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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated strong empirical performance
across domains, yet their fundamental statistical behavior remains poorly under-
stood. This paper presents a theoretical characterization of the sample complexity
of ReLU-based GNNs. We establish tight minimax lower bounds on the generaliza-
tion error, showing that for arbitrary graphs, without structural assumptions (i.e., in

the worst case over admissible graphs), it scales as
√

log d
n with sample size n and

input dimension d, matching the 1/
√
n behavior known for feed-forward neural

networks. Under structural graph assumptions—specifically, strong homophily and
bounded spectral expansion—we derive a sharper lower bound of d

logn . Empirical
results on standard datasets (Cora, Reddit, QM9, Facebook) using GCN, GAT, and
GraphSAGE support these theoretical predictions. Our findings establish funda-
mental limits on GNN generalization and underscore the role of graph structure in
determining sample efficiency.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become central to machine learning on structured data, achiev-
ing state-of-the-art results across domains such as social networks (Sen et al., 2008), molecular
property prediction (Ruddigkeit et al., 2012), and community detection (Ramakrishnan et al., 2014a).
By exploiting graph topology and node features, GNNs are now indispensable in modern AI systems.
Despite this success, their statistical foundations remain limited: how many training samples are
required for a GNN to generalize reliably to unseen data?

For feed-forward and convolutional networks, minimax analyses show that ReLU networks achieve
risk scaling of 1/

√
n in the number of samples n (Golestaneh et al., 2024), in contrast to the classical

1/n parametric rate. These results rely on i.i.d. assumptions, whereas GNNs operate on correlated
inputs through graph edges. This dependency complicates sample complexity analysis and raises the
central question: how does graph structure influence generalization?

While prior work has provided upper bounds for GNNs using VC-dimension or PAC-Bayes frame-
works, these bounds scale poorly with network size and give limited insight into fundamental limits
(see Section 2). In particular, sharp lower bounds for GNNs are largely absent, leaving it unclear
whether GNNs can match the sample efficiency of feed-forward networks, or whether structural
biases induce fundamentally different scaling laws.

In this work, we establish new minimax lower bounds for ReLU-based GNNs. Using Fano’s inequality,
we prove that without structural assumptions on the graph (worst case over admissible graphs), the

generalization error must scale at least as
√

log d
n , matching the known 1/

√
n rate. Moreover, under

natural conditions—graphs with strong homophily and moderate expansion (Laplacian spectral gap
λ2 ≤ κ/ log n)—we obtain a sharper lower bound of d

logn .

Experiments on Cora (node classification), Reddit (community detection), QM9 (graph regression),
and Facebook (link prediction) with standard GNN architectures (GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017)) confirm that generalization often
aligns with this refined 1/ logn scaling.

Contributions. We:

1. Establish a minimax risk lower bound for GNNs, scaling as
√
log d/n.

1
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2. Derive a sharper lower bound of d
logn under structural graph assumptions.

3. Empirically validate this refined scaling law on four benchmark datasets and three widely adopted
GNN architectures (GCN, GAT, GraphSAGE).

4. Provide a framework connecting theoretical sample complexity with practical GNN performance.

2 RELATED WORK

The sample complexity of deep neural networks is well studied. For fully connected and convolutional
architectures, the minimax risk is known to scale as 1/

√
n, reflecting the higher data requirements of

deep learning models compared to classical parametric methods (Golestaneh et al., 2024). Nonpara-
metric regression under smoothness assumptions also yields convergence guarantees (Schmidt-Hieber,
2020), though these results differ substantially from those for modern deep architectures.

In contrast, the theoretical understanding of generalization in Graph Neural Networks (GNNs)
remains underdeveloped. Early efforts analyzed the VC-dimension of GNNs (Scarselli et al., 2009),
but obtained bounds that scale poorly with depth and width. PAC-Bayesian approaches provided
stability-based alternatives (Liao et al., 2020), yet sharp sample complexity characterizations are still
lacking. Other lines of work investigate representational limits (Garg et al., 2020), or connect graph
topology to training dynamics (Oono & Suzuki, 2021; Nikolentzos et al., 2022). However, lower
bounds on generalization—critical for understanding statistical limitations—remain scarce.

Expressivity and generalization of MPNNs. Franks et al. study message-passing GNNs from an
expressivity–learnability perspective, establishing upper generalization bounds via VC/covering-
number analyses and showing how node individualization or positional encodings increase expres-
sivity while preserving learnability (Franks et al., 2024). Their guarantees scale with architectural
size (depth/width) and the chosen individualization scheme. Our results are complementary: we
provide minimax lower bounds for standard ReLU MPNNs with input-independent local aggregation
(Assumption (A1)), making the role of graph structure explicit via the spectral–homophily condition
(Theorem 2). In short, Franks et al. (2024) delineate what is achievable in favorable regimes (upper
bounds), whereas our results certify obstacles that persist even for richer hypothesis classes (by
monotonicity of minimax risk).

Recently, Pellizzoni et al. analyzed GNNs with node individualization schemes, showing that such
modifications reduce sample complexity by enhancing expressivity while controlling VC-dimension
and covering numbers (Pellizzoni et al., 2024). Together with Franks et al. (2024), these works chart
the upper-bound landscape under expressivity-enhancing augmentations (e.g., individualization or
positional encodings). Our focus is orthogonal: we establish lower bounds for standard message-
passing GNNs without such augmentations, exposing an unavoidable dependence on graph structure.

Our work extends the minimax framework from feedforward networks (Golestaneh et al., 2024)
to GNNs with arbitrary graph inputs, without relying on strong smoothness or independence as-
sumptions. By incorporating graph topology directly, we derive intrinsic lower bounds on GNN
sample complexity that align closely with empirical trends. Unlike our general bound (Theorem 1),
the structure-aware bound (Theorem 2) accommodates adjacency-masked attention by relying on
mixing/locality rather than input-independent aggregation.

Taken together, these strands bracket the problem: expressivity-driven upper bounds (Pellizzoni et al.,
2024; Franks et al., 2024) and structure-aware lower bounds (this work).

3 PROBLEM FORMULATION AND MAIN RESULT

We consider a GNN operating on a graph G = (V,E) with |V | nodes, |E| edges, adjacency matrix
A, and node features Xv ∈ R|V |×d for v ∈ V .

Graphs and terminology. Throughout, we allow arbitrary simple, undirected graphs. A chain graph
(path graph Pm on m nodes) has edges {(1, 2), (2, 3), . . . , (m− 1,m)}. Chain graphs are admissible
members of our graph family and instantiate the hard distribution in the proof of Theorem 1.

Task settings. We study three prediction regimes with Ŷ the output of a GNN f , and q ≥ 1 its
output dimension: (i) Graph-level (inductive): Each example is a graph G with features X , and the
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model outputs f(G,X) = Ŷ ∈ Rq. (ii) Node-level (transductive): A single graph G is observed;
training/test examples are nodes v ∈ V . The model outputs f(G,X) = Ŷ ∈ R|V |×q, with the v-th
row ŷv predicting node v. (iii) Link-level: Given queried pairs P ⊆ V × V , the model outputs
f(G,X;P) = Ŷ ∈ R|P|×q, with entries ŷ(u,v) from final-layer embeddings.

Unless stated otherwise, losses are squared error for regression and cross-entropy for classification.
Theorem 1 concerns graph-level (inductive) risk, and Theorem 2 node-level (transductive) risk.

ReLU Graph Neural Networks. A ReLU-based GNN with L message-passing layers realizes a
function f : G 7→ Ŷ , where G is a graph with node features X , and Ŷ is the predicted output. Each
layer updates hidden node representations as:

h
(ℓ+1)
i = ϕ

(
W (ℓ) Aggj∈N (i) h

(ℓ)
j +B(ℓ)h

(ℓ)
i

)
, ϕ(z) = max{0, z}, ℓ = 0, . . . , L− 1. (1)

Here W (ℓ) ∈ Rdℓ+1×dℓ acts on the aggregated neighbor messages Aggj∈N (i) h
(ℓ)
j , and B(ℓ) ∈

Rdℓ+1×dℓ is the self–loop mixing matrix applied to h
(ℓ)
i . Additive biases b(ℓ) ∈ Rdℓ+1 can be

included but are omitted here since including them only enlarges the hypothesis class and does not
affect our minimax lower bounds. The aggregator Agg is permutation-invariant, graph-dependent but
input-independent (e.g., sum or mean); node representations are initialized as h(0)

i = xi

Architectural scope and assumptions. Our lower bound in Theorem 1 applies to message-passing
GNNs that satisfy: (A1) input-independent, 1-hop permutation-invariant aggregation (e.g., SUM,
MEAN, normalized adjacency), and (A2) uniform layerwise Lipschitz/variation control, instantiated
as the ℓ1-norm budget

∑L−1
ℓ=0

(
∥W (ℓ)∥1 + ∥B(ℓ)∥1

)
≤ vs, which promotes sparsity and is consistent

with recent theoretical results on over-parameterized networks (Lederer, 2022; Taheri et al., 2020).
(Any equivalent operator-norm bound yields the same rates up to constants.)

Transformers and attention-based GNNs violate (A1) and are therefore excluded from Theorem 1. By
contrast, Theorem 2 requires only adjacency locality and bounded layer operators, and thus extends
to adjacency-masked attention under suitable norm bounds (see Remarks 2).

