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ABSTRACT

Neural Radiance Fields (NeRFs) have emerged as powerful tools for capturing
detailed 3D scenes through continuous volumetric representations. Recent NeRFs
utilize feature grids to improve rendering quality and speed; however, these rep-
resentations introduce significant storage overhead. This paper presents a novel
method for efficiently compressing a grid-based NeRF model. Our approach
is based on the non-linear transform coding paradigm, where we compress the
model’s feature grids using end-to-end optimized neural compression. Since these
neural compressors are overfitted to individual scenes, we develop lightweight de-
coders and encoder-free compression. To exploit the spatial inhomogeneity of the
latent feature grids, we introduce an importance-weighted rate-distortion objective
and a sparse entropy model using a masking mechanism. Our experimental results
validate that our proposed method surpasses existing works in terms of grid-based
NeRF compression efficacy and reconstruction quality.

1 INTRODUCTION

Over the past few years, the field of 3D scene modeling and reconstruction has been revolutionized
by the advent of Neural Radiance Fields (NeRF) methodologies (Mildenhall et al., 2021; Zhang
et al., 2020; Barron et al., 2021). NeRF offers a sophisticated method for 3D reconstruction, with
the ability to synthesize novel viewpoints from limited 2D data. Yet, for all its merits, the original
NeRF model requires millions of MLP queries, which causes a slow training and rendering time.

To address the efficiency concerns surrounding the traditional NeRF, recent advancements have
transitioned to the integration of an explicit grid representation (Yu et al., 2021; Sun et al., 2022;
Fridovich-Keil et al., 2022; Chen et al., 2022; Fridovich-Keil et al., 2023; Chan et al., 2022). While
accelerating training and rendering processes significantly, this change also poses a new challenge:
the storage costs for saving the explicit grid NeRF representation significantly increase. This prob-
lem is crucial, especially in real-world applications where storage and transmission are critical con-
straints.

Our work seeks to significantly reduce the storage costs of NeRFs. Inspired by the neural image
compression methodology (Yang et al., 2023), we apply non-linear transform coding techniques
(Ballé et al., 2020) to compress the explicit grid NeRF representation efficiently. However, we
sidestep the conventional auto-encoder approach in favor of an iterative inference framework, in
which we jointly optimize the latent code along with a lightweight decoder. We further take ac-
count of the NeRF grid importance scores while reconstructing the scene to boost the efficiency of
our compression model. Lastly, we propose a novel entropy model that masks out uninformative
feature grid points. Utilizing a rate-distortion objective, we are flexible in choosing from various
compression levels. Our proposed approach departs from previous works on compressing explicit
grid NeRF representation (Li et al., 2023a;b; Deng & Tartaglione, 2023), which are based on voxel
pruning and/or vector quantization (Gray, 1984) to omit the least importance voxels and reduce the
storage size.

To show the effectiveness of our proposed method, we perform extensive experiments on four dif-
ferent datasets. Our results show that our model is capable of compressing diverse NeRF scenes to
a much smaller size and outperforms previous works.
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2 BACKGROUND

2.1 NEURAL RADIANCE FIELDS

Neural radiance fields (Mildenhall et al., 2021), or NeRF, mark a paradigm shift in 3D scene
representation using deep neural networks. Instead of relying on traditional discrete represen-
tations like point clouds or meshes, NeRF models a scene as a continuous volumetric function
F : (x,d) → (c, σ), in which an input comprising of spatial coordinates x and a viewing di-
rection d is mapped to an output representing color c and volume density σ. The expected color
Ĉ(r) for the ray r can be calculated by sampling N points along the ray:

Ĉ(r) =

N∑
i=1

Ti · αi · ci; αi = 1− exp(−σiδi), Ti =

i∏
j=1

(1− αj) (1)

where δi is the distance between adjacent sampled points, αi is the probability of termination at i-th
point, and Ti is the accumulated transmittance along the ray up to i-th point. NeRF is then trained
to minimize total squared error loss between the rendered and true pixel colors.

