held by the LLM
owner. Formally, we define the watermarking scheme:
Definition 2 (Watermarked LLMs). The watermarked LLM takes token sequence x ∈ V∗ and secret
key sk ∈ S as input, and outputs a perturbed probability distribution for the next token. The
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perturbation is determined by sk:
Mwm : V∗ × S → V (2)

The watermark detection outputs the statistical testing score for the null hypothesis that the input
token sequence is independent of the watermark secret key:

fdetection : V∗ × S → R (3)

The output score reflects the confidence of the watermark’s existence in the input. Please refer to
Appendix C for the details of the three watermarks.

C WATERMARKING SCHEMES

In this section, we introduce the three watermarking schemes we evaluate in the paper—
KGW Kirchenbauer et al. (2023a), Unigram Zhao et al. (2024), and Exp Kuditipudi et al. (2023).
We also introduce the perplexity, a metric to evaluate the sentence quality.

KGW. In the KGW watermarking scheme, when generating the current token xt+1, all the tokens in
the vocabulary are pseudorandomly shuffled and split into two lists—the green list and the red list.
The random seed used to determine the green and red lists is computed by a watermark secret key
sk the prior token xt using Pseudorandom functions (PRFs):

SEED = Fsk(xt)

Then, the seed is used to split the vocabulary into the green and red lists of tokens, with γ portion of
tokens in the green list:

Lgreen, Lred = Shuffle(V, SEED, γ)

Then, KGW generates a binary watermark mask vector for the current token prediction, which has
the same size as the vocabulary. All the tokens in the green list Lgreen have a value 1 in the mask,
and all the tokens in the red list have a value 0 in the mask:

MASK = GenerateMask(Lgreen, Lred)

To embed the watermark, KGW adds a constant to the logits of the LLM’s prediction for token xt+1:

WATERMARKEDPROB = Softmax(logits + δ × MASK),

where the logits is from the LLM, and the δ is the watermark strength. Then the LLM will sample
the token xt+1 according to the watermarked probability distribution.

The detection involves computing the z-score:

z =
g − γl√
γ(1− γ)l

,

where g is the number of tokens in the green list, l is the total number of tokens in the input token
sequence, and γ is the portion of the vocabulary tokens in the green list. Similar to the watermark
embedding, the green and red lists for each token position are determined by the watermark secret
key and the token prior to the current token in the input token sequence.

Unigram. Similar to KGW, Unigram also splits the vocabulary into green and red lists and prioritizes
the tokens in the green list by adding a constant to the logits before computing the softmax. The
difference is that Unigram uses global red and green lists instead of computing the green and red
lists for each token. That is, the seed to shuffle the list is only determined by the watermark secret
key and generated by a Pseudo-Random Generator (PRG):

SEED = G(sk)

Then, similar to KGW, the seed is used to split the vocabulary into the green and red lists of tokens,
with γ portion of tokens in the green list:

Lgreen, Lred = Shuffle(V, SEED, γ)

The watermark embedding and detection procedures are the same as KGW: Unigram first computes
the watermark mask:

MASK = GenerateMask(Lgreen, Lred)

9
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And then embed the watermark by perturbing the logits of the LLM outputs:
WATERMARKEDPROB = Softmax(logits + δ × MASK),

where the logits is from the LLM, and the δ is the watermark strength. Then the LLM will sample
the token xt+1 according to the watermarked probability distribution.

The detection also computes the z-score:

z =
g − γl√
γ(1− γ)l

,

where g is the number of tokens in the green list, l is the total number of tokens in the input token
sequence, and γ is the portion of the vocabulary tokens in the green list. According to the analysis
in Zhao et al. (2024) and also consistent with our results in Sec. 2.1, by decoupling the green and
red lists splitting with the prior tokens, Unigram is twice as robust as KGW. But it’s more likely to
leak the pattern of the watermarked tokens given that it uses a global green-red list splitting.