We assume ReLU activations, standard in GCNs, GATs, and GraphSAGE; our minimax bounds
remain valid for any larger hypothesis class obtained by replacing ReLU with more expressive or
injective MLPs.

We define FGNN(vs, L) as the class of L-layer ReLU GNNs satisfying this constraint. For simplicity,
we fix (vs, L) and write FGNN.

Risk notions. We quantify generalization error via minimax risks. Here f⋆ ∈ FGNN denotes a target
function (ground truth), and f̂ a learned estimator depending on training data.

Graph-level (inductive) risk: Let (Gi, Xi, Yi)
n
i=1 be i.i.d. training samples, where each Gi is an

independent graph. Define

Rgraph
n (FGNN) := inf

f̂
sup

f⋆∈FGNN

EtrainEG∼PG

[
(f̂(G)− f⋆(G))2

]
, (2)

where Etrain is over the training graphs (Gi, Xi, Yi)
n
i=1 ∼ Pn and the inner expectation is over an

independent test graph G ∼ PG.

Node-level (transductive) risk: Fix a connected graph G = (V,E) with features X . Let S ⊂ V be a
uniformly random set of n labeled nodes for training, and let f̂ = f̂( · ;G,X, S) denote the learned
predictor. Define

Rnode
(n,G)(FGNN) := inf

f̂
sup

f⋆∈FGNN

ES

[
1

|V |
∑
v∈V

(
f̂(v)− f⋆(v)

)2]
, (3)

where ES is over the random choice of labeled nodes S. Here n counts labeled nodes (not graphs).

These risks correspond to the inductive (graph-level) and transductive (node-level) settings. We will
state explicitly which risk each theorem concerns.

Our first theoretical contribution yields a lower bound on the graph-level (inductive) risk.

3
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Theorem 1 (Graph-level Minimax Lower Bound (Inductive)). Let FGNN be the class of L-layer
ReLU GNNs with weights satisfying

∑L−1
ℓ=0 (∥W (ℓ)∥1 + ∥B(ℓ)∥1) ≤ vs, with L ≥ 1 and vs > 0.

Assume (Gi, Xi, Yi)
n
i=1 are i.i.d. samples with Yi = f⋆(Gi, Xi)+Ui, Ui

i.i.d.∼ N (0, σ2), f⋆ ∈ FGNN.
Then there exists a constant Knew > 0 such that, for all n ≥ 1 and d ≥ 2,

Rgraph
n (FGNN) ≥ Knew

σvs
L

√
log d

n
. (4)

Interpretation of Theorem 1. The risk decays no faster than 1/
√
n, matching classical results for

fully connected ReLU networks (Golestaneh et al., 2024).

Sample-size implication. To guarantee error at most ϵ2, one must have

ϵ2 ≥ Knew
σvs
L

√
log d

n
=⇒ n ≥ K2

new
σ2v 2

s

L 2

log d

ϵ4
. (5)

Compared to classical finite-dimensional parametric estimators (e.g., linear regression, where n ≥
σ2/ϵ2), GNNs require substantially more data to achieve comparable generalization guarantees.

Proof Sketch. We apply Fano’s inequality (Fano & Hawkins, 1961) and construct a packing set
M ⊂ FGNN by varying the first-layer weights W (0) on path (chain) graphs. Exhibiting hardness
on one such family suffices to establish a minimax lower bound for the unrestricted graph class.
Node features are sampled as Xi ∼ N (0, Id), and labels follow Yi = f∗(Gi, Xi) + Ui, with
Ui ∼ N (0, σ2).

Packing step. The bound relies on Lemma 1, which constructs a constant-weight Varshamov–Gilbert
code realized by first-layer coordinate selectors and shows

logM(2ϵ,FGNN, ∥ · ∥L2
) ≥ CAv

2
s log d

L2ϵ2
(6)

Applying Fano’s inequality with KL divergence bounded by KL(Pj∥Pk) ≤ 2ϵ2

σ2 yields

R(n,|V |) ≥
ϵ2

2

(
1− 2nϵ2/σ2 + log 2

CAv2s log d/L
2ϵ2

)
. (7)

Optimizing over ϵ2 gives the desired bound. The complete proof is provided in Appendix B.
Remark 1 (Worst-case graphs). Theorem 1 is established on path graphs (chain graphs), where
each node has degree at most two. This minimal connectivity creates bottlenecks that slow message
passing, making depth the dominant factor. Path graphs thus serve as canonical worst-case instances:
hardness on this sparse structure certifies the lower bound for all admissible graphs. Although denser
graphs may empirically converge faster, the path graph ensures the universal worst-case rate.
Remark 2 (Exclusion of attention in Theorem 1). The packing construction for Theorem 1 exploits
assumption (A1), i.e., input-independent local aggregation. Architectures with attention violate (A1)
because their mixing weights depend on hidden features; hence the theorem does not apply to graph
transformers or attention-based GNNs. This does not contradict the lower bound: by monotonicity of
minimax risk, enlarging the hypothesis class cannot reduce the bound.

Theorem 1 establishes
√

log d
n scaling, whereas our empirical results (Section 5) indicate 1/ logn

scaling in practice. This motivates a refined lower bound under structural graph assumptions,
formalized in Theorem 2. We first define the notion of Spectral–homophily used therein.

Spectral–homophily. The induced labeled-node subgraph satisfies λ2(Ln) ≤ κ/ log n, a structural
expansion/mixing condition (small spectral gap), distinct from label-homophily assumptions (see
Appendix C).
Theorem 2 (Structured-Graph Minimax Lower Bound (Node-Level, Transductive)). Let L ≥ 1,
vs > 0, and let G = (V,E) satisfy the spectral–homophily condition λ2(L) ≤ κ/ log n for some
universal κ > 0, where n is the number of labeled training nodes and L is the normalized Laplacian.
Then there exists a universal constant Γ > 0 such that

Rnode
(n,G)(FGNN) ≥ σ2v2s

ΓL2
· d

log n
. (8)

4
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Interpretation of Theorem 2. This bound decays more slowly than 1/
√
n, making it tighter

whenever the spectral–homophily condition holds (see Eq. (22) and Appendix H for an explicit
form). Extensions to adjacency-masked attention (e.g., GAT) are discussed in Appendices I–J, and
practical guidance on improving constants without changing the Ω(d/ logn) rate is in Appendix K. If
spectral–homophily condition fails (e.g., λ2 is larger, indicating strong expansion), the independence
argument breaks down and the analysis reverts to Theorem 1, yielding the Ω(

√
log d/n) rate.

Sample-size implication. To achieve generalization error ϵ2, the following must hold:

σ2v 2
s

ΓL 2

d

log n
≤ ϵ2 =⇒ n ≥ exp

(
σ2v 2

s d
ΓL 2 ϵ2

)
, (9)

implying exponential sample complexity in 1/ϵ2, far worse than polynomial rates.

4 STRUCTURED–GRAPH LOWER BOUND (PROOF OF THEOREM 2)

Proof. Consider the node-level transductive setting of Eq. (3) on a fixed graph G = (V,E), with each
training example corresponding to a distinct node. We impose the following spectral–homophily
condition on the subgraph induced by the n training nodes: λ2

(
Ln

)
≤ κ

logn , where Ln is the
normalized Laplacian and κ > 0 is universal. By Lemma 3 (Appendix F), the induced subgraph has
random-walk mixing time O(logn). Consequently, message-passing neighborhoods overlap heavily,
and only Θ(log n) samples provide nearly independent signal. Intuitively, after O(logn) steps the
graph “looks new,” so only one out of every Θ(logn) samples contributes fresh information. The
proof formalizes this intuition in four steps.

Block decomposition. Fix ε ∈ (0, 1), say ε = 1
4 . By Lemma 3, if λ2 ≤ κ/ log n, then the random

walk on the induced subgraph mixes in time tmix(ε) = O(log n), with constants depending only
on κ, ε, and the laziness parameter. Let K = K(λ2, κ) denote the effective number of nearly
independent blocks obtained from the mixing-time argument. In particular, under λ2 ≤ κ/ log n, we
have K = Θ(log n); for concreteness we write K := ⌈Cmix log n⌉ for a suitable constant Cmix > 0.
Then K = Θ(log n). Select K nodes {i1, . . . , iK} separated by at least the mixing radius (graph
distance ≳ logn). The corresponding outputs Yi1 , . . . , YiK are then approximately independent when
evaluated on appropriately localized functions f⋆. A typical consequence is that covariances decay
rapidly with separation, e.g.

∣∣Cov(Yiℓ , Yiℓ′ )
∣∣ ≤ σ2e−c dist(iℓ,iℓ′ ) where dist(iℓ, iℓ′) is large. We tie

block ℓ exclusively to node iℓ; for the constructed functions fs, support is restricted to these K nodes.

Step 1: Sparse packing across blocks. Define h(ε) :=
⌈
16L2K2ε2/v2s

⌉
. Construct a codebook

C ⊂ {0, 1}d of weight-d/4 vectors with pairwise Hamming distance at least h(ε). Existence is
guaranteed by the Gilbert–Varshamov bound (Varshamov, 1957; Gilbert, 1952). Assign each block
ℓ = 1, . . . ,K a codeword s(ℓ) ∈ C and let s = (s(1), . . . , s(K)). Define

fs(x) :=

K∑
ℓ=1

vs
LK

d∑
j=1

s
(ℓ)
j ϕ(xj), ϕ(z) = max{0, z}. (10)

This function is realized by a one-layer ReLU GNN with self-loops and an identity aggregator
(so each node aggregates only its own features). Hence fs ∈ FGNN(vs, 1); see Appendix A. Its
complexity, determined by the magnitude of its coefficients (e.g.,

∑
ℓ,j

∣∣ vs
LK s

(ℓ)
j

∣∣ = vsd
4L ), is therefore

bounded consistently with the definition of FGNN, as parameterized by vs and L.