Lrender =
∑
r

||Ĉ(r)− C(r)||22 (2)

Despite NeRF’s ability to provide intricate scene details with a relatively compact neural network,
the computational demand remains a significant constraint. The evaluation over the volume often
requires thousands of network evaluations per pixel. To reduce training and inference time, recent
research has employed explicit grid structure into NeRF. More specifically, they introduce voxel
grids (Sun et al., 2022; Fridovich-Keil et al., 2022) or decomposed feature planes (Chen et al., 2022;
Fridovich-Keil et al., 2023; Chan et al., 2022) into the model, and query point features via trilinear
or bilinear interpolation. While this notably speeds up training and inference, it does come at the
expense of greater storage needs from saving the feature grids.

2.2 NEURAL COMPRESSION

Neural compression utilizes neural networks to perform data compression tasks. Traditional com-
pression algorithms are handcrafted and specifically tailored to the characteristics of the data they
compress, such as JPEG (Wallace, 1991) for images or MP3 for audio. In contrast, neural compres-
sion seeks to learn efficient data representations directly from the data, exemplified by the nonlinear
transform coding paradigm (Ballé et al., 2020).

Existing lossy neural compression methods (Ballé et al., 2016; 2018; Minnen et al., 2018; Cheng
et al., 2020) often leverages an auto-encoder structure (Kingma & Welling, 2013). An encoder E
maps a given data X to a continuous latent representation Z. This continuous latent representation Z

is then quantized to integers by Q: Ẑ = Q(Z). An entropy model P is used to transmit Ẑ losslessly.
The decoder D receives the quantized latent code Ẑ, and reconstruct the original data X̂ = D(Ẑ).
We train the encoder E, the decoder D and the entropy model P jointly using a rate-distortion
objective:

L(E,D,P ) = EX∼p(X)d(X, D(Q(E(X)))− λ log2 P (Q(E(X))) (3)
where the first term is the distortion loss that measures the reconstruction quality, the second term is
the rate loss that measures the expected code length, and λ is a hyperparameter to balance between
the two loss terms. At training time, the quantizer Q is typically replaced with uniform noise adding
(Ballé et al., 2016) to enable end-to-end training. See Yang et al. (2023) for a detailed review on
neural compression.

3 METHOD

In this section, we describe our method for grid-based NeRF compression. Our primary focus is on
the compression of the TensoRF-VM model (Chen et al., 2022), characterized by its decomposed 2D
feature planes structure (Kolda & Bader, 2009). We select TensoRF-VM because of its proficient 3D
scene modeling capabilities, often outperforms alternative methods like Plenoxels (Fridovich-Keil
et al., 2022) or DVGO (Sun et al., 2022). Nevertheless, it’s worth mentioning that our method has
the potential to be applied to other grid-based NeRF architectures.
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Problem setting. We have a TensoRF-VM model that was pre-trained for a single scene, and our
task is to reduce its size through compression, while maintaining its reconstruction quality. We
assume that we have access to the training dataset comprising view images at compressing time.

Notation. The three feature planes (or matrix components) of TensoRF-VM are denoted by
{Pi}3i=1, in which subscript i signifies the index of the planes and each Pi ∈ RCi×Hi×Wi . In
practice, TensoRF-VM has two types of feature planes: density planes for calculating densities and
appearance planes for calculating colors. Our {Pi}3i=1 can be thought of as a channel-wise concate-
nation of those two types. The vector components are not considered in our compression, hence, are
not represented in our notation. For indexing a specific spatial grid location j in the feature plane i,
we employ a superscript, represented as Pj

i .

3.1 COMPRESSING THE FEATURE PLANES

Given a trained TensoRF-VM model, most storage is used to store the feature grids. To illustrate
this, we analyze a trained model for the Lego scene from Synthetic-NeRF dataset (Mildenhall et al.,
2021). In this model, the 2D feature planes takes 67.61 MB, while the other components such as
the rendering MLP, the rendering mask, and the vector components takes only 1.21 MB. Given
this disparity, a straightforward approach to compress the TensoRF-VM model would be to employ
neural compression specifically on the feature planes.

In details, we can define an encoder E that takes the there feature planes {Pi}3i=1 and embeds
them to latent codes {Zi}3i=1, in which the Zi may have lower resolution than Pi. The latent
codes are quantized to {Ẑi}3i=1 and compressed with entropy coding using an entropy model P . At
rendering time, we decompress the quantized latent codes {Ẑi}3i=1 and forward them to the decoder
D to reconstruct the three feature planes {P̂i}3i=1. We then use {P̂i}3i=1 to query sampling point
features and render the scene. The compressed NeRF model includes the compressed latent codes,
the decoder, the entropy model and the other components.

