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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated strong empirical performance
across domains, yet their fundamental statistical behavior remains poorly under-
stood. This paper presents a theoretical characterization of the sample complexity
of ReLU-based GNNs. We establish tight minimax lower bounds on the generaliza-
tion error, showing that for arbitrary graphs, without structural assumptions (i.e., in
logd

the worst case over admissible graphs), it scales as |/ =>= with sample size n and

input dimension d, matching the 1//n behavior known for feed-forward neural
networks. Under structural graph assumptions—specifically, strong homophily and
bounded spectral expansion—we derive a sharper lower bound of 1og—n' Empirical
results on standard datasets (Cora, Reddit, QM9, Facebook) using GCN, GAT, and
GraphSAGE support these theoretical predictions. Our findings establish funda-
mental limits on GNN generalization and underscore the role of graph structure in

determining sample efficiency.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become central to machine learning on structured data, achiev-
ing state-of-the-art results across domains such as social networks (Sen et al.| [2008)), molecular
property prediction (Ruddigkeit et al.;2012), and community detection (Ramakrishnan et al., | 2014a).
By exploiting graph topology and node features, GNN's are now indispensable in modern Al systems.
Despite this success, their statistical foundations remain limited: how many training samples are
required for a GNN to generalize reliably to unseen data?

For feed-forward and convolutional networks, minimax analyses show that ReLU networks achieve
risk scaling of 1/4/n in the number of samples n (Golestaneh et al., 2024), in contrast to the classical
1/n parametric rate. These results rely on i.i.d. assumptions, whereas GNNs operate on correlated
inputs through graph edges. This dependency complicates sample complexity analysis and raises the
central question: how does graph structure influence generalization?

While prior work has provided upper bounds for GNNs using VC-dimension or PAC-Bayes frame-
works, these bounds scale poorly with network size and give limited insight into fundamental limits
(see Section[2). In particular, sharp lower bounds for GNNs are largely absent, leaving it unclear
whether GNNs can match the sample efficiency of feed-forward networks, or whether structural
biases induce fundamentally different scaling laws.

In this work, we establish new minimax lower bounds for ReLU-based GNNs. Using Fano’s inequality,
we prove that without structural assumptions on the graph (worst case over admissible graphs), the
logd

n ’
natural conditions—graphs with strong homophily and moderate expansion (Laplacian spectral gap
A2 < k/log n)—we obtain a sharper lower bound of %.

generalization error must scale at least as matching the known 1/4/n rate. Moreover, under

Experiments on Cora (node classification), Reddit (community detection), QM9 (graph regression),
and Facebook (link prediction) with standard GNN architectures (GCN (Kipf & Welling, 2017)),
GAT (Velickovi€ et al.; 2018, GraphSAGE (Hamilton et al.,[2017))) confirm that generalization often
aligns with this refined 1/ logn scaling.

Contributions. We:
1. Establish a minimax risk lower bound for GNNG, scaling as +/log d/n.
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2. Derive a sharper lower bound of IOL under structural graph assumptions.
gn

3. Empirically validate this refined scaling law on four benchmark datasets and three widely adopted
GNN architectures (GCN, GAT, GraphSAGE).

4. Provide a framework connecting theoretical sample complexity with practical GNN performance.

2 RELATED WORK

The sample complexity of deep neural networks is well studied. For fully connected and convolutional
architectures, the minimax risk is known to scale as 1/4/n, reflecting the higher data requirements of
deep learning models compared to classical parametric methods (Golestaneh et al.,[2024). Nonpara-
metric regression under smoothness assumptions also yields convergence guarantees (Schmidt-Hieber|
2020), though these results differ substantially from those for modern deep architectures.