Separation. Suppose s and s′ differ only in block m. Then fs(x) − fs′(x) = vs

LK

∑d
j=1(s

(m)
j −

s
′(m)
j )ϕ(xj). Hence

∥fs − fs′∥2L2
= EX

( vs
LK

∑
j

(s
(m)
j − s

′(m)
j )ϕ(Xj)

)2 .

Assuming the features {ϕ(Xj)} are orthonormal, this simplifies to

∥fs − fs′∥2L2
=

v2
s

L2K2 ∥s(m) − s′(m)∥22. (11)

5
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By the codebook construction, ∥s(m) − s′(m)∥22 ≥ h(ε). Substituting into Eq. (11) and recalling
h(ε) ≥ 16L2K2ε2

v2
s

yields ∥fs − fs′∥2L2
≥ 16ε2. Thus any two functions differing in one block are

separated by at least 16ε2.

Packing Set Construction for Fano’s Inequality. To apply Fano’s inequality (Lemma 2, Ap-
pendix D), we construct a set of M functions {fx} from FGNN that are well separated in L2 norm yet
induce output distributions that are not too distinguishable.

Let Γc > 0 be a sufficiently large universal constant (its value will be fixed by the conditions below
and will enter the final constant Γ in the theorem). Define a target Hamming distance for length-d
codewords:

∆H :=

⌈
16σ2d

Γc

⌉
. (12)

We require Γc large enough (e.g., Γc > 64σ2, for d ≥ 1) so that ∆H ≤ d/4. This guarantees the
existence of two codewords s0, s1 ∈ {0, 1}d such that: (i) ∥s0∥0 = ∥s1∥0 = d/4 (both have weight
d/4), and (ii) ∥s0 − s1∥22 = dH(s0, s1) ≥ ∆H . The existence of such constant-weight codewords
follows from standard coding theory results.

Now let K = ⌈log n⌉. For K ≥ 4, the Varshamov–Gilbert bound ensures the existence of a code
CK ⊂ {0, 1}K of size M = |CK | with pairwise Hamming distance at least K/4, i.e., dH(x,x′) ≥
K/4, and logM ≥ c1K for some universal c1 > 0.

For each x = (x1, . . . , xK) ∈ CK , define a function fx ∈ FGNN as follows. For each of the K
special nodes {i1, . . . , iK}, assign block ℓ (tied to node iℓ) the codeword

s(ℓ)x =

{
s1, if xℓ = 1,

s0, if xℓ = 0,
(13)

and set fx(Xiℓ) =
vs
LK

∑d
j=1(s

(ℓ)
x )j ϕ((Xiℓ)j) and fx(Xp) = 0 for p /∈ {i1, . . . , iK}.

The squared L2-distance between two such functions fx and fx′ is

∥fx−fx′∥2L2
=

|V |∑
p=1

(
fx(Xp)−fx′(Xp)

)2
=

K∑
ℓ=1

 vs
LK

d∑
j=1

(
(s(ℓ)x )j − (s

(ℓ)
x′ )j

)
ϕ((Xiℓ)j)

2

. (14)

Assuming orthonormal features {ϕ((Xiℓ)j)} (as in the separation argument), this simplifies to

∥fx − fx′∥2L2
=

K∑
ℓ=1

( vs
LK

)2
∥s(ℓ)x − s

(ℓ)
x′ ∥22

= dH(x,x′)
( vs
LK

)2
∥s1 − s0∥22 ≥ K

4

( vs
LK

)2
∆H =

∆Hv2s
4L2K

. (15)

Thus the minimum squared separation is d20 =
∆Hv2

s

4L2K .

Step 2: KL divergence. Let Px be the distribution of the observations Y = (Yi1 , . . . , YiK ) when
the true function is fx and each Yiℓ is corrupted by independent Gaussian noise N(0, σ2). The KL
divergence between Px and Px′ is

KL(Px∥Px′) =

K∑
ℓ=1

1

2σ2
(fx(Xiℓ)− fx′(Xiℓ))

2
=

1

2σ2
∥fx − fx′∥2L2(on K nodes)

=
1

2σ2
dH(x,x′)

( vs
LK

)2
∥s1 − s0∥22 ≤ K

2σ2

( vs
LK

)2
∆H =

∆Hv2s
2σ2L2K

. (16)

Thus KLmax :=
∆Hv2

s

2σ2L2K .

Step 3: Fano’s inequality. Applying Lemma 2 (Fano–Tsybakov; see Appendix D), if we have M
functions {fx}x∈CK

such that ∥fx − fx′∥2L2
≥ d20 for all x ̸= x′ and KL(Px∥Px′) ≤ KLmax, then

inf
f̂

sup
x∈CK

E
[
∥f̂ − fx∥2L2

]
≥ d20

2

(
1− KLmax + log 2

logM

)
. (17)

6
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(Some versions yield d20/8 under the stronger assumption KLmax ≤ logM
2 − log 2; we state the

general form.)

To ensure the parenthesis is bounded below by a positive constant, say c2 = 1/2, we require
logM ≥ 2(KLmax + log 2). Since logM ≥ c1K, this condition reduces to

c1K ≥ ∆Hv2s
σ2L2K

+ 2 log 2. (18)

When Eq. (18) holds, the minimax risk satisfies Rnode
(n,G)(FGNN) ≥ c2d

2
0

2 = c2
2 · ∆Hv2

s

4L2K . Substituting
∆H = ⌈16σ2d/Γc⌉ ≥ 16σ2d/Γc gives

Rnode
(n,G)(FGNN) ≥ c2

2
· (16σ

2d/Γc) v
2
s

4L2K
=

2c2
Γc

· σ2v2sd

L2 logn
=

σ2v2s
ΓL2

· d

log n
, (19)

where Γ := Γc/(2c2). This completes the proof.

Appendix G derives sufficient conditions on Γc to ensure Eq. (18) holds, confirming that Γ =
Γc/(2c2) is a universal constant. These calculations refine the constants and verify the claimed
scaling.

5 EMPIRICAL STUDIES

In this section, we provide proof-of-concept experiments to assess how our theoretical results
align with practice. Experiments were conducted on four benchmark datasets—Cora, Reddit,
QM9, and Facebook—using three representative GNN architectures: GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), and GraphSAGE (Hamilton et al., 2017). Dataset descriptions, training
protocols, and infrastructure details appear in Appendix M.

Scope. Our theory establishes bounds for graph-level (Theorem 1) and node-level (Theorem 2)
prediction. For completeness we also report one link-level task (Facebook), though no formal bound
is provided. Theorem 1 applies to local, input-independent aggregation, while Theorem 2 extends to
adjacency-masked attention (standard GAT) under bounded layer norms—conditions satisfied by our
GAT implementation.

Across 7 of 12 dataset–model combinations, the observed minimax risk (generalization error) decays
closer to 1/ log(n) than the 1/

√
n rate of Theorem 1. This pattern suggests that the refined bound in

Theorem 2 may better capture empirical GNN behavior in several settings.

Graph Structural Properties. Table 1 reports structural statistics— homophily (fraction of same-
label edges) and spectral gap (second Laplacian eigenvalue; see Appendix M.1)— and their relation
to observed scaling. Datasets with higher homophily, such as Cora (0.81) and Reddit (0.78), tend to
show 1/ log(n) scaling, consistent with node similarity aiding information propagation. In contrast,
Facebook, with lower homophily (0.58) and a smaller spectral gap (λ2 = 0.05), more often follows
1/
√
n scaling in link prediction, suggesting weaker diffusion and limited regularization.

Two exceptions—GCN on Reddit and GraphSAGE on QM9—occur in settings may hinder global
regularization: very large graphs (|V | > 105) or molecular tasks needing fine-grained distinctions.
The observed dependence on homophily and spectral gaps aligns with the spectral-homophily
condition in Theorem 2, which predicts slower convergence when structural regularization is weak.

Table 1: Graph Structural Properties Supporting Theorem 2
Dataset Homophily Ratio Clustering Coefficient Spectral Gap (λ2)
Cora 0.81 0.24 0.12
Reddit 0.78 0.15 0.08
QM9 N/A 0.03 0.18
Facebook 0.58 0.30 0.05

Methodology. We implemented all models in PyTorch Geometric and trained them on sample sizes
n ∈ {100, 500, 1k, 5k, 10k, 50k}, subject to dataset limits (n ≤ 1,000 for Cora and Facebook). For
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each n, we computed test errors averaged over five runs with different random seeds. Classification
tasks (Cora, Reddit) used cross-entropy loss, regression (QM9) used mean squared error, and link
prediction (Facebook) used one minus AUC (1-AUC). For link prediction, edges were randomly
sampled into balanced positive/negative sets of size n. To analyze error scaling, we fitted four
candidate forms to the test error curves: c1 + α√

n
, c2 + β

n , c3 + δ
logn , c4 + 1

nγ . Parameters
(c1, c2, c3, c4, α, β, δ, γ ∈ (0,∞)) were optimized via weighted least-squares regression with inverse-
variance weights. Fit quality was evaluated using residual sum of squares (RSS), mean squared error
(MSE), and the coefficient of determination (R2), to capture both absolute and relative fit quality.