Exp. The Exp watermarking scheme from Kuditipudi et al. (2023) is an extension of Aaronson
(2023). Instead of using a single key as in KGW and Unigram, the usage of multiple watermark
keys is inherent in Exp to provide the distortion-free guarantee. Each key is a vector of size |V| with
values uniformly distributed in [0, 1]. That is, sk = ξ1, ξ2, · · · , ξn, where ξk ∈ [0, 1]|V|, k ∈ [n],
and n is the length of the watermark keys, default to 256.

For the prediction of the token xt+1, Exp firstly collects the output probability vector p ∈ [0, 1]|V|

from the LLM. A random shift r $← [n] is sampled at the beginning of receiving the prompt. Then
the token xt+1 is sampled using the Gumbel trick Gumbel (1948):

xt+1 = argmaxi (ξk,i)
1/pi ,

where k = r + t + 1 mod n, i.e., each position uses a different watermark key which determines
the uniform distribution sampling used in the Gumbel trick sampling. This method guarantees that
the output distribution is distortion-free, whose expectation is identical to the distribution without a
watermark given sufficiently large n.

The watermark detection also computes test statistics. The basic test statistics are:

ϕ =

l∑
t=1

− log(1− ξk,xt),

where k = t mod n. Exp computes the minimum Levenshtein distance using the basic test statistic
as a cost (see Sec. 2.4 in Kuditipudi et al. (2023)).

Instead of using single keys as KGW and Unigram, Exp uses multiple keys and incorporates the
Gumbel trick to rigorously provide the distortion-free (unbiased) guarantee, whose expected output
distribution over the key space is identical to the unwatermarked distribution.

Sentence Quality. Perplexity (PPL) is one of the most common metrics for evaluating language
models. It can also be utilized to measure the quality of the sentences Zhao et al. (2024); Kirchen-
bauer et al. (2023a) based on the oracle of high-quality language models. Formally, PPL returns the
following quality score for an input sentence x:

PPL(x) = exp{−1

t

t∑
i=1

log[Pr(xi|x0, · · · xi−1)]} (4)

In our evaluation, we utilize the GPT3 Ouyang et al. (2022) as the oracle model to evaluate sentence
quality.

Watermark Setups and Hyper-parameters. For KGW Kirchenbauer et al. (2023a) and Uni-
gram Zhao et al. (2024) watermarks, we utilize the default parameters in Zhao et al. (2024), where
the watermark strength is δ = 2, and the green list portion is γ = 0.5. We employ a threshold of
T = 4 for these two watermarks. For the Exp watermark (referred to as Exp-edit in Kuditipudi et al.
(2023)), we use the default parameters, where the watermark key length is n = 256 and the block
size k defaults to be identical to the token length. We set the p-value threshold for Exp to 0.05 in
our experiments. In our experiments, we default to a maximum of 200 new tokens for KGW and
Unigram, and 70 for Exp, due to its complexity in the watermark detection. 70 is also the maximum
number of tokens the authors of Exp evaluated in their paper Kuditipudi et al. (2023).

10



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

D ATTACKING WATERMARK DETECTION APIS

In addition to the robustness (Sec. 2) and quality-preserving (Sec. 3) properties, another common
feature of modern LLM watermarks is their ease of detection, allowing the general public to verify
if a text is AI-generated Fairoze et al. (2023); Kirchenbauer et al. (2023a); Solaiman et al. (2019);
Mitchell et al. (2023). However, this property can also be exploited to launch watermark-removal
and spoofing attacks. In the following sections, we first introduce the attack procedures and then
propose suggestions and defenses to mitigate these attacks.

D.1 ATTACK PROCEDURES

Watermark-Removal Attack. For the watermark-removal attack, we consider an attacker who has
access to the target watermarked LLM API, and can query the watermark detection results. The at-
tacker feeds a prompt into the watermarked LLM, which generates the response in an auto-regressive
manner. For the token xi the attacker will generate a list of possible replacements for xi. This list can
be generated by querying the watermarked LLM, querying the local model, or simply returned by the
watermarked LLM. In this work, we choose the third approach because of its simplicity and guaran-
tee of synthesized sentences’ quality. This is a common assumption made by prior works Naseh et al.
(2023), and such an API is also provided by OpenAI (top_logprobs = 5). Additionally, returning
the top logprob values can benefit normal users in understanding the model confidence, debugging
and analyzing the model’s behavior, customizing sampling strategies, etc.