In contrast, the theoretical understanding of generalization in Graph Neural Networks (GNNs)
remains underdeveloped. Early efforts analyzed the VC-dimension of GNNs (Scarselli et al., [2009),
but obtained bounds that scale poorly with depth and width. PAC-Bayesian approaches provided
stability-based alternatives (Liao et al.}[2020), yet sharp sample complexity characterizations are still
lacking. Other lines of work investigate representational limits (Garg et al., | 2020), or connect graph
topology to training dynamics (Oono & Suzukil 2021} [Nikolentzos et al.| [2022). However, lower
bounds on generalization—critical for understanding statistical limitations—remain scarce.

Expressivity and generalization of MPNNSs. Franks et al. study message-passing GNNs from an
expressivity—learnability perspective, establishing upper generalization bounds via VC/covering-
number analyses and showing how node individualization or positional encodings increase expres-
sivity while preserving learnability (Franks et al., 2024). Their guarantees scale with architectural
size (depth/width) and the chosen individualization scheme. Our results are complementary: we
provide minimax lower bounds for standard ReLU MPNNs with input-independent local aggregation
(Assumption (A1)), making the role of graph structure explicit via the spectral-homophily condition
(Theorem 2)). In short, [Franks et al.| (2024) delineate what is achievable in favorable regimes (upper
bounds), whereas our results certify obstacles that persist even for richer hypothesis classes (by
monotonicity of minimax risk).

Recently, Pellizzoni et al. analyzed GNNs with node individualization schemes, showing that such
modifications reduce sample complexity by enhancing expressivity while controlling VC-dimension
and covering numbers (Pellizzoni et al., 2024)). Together with [Franks et al.|(2024)), these works chart
the upper-bound landscape under expressivity-enhancing augmentations (e.g., individualization or
positional encodings). Our focus is orthogonal: we establish lower bounds for standard message-
passing GNNs without such augmentations, exposing an unavoidable dependence on graph structure.

Our work extends the minimax framework from feedforward networks (Golestaneh et al., [2024)
to GNNs with arbitrary graph inputs, without relying on strong smoothness or independence as-
sumptions. By incorporating graph topology directly, we derive intrinsic lower bounds on GNN
sample complexity that align closely with empirical trends. Unlike our general bound (Theorem [IJ),
the structure-aware bound (Theorem [2)) accommodates adjacency-masked attention by relying on
mixing/locality rather than input-independent aggregation.

Taken together, these strands bracket the problem: expressivity-driven upper bounds (Pellizzoni et al.|
2024; Franks et al.,|2024) and structure-aware lower bounds (this work).

3 PROBLEM FORMULATION AND MAIN RESULT

We consider a GNN operating on a graph G = (V, E) with |V| nodes, |E| edges, adjacency matrix

A, and node features X, € RIVI*d fory € V.

Graphs and terminology. Throughout, we allow arbitrary simple, undirected graphs. A chain graph
(path graph P,,, on m nodes) has edges {(1,2), (2,3),...,(m —1,m)}. Chain graphs are admissible
members of our graph family and instantiate the hard distribution in the proof of Theorem [I]

Task settings. We study three prediction regimes with Y the output of a GNN f, and ¢ > 1 its
output dimension: (i) Graph-level (inductive): Each example is a graph G with features X, and the
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model outputs f(G, X) = Y € RY. (ii) Node-level (transductive): A single graph G is observed;
training/test examples are nodes v € V. The model outputs f(G, X) = Y e RIVI*4, with the v-th
row 7, predicting node v. (iii) Link-level: Given queried pairs P C V x V, the model outputs
fG,X;P) = Y € RIPI*4 with entries U(u,v) from final-layer embeddings.

Unless stated otherwise, losses are squared error for regression and cross-entropy for classification.
Theorem [T] concerns graph-level (inductive) risk, and Theorem 2] node-level (transductive) risk.