It is crucial to highlight that we only need to reconstruct the three feature planes once, and all
subsequent querying operations for the sampling points are executed on these reconstructed planes.
Thus, the decompression process only adds minimal overhead to the overall rendering procedure.

Removing the encoder. In nonlinear transform coding, the encoder is used to obtain the latent
code of a new data point via amortized inference (Kingma & Welling, 2013; Gershman & Good-
man, 2014). This is essential for compressing a new data point quickly in a single network pass.
Nonetheless, in the case of TensoRF-VM compression, our primary objective is to compress merely
the three feature planes, and our decoder is overfitted to a single scene. Moreover, using an encoder
for amortized inference leads to an irreducible amortization gap in optimization (Cremer et al., 2018;
Marino et al., 2018), which has been shown to degrade compression performance (Campos et al.,
2019; Yang et al., 2020).

To tackle the aforementioned problems, we propose to remove the encoder from our compression
pipeline and directly learn the three latent codes {Zi}3i=1 from scratch. More specifically, we initial-
ize the {Zi}3i=1 as zeros tensor, and jointly optimize {Zi}3i=1 with the decoder D and the probability
model P .

Architecture design. Since we must transmit the decoder D along with the latent code {Zi}3i=1
to decompress the scene, it’s essential for the decoder to be lightweight. Yang & Mandt (2023) has
shown the effective of a lightweight decoder for neural compression. We found that a two-layer
transposed convolutional neural network with SELU activation Klambauer et al. (2017) is effective
for our needs.

3.2 IMPORTANCE-WEIGHTED TRAINING LOSS

Our model is trained end-to-end with a rate-distortion loss. The rate loss is defined as the log-
likelihood of the entropy model P , and it ensures that the compressed feature planes remain compact.
For the distortion loss, we discover that using only the NeRF rendering loss is not sufficient, and we
also need to use a L2 feature planes reconstruction loss for a good rendering quality.
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Figure 1: Overview of our model. At training time (left), we learn the three latent codes {Zi}3i=1 to
reconstruct the three frozen feature planes {Pi}3i=1. The reconstructed feature planes {P̂i}3i=1. are
used to render the scene and calculate the rendering loss. The entropy model P is used to calculate
the rate loss and compress the latent codes to bitstring. At rendering time (right), we use P to
decompress the bitstring to latent codes {Ẑi}3i=1 and then reconstruct the feature planes {P̂i}3i=1.

However, reconstructing the entire feature planes is not the most efficient approach for compression.
Prior research (Li et al., 2023a;b; Deng & Tartaglione, 2023) has illustrated that these feature grids
possess significant redundancy, and could be pruned to decrease the size of the model. Consequently,
if we were to reconstruct every single grid location, it would inevitably lead to additional storage
cost.

To address this issue, we suggest computing the rendering importance score, which then acts as
a weight for the L2 feature planes reconstruction loss. With this approach, our model is guided
to reconstruct only important grid locations, while ignoring the less crucial ones, ensuring a more
optimized and effective compression representation.

For each feature plane Pi ∈ RCi×Wi×Hi , we define Wi ∈ RWi×Hi as the corresponding weight
map, and this weight is shared across C feature channels. To determine {Wi}3i=1, we first follow
Li et al. (2023a;b) to calculate the rendering importance score {Ii}3i=1 as follows: For each grid
location Pj

i , its importance Iji can be determined by accumulating the importance scores of every
sampling points xk that contribute to it:

Iji =
∑
k∈Nj

ωj
k · Tk · αk (4)

where Tk and αk are defined in Section 2.1, Nj denotes the set of sampling points that falls within
the neighborhood of vj , and ωj

k denotes the bilinear interpolation weight of xk that corresponds to
the feature Pj

i .

We then apply a log-function to the importance maps {Ii}3i=1, and then normalize them to the range
of [0, 1] to get the weights {Wi}3i=1:

Wi = normalize(log(Ii + ϵ)) (5)
in which ϵ is a small number to ensure that the log function is well-defined.

Our final loss function is:

L = Lrender({P̂i}3i=1) +

3∑
i=1

(
||Pi − P̂i||22 ⊗Wi − λ log2 P (Ẑi)

)
(6)

We train the decoder D, the entropy model P , the planes {Zi}3i=1, and also fine-tune the rendering
MLP and the vector components of TensoRF-VM model with this loss function.