Results. Table 2 summarizes fit quality across all datasets and models, and Figures 1–4 compare
fitted curves with empirical errors. The best-fit scaling law varies by dataset and architecture. Broadly,
1/ log(n) dominates in high-homophily settings (e.g., Cora, several cases in Reddit and QM9), while
1/
√
n better explains performance in some large-scale or regression tasks (e.g., GCN on Reddit, GAT

on QM9). The flexible 1/nγ form occasionally yields the best fit, most notably for GAT on Facebook
with γ ≈ 0.42. In some cases, however, the 1/nγ form produces negative R2 values (Table 2), which
simply indicate fits worse than the mean baseline and are not interpreted further. In contrast, the 1/n
law consistently underperforms.

Table 2: Comparison of Fit Metrics Across All Models and Datasets (Weighted Analysis)
Dataset Model c1 +

α√
n

c2 +
β
n c3 +

δ
logn c4 +

1
nγ γ Best Fit

RSS MSE R2 RSS MSE R2 RSS MSE R2 RSS MSE R2

Cora GCN 1.13e+00 3.76e-01 0.991 6.28e+00 2.09e+00 0.952 2.53e-01 8.45e-02 0.998 3.43e+01 1.14e+01 0.736 0.243 1/log(n)
Cora GAT 6.71e-02 2.24e-02 0.999 1.41e+00 4.71e-01 0.972 9.12e-03 3.04e-03 1.000 9.87e+00 3.29e+00 0.804 0.245 1/log(n)
Cora GraphSAGE 1.52e+00 5.08e-01 0.990 9.36e+00 3.12e+00 0.938 2.62e-01 8.73e-02 0.998 5.30e+01 1.77e+01 0.649 0.220 1/log(n)
Reddit GCN 5.65e+01 9.42e+00 0.835 7.52e+01 1.25e+01 0.781 1.44e+02 2.40e+01 0.580 1.30e+02 2.17e+01 0.621 0.304 1/sqrt(n)
Reddit GAT 7.13e+01 1.19e+01 0.762 1.87e+02 3.12e+01 0.374 2.89e+01 4.81e+00 0.904 1.16e+02 1.93e+01 0.612 0.120 1/log(n)
Reddit GraphSAGE 2.41e+02 4.02e+01 0.983 8.25e+03 1.38e+03 0.427 9.58e+01 1.60e+01 0.993 4.44e+03 7.39e+02 0.692 0.227 1/log(n)
QM9 GCN 4.94e+00 8.23e-01 0.928 2.49e+01 4.15e+00 0.635 2.93e+00 4.88e-01 0.957 1.62e+02 2.70e+01 -1.377 0.100 1/log(n)
QM9 GAT 8.78e-01 1.46e-01 0.790 2.12e+00 3.53e-01 0.493 1.10e+00 1.84e-01 0.736 9.52e-01 1.59e-01 0.772 0.360 1/sqrt(n)
QM9 GraphSAGE 1.69e-01 2.81e-02 0.990 3.05e+00 5.09e-01 0.816 1.83e+00 3.05e-01 0.890 2.29e+01 3.81e+00 -0.378 0.100 1/sqrt(n)
Facebook GCN 4.61e-01 1.54e-01 0.978 1.56e+00 5.19e-01 0.927 1.91e-01 6.37e-02 0.991 5.70e-01 1.90e-01 0.973 0.552 1/log(n)
Facebook GAT 2.12e-02 7.06e-03 0.998 5.60e-01 1.87e-01 0.954 7.11e-03 2.37e-03 0.999 8.95e-04 2.98e-04 1.000 0.420 1/nγ

Facebook GraphSAGE 1.77e-02 5.92e-03 0.999 2.45e-01 8.16e-02 0.991 1.39e-01 4.64e-02 0.995 7.72e-01 2.57e-01 0.971 0.449 1/sqrt(n)

Different architectures often show different slopes on the same dataset, a phenomenon likely influ-
enced by smoothing, overlap, and bias–variance tradeoffs (Appendix L).

Overall, the empirical results show that convergence rates frequently decay more slowly than the
classical 1/

√
n bound, often approaching 1/ log(n). This slower rate is consistent with Theorem 2,

which predicts weaker convergence under limited structural regularization. In practice, this implies
that GNNs may require substantially more data to generalize effectively on graphs with small spectral
gaps or weak homophily.

The clear emergence of 1/ log(n) scaling on Cora across all models (Figure 1) exemplifies this trend:
community structure and weak spectral gap appear to constrain diffusion, raising sample complexity
beyond the optimistic 1/

√
n rate. On Reddit, GCN fits 1/

√
n while GAT and GraphSAGE align with

1/ log(n), suggesting that architectural sophistication alone may not offset structural limits. On QM9,
regression tasks show mixed scaling, while Facebook link prediction exhibits task-specific behavior,
with GAT following 1/nγ .

Taken together, these results highlight the importance of structure-aware generalization bounds that
account for both graph topology and task characteristics, rather than relying solely on universal rates.

Figure 1: Test error vs. sample size n on Cora.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Test error vs. sample size n on Reddit.

Figure 3: Test error vs. sample size n on QM9.

Figure 4: Test error vs. sample size n on Facebook.

6 CONCLUSION

We develop a theoretical foundation for the sample complexity of ReLU-based Graph Neural Net-
works (GNNs), addressing a central gap in understanding their statistical limits. Using minimax
analysis, we show that while GNNs can in principle match the 1/

√
n scaling of feed-forward networks,

realistic structural assumptions—such as strong homophily and bounded spectral expansion—force
risk to decay no faster than 1/ log(n). This implies that reliable generalization on structured data
may require substantially more samples than previously assumed.

Empirical studies on four benchmarks and three architectures support this refined picture: in most
regimes with community structure or small spectral gaps, generalization follows the slower 1/ log(n)
rate rather than the classical 1/

√
n. These results identify graph topology as a primary driver of

sample efficiency, beyond architectural design alone.

In sum, we provide the first sharp lower bounds for GNNs under realistic structures, together with
empirical evidence that these slower rates arise in practice. Future work should investigate whether
alternative architectures, regularization, or pre-training can overcome the inherent data inefficiency
induced by weak homophily and limited spectral expansion.

9
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7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All theoretical assumptions,
theorems, and the proof sketch of Theorem 1 are explicitly stated in Section 3. The complete proofs of
Theorem 1 and Theorem 2 are provided in Appendix B and Section 4, respectively. Supporting tech-
nical components—including degenerate GNN realizations (Appendix A), spectral and homophily
assumptions (Appendix C), Fano’s inequality (Appendix D), mixing-time arguments (Appendix F),
and operator-norm control for attention (Appendices I–J)—are all provided for completeness. Ex-
perimental protocols are described in Section 5, while dataset descriptions, training procedures, and
infrastructure details appear in Appendix M. To further support verification, we provide the full
source code as supplementary material, including implementations for data loading, model training,
evaluation, and error analysis. The package also contains scripts to reproduce all experimental results,
regenerate LATEX tables, and visualize learning curves. Together, these resources ensure that both
the theoretical and empirical results reported in this paper can be independently reproduced and
validated.

REFERENCES

Afonso S Bandeira, Amit Singer, and Daniel A Spielman. A cheeger inequality for the graph
connection laplacian. SIAM Journal on Matrix Analysis and Applications, 34(4):1611–1630, 2013.

Robert M Fano and David Hawkins. Transmission of information: A statistical theory of communica-
tions. American Journal of Physics, 29(11):793–794, 1961.

Billy Joe Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at
the margin: When more expressivity matters. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings
of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 13885–13926. PMLR, 21–27 Jul 2024. URL https://proceedings.
mlr.press/v235/franks24a.html.

Vikas K. Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks, 2020. URL https://arxiv.org/abs/2002.06157.

Edgar N Gilbert. A comparison of signalling alphabets. The Bell system technical journal, 31(3):
504–522, 1952.

Pegah Golestaneh, Mahsa Taheri, and Johannes Lederer. How many samples are needed to train a
deep neural network?, 2024. URL https://arxiv.org/abs/2405.16696.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks,
2017. URL https://arxiv.org/abs/1609.02907.

Johannes Lederer. Statistical guarantees for sparse deep learning, 2022. URL https://arxiv.
org/abs/2212.05427.

David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathemat-
ical Soc., 2017.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
for graph neural networks, 2020. URL https://arxiv.org/abs/2012.07690.

Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the construction
of internet portals with machine learning. Information Retrieval, 3(2):127–163, 2000.

10

https://proceedings.mlr.press/v235/franks24a.html
https://proceedings.mlr.press/v235/franks24a.html
https://arxiv.org/abs/2002.06157
https://arxiv.org/abs/2405.16696
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2212.05427
https://arxiv.org/abs/2212.05427
https://arxiv.org/abs/2012.07690


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. Permute me softly: Learning
soft permutations for graph representations, 2022. URL https://arxiv.org/abs/2110.
01872.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification, 2021. URL https://arxiv.org/abs/1905.10947.