ReLU Graph Neural Networks. A ReLU-based GNN with L message-passing layers realizes a

function f: G — Y, where G is a graph with node features X, and Y is the predicted output. Each
layer updates hidden node representations as:

D = 6 (WO Aggieny b+ BORO), 6(z) =max{0,2}, £=0,...,L—-1. (1)

Here W) ¢ R%+1%d acts on the aggregated neighbor messages AggjeN(i) hy), and BY) ¢

Rée+1¥de jg the self-loop mixing matrix applied to hl@). Additive biases b(¥) € R+t can be
included but are omitted here since including them only enlarges the hypothesis class and does not
affect our minimax lower bounds. The aggregator Agg is permutation-invariant, graph-dependent but

input-independent (e.g., sum or mean); node representations are initialized as hgo) =x;

Architectural scope and assumptions. Our lower bound in Theorem [I] applies to message-passing
GNN s that satisfy: (A1) input-independent, 1-hop permutation-invariant aggregation (e.g., SUM,
MEAN, normalized adjacency), and (A2) uniform layerwise Lipschitz/variation control, instantiated
as the ¢1-norm budget 3", (W @[, + || B®||1) < v,, which promotes sparsity and is consistent
with recent theoretical results on over-parameterized networks (Lederer, [2022; [Taheri et al., |[2020).
(Any equivalent operator-norm bound yields the same rates up to constants.)

Transformers and attention-based GNNSs violate (A1) and are therefore excluded from Theoremm By
contrast, Theorem [2] requires only adjacency locality and bounded layer operators, and thus extends
to adjacency-masked attention under suitable norm bounds (see Remarks [2)).

We assume ReLU activations, standard in GCNs, GATs, and GraphSAGE; our minimax bounds
remain valid for any larger hypothesis class obtained by replacing ReLU with more expressive or
injective MLPs.

We define Fgnn(vs, L) as the class of L-layer ReLU GNNGs satisfying this constraint. For simplicity,
we fix (vs, L) and write FonN.

Risk notions. We quantify generalization error via minimax risks. Here f* € Fgnn denotes a target
function (ground truth), and f a learned estimator depending on training data.

Graph-level (inductive) risk: Let (G, X;,Y;)?, be i.i.d. training samples, where each G, is an
independent graph. Define

REW(Fony) i=inf  sup  EwinEaro |((G) ~ F7(G))?], @)
f f*eFann

where Eqiy is over the training graphs (G;, X;,Y;)" ; ~ P™ and the inner expectation is over an
independent test graph G ~ Pg.
Node-level (transductive) risk: Fix a connected graph G = (V, F) with features X. Let S C V be a

uniformly random set of n labeled nodes for training, and let f = f (-;G, X, S) denote the learned
predictor. Define

R?ﬁ%’)(FGNN) =inf sup Eg
f freFonn

ﬁ S (fw) - f*(v))ﬂ , 3)

veV
where Eg is over the random choice of labeled nodes S. Here n counts labeled nodes (not graphs).

These risks correspond to the inductive (graph-level) and transductive (node-level) settings. We will
state explicitly which risk each theorem concerns.

Our first theoretical contribution yields a lower bound on the graph-level (inductive) risk.
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Theorem 1 (Graph-level Minimax Lower Bound (Inductive)). Let FgNn be the class of L-layer
ReLU GNNs with weights satisfying 35— ([W O, + [|BO|1) < vy, with L > 1 and vy > 0.

Assume (G, X;,Y;)" arei.id. samples withY; = f*(G;, X;)+U,;, U; B N(0,02), f* € Fann.
Then there exists a constant K,,,, > 0 such that, foralln > 1 and d > 2,

s [logd
R%raph(]:GNN) > Knewav o8 .

> 7 - “

Interpretation of Theorem (1} The risk decays no faster than 1/+/n, matching classical results for

fully connected ReLLU networks (Golestaneh et al., 2024)).

Sample-size implication. To guarantee error at most €2, one must have

ovs [logd o%v? logd
e > KneWT\/ — = n > K2, T 5)

Compared to classical finite-dimensional parametric estimators (e.g., linear regression, where n >
02 /€?), GNNs require substantially more data to achieve comparable generalization guarantees.