3.3 MASKED ENTROPY MODEL

Applying neural compression for TensoRF-VM enables us to use a wide range of different en-
tropy models. In this section, we design a simple but effective entropy models that works well for
TensoRF-VM compression.
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Theoretically, using a learned entropy model P to compress the three feature planes enables the
entropy coder to devise an optimal coding strategy, aiming to reduce redundancy. In our empirical
assessments, we observed that a predominant portion of the learned latent code is zero, especially in
the background. This observation might be attributed to our choice of initializing the latent codes as
zero tensors. Consequently, even though the entropy coder can efficiently map the zeros to shorter
bit strings, there remains the overhead of transmitting them.

In order to avoid compressing redundant information, we propose to incorporate binary masks
{Mi}3i=1 into our entropy model P . The model P compresses grid features Pj

i only when Mj
i = 1,

allowing selective compression of specific features and avoiding others. Those masks are learnable,
and can be treated as additional parameters of P .

In details, we design P to be a fully factorized probability distribution from Ballé et al. (2016) and
Ballé et al. (2018), in which every grid location is independent and identically distributed by a non-
parametric distribution pθ with learnable θ. For each latent code Ẑi to be compressed, we establish
a corresponding binary mask Mi that has the same spatial size and shared across features channel.
The joint probability distribution P is then factorized across spatial locations j as:

PMi(Ẑi) =
∏
j

p(Ẑj
i |M

j
i )

p(Ẑj
i |M

j
i = 0) = δ(Ẑj

i = 0); p(Ẑj
i |M

j
i = 1) = pθ(Ẑ

j
i )

(7)

Here, δ represents the Dirac delta distribution, which allocates a probability of 1 to Ẑj
i = 0 and 0

otherwise. This implies that if Mj
i = 0, then we designate Ẑj

i = 0. Thus, the input to the decoder
D can be calculated as Ẑi ⊗Mi, and the reconstructed planes are:

P̂i = D(Ẑi ⊗Mi) (8)

However, since the masks Mi are binary, they cannot be learned directly. To address this, we turn
to the Gumbel-Softmax trick (Jang et al., 2016) to facilitate the learning of Mi. For each Mi, we
define the 2-classes probability denoted by π0

Mi
and π1

Mi
that assign the probabilities of the mask

equal to 0 and 1. At training time, we sample Mi by straight through Gumbel-Softmax estimator
(Bengio et al., 2013; Jang et al., 2016):

Mi = argmax
j∈{0,1}

(gj + log πj
Mi

) (9)

in which gj are i.i.d samples drawn from Gumbel(0, 1). The straight through Gumbel-Softmax
estimator allows us to calculate the gradients of πj

Mi
. We then optimize the mask probabilities πj

Mi

following the rate-distortion loss:

L = Lrender({P̂i}3i=1) +

3∑
i=1

(
||Pi − P̂i||22 ⊗Wi − λ log2 PMi

(Ẑi)
)

(10)

where P̂i is calculated with Equation 8. In practice, we use an annealing softmax temperature τ that
decays from 10 to 0.1 to calculate the softmax gradients. After training, the masks Mi are sent as
additional parameters of the entropy model P .

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Datasets. We perform our experiments on 4 datasets:

• Synthetic-NeRF (Mildenhall et al., 2021): This dataset contains 8 scenes at resolution 800×
800 rendered by Blender. Each scene contains 100 training views and 200 testing views.

• Synthetic-NSVF (Liu et al., 2020): This dataset also contains 8 rendered scenes at resolu-
tion 800× 800. However Synthetic-NSVF contains more complex geometry and lightning
effects compared to Synthetic-NeRF.

5



Under review as a conference paper at ICLR 2024

• LLFF (Mildenhall et al., 2019): LLFF contains 8 real-world scenes made of realistic and
forward-facing images with non empty background. We use the resolution 1008× 756.

• Tanks and Temples (Knapitsch et al., 2017): We use 5 real-world scenes: Barn, Caterpillar,
Family, Ignatus, Truck from the Tanks and Temples dataset to experiment with. They have
the resolution of 1920× 1080.