Consider that the top L = 5 tokens and their probabilities are returned to the attackers. The proba-
bility that the attacker can find an unwatermarked token in the token candidates’ list of length L is
1− γL for KGW and Unigram, which becomes sufficiently large given L = 5 and γ = 0.5.

The attacker will query the detection using these replacements and sample a token based on their
probabilities and detection scores to remove the watermark while preserving a high output quality.
See Alg. 1 in Appendix I.

Spoofing Attack. Spoofing attacks follow a similar procedure where the attacker can generate
(harmful) content using a local model, and select tokens that yield higher confidence scores upon
watermark detection queries. Thanks to the robustness of the LLM watermarks, the attackers don’t
need to ensure every single token carries a watermark; only that the overall detection confidence
score surpasses the threshold, thereby treating synthesized content as if generated by the water-
marked LLM. Please refer to Alg. 2 in Appendix I for the detailed algorithm.

D.2 EVALUATION

Observation #3
Public detection APIs can be exploited to launch both watermark-removal and spoofing attacks.

Experiment Setup. We use the same evaluation setup as Sec. 2.1 and Sec. 3.1. We evaluate the
feasibility of the attacks exploiting the detection API on three watermarks (KGW, Unigram, and
Exp), two LLMs (Llama-2-13B, OPT-1.3B), and OpenGen dataset. We evaluate the detection scores
for both the watermark-removal and the spoofing attacks. We also report the number of queries to
the detection API. Furthermore, for the watermark-removal attack, where the attackers care more
about the output quality, we report the output PPL. For spoofing attacks, the attackers’ local models
are Llama-2-7B and OPT-1.3B.

Evaluation Result. The results are shown in Fig. 3. Watermark-removal attack exploiting the detec-
tion API significantly reduces detection confidence while maintaining high output quality as shown
in Fig. 3a and Fig. 3b. For instance, for the KGW watermark on Llama-2-7B model, we achieve
a median z-score of 1.43, which is much lower than the threshold 4. The PPL is also close to the
watermarked outputs (6.17 vs. 6.28). We observe that the Exp watermark has a higher PPL than the
other two watermarks. This is because that Exp watermark is deterministic, while other watermarks
enable random sampling during inference. Our attack also employs sampling based on the token
probabilities and detection scores, thus we can improve the output quality for the Exp watermark.

The spoofing attacks also significantly boost the detection confidence even though the content is not
from the watermarked LLM, as depicted in Fig. 3c. We report the attack success rate (ASR) and the
number of queries for both of the attacks in Table 2. The ASR quantifies how much of the generated
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Figure 3: Attacks exploiting detection APIs on Llama-2-7B model.

wm-removal spoofing
ASR #queries ASR #queries

KGW 1.00 2.42 0.98 2.95
Unigram 0.96 2.66 0.98 2.96

Exp 0.96 1.55 0.85 2.89

Table 2: The attack success rate (ASR), and the average query numbers per token for the watermark-removal
and spoofing attacks exploiting the detection API on Llama-2-7B model.
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Figure 4: Attacks exploiting detection APIs on OPT-1.3B model.

wm-removal spoofing
ASR #queries ASR #queries

KGW 0.99 2.87 1.00 2.96
Unigram 0.77 3.25 1.00 2.97

Exp 0.86 2.07 0.93 2.92

Table 3: The attack success rate (ASR), and the average query numbers per token for the watermark-removal
and spoofing attacks exploiting the detection API on OPT-1.3B model.

content surpasses or falls short of the detection threshold. These attacks use a reasonable number of
queries to the detection API and achieve a high success rate, demonstrating practical feasibility.