V

Proof Sketch. We apply Fano’s inequality (Fano & Hawkins| [1961)) and construct a packing set
M C Fgnn by varying the first-layer weights W (9 on path (chain) graphs. Exhibiting hardness
on one such family suffices to establish a minimax lower bound for the unrestricted graph class.
Node features are sampled as X; ~ N(0, I4), and labels follow Y; = f*(G;, X;) + U;, with
U,‘ ~ N(O, 0'2).

Packing step. The bound relies on Lemmal(I] which constructs a constant-weight Varshamov—Gilbert
code realized by first-layer coordinate selectors and shows

Cav2logd

log M(2¢, Fonns || - l2,) > I2¢2 (6)
Applying Fano’s inequality with KL divergence bounded by KL(P;||Py) < %2 yields
€2 2ne? /o? + log 2
R > — - . 7
(VD =79 ( Cav? logd/L262> ™

Optimizing over €2 gives the desired bound. The complete proof is provided in Appendix

Remark 1 (Worst-case graphs). Theorem [l|is established on path graphs (chain graphs), where
each node has degree at most two. This minimal connectivity creates bottlenecks that slow message
passing, making depth the dominant factor. Path graphs thus serve as canonical worst-case instances:
hardness on this sparse structure certifies the lower bound for all admissible graphs. Although denser
graphs may empirically converge faster, the path graph ensures the universal worst-case rate.

Remark 2 (Exclusion of attention in Theorem[I). The packing construction for Theorem|[I] exploits
assumption (Al), i.e., input-independent local aggregation. Architectures with attention violate (Al)
because their mixing weights depend on hidden features; hence the theorem does not apply to graph
transformers or attention-based GNNs. This does not contradict the lower bound: by monotonicity of
minimax risk, enlarging the hypothesis class cannot reduce the bound.

logd
n
scaling in practice. This motivates a refined lower bound under structural graph assumptions,

formalized in Theorem[2] We first define the notion of Spectral-homophily used therein.

Theoremestablishes scaling, whereas our empirical results (Section indicate 1/ logn

Spectral-homophily. The induced labeled-node subgraph satisfies Ao (L,,) < x/logn, a structural
expansion/mixing condition (small spectral gap), distinct from label-homophily assumptions (see
Appendix [C).

Theorem 2 (Structured-Graph Minimax Lower Bound (Node-Level, Transductive)). Let L > 1,
vs > 0, and let G = (V, E) satisfy the spectral-homophily condition \y(L) < k/logn for some
universal k > 0, where n is the number of labeled training nodes and L is the normalized Laplacian.
Then there exists a universal constant I' > 0 such that

2,2
node 0" Vg d

F > . .
(mi)(Fann) = [L2 logn

®)
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Interpretation of Theorem This bound decays more slowly than 1/y/n, making it tighter
whenever the spectral-homophily condition holds (see Eq. (22) and Appendix [H] for an explicit
form). Extensions to adjacency-masked attention (e.g., GAT) are discussed in Appendices |[HJ} and
practical guidance on improving constants without changing the Q(d/ log n) rate is in Appen If
spectral-homophily condition fails (e.g., Ao is larger, indicating strong expansion), the independence

argument breaks down and the analysis reverts to Theorem yielding the Q(4/log d/n) rate.
Sample-size implication. To achieve generalization error €2, the following must hold:
o?v? d 9
L2 logn —

o2v2d
= n > exp(ﬁ» )]
implying exponential sample complexity in 1/e2, far worse than polynomial rates.