To perform compression experiments, we initially train a TensoRF-VM model for every scene within
those datasets. We use the default TensoRF-VM 192 hyperparameters, as detailed in the paper Chen
et al. (2022). Subsequently, we apply our proposed method to compress these trained models. All
experimental procedures are executed using PyTorch (Paszke et al., 2019) on NVIDIA RTX A6000
GPU units.

Baselines. We compare our compression paradigm with other baselines: The original NeRF model
with MLP (Mildenhall et al., 2021), the uncompressed TensoRF-CP and TensoRF-VM from Chen
et al. (2022), two prior compression methods for TensoRF-VM based on pruning and vector quan-
tization named VQ-TensoRF from Li et al. (2023a) and Re:TensoRF from Deng & Tartaglione
(2023).

Hyperparameters. As discussed in Section 3.1, our decoder has two transposed convolutional
layers with SELU activation (Klambauer et al., 2017). They both have kernel size of 3, with stride
2 and padding 1. Thus, each layer has the upsample factor of 2. Given a feature plane sized Ci ×
Wi ×Hi, we initialize the corresponding latent code Zi to have the size of CZi

×Wi/4×Hi/4.

Having a decoder with more parameters will enhance the model’s decoding ability, while also in-
crease its size. In light of this trade-off, we introduce two configurations: TC-TensoRF-H (stands
for Transform Coding TensoRF - high compression) employs latent codes with 192 channels and a
decoder with 96 hidden channels, while TC-TensoRF-L (low compression) has 384 latent channels
and 192 decoder hidden channels. Regarding the hyperparameter λ, we experiment within the set
{0.02, 0.01, 0.005, 0.001, 0.0005, 0.0002, 0.0001}, with higher λ signifies a more compact model.

We train our models for 30, 000 iterations with Adam optimizer (Kingma & Ba, 2014). We use an
initial learning rate of 0.02 for the latent codes and 0.001 for the networks, and apply an exponential
learning rate decay.

4.2 EXPERIMENT RESULTS

Quantitative Results. We first compare our results with the baselines quantitatively. We use
PSNR and SSIM (Wang et al., 2004) metrics to evaluate the reconstruction quality. The compression
rate is determined by the compressed file size, represented in MB.

Our detailed results can be observed in Table 1. Compare to the other two TensoRF compression
baselines VQ-TensoRF and Re:TensoRF, our variant TC-TensoRF-L showcases superior reconstruc-
tion performance in terms of both the PSNR and SSIM metrics while maintaining a reduced file
size across 3 datasets: Synthetic-NeRF, Synthetic-NSVF and Tanks & Temples. In the case of the
LLFF dataset, we are slightly behind VQ-TensoRF and Re:TensoRF in PSNR. Despite this, our
SSIM surpass both baselines, and remarkably, the size of our compressed files is just about half
of VQ-TensoRF and a mere quarter when compared to Re:TensoRF. For less number of channels,
our TC-TensoRF-H is able to compress the model sizes to less than 2MB, while maintaining a de-
cent reconstruction quality. Notably, our TC-TensoRF-H has similar SSIM with Re:TensoRF on
Synthetic-NeRF and Tanks&Temples.

Qualitative Results. We showcase images rendered using our conpression method for both con-
figurations: TC-TensoRF-L and TC-TensoRF-H in Figure 2 and Figure 3. Visually, there is minimal
disparity between the uncompressed and compressed images.

Rate-distortion performance. The rate-distortion curve is widely used in neural compression to
compare the compression performance across different compression level. Here we analyze the rate-
distortion curve of our TC-TensoRF-L with various λ values versus the baseline VQ-TensoRF with
various codebook size. For the VQ-TensoRF evaluations, we employed the officially released code
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Table 1: Quantitative results comparing our method versus the baselines. PSNR is measured in
dB, while the sizes are in MB. We choose the λ to balance between the reconstruction quality and
storage size.