We present the results of watermark-removal and spoofing attacks on OPT-1.3B model in Fig. 4
and Table 3. The results are consistent with the Llama-2-7B model, with all the attack success
rates higher than 75% using a small number of queries to the detection API of around 3 per token.
The results on OPT-1.3B model further demonstrate the effectiveness of our attacks exploiting the
detection API.

D.3 DEFENDING DETECTION WITH DIFFERENTIAL PRIVACY

We propose an effective defense using ideas from differential privacy (DP) Dwork et al. (2014) to
counteract spoofing attacks exploiting detection API. DP adds random noise to function results eval-
uated on private dataset. Such that the results from neighboring datasets are indistinguishable. We
apply the idea in DP by adding Gaussian noise to the distance score in the watermark detection,
and make the detection (ϵ, δ)-DP Dwork et al. (2014). Such that the attackers cannot tell the differ-
ence between two queries by replacing a single token in the content, which increases the hardness of
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Figure 5: Evaluation of DP detection on KGW watermark and Llama-2-7B model. (a). Spoofing attack
success rate (ASR) and detection accuracy (ACC) without and with DP watermark detection under different
noise parameters. (b). Z-scores of original text without attack, spoofing attack without DP, and spoofing attacks
with DP under different query numbers (marked as 1×Q, 20×Q, and 200×Q). We use the best σ = 4 from
(a).

launching the attacks. In the following, we evaluate the utility of the DP defense and its performance
in mitigating spoofing attacks.

Experiment Setup. Firstly, we assess the utility of DP defense by evaluating the accuracy of de-
tecting watermarked and non-watermarked content under various noise scale parameters. Next, we
evaluate the efficacy of the spoofing attack against differential privacy detection defense using the
same method as in Appendix D.1. We select the optimal noise scale parameter that provides the best
defense while keeping the drop in utility accuracy within 2%. Considering an attacker can average
multiple queries to reduce noise and estimate original scores without DP protection, we evaluate the
spoofing attack again using 20 × and 200 × queries to detection APIs with the optimal noise scale.

Evaluation Result. As shown in Fig. 5a, with a noise scale of σ = 4, the DP detection’s accuracy
drops from the original 98.2% to 97.2% on KGW watermark and Llama-2-7B model, while the
spoofing attack success rate becomes 0% using the same attack procedure as Appendix D.1. We
further evaluate the attacker averaging over 20 and 200 queries to remove the noise in Fig. 5b.
We show that with 20× queries, even though the z-scores are much higher than the case with 1×
query, its attack success rate is around 50%, which is still significantly lower than that without DP
protection. Even with an extremely large number of 200× queries, the attacker cannot achieve the
same result as the scenario without DP defense. The results are consistent for Unigram and Exp
watermarks and OPT-1.3B model as shown in Appendix K, which illustrates that the DP defense
has a great utility-defense trade-off, with a negligible accuracy drop, and significantly mitigates the
spoofing attacks.

D.4 DISCUSSION

Guideline #3
DP techniques can effectively mitigate spoofing attacks exploiting detection APIs. Detection services
should identify malicious behaviors and limit query rates from potential attackers, and also verify the users’
identity.

The detection API, available to the public, aids users in differentiating between AI-generated and
human-created materials. However, it can be exploited by malicious users to gradually remove wa-
termarks or launch spoofing attacks. We propose a defense by employing the ideas in differential
privacy, which significantly increases the difficulty for attackers to launch spoofing attacks. How-
ever, this method is less effective against watermark-removal attacks that exploit the detection API
because attackers’ actions will be close to random sampling, which, even though with lower success
rates, remains an effective way of removing watermarks. Therefore, we leave developing a more
powerful defense mechanism against watermark-removal attacks exploiting detection API in future
work. We recommend that companies providing these detection services should detect and curb
malicious behavior by limiting query rates from potential attackers, and also verify the identity of
the users to protect against Sybil attacks.
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E SPOOFING ATTACK FEASIBILITY BY EXPLOITING WATERMARK
ROBUSTNESS