Paolo Pellizzoni, Till Hendrik Schulz, Dexiong Chen, and Karsten Borgwardt. On the expressivity
and sample complexity of node-individualized graph neural networks. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014a.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1):1–7, 2014b. doi:
10.1038/sdata.2014.22.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge Management
(CIKM), pp. 2289–2292, 2019. doi: 10.1145/3357384.3357939.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009. doi:
10.1109/TNN.2008.2005605.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation
function. The Annals of Statistics, 48(4), August 2020. ISSN 0090-5364. doi: 10.1214/19-aos1875.
URL http://dx.doi.org/10.1214/19-AOS1875.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008. doi: 10.1609/aimag.
v29i3.2157. URL https://ojs.aaai.org/aimagazine/index.php/aimagazine/
article/view/2157.

Mahsa Taheri, Fang Xie, and Johannes Lederer. Statistical guarantees for regularized neural networks,
2020. URL https://arxiv.org/abs/2006.00294.

Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer Series in Statistics.
Springer, 2009. See Lemma 2.10, Chapter 2.

Rom Rubenovich Varshamov. Estimate of the number of signals in error correcting codes. Docklady
Akad. Nauk, SSSR, 117:739–741, 1957.
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A DEGENERATE GNN REALIZATION

We construct a one-layer ReLU GNN on the original graph (with self-loops) using the identity
aggregator, Agg = identity. In this case, each node aggregates only its own features—a degenerate
but still admissible instance of the message passing. With weights set as Wj =

vs
LK s

(ℓ)
j and zero bias,

the network output is

fs(x) =

K∑
ℓ=1

vs
LK

d∑
j=1

s
(ℓ)
j ϕ(xj),

which lies in FGNN(vs, 1). Although message passing here reduces to self-loops, this subclass is
included in our hypothesis space. Since minimax lower bounds apply to any subclass, establishing
hardness for these degenerate cases certifies hardness for the full class.
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B MINIMAX LOWER BOUND (PROOF OF THEOREM 1)

We begin with a technical packing lemma, which establishes the key combinatorial bound used in
Step 1 of the proof of Theorem 1.
Lemma 1 (Packing for ReLU under Gaussian features). Let X ∼ N (0, Id) and ϕ(z) = max{0, z}.
Consider FGNN(vs, L), the class of L-layer ReLU GNNs with

L−1∑
ℓ=0

(
∥W (ℓ)∥1 + ∥B(ℓ)∥1

)
≤ vs.

There exist absolute constants c, CA > 0 such that for every ϵ ∈
(
0, c vs/L

]
, the 2ϵ-packing number

of FGNN(vs, L) with respect to the L2(PX) metric satisfies

logM
(
2ϵ, FGNN(vs, L), ∥ · ∥L2(PX)

)
≥ CA

v2s
L2 ϵ2

log d.

Proof. Fix L ≥ 1 and vs > 0. We construct a family {fS} indexed by r-subsets S ⊂ [d], for a
choice of r defined below, and we show it is a 2ϵ-packing.

(L1) Realizable subclass and budget. Let r ∈ {1, . . . , d} and define

fS(x) := a
∑
j∈S

ϕ(xj) with a =
c0 vs
Lr

,

where c0 ∈ (0, 1) is an absolute constant to be fixed. We claim fS ∈ FGNN(vs, L). Realize fS by
using the first layer to compute the r hidden coordinates {ϕ(xj) : j ∈ S} with weights whose ℓ1 sum
is ra (so this layer spends ra = c0vs/L of budget). Use the last layer as a linear readout that sums
these r hidden coordinates with weights of total ℓ1 norm at most vs/L, and set all intermediate layers
to the zero operator. The overall output equals a

∑
j∈S ϕ(xj). The total ℓ1 budget used is at most

(c0 + 1) vs/L ≤ vs for c0 ≤ 1, so fS ∈ FGNN(vs, L). (Absolute constants can be absorbed into c0;
no rate is affected.)

(L2) L2 separation. Let Z,Z ′ i.i.d.∼ N (0, 1). Standard ReLU–Gaussian moments give E[ϕ(Z)] =

1/
√
2π, E[ϕ(Z)2] = 1/2, and for independent Z,Z ′, E[ϕ(Z)ϕ(Z ′)] = 1/(2π). Hence for j ̸= k,

E
[
(ϕ(Xj)− ϕ(Xk))

2
]
=
(

1
2 − 1

2π

)
+
(

1
2 − 1

2π

)
≥ 1− 1

π =: c⋆ ∈ (0, 1).

Let S, T ⊂ [d] with |S| = |T | = r, and write D = S△T (symmetric difference), m := |D|. By
independence across coordinates and the display above,

∥fS − fT ∥2L2(PX) = a2 E
[(∑

j∈S

ϕ(Xj)−
∑
k∈T

ϕ(Xk)
)2]

≥ a2 m

2
.

(Since cross-covariances between distinct coordinates vanish, we retain only the diagonal terms as a
conservative lower bound. Accounting for the exact covariance yields the slightly larger constant c⋆
in place of 1/2, but the simpler factor 1/2 already provides a valid bound.)

(L3) Constant-weight code. By the Varshamov–Gilbert bound for constant-weight codes, there
exists C ⊂ {S ⊂ [d] : |S| = r} such that for all distinct S, T ∈ C, |S△T | ≥ r/2 and |C| ≥ (c d/r)r

for a universal c ∈ (0, 1). Combining with (L2) gives, for S ̸= T ∈ C,

∥fS − fT ∥L2(PX) ≥ a
√
r

2
.

(L4) Choosing r to achieve 2ϵ separation. We want ∥fS − fT ∥L2(PX) ≥ 2ϵ for all distinct
S, T ∈ C, i.e., a

√
r

2 ≥ 2ϵ. With a = (c0vs)/(Lr) this becomes

c0vs
2L

√
r

≥ 2ϵ ⇐⇒ r ≤ c20
16

v2s
L2ϵ2

.
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We take

r =
⌊ c20
32

v2s
L2ϵ2

⌋
and assume ϵ ≤ c1

vs
L
,

with c1 > 0 small enough so that 1 ≤ r ≤ d/2 (thus log(d/r) ≥ 1
2 log d). Then {fS : S ∈ C} is a

2ϵ-packing.

(L5) Packing size. From (L3) and r ≤ d/2 we get

logM(2ϵ,FGNN, ∥ · ∥L2(PX)) ≥ log |C| ≥ c′r log(d/r) ≥ c′

2
r log d.

Substituting the choice of r from (L4) and absorbing absolute constants (including c0, c
′, 1

2 , and the
ReLU–Gaussian factor) yields

logM(2ϵ,FGNN, ∥ · ∥L2(PX)) ≥ CA
v2s

L2ϵ2
log d,

for a universal CA > 0, proving the claim.

With Lemma 1 established, we now prove Theorem 1.

Proof. The proof proceeds by Fano’s inequality, which requires (i) a large packing set inside FGNN,
and (ii) a KL-divergence bound (Appendix D). Step 1 invokes Lemma 1, whose proof appears above.

Step 1: Packing number. By Lemma 1, for every ϵ ≤ c vs/L, there exists a 2ϵ-packing M∗ =
{f1, . . . , fM} of FGNN with

logM ≥ A0/ϵ
2, A0 = CA

v2s log d

L2
.

Step 2: Fano’s inequality. Let Y = f⋆(X) + U , with U ∼ N (0, σ2) i.i.d. For any two fj , fk ∈
M∗, the corresponding distributions satisfy

KL(Pj∥Pk) =
∥fj − fk∥2L2(PX)

2σ2
.

Because the packing is constructed at radius 2ϵ, all pairs obey ∥fj − fk∥2L2
≥ (2ϵ)2. To avoid

degenerate constants, we further assume that separation does not exceed a constant factor, i.e.
∥fj − fk∥2L2

≤ CKL ϵ
2 for some CKL ≥ 2.

(If all pairs are exactly 2ϵ-apart, then CKL = 2.) Thus KLmax ≤ CKLϵ
2/σ2.

We apply the fixed-radius form of Fano’s inequality (Lemma 2):

R(n,|V |)(FGNN) ≥ sup
ϵ>0

{
ϵ2

2

(
1− nCKLϵ

2/σ2 + log 2

A0/ϵ2

)}
.

Step 3: Optimizing over ϵ. Let x = ϵ2. The bound reads

g(x) =
x

2

(
1− nCKLx

2/σ2 + x log 2

A0

)
.

Maximizing g(x) exactly requires solving a cubic. For a clean bound it suffices to choose x so that
the parenthesis is 1/2, i.e.

1− nCKLx
2/σ2 + x log 2

A0
= 1

2 .

This yields the quadratic
nCKL

σ2
x2 + (log 2)x− A0

2 = 0,

whose positive root is given by

x = ϵ2 =
σ2

2nCKL

(
− log 2 +

√
(log 2)2 + 2nA0CKL

σ2

)
.

For a detailed derivation, we provide the quadratic solution in Appendix B.1.

For this choice,
R(n,|V |)(FGNN) ≥ 1

4 ϵ
2.
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Step 4: Asymptotics and constant. When n is large enough that 2nA0CKL

σ2 ≫ (log 2)2, we expand
the square root:

ϵ2 ≈ σ√
2CKL

√
A0

n .

Thus
R(n,|V |)(FGNN) ≥ 1

4
· σ√

2CKL

√
A0

n =
( √

CA

4
√
2CKL

)σvs
L

√
log d
n .