Methods
Synthetic-NeRF Synthetic-NSVF LLFF Tanks and Temples

PSNR SSIM Size PSNR SSIM Size PSNR SSIM Size PSNR SSIM Size

U
nc

om
-

pr
es

se
d NeRF 31.01 0.947 5.0 - - - 26.50 0.811 5.0 25.78 0.864 5.0

TensoRF-CP 31.56 0.949 3.9 34.48 0.971 3.9 - - - 27.59 0.897 3.9
TensoRF-VM 33.09 0.963 67.6 36.72 0.982 71.6 26.70 0.836 179.8 28.54 0.921 72.6

C
om

-
pr

es
se

d VQ-TensoRF 32.86 0.960 3.6 36.16 0.980 4.1 26.46 0.824 8.8 28.20 0.913 3.3
Re:TensoRF 32.81 0.956 7.9 36.14 0.978 8.5 26.55 0.797 20.2 28.24 0.907 6.7
TC-TensoRF-L (ours) 32.93 0.961 3.4 36.34 0.980 4.0 26.44 0.826 4.9 28.42 0.915 2.9
TC-TensoRF-H (ours) 32.31 0.956 1.6 35.33 0.974 1.6 25.72 0.786 1.7 28.08 0.907 1.6

Figure 2: Qualitative results on Chair and Mic scenes from the Synthetic-NeRF dataset. From left
to right: Ground truth image, uncompressed TensoRF, TC-TensoRF-L, TC-TensoRF-H.

and utilized the same pre-trained TensoRF models for consistency. Figure 4 shows that our TC-
TensoRF-L outpaces VQ-TensoRF across various levels of compression in Synthetic-NeRF dataset
with both PSNR and SSIM metrics. Rate-distortion curves for other datasets can be found in the
Appendix.

Training and rendering time. Training our compression algorithm for a scene from the Synthetic-
NeRF dataset is completed in approximately 40 minutes when using an NVIDIA A6000 GPU. In
terms of rendering, our approach adds a negligible overhead of roughly 2 seconds for the decom-
pression of parameters. Once decompressed, the rendering procedure is the same as TensoRF.

4.3 ABLATION STUDIES

We conduct experiments to verify our design choice. We test on the Synthetic-NeRF datasets, with
our TC-TensoRF-L architecture.

Training without Importance-Weighted Loss. We examine the rate-distortion curves of TC-
TensoRF-L, trained both with and without importance weight, as depicted in Figure 5. At an iden-
tical PSNR of 32.98 dB, employing importance weight in training our model helps reduce the file
size from 4.59 MB to 3.92 MB.
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Ground truth TensoRF TC-TensoRF-L TC-TensoRF-H

Figure 3: Qualitative results on Fern scene from the LLFF dataset.
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Figure 4: Comparison of rate-distortion curves between our proposed methods and the baseline VQ-
TensoRF on the Synthetic-NeRF dataset. The left figure illustrates PSNR against file size, and the
right figure showcases SSIM in relation to file size.

Effective of Masked Entropy Model. To demonstrate the efficacy of our masked entropy model,
we undertook a comparative analysis between the compression performance of TC-TensoRF-L using
the conventional factorized prior (Ballé et al., 2016; 2018) and our masked model. The results related
to rate distortion curves can be found in the left plot of Figure 5.

It’s noteworthy that, due to the additional overhead introduced by sending the masks, our results lag
slightly behind the factorized prior in a low-rate setting. Yet, in medium to high-rate regimes, our
prior emerges superior compared to the traditional factorized prior. To illustrate, for a PSNR value
of 32.98 dB, the compressed file with the factorized prior occupies 4.26 MB. In contrast, our method
employing the proposed masked entropy model results in a reduced file size of 3.92 MB.

To further understand the behavior of our masked entropy model, we visualize the masks learned
for the Chair and Mic scene from Synthetic-NeRF dataset in the right side of Figure 5. We can
observe that the masks resemble the rendering objects when viewed from different angles, and they
inherently ignore the background. This behavior is similar to the pruning strategies employed in
prior grid-based NeRF compression works (Li et al., 2023a;b; Deng & Tartaglione, 2023).