We first define the watermark robustness:
Definition 3 (Watermark robustness). Given a watermarked text x, for all its neighboring text within
the ϵ editing distance, the probability that the detection fails to detect the edited text is bounded by
δ, given the detection confidence threshold T :

∀x, x′ ∈ V∗, Pr[fdetection(x′, sk) < T ] < δ, s.t. fdetection(x, sk) ≥ T, d(x, x′) ≤ ϵ,

Attack Feasibility Analysis. We study the bound on the maximum number of tokens that are al-
lowed to be inserted into a watermarked sentence, and we present the following theorem on Unigram
due to its clean robustness guarantee:
Theorem 1 (Maximum insertion portion). Consider a watermarked token sequence x of length l.
The Unigram z-score threshold is T , the portion of the tokens in the green list is γ, the detection
z-score of x is z, and the number of inserted tokens is s. Then to guarantee the expected z-score of
the edited text is greater than T , it suffices to guarantee:

s

l
≤ z2 − T 2

T 2
(5)

Proof. Now we present the proof of Theorem 1. According to Eq. 5, as long as the number of
inserted toxic tokens is bounded by l z

2−T 2

T 2 , the attacker can execute a spoofing attack to generate
toxic content with the target watermark embedded. For token insertion editing, the editing distance
bound (Def. 3) for a sentence is ϵ = l z

2−T 2

T 2 . A stronger watermark increases the ease of launching
spoofing attacks by allowing more toxic tokens to be inserted. This conclusion applies universally to
all robust watermarking schemes. If a watermark is robust, such attacks are inevitable and extremely
difficult to detect, as even one toxic token can render the entire content harmful or inaccurate.

In the following, we prove the bound on the maximum number of tokens that are allowed to be
inserted into a watermarked sentence for Unigram Zhao et al. (2024).

Proof. Recall that the watermarking schemes’ detections usually involve computing the statistical
testing. Unigram splits the vocabulary into two lists—the green list and the red list. It prioritizes the
tokens in the green list during watermark embedding, and the detection computes the z-score:

z =
g − γl√
γ(1− γ)l

,

where g is the number of tokens in the green list, l is the total number of tokens in the input token
sequence, and γ is the portion of the vocabulary tokens in the green list. Let the number of the
inserted toxic tokens be s. Since toxic tokens are independent of the secret key sk, the expected new
z-score z′ is:

E(z′) =
g + γs− γ(l + s)√
γ(1− γ)(l + s)

= z

√
l

l + s
,

To guarantee that E(z′) ≥ T , it suffices to guarantee

s

l
≤ z2 − T 2

T 2

F VALIDATION OF THEOREM 1

In this section, we validate Theorem 1 by using watermarked texts of varying lengths l and z-
scores z to study the relationship between s

l and zt−T 2

T 2 of Unigram watermark. The results are
shown in Fig. 6. As anticipated, 85.78% of the maximum allowable tokens to be inserted into
the watermarked content satisfy Eq. 5. Given that this equation analyzes expected s/l, a small
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portion of outliers is reasonable. We primarily visualize this result for Unigram due to its clean
robustness guarantee. Other watermarks can also reach similar conclusions, but their bounds on
s are either complex Kirchenbauer et al. (2023a) or lack a closed form Kuditipudi et al. (2023),
making them difficult to visualize. Our empirical findings in Fig. 1 sufficiently prove an attacker
can insert nontrivial portions of toxic or incorrect tokens into the watermarked text to launch the
spoofing attack, which can be generalized across all robust watermarking schemes.
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Figure 6: The relationship between s/l and z. The data points are evaluated on Unigram using LLAMA-2-7B
and 500 samples from OpenGen dataset.

G PROBABILITY BOUND OF UNWATERMARKED TOKEN ESTIMATION FOR
KGW AND UNIGRAM

Key/Query Number Analysis. Now we analyze the number of required queries under different
keys to estimate the token with the highest probability without a watermark. We have the following
probability bound for KGW and Unigram, and present the bound for Exp in Appendix H.