Define Knew =
√
CA

4
√
2CKL

> 0.

Step 5: Validity for all n. The exact root expression for ϵ2 shows that the bound holds for all
n ≥ 1, not just asymptotically. Writing

ϵ2

4
=

σ2

8nCKL
·
(
− log 2 +

√
(log 2)2 + 2nA0CKL

σ2

)
,

one checks that the bracketed term is Ω(n1/2), hence the rate Knew(σvs/L)
√

(log d)/n holds uni-
formly in n (with a smaller constant if n is very small).

Step 6: Dimension condition. Finally, d ≥ 2 ensures log d > 0 so that A0 > 0.

This completes the proof of Theorem 1.

B.1 EXACT QUADRATIC SOLUTION FOR ϵ2

In Step 3 of the proof of Theorem 1, we choose ϵ2 = x so that the parenthetical term in Fano’s bound
equals 1/2:

1− nCKLx
2/σ2 + x log 2

A0
= 1

2 , A0 = CA
v2s log d

L2
.

This yields the quadratic
nCKL

σ2
x2 + (log 2)x − A0

2
= 0,

whose positive root is

ϵ2 = x =
σ2

2nCKL

(
− log 2 +

√
(log 2)2 +

2nA0CKL

σ2

)
. (20)

Substituting Eq. (20) into the fixed-radius Fano inequality (Lemma 2) gives

R(n,|V |)(FGNN) ≥ ϵ2

4
=

σ2

8nCKL

(
− log 2 +

√
(log 2)2 +

2nA0CKL

σ2

)
. (21)

Asymptotics. When n is large enough that 2nA0CKL

σ2 ≫ (log 2)2, a first-order expansion of the
square root in Eq. (20) gives

ϵ2 =
σ√
2CKL

√
A0

n

(
1+o(1)

)
, ⇒ R(n,|V |)(FGNN) ≥

( √
CA

4
√
2CKL

)σvs
L

√
log d

n
(1+o(1)).

Uniform-in-n bound. Define

Φ(n) := − log 2 +

√
(log 2)2 +

2nA0CKL

σ2
.

Then Φ(n) is strictly increasing in n, satisfies Φ(0) = 0, and Φ(n) ∼
√
2nA0CKL/σ as n → ∞.

From Eq. (21),

R(n,|V |)(FGNN) =
σ2

8nCKL
Φ(n) ≥

(
inf

1≤m≤n0

σ2 Φ(m)

8mCKL K⋆

)
·K⋆ ·

1√
n
,

14
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for any fixed n0 ∈ N and target rate K⋆ :=
√
A0

2 . Choosing

Knew := min

{ √
CA

4
√
2CKL

, min
1≤m≤n0

σΦ(m)

4
√
2CKL

√
mA0

}
>0,

we obtain the uniform (in n ≥ 1) lower bound

R(n,|V |)(FGNN) ≥ Knew
σvs
L

√
log d

n
.

This shows the Ω
(
(σvs/L)

√
(log d)/n

)
rate holds for all n ≥ 1 (with a possibly smaller Knew for

very small n), while the asymptotic constant
√
CA

4
√
2CKL

is recovered as n → ∞.

Remark 3 (Why path graphs?). The path graph Pm minimizes connectivity and mixing: each node
has degree at most two, and lazy random-walk mixing is slow, so one message-passing step propagates
information only along a single chain. This bottlenecks information flow per layer, making depth the
dominant factor. More connected graphs (e.g., expanders or dense random graphs) mix faster, which
can only help learning. Hence, demonstrating hardness on path graphs suffices to certify a minimax
lower bound for all admissible graphs—standard practice in worst-case lower-bound arguments.

Remark 4 (Where topology enters the proof, and why a path). Graph topology influences the proof
in two places:

1. Packing construction. Let N1(v) denote the radius-1 neighborhood. We choose a set S of
m nodes and vary only their first-layer weights. To avoid interference, we require {N1(v) :
v ∈ S} to be pairwise disjoint. On a path Pm this holds if the distance between consecutive
nodes in S is at least 2, giving |S| = Θ(m). On a graph with maximum degree ∆, disjointness
typically forces spacing ≥ ∆+1, reducing |S| by a factor c̃(∆) ≤ 1 and thus shrinking the
packing number by constants.

2. KL–divergence control. For Gaussian noise,

KL(Pj∥Pk) =
∥fj − fk∥2L2

2σ2
=

1

2σ2

∑
v

(fj(v)− fk(v))
2.

With disjoint neighborhoods, a perturbation affects only outputs inside N1(v). On Pm,
|N1(v)| ≤ 2, so the KL scales like O(|S|) for fixed perturbation size. On degree-∆ graphs,
|N1(v)| ≤ ∆, so for the same perturbation size the KL is larger by O(∆). To keep KL bounded,
we rescale the perturbation by 1/

√
∆, which weakens the separation by the same factor. Both

effects alter constants in Fano’s inequality, not the n–dependence.

Consequence. Because paths minimize degree (∆ = 2) and maximize the number of disjoint
radius-1 neighborhoods, they yield the tightest constants and the cleanest exposition. Moreover, any
graph containing an induced path of length Ω(n) admits the same lower-bound rate as Theorem 1
(up to universal constants) by restricting the construction to that path.

C INTERPRETING THE SPECTRAL–HOMOPHILY ASSUMPTION

Structural, not label-based. The assumption λ2(Ln) ≤ κ/ log n concerns the spectrum of the
normalized Laplacian of the subgraph induced by the n labeled nodes. It constrains expansion and
mixing properties of the graph and is independent of labels or features. In particular, the condition
can hold even if labels are adversarially assigned; no form of label homophily is required.

Why it makes learning harder. A small λ2(Ln) implies low conductance and slow random-
walk mixing by Cheeger-type inequalities (Bandeira et al., 2013). In this regime, message passing
repeatedly reuses the same information: after O(r) hops, neighborhoods overlap substantially. Our
proof shows that r = Θ(log n) suffices to reduce cross-block dependence below a fixed constant, so
only Θ(log n) blocks behave “nearly independently.” This effective reduction in sample size yields
the Ω(d/ logn) lower bound.
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When the condition fails. Graphs with strong cross-cluster connectivity (i.e., good expansion)
typically have λ2 bounded away from 0 (often Θ(1)). Such graphs fall outside the assumption, and
the guarantee reverts to the Ω

(√
log d/n

)
rate of Theorem 1.

Examples.

• Paths, cycles, or chain-of-cliques: λ2(L) decays with graph size. For sufficiently large n, the
condition λ2 ≤ κ/ log n is satisfied, often by a wide margin.

• Expanders and dense random graphs: λ2(L) = Θ(1), so the condition fails and the analysis falls
back to Theorem 1.

D FANO’S INEQUALITY (FIXED-RADIUS FORM)

We state the specific version of Fano’s inequality used throughout the proofs. It is a standard corollary
of Lemma 2.10 in Tsybakov (2009).

Lemma 2 (Fano–Tsybakov, fixed-radius form). Let (Θ, d) be a metric space, and let {Pθ : θ ∈ Θ}
be a family of distributions on X . Suppose there exist M ≥ 2 points θ1, . . . , θM ∈ Θ such that:

(i) Separation: d(θj , θk) ≥ 2ε for all j ̸= k;

(ii) KL control: maxj ̸=k KL(Pθj ∥Pθk) ≤ β.

Then, for any estimator θ̂,

inf
θ̂

sup
θ∈{θ1,...,θM}

Eθ

[
d(θ̂, θ)2

]
≥ ε2

2

(
1− β + log 2

logM

)
.

The bound is meaningful whenever β ≤ 1
2 logM − log 2.

This fixed-radius form is the one applied in all lower-bound arguments. It follows directly from
Lemma 2.10 in Tsybakov (2009), but is stated here for completeness and to keep the paper self-
contained.

E MIXING TIME AND SPECTRAL GAP

F MIXING TIME AND THE SPECTRAL GAP

We formally justify that the spectral–homophily condition in Theorem 2 implies logarithmic random-
walk mixing time.

Lemma 3 (Mixing time via spectral gap). Let G = (V,E) be a finite, connected, undirected graph,
and let P = 1

2I + 1
2D

−1A be the lazy random-walk transition matrix, where A is the adjacency
matrix and D = diag(deg(v)). The stationary distribution is

π(v) =
deg(v)

2|E|
, v ∈ V,

so that

πmin ≥ 1

2|E|
≥ 1

|V |2
.

For every ε ∈ (0, 1),

tmix(ε) ≤
log
(
1/(επmin)

)
1− λ2

≤ 2 log |V |+ log(1/ε)

1− λ2
,

where λ2 is the second largest eigenvalue of P (the spectral gap is 1 − λ2 > 0). (Levin & Peres,
2017, Theorem 12.4, (12.10)).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. By reversibility of P , the stationary distribution is π(v) = deg(v)/(2|E|). Hence

πmin = min
v

π(v) =
degmin

2|E|
≥ 1

2|E|
≥ 1

|V |2
,

since |E| ≤ |V |(|V | − 1)/2.

Let λ2 = λ2(P ) denote the second largest eigenvalue. Standard spectral bounds for lazy reversible
chains (Levin & Peres, 2017, Theorem 12.4) yield

tmix(ε) ≤
log
(
1/(επmin)

)
1− λ2

, ε ∈ (0, 1).