4  STRUCTURED—GRAPH LOWER BOUND (PROOF OF THEOREM [2))

Proof. Consider the node-level transductive setting of Eq. (3 on a fixed graph G = (V, E), with each
training example corresponding to a distinct node. We impose the following spectral-homophily
condition on the subgraph induced by the n training nodes: Ao (En) < bgﬁ, where £,, is the
normalized Laplacian and > 0 is universal. By Lemma 3| (Appendix[F), the induced subgraph has
random-walk mixing time O(logn). Consequently, message-passing neighborhoods overlap heavily,
and only ©(log n) samples provide nearly independent signal. Intuitively, after O(logn) steps the
graph “looks new,” so only one out of every ©(logn) samples contributes fresh information. The
proof formalizes this intuition in four steps.

Block decomposition. Fix ¢ € (0,1), say € = i. By Lemma if Ao < 1/ log n, then the random

walk on the induced subgraph mixes in time ¢,ix(¢) = O(logn), with constants depending only
on k, €, and the laziness parameter. Let K = K(\g, k) denote the effective number of nearly
independent blocks obtained from the mixing-time argument. In particular, under Ay < k/logn, we
have K = O(logn); for concreteness we write K := [Cy,ix log n] for a suitable constant Cy,ix > 0.
Then K = ©(logn). Select K nodes {i1,...,ix} separated by at least the mixing radius (graph
distance 2 log n). The corresponding outputs Y, ..., Y;, are then approximately independent when
evaluated on appropriately localized functions f*. A typical consequence is that covariances decay
rapidly with separation, e.g. |Cov(Y;,,Y;,,)| < o2ecdisteir) where dist(ig, i) is large. We tie
block ¢ exclusively to node i; for the constructed functions fg, support is restricted to these K nodes.

Step 1: Sparse packing across blocks. Define h(c) := [16L2K?e? /v2]|. Construct a codebook

C C {0,1}% of weight-d/4 vectors with pairwise Hamming distance at least (). Existence is
guaranteed by the Gilbert—Varshamov bound (Varshamov, (1957} |Gilbert, |1952). Assign each block
¢=1,...,K acodeword s € Candlet s = (s, ... s(5)). Define

d

K
fs(x) := Z ;IS( Z sy) é(xj), ¢(z) = max{0, z}. (10)

=1 j=1

This function is realized by a one-layer ReLU GNN with self-loops and an identity aggregator
(so each node aggregates only its own features). Hence fs € Fann(vs, 1); see Appendix [Al Its

vs () vsd

complexity, determined by the magnitude of its coefficients (e.g., >, i TS ] =9

bounded consistently with the definition of FgnN, as parameterized by vs and L.

), is therefore

Separation. Suppose s and s’ differ only in block m. Then fs(z) — fs (z) = d (s(m)

IK 2-j=1\%;
59(7”)) #(z;). Hence
2
1o = ol = Ex | (2 (5™ = 51 ™)0(x;))
J
Assuming the features {¢(X;)} are orthonormal, this simplifies to
Ifs = farllZ, = gz 15 — 513, (11)
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By the codebook construction, ||s(™ — s'(™)||2 > h(c). Substituting into Eq. and recalling
h(g) > WLZ;# yields || fs — fe||7, > 16¢2. Thus any two functions differing in one block are

separated by at least 162,

Packing Set Construction for Fano’s Inequality. To apply Fano’s inequality (Lemma |2} Ap-
pendix @]), we construct a set of M functions { fx } from Fgnn that are well separated in Lo norm yet
induce output distributions that are not too distinguishable.

LetI'. > 0 be a sufficiently large universal constant (its value will be fixed by the conditions below
and will enter the final constant I in the theorem). Define a target Hamming distance for length-d

codewords:
1602d—‘

L.

We require I, large enough (e.g., I'. > 6402, for d > 1) so that Ay < d/4. This guarantees the
existence of two codewords sg, s; € {0, 1} such that: (i) ||so|lo = ||s1/l0 = d/4 (both have weight
d/4), and (ii) ||so — s1||3 = dg(s0,51) > Ag. The existence of such constant-weight codewords
follows from standard coding theory results.