Theorem 2 (Probability bound of unwatermarked token estimation). Suppose there are n observa-
tions under different keys, the portion of the green list in KGW or Unigram is γ. Then the probability
that the most frequent token is the same as the original unwatermarked token is

1−
⌊n/2⌋∑
k=0

(
n

k

)
γk(1− γ)n−k × p(k), (6)

where p(k) = 1 −
(∑k−1

m=0

(
n−k
m

)
γm(1 − γ)n−k−m

)c
, c is the number of other tokens whose

watermarked probability can exceed that of the highest unwatermarked token.

In a practical scenario where n = 13, γ = 0.5, and c = 3, Theorem 2 suggests that the attacker has
a probability of 0.71 in finding the token with the highest unwatermarked probability. This implies
that we can successfully remove watermarks from over 71% of tokens using a small number of
observations under different keys (n = 13), yielding high-quality unwatermarked content.

Proof. Now we present the proof for Theorem 2.

Proof. Recall that KGW and Unigram randomly split the tokens in the vocabulary into the green
list and the red list. We consider greedy sampling, where the token with the highest (watermarked)
probability is sampled. We have n independent observations under different watermark keys. For
each key, the token xi with the highest unwatermarked probability in the green list is γ. As long
as xi is the green list, the greedy sampling will always yield xi since the watermarks add the same
constant to all the tokens’ logits in the green list.

Thus, the probability that the most frequent token among these n observations is xi is at least:

1−
⌊n/2⌋∑
k=0

(
n

k

)
γk(1− γ)n−k,

which is the probability that xi is in the green list for at least half of the n keys.
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For another token xj whose probability can exceed xi, if xj is in the green list and xi is in the red
list. Then if xi is in the green list for k keys, the probability that xj is in the green list for at least k
keys among the other n− k keys is:

1−
k−1∑
m=0

(
n− k

m

)
γm(1− γ)n−k−m

Consider we have c such tokens having the potential to exceed xi. Then at least one of the c tokens
is in the green list for at least k keys among the other n− k keys:

1−
( k−1∑
m=0

(
n− k

m

)
γm(1− γ)n−k−m

)c
Thus, with all the above analysis, we have that if there are c tokens that have the potential to exceed
the probability of the token with the highest unwatermarked probability (i.e., xi), the probability that
the most frequent token among the n observations is the same as xi is:

1−
⌊n/2⌋∑
k=0

(
n

k

)
γk(1− γ)n−k ×

(
1−

( k−1∑
m=0

(
n− k

m

)
γm(1− γ)n−k−m

)c)
,

which concludes the proof.

H PROBABILITY BOUND OF UNWATERMARKED TOKEN ESTIMATION FOR
EXP

In this section, we present and prove the probability bound of unwatermarked token estimation for
the Exp watermark Kuditipudi et al. (2023).

Theorem 3 (Probability bound of unwatermarked token estimation for Exp). Suppose there are n
observations under different keys, the highest probability for the unwatermarked tokens is p. Then
the probability that the most frequently appeared token among the n observations is the same as the
original unwatermarked token with the highest probability is:

1−
⌊n/2⌋∑
k=0

(
n

k

)
pk(1− p)n−k (7)

Proof. The proof of Theorem 3 is straightforward. As we have introduced in Appendix C, the Exp
watermark employs the Gumbel trick sampling Gumbel (1948) when embedding the watermark.
Thus, the probability that we observe the token whose original unwatermarked probability is p is
exactly p for each of the independent keys. Thus, if we make n observations under different keys,
then at least half of them yield the token with the highest original probability p:

1−
⌊n/2⌋∑
k=0

(
n

k

)
pk(1− p)n−k,

which concludes the proof.