Substituting the bound on πmin gives

log
(

1
επmin

)
≤ log

(
1
ε

)
+ 2 log |V |.

Thus

tmix(ε) ≤ 2 log |V |+ log(1/ε)

1− λ2
.

If λ2 ≤ κ/ logn with n = |V | and fixed κ, then for sufficiently large n we have 1 − λ2 ≥
1− κ/ log n ≥ c for some universal c ∈ (0, 1). Hence tmix(ε) = O(log n).

Implication. The bound implies that a mixing radius of order rmix = Θ(logn) suffices. Consequently,
we may select K(λ2, κ) = Θ(log n) nodes whose neighborhoods can be treated as effectively disjoint
in our hypothesis construction. This is encoded through the constant cmix(λ2, κ) used in Section 4.

F.1 LOWER BOUND ON THE STATIONARY DISTRIBUTION

For completeness, we justify the lower bound on πmin used above. Since π(v) = deg(v)/(2|E|) for
the lazy walk,

πmin =
degmin

2|E|
≥ 1

2|E|
.

As |E| ≤ |V |(|V | − 1)/2, it follows that

πmin ≥ 1

|V |2
.

This universal bound is adopted in Lemma 3. Sharper bounds (e.g., πmin ≥ c/|V |) require minimum-
degree assumptions such as degmin ≥ c|V |, which we do not impose here. Our rates therefore
conservatively rely on the 1/|V |2 bound.

G REFINING Γ IN THE LOWER BOUND

As shown in the main proof in Section 4, the minimax risk is lower bounded by a rate of σ2v2
sd

L2 logn . This
appendix refines the constant Γ = Γc/(2c2) in that bound by specifying sufficient conditions under
which the inequality in Eq. (18) is satisfied. The condition was c1Kσ2L2K ≥ ∆Hv2s+2σ2L2K log 2.
Substituting ∆H ≈ 16σ2d

Γc
:

c1K
2σ2L2 ≥ 16σ2d

Γc
v2s + 2σ2L2K log 2 =⇒ c1K

2L2 ≥ 16dv2s
Γc

+ 2L2K log 2.

This condition essentially requires that 16dv2
s

Γc
is not too large compared to K2L2 = (logn)2L2.

Specifically, we need Γc ≥ 16dv2
s

(c1K2L2−2L2K log 2) . For large n, we can approximate this as Γc ≳
dv2

s

K2L2 =
dv2

s

(logn)2L2 . We also need Γc > 64σ2 (for ∆H ≤ d/4). So, Γc must be chosen as a
sufficiently large universal constant, potentially depending on fixed universal constants like c1 and
desired Fano factor c2, and satisfying these conditions. If dv2s/((log n)

2L2) is bounded by a constant
(which is often an implicit assumption on how d can scale with n for the bound to be non-trivial or
for the construction to be valid), then Γc can be chosen as a constant. The resulting Γ = Γc/(2c2) is
then a universal constant, depending on properties of the function class (implicitly through L, vs in
the conditions for Γc) and the packing construction (through c1, c2).
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H CONSTANT DEFINITIONS AND EXPLICIT-K FORM

Definition of Γ and its dependencies. Γ collects the universal constants that arise in the Fano
argument: (i) the packing/code-size constant from the Varshamov–Gilbert construction (cVG), (ii)
the constant in the upper bound on the KL divergence between hypotheses (cKL), and (iii) the slack
constant from Fano’s inequality (c2). After Step 3 of the proof (Section 4), the bound becomes

Rnode
(n,G)(FGNN) ≥ σ2v2s

L2
· d

K(λ2, κ)
· cVG

16 cKL
· 1

2c2
,

where K(λ2, κ) denotes the effective number of nearly independent blocks obtained from the mixing-
time argument. Thus, we may define

Γ := Γc (2c2) with Γc :=
16 cKL

cVG
.

These constants depend only on the geometry of the function class, as determined by the pack-
ing/separation construction (ReLU Lipschitz constant implied by the ℓ1-budget vs, the depth L, and
the orthogonality of features used in the packing), and on the fixed inequalities invoked in the proof.
Importantly, Γ is independent of n and d, apart from the explicit factors already shown in the bound.

Equivalent statement with explicit spectral dependence. With this notation, the bound can be
written as

Rnode
(n,G)(FGNN) ≥ σ2v2s

Γ′L2
· d

K(λ2, κ)
, (22)

for a universal constant Γ′ > 0 (absorbing the universal constants cVG, cKL, c2). Under the spec-
tral–homophily condition λ2 ≤ κ/ logn, one has K(λ2, κ) = Θ(logn), and Eq. 22 reduces to
Theorem 2.
Remark 5 (On the role of κ and λ2). The parameters κ and λ2 enter through K(λ2, κ), the
effective count of “independent blocks” provided by the mixing argument. Once we substitute
K(λ2, κ) = Θ(logn) under λ2 ≤ κ/ log n, their influence reduces to a constant multiplicative
factor, which is absorbed into Γ.

I OPERATOR-NORM CONTROL FOR ADJACENCY-MASKED ATTENTION

This section provides the operator-norm analysis that underpins the applicability of Theorem 2 to
adjacency-masked attention layers. For the complementary GAT-specific discussion, see Appendix J.

Conditions for applicability. Theorem 2 extends to attention-based GNNs provided the following
hold: (i) Adjacency masking: each head attends only to N (i) (or, more generally, an r-hop neigh-
borhood); (ii) Bounded layer operators: each layer is Lipschitz with uniformly bounded operator
norm (e.g., via bounding attention scores by temperature/clipping or constraining the attention matrix
norm); (iii) Finite depth L. Under (i)–(iii), the proof is unchanged up to constants depending on the
product of layer norms and, for r-hop masking, on r. Fully global (unmasked) attention is non-local
and therefore outside the locality premise of Theorem 2.

Norm-control derivation. Consider a single masked attention head with queries Q = HWQ, keys
K = HWK , values V = HWV , and adjacency mask M ∈ {0,−∞}|V |×|V | restricting attention to
N (i) (or an r-hop pattern). With temperature τ > 0 and row-wise softmax,

A = softmax
(
(QK⊤ +M)/τ

)
,

and the layer map is H 7→ AV (plus a 1 × 1 mixing which we absorb into the operator norm).
Assume ∥WQ∥2 ≤ cQ, ∥WK∥2 ≤ cK , ∥WV ∥2 ≤ cV , and rows of Q,K are bounded in norm by B
(this holds if ∥H∥F is controlled inductively and layer norms are bounded). Then each masked row
of (QK⊤)/τ has entries bounded by B2cQcK/τ , so the softmax is α-Lipschitz on each row with
α ≤ Cτ and yields a row-stochastic A supported on the mask. Hence ∥A∥2 ≤ 1 and

∥AV ∥2 ≤ ∥A∥2 ∥V ∥2 ≤ cV ∥H∥2.
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With residual/linear projections folded in, the per-layer Lipschitz constant is bounded by a product
of operator norms (one per submodule), yielding a uniform bound Lop < ∞ per layer. Therefore a
depth-L masked-attention stack has overall Lipschitz constant ≤ (Lop)

L. The proof of Theorem 2
uses only: (a) adjacency locality from masking, and (b) bounded layer Lipschitz constants. Both
hold under the above conditions, so the same packing, KL control, and Fano steps go through with
constants depending on Lop (and on r for r-hop masks).

J ADJACENCY-MASKED GAT LAYERS UNDER THEOREM 2

This section explains why standard GAT layers fit within the assumptions of Theorem 2. For the
accompanying operator-norm control argument, see Appendix I.

Theorem 1 assumes (A1) and thus excludes input-dependent mixing (attention). By contrast, Theo-
rem 2 requires only adjacency-masked 1-hop receptive fields and bounded operator norms. Standard
GAT layers satisfy these conditions if attention is restricted to N (i) and softmax weights are bounded
(e.g., via temperature or clipping).

Formally, a single GAT layer with adjacency mask can be written as

h
(ℓ+1)
i = ϕ

W (ℓ)
∑

j∈N (i)

α
(ℓ)
ij (H(ℓ))h

(ℓ)
j + B(ℓ)h

(ℓ)
i

 ,

where
∑

j∈N (i) α
(ℓ)
ij (·) = 1, α(ℓ)

ij ≥ 0, and α
(ℓ)
ij = 0 for j /∈ N (i). Although the coefficients depend

on features (violating (A1)), they are adjacency-masked and convex.

Assume (i) the attention logits are bounded (e.g., softmax with temperature or clipping), so that
maxi

∑
j∈N (i) α

(ℓ)
ij ≤ Catt and the Jacobian of the mapping H(ℓ) 7→{α(ℓ)

ij } is bounded; and (ii) the
linear maps satisfy the same ℓ1 budget as in (A2). Then the layer is Lipschitz with operator-norm
bound ∥W (ℓ)∥ · Catt + ∥B(ℓ)∥ (with the dependence on the attention logits’ temperature absorbed
into Catt).

The proof of Theorem 2 uses only: (a) adjacency locality (receptive field confined to the graph),
(b) bounded layer Lipschitz constants, and (c) the graph mixing argument yielding K = Θ(log n)
effectively independent blocks under λ2(L) ≤ κ/ logn. Conditions (a)–(b) hold for adjacency-
masked GAT with bounded logits, hence the same packing, KL control, and Fano steps go through
with the constants absorbed into Γ. Therefore, the Ω

(
d/ logn

)
lower bound applies to standard GAT

under these mild norm constraints. In contrast, Theorem 1 explicitly relies on input-independent
aggregation and does not cover attention.