5 RELATED WORKS AND DISCUSSION

Grid-based NeRF compression. Since storage cost is a significant challenge of grid-based NeRF,
several methods were proposed to solve this problem. Li et al. (2023a) introduces a three-stage
approach, integrating voxel pruning and vector quantization (Gray, 1984) through a learnable code-
book. Similarly, Re:NeRF (Deng & Tartaglione, 2023) employs voxel pruning, but adopts a strategy
of sequentially removing and reintegrating parameters to prevent significant drop in performance.
Meanwhile, Takikawa et al. (2022) adopts the codebook idea from Instant-NGP (Müller et al., 2022),
but substitutes hash-based encoding with a learned mapping that associates grid positions to corre-
sponding codebook indices. However this approach requires considerable training memory. Li et al.
(2023b) applies downsampling to the voxels and employs a network to enhance render quality. Our
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Figure 5: Ablation studies. Left: The rate-distortion curves are compared between different config-
urations. Right: Masks learned from Chair and Mic scenes in Synthetic-NeRF dataset.

method shares some similarity to Li et al. (2023b), but we learn the downsampled latent codes with a
novel entropy model to effectively compress them. Additionally, while our masked factorized prior
also resembles the pruning mechanism used in previous works, our method differentiates itself by
adaptively learning the masks instead of relying on fixed thresholds.

Neural compression for NeRF. Applying neural compression to NeRF is a relatively young field.
Bird et al. (2021) learns an entropy model to compress the MLP-based NeRF Mildenhall et al. (2021)
network weights, based on the prior model compression work of Oktay et al. (2019). In contrast,
our work focuses on compressing the feature grids of grid-based NeRF. We additionally improve the
conventional compression procedure and propose a novel entropy model.

Discussion. Throughout this paper, our emphasis has been on applying neural compression tech-
niques specifically to TensoRF. Nonetheless, our method has the potential to be applied to other
grid-based NeRF methods beyond just TensoRF, such as Triplanes (Chan et al., 2022; Fridovich-
Keil et al., 2023), DVGO (Sun et al., 2022) or Plenoxels (Fridovich-Keil et al., 2022). Taking DVGO
as an example, we can learn a 4D latent code and have an entropy model to model its probability
density. Then a decoder may decode this 4D latent code to render the scene. We hope to explore
those extensions in future works.

6 CONCLUSION

In this study, we present a novel approach to applying neural compression to the TensoRF model, a
prominent grid-based NeRF method. Our findings suggest that with the integration of our entropy
model and compression techniques, we can achieve significant reductions in storage requirements
with a small compromising in rendering quality. Although our primary focus is on the TensoRF
model, the versatility of our approach means it has potential applications to other grid-based NeRF
methods.
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A APPENDIX

A.1 ALGORITHM

Algorithm 1: Transform Coding for TensoRF-VM
Input : Pretrained TensoRF-VM model
Output: Compressed TensoRF-VM model

Calculate {Wi}3i=1 using Eq 4 and 5;
Initialize {Zi}3i=1 as 0-tensors;
Initialize decoder D and entropy model P with masks parameters {π0

Mi
}3i=1 and {π1

Mi
}3i=1;

while not reached max iterations do
Sample {Mi}3i=1 using Gumbel-Softmax as in Eq 9;
Reconstruct {P̂i}3i=1 by Eq 8;
Render the scene with {P̂i}3i=1;
Calculate the loss in Eq 10 and update the model;

return ({Zi}3i=1, D, P ) and other fine-tuned components.

A.2 MORE RATE-DISTORTION COMPARISON

We further compare the rate-distortion curves of TC-TensoRF and the baseline VQ-TensoRF on the
Synthetic-NSVF, LLFF and Tanks&Temples datasets.
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Figure 6: Comparison on Synthetic-NSVF dataset.

1 2 3 4 5 6 7 8 9
File Size (MB)

25.6

25.8

26.0

26.2

26.4

26.6

PS
N

R
 (d

B
)

VQ-TensoRF
TC-TensoRF-L
TC-TensoRF-H
Uncompressed

2 3 4 5 6 7 8
File Size (MB)

0.79

0.80

0.81

0.82

0.83

0.84

SS
IM

VQ-TensoRF
TC-TensoRF-L
TC-TensoRF-H
Uncompressed

Figure 7: Comparison on LLFF dataset.
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Figure 8: Comparison on Tanks and Temples dataset.

A.3 MORE QUALITATIVE RESULTS

We show qualitative results on all scenes from Synthetic-NeRF, Synthetic-NSVF, LLFF and
Tanks&Temples datasets.
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Figure 9: Qualitative results on Tanks and Temples dataset.
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Figure 10: Qualitative results on Synthetic-NeRF dataset.
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Figure 11: Qualitative results on Synthetic-NSVF dataset.
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Figure 12: Qualitative results on LLFF dataset.
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