I ALGORITHMS OF ATTACKS EXPLOITING THE DETECTION API

In this section, we provide the detailed algorithm of the attacks exploiting the detection API as we
have introduced in Appendix D. Specifically, we present the algorithm for watermark-removal attack
exploiting the detection API in Alg. 1 and the algorithm for spoofing attack exploiting the detection
API in Alg. 2.
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Algorithm 1 Watermark-removal attack exploiting the detection API.
Input: Prompt xprompt, watermarked LLM Mwm, detection API fdetection, maximum output token number
m ≥ 2
Let k ← 5, x1 ∼Mwm(xprompt)
for t = 2 to m do

(x1
t , x2

t , · · · , xk
t ), (p1

t , p2
t , · · · , pk

t )←Mwm(xprompt||x1 · · · xt−1) {The watermarked LLM returns the
top k tokens and their corresponding probabilities in descending order.}
for i = 1 to k do
di ← fdetection(x1|| · · · ||xt−1||xi

t)
dmin ← min(d1, d2, · · · , dk), lcandidate ← empty {Get the detection score with the lowest confidence.}
for i = 1 to k do

if dmin = di then
lcandidate ← lcandidate||xi

t {Get all the tokens with the lowest detection confidence.}
if x1

t ∈ lcandidate then
j ← 0 {If the token with the highest probability (the first token) is in the list, output that token.}

else
c← 1
for xi

t ∈ lcandidate do
pi
t ← p1

t/c {Update the tokens’ probabilities that have lowest detection confidence scores.}
c← c+ 1

p1
t ← 0

j ← Sample(p1
t , · · · , pk

t ) {Sample the tokens according to the updated probabilities.}
xt ← xj

t

Return x1, x2, · · · , xm

Algorithm 2 Spoofing attack exploiting the detection API.
Input: Prompt xprompt, local LLM M , detection API fdetection, maximum output token number m
Let k ← 3
for t = 1 to m do

(x1
t , x2

t , · · · , xk
t ), (p1

t , p2
t , · · · , pk

t )←M(xprompt||x1 · · · xt−1) {The local LLM returns the top k tokens
and their corresponding probabilities in descending order.}
for i = 1 to k do
di ← fdetection(x1|| · · · ||xt−1||xi

t)
j ← argmax(d1, d2, · · · , dk) {Get the token resulting in the highest confidence.}
xt ← xj

t

Return x1, x2, · · · , xm

J ADDITIONAL RESULTS OF WATERMARK-REMOVAL ATTACKS EXPLOITING
QUALITY-PRESERVING PROPERTY

In this section, we provide more evaluation results of the watermark-removal attack exploiting the
quality-preserving property (see Sec. 3) on all three watermarks (KGW, Unigram, and Exp) and two
models (Llama-2-7B and OPT-1.3B). The results are shown in Fig. 7, 8, 9, 10, 11. For KGW water-
mark on OPT-1.3B model and Unigram watermark on Llama-2-7B and OPT-1.3B models, we have
consistent observations with the KGW watermark on Llama-2-7B as we present in Sec. 3.1, demon-
strating the effectiveness of our attacks. For the Exp watermark, our results in Fig. 8 and Fig. 11 also
show the watermark can be easily removed using multiple queries to estimate the unwatermarked
tokens.

For Exp watermark Kuditipudi et al. (2023), the use of multiple watermark keys is inherent in its
design, which is default to 256. Thus, Exp has the same unwatermarked detection results for various
numbers of queries under different watermark keys. From the results in Fig. 8 and Fig. 11, we
conclude that using n = 13 queries under different keys, the resulting p-value is very close to that
of the content without watermark and is significantly different from the watermarked p-value, which
shows that we can effectively remove the watermark using 13 queries for each token. We note that
for Exp, the perplexity of watermarked content is significantly higher than that of unwatermarked
content. This is primarily because Exp does not allow sampling in watermark embedding, which
becomes a deterministic algorithm when the key is fixed. Conversely, our watermark-removal attack
generates content with much lower perplexity, making it comparable to unwatermarked content
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when query number under different keys exceeds 13. This can be attributed to our attack functioning
as a layer of random sampling. Unlike greedy sampling methods, we have a probability to sample
the token with the highest unwatermarked probability (refer Sec. 2, Appendix G, and Appendix H).