K PRACTICAL GUIDANCE FOR DATA-SCARCE GRAPHS

The structure-aware lower bound (Theorem 2) implies that when only Õ(logn) training nodes are
effectively independent, naive data scaling is statistically inefficient. Constants in the bound can often
be improved in practice, though the asymptotic rate Ω(d/ logn) remains unchanged. The following
interventions help improve constants:

• Break neighborhood homogeneity / slow mixing. Add node individualization or positional
encodings (e.g., random/learned IDs, Laplacian/RW features) and consider heterophily-aware
layers; these reduce overlap of message-passing neighborhoods.

• Reduce effective dimension before fine-tuning. Use transfer or self-supervised pretraining
on large auxiliary graphs, then freeze most layers or select features to shrink the effective d
entering the bound.

• Diversify supervision. Active/coreset label selection that spreads labels across loosely con-
nected regions (far in graph distance or across communities) increases independence among
samples.

• Regularize against slow mixing / over-smoothing. Use residual/JK connections, PPR/teleport
propagation, DropEdge/edge sparsification, and limit depth; these shorten the mixing horizon,
raising the usable information per label.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Takeaway. These choices increase the informative signal per labeled node and improve constants
in σ2v2

s

ΓL2 · d
logn , but the qualitative log n denominator remains the limiting factor under the spec-

tral–homophily condition.

L ARCHITECTURAL DRIVERS OF HETEROGENEOUS SCALING

Why different models show different scaling on the same dataset. Even on a fixed graph,
architectures can induce different effective sample efficiencies due to variation in receptive-field
growth and information reuse. We identify two main drivers:

• Smoothing and receptive-field growth. GCN’s fixed, normalized adjacency (a graph-
dependent but input-independent filter) resembles a classical spectral filter. When the task’s
signal is spectrally aligned, this can yield faster apparent decay (closer to 1/

√
n). By contrast,

GAT and GraphSAGE adapt mixing weights and thereby emphasize homophilous neighbor-
hoods; this adaptation increases overlap among message-passing neighborhoods and reduces
the effective number of independent samples, exposing the slower 1/ logn decay predicted by
Theorem 2.

• Bias–variance tradeoffs and noise floors. Models with stronger inductive bias (e.g., GCN)
can reach a bias-dominated error floor early, which makes the observed asymptotic slope
appear steeper. More flexible models (GAT/GraphSAGE) reduce bias but incur higher variance,
which dissipates slowly because samples are not effectively independent under overlapping
neighborhoods.

This perspective helps explain the heterogeneous scaling observed in Table 2 (e.g., GCN on Reddit
favoring 1/

√
n, versus GAT and GraphSAGE favoring 1/ logn).

M EXPERIMENTAL DETAILS AND SETTINGS

This appendix details all elements of the experimental setup, training configuration, evaluation
protocols, model fitting, and resource usage to ensure reproducibility of our results.

ENVIRONMENT AND COMPUTE RESOURCES

All experiments were conducted using PyTorch and PyTorch Geometric (PyG). We used a
GPU-enabled machine equipped with an NVIDIA Tesla V100 (32GB VRAM) and 64GB system
RAM. Each experiment (one training size n with one model on one dataset) typically completed in
under 5 minutes for smaller n ≤ 1000, and under 15 minutes for large-scale datasets like Reddit and
QM9 with n = 50,000. The total compute budget, including all training, evaluation, curve fitting,
and figure/table generation, was under 50 GPU-hours.

DATASET LICENSES AND CITATIONS

The following publicly available datasets were used in this study, all accessed through the
torch_geometric.datasets module. Below we provide license information and cite the
original sources in accordance with reproducibility and usage guidelines.

• Cora (McCallum et al., 2000): A citation network with |V | = 2,708 nodes and |E| = 5,429
edges, used for node classification (error rate). Available via the LINQS dataset repository:
https://linqs.org/datasets/. No license was explicitly stated in the original publi-
cation.

• Reddit (Hamilton et al., 2017): A large-scale social network with |V | = 232,965 nodes and
|E| = 11,606,948 edges, used for community detection (error rate). The dataset is derived from
Reddit data and is subject to Reddit’s API terms of service.

• QM9 (Ramakrishnan et al., 2014b): A molecular graph dataset with average |V | ≈ 18 nodes
and |E| ≈ 40 edges, used for graph-level regression (mean squared error, MSE). Licensed
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under Creative Commons Attribution 4.0 International (CC BY 4.0) and available at https:
//doi.org/10.6084/m9.figshare.c.978904.v5.

• Facebook (Page-Page) (Rozemberczki et al., 2019): A page-to-page graph from Facebook with
|V | = 4,039 nodes and |E| = 88,234 edges, used for link prediction (1-AUC). The dataset is
distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license and
can be accessed via https://snap.stanford.edu/data/ego-Facebook.html.

MODELS AND ARCHITECTURE

We evaluated the following Graph Neural Network (GNN) architectures:

• GCN: 2-layer Graph Convolutional Network using GCNConv, with 16 hidden units.

• GAT: 2-layer Graph Attention Network with 8 heads in the first layer, and a single head in
the second.

• GraphSAGE: 2-layer GraphSAGE model using SAGEConv, with 16 hidden units.

All models use ReLU activation after the first layer.

TASKS AND LOSS FUNCTIONS

We tested three standard graph learning tasks:

• Node Classification: Cross-entropy loss on node labels.

• Link Prediction: Binary classification using the inner product decoder and binary cross-
entropy with logits.

• Graph Regression: Molecular property prediction using mean squared error (MSE) on the
target scalar field.

TRAINING PROTOCOL

• Subset Sampling: For each experiment, a subset of n ∈ {100, 500, 1k, 2.5k, 5k, 10k, 50k}
samples was randomly selected. For node and link tasks, subgraphs were constructed using
torch_geometric.utils.subgraph.

• Data Splits: A fixed 80%/20% train/test split was used.

• Optimizer: Adam with learning rate 0.01, weight decay 10−4.

• Epochs: 200.

• Batch Size: 32 for all tasks.

• Evaluation Metrics:

– Misclassification rate for classification,
– MSE for regression,
– 1−AUC for link prediction.

STATISTICAL SIGNIFICANCE AND ERROR REPORTING

Each experiment (fixed dataset, model, and n) was repeated 5 times with different random seeds. The
reported error metric includes the sample mean and standard deviation across the 5 runs. Standard
deviation is used for error bars and in weighted fitting procedures. These represent variation due
to random sampling and initialization. All error bars shown in figures correspond to ±1 standard
deviation.
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CURVE FITTING AND LEARNING TREND ANALYSIS

To analyze sample complexity trends, we fit the test error curves to the following models:

Model 1: c1 +
α√
n

Model 2: c2 +
β

n

Model 3: c3 +
δ

log n

Model 4: c4 +
1

nγ

Fits were performed using weighted least squares with weights wi = 1/σ2
i , where σi

is the standard deviation of the ith data point. The power-law model was fitted using
scipy.optimize.curve_fit with bounded parameters and a robust initial guess. For each
model, we computed:

• Weighted Residual Sum of Squares (RSS)
• Weighted Mean Squared Error (MSE)
• Weighted R2 value

The best fitting model for each dataset and architecture was determined based on the max-
imum R2. Fitted parameters and metrics were summarized in a LaTeX-formatted table
(final_comparison_table_weighted.tex), and model-specific figures were saved as
<dataset>_<model>_fits.png.

VISUALIZATION AND REPRODUCIBILITY ASSETS

All figures include error bars, and each plot overlays all fitted models for comparison. All code,
including data loading, model training, evaluation, fitting, table generation, and visualization, is
structured and commented for reproducibility.

CODE AND REPRODUCIBILITY

To support verification and reproducibility, we provide the full source code as supplementary material.
This includes implementations for data loading, model training, evaluation, error analysis, and curve
fitting, as well as scripts to reproduce all experimental results, generate LaTeX tables, and visualize
learning curves in line with reproducibility guidelines.

Summary: Every step necessary to replicate our results—datasets, architectures, parameters, training
and evaluation setup, fitting strategy, and visualizations—is fully disclosed and executable by third
parties with access to the same datasets and a standard GPU-enabled Python environment.

M.1 STRUCTURAL STATISTICS

To connect the empirical analysis with our theoretical results, we compute two structural measures
for each dataset.

Homophily is defined as

h(G) =
1

|E|
∑

(u,v)∈E

1{yu = yv},

where E is the edge set and yu denotes the ground-truth label of node u.

Spectral gap. We compute λ2(Ln), the second-smallest eigenvalue of the normalized Laplacian

Ln = I −D−1/2
n AnD

−1/2
n ,

where An and Dn are the adjacency and degree matrices of the induced subgraph on labeled
nodes. Both measures are derived directly from the observed graph and label information, ensuring
consistency with the conditions stated in Theorem 2.
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N THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we used Large Language Models (LLMs) solely as general-purpose
assistive tools for grammar checking, language polishing, and improving clarity of exposition. LLMs
were not used for research ideation, theoretical development, experiment design, or analysis, and they
did not contribute any scientific content. The authors take full responsibility for the contents of the
paper, including any parts where LLMs were used to improve writing style.
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