Ay e [ (12)

Now let K = [logn]. For K > 4, the Varshamov-Gilbert bound ensures the existence of a code
Cx C {0,1}¥ of size M = |C| with pairwise Hamming distance at least K /4, i.e., dg(x,x’) >
K /4, and log M > ¢1 K for some universal ¢; > 0.

For each x = (z1,...,2x) € Ck, define a function fx € Fgnn as follows. For each of the K
special nodes {41, ...,k }, assign block ¢ (tied to node i) the codeword

@ _ [, ifze=1, 13

5x {807 ifxy =0, (13

and set fx(Xi,) = 25 201 (s%)); 6((Xi,);) and fx(X,) =0 forp ¢ {ir, ... ix}.

The squared Lo-distance between two such functions fy and fy/ is

2
V] K d

Ix=llt, = Do (5 (X)=fro (X)) = 32 | e Do (L) = (s)))e(Xi)) | - (4)

=1 =1

Assuming orthonormal features {¢((X;,);)} (as in the separation argument), this simplifies to

K
Us 2 4
1= Felld, =D () s = 521

/=1
2 K /v, \2 Apv?
—sl2 > 2 (=2 — 2H%s
51 =s0ll2 = 3 ( ) An =1k (15)

v
=d(x,x (—S)
2
Thus the minimum squared separation is d3 = 4ALH;;§ .

Step 2: KL divergence. Let Py be the distribution of the observations Y = (Y;,,...,Y;, ) when
the true function is fx and each Y;, is corrupted by independent Gaussian noise N (0, o2). The KL
divergence between Py and Py is

K
1 , 1
KL(Px||Px) = 202 (fx(X’iz) - fx’(Xiz)) = ﬁ“fx - fX'Hig(onKnOdes)
=1
Ve \2 K [ vs \2 Apgv?

- i) () i 25 () s 2

952 m(x,x’) K [[s1 80\\2,202 LK H= 5 072K (16)
Thus K Loy i= 5ottt

Step 3: Fano’s inequality. Applying Lemma 2] (Fano-Tsybakov; see Appendix D)), if we have M
functions { fx }xec, such that || fx — fxs \\%2 > d3 for all x # x’ and K L(Px||Px') < K Lyax, then

o dj (1 B KLmaX+log2) _

inf sup E[||f — fll2.] > (17)
f xeCI; “|f f HLQ] 2 log M
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(Some versions yield dZ/8 under the stronger assumption K Ly, < % — log 2; we state the
general form.)
To ensure the parenthesis is bounded below by a positive constant, say co = 1/2, we require
log M > 2(K Luax + log2). Since log M > ¢1 K, this condition reduces to
AHUE
When Eq. (18) holds, the minimax risk satisfies R4S, (Fany) > 280 = 2. Svs gupgiruti
en Eq. (18)) holds, the minimax risk satisfies (n’G)( GNN) > 50 = 2. A== Substituting
Ay = [160°d/T.] > 160%d/T . gives
ca (1602d/T.)v2 2cy  o*vid o%v?  d
Rnode F > £ 2 . S = S . R 19
(mic)(Fann) 2 5 412K T. IL2logn TL? logn (19)

where T" := I'./(2¢3). This completes the proof.

Appendix [G| derives sufficient conditions on I'; to ensure Eq. (I8) holds, confirming that I' =
T'./(2c2) is a universal constant. These calculations refine the constants and verify the claimed
scaling. [

5 EMPIRICAL STUDIES

In this section, we provide proof-of-concept experiments to assess how our theoretical results
align with practice. Experiments were conducted on four benchmark datasets—Cora, Reddit,
QM9, and Facebook—using three representative GNN architectures: GCN (Kipt & Welling} 2017),
GAT (Velickovic et al.|, [2018)), and GraphSAGE (Hamilton et al.,[2017). Dataset descriptions, training
protocols, and infrastructure details appear in Appendix [M]

Scope. Our theory establishes bounds for graph-level (Theorem [I)) and node-level (Theorem [2))
prediction. For completeness we also report one link-level task (Facebook), though no formal bound
is provided. Theorem|I]applies to local, input-independent aggregation, while Theorem 2] extends to
adjacency-masked attention (standard GAT) under bounded layer norms—conditions satisfied by our
GAT implementation.