The results of the three watermarks and two models prove that the watermark-removal attack ex-
ploiting the quality-preserving property using multiple keys can effectively eliminate the water-
marks while maintaining high output quality. We anticipate that this attack can be generalized to all
watermarking schemes that have quality-preserving properties.
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Figure 7: Watermark-removal on Unigram watermark Zhao et al. (2024) and Llama-2-7B model with multiple
watermark keys.
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Figure 8: Watermark-removal on Exp watermark Kuditipudi et al. (2023) and Llama-2-7B model with multiple
watermark keys.
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Figure 9: Watermark-removal on KGW watermark Kirchenbauer et al. (2023a) and OPT-1.3B model with
multiple watermark keys.

K ADDITIONAL RESULTS OF DP DEFENSE

We present additional evaluation results of our defense technique that enhances the watermark de-
tection by utilizing the techniques of differential privacy (see Appendix D). Consistent with Ap-
pendix D.3, we evaluate the utility of the DP defense as well as its performance in mitigating the
spoofing attack exploiting the detection API. The results are shown in Fig. 12, 13, 14, 15, 16.
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Figure 10: Watermark-removal on Unigram watermark Zhao et al. (2024) and OPT-1.3B model with multiple
watermark keys.
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Figure 11: Watermark-removal on Exp watermark Kuditipudi et al. (2023) and OPT-1.3B model with multiple
watermark keys.

We first identify the optimal noise scale parameter σ based on its detection accuracy and attack
success rate, aiming for a drop in detection accuracy within 2% and the lowest attack success rate.
Then we assess the performance of the defense where the attackers average results from multiple
queries to the detection API. Our findings across three watermarks and two models consistently
demonstrate that we can significantly reduce the attack success rate to around or below 20% in single
query scenarios. Even when an attacker uses multiple queries to reduce noise, we can still limit their
success rate to approximately 50%. Despite an attacker potentially achieving high success rates
with a large number of queries (200× more queries in our experiments), their resulting detection
confidence scores remain lower than those without any defense.

Our defense can be generalized to all LLM watermarking schemes. It allows us to substantially
mitigate spoofing attacks exploiting the detection API while having a negligible impact on utility.
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Figure 12: Evaluation of DP watermark detection on Unigram watermark and Llama-2-7B model. (a). Detec-
tion accuracy and spoofing attack success rate without and with DP watermark detection under different noise
parameters. (b). Z-scores of original text without attack, spoofing attack without DP, and spoofing attacks with
DP under different query numbers. We use the best σ = 4 from (a).
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Figure 13: Evaluation of DP watermark detection on Exp watermark and Llama-2-7B model. (a). Detection
accuracy and spoofing attack success rate without and with DP watermark detection under different noise
parameters. (b). Z-scores of original text without attack, spoofing attack without DP, and spoofing attacks with
DP under different query numbers. We use the best σ = 4 from (a).
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Figure 14: Evaluation of DP watermark detection on KGW watermark and OPT-1.3B model. (a). Detection
accuracy and spoofing attack success rate without and with DP watermark detection under different noise
parameters. (b). Z-scores of original text without attack, spoofing attack without DP, and spoofing attacks with
DP under different query numbers. We use the best σ = 4 from (a).
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Figure 15: Evaluation of DP watermark detection on Unigram watermark and OPT-1.3B model. (a). Detection
accuracy and spoofing attack success rate without and with DP watermark detection under different noise
parameters. (b). Z-scores of original text without attack, spoofing attack without DP, and spoofing attacks with
DP under different query numbers. We use the best σ = 4 from (a).
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Figure 16: Evaluation of DP watermark detection on Exp watermark and OPT-1.3B model. (a). Detection
accuracy and spoofing attack success rate without and with DP watermark detection under different noise
parameters. (b). Z-scores of original text without attack, spoofing attack without DP, and spoofing attacks with
DP under different query numbers. We use the best σ = 4 from (a).
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