Across 7 of 12 dataset—-model combinations, the observed minimax risk (generalization error) decays
closer to 1/ log(n) than the 1//n rate of Theorem[I} This pattern suggests that the refined bound in
Theorem [2] may better capture empirical GNN behavior in several settings.

Graph Structural Properties. Table [I|reports structural statistics— homophily (fraction of same-
label edges) and spectral gap (second Laplacian eigenvalue; see Appendix [M.T)— and their relation
to observed scaling. Datasets with higher homophily, such as Cora (0.81) and Reddit (0.78), tend to
show 1/log(n) scaling, consistent with node similarity aiding information propagation. In contrast,
Facebook, with lower homophily (0.58) and a smaller spectral gap (A2 = 0.05), more often follows
1/4/n scaling in link prediction, suggesting weaker diffusion and limited regularization.

Two exceptions—GCN on Reddit and GraphSAGE on QM9—occur in settings may hinder global
regularization: very large graphs (|V/| > 10%) or molecular tasks needing fine-grained distinctions.
The observed dependence on homophily and spectral gaps aligns with the spectral-homophily
condition in Theorem 2] which predicts slower convergence when structural regularization is weak.

Table 1: Graph Structural Properties Supporting Theorem 2

Dataset Homophily Ratio Clustering Coefficient Spectral Gap (\2)

Cora 0.81 0.24 0.12
Reddit 0.78 0.15 0.08
QM9 N/A 0.03 0.18
Facebook 0.58 0.30 0.05

Methodology. We implemented all models in PyTorch Geometric and trained them on sample sizes
n € {100,500, 1k, 5k, 10k, 50k}, subject to dataset limits (n < 1,000 for Cora and Facebook). For
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each n, we computed test errors averaged over five runs with different random seeds. Classification
tasks (Cora, Reddit) used cross-entropy loss, regression (QM9) used mean squared error, and link
prediction (Facebook) used one minus AUC (1-AUC). For link prediction, edges were randomly
sampled into balanced positive/negative sets of size n. To analyze error scaling, we fitted four
candidate forms to the test error curves: c¢; + %, co + %, c3 + %, cq + n% Parameters

(c1,c2,¢3, ¢4, 3,6, € (0,00)) were optimized via weighted least-squares regression with inverse-
variance weights. Fit quality was evaluated using residual sum of squares (RSS), mean squared error
(MSE), and the coefficient of determination (R?), to capture both absolute and relative fit quality.

Results. Table 2| summarizes fit quality across all datasets and models, and Figures compare
fitted curves with empirical errors. The best-fit scaling law varies by dataset and architecture. Broadly,
1/log(n) dominates in high-homophily settings (e.g., Cora, several cases in Reddit and QM9), while
1/4/n better explains performance in some large-scale or regression tasks (e.g., GCN on Reddit, GAT
on QM9). The flexible 1/n” form occasionally yields the best fit, most notably for GAT on Facebook
with v & 0.42. In some cases, however, the 1/n” form produces negative R? values (Table , which
simply indicate fits worse than the mean baseline and are not interpreted further. In contrast, the 1/n
law consistently underperforms.

Table 2: Comparison of Fit Metrics Across All Models and Datasets (Weighted Analysis)

Dataset Model a+ \% e+ q c3+ ﬁ ca+ ,% bl Best Fit
RSS MSE R? RSS MSE R? RSS MSE R? RSS MSE R?

Cora GCN 1.13e+00  3.76e-01  0.991 | 6.28e+00 2.09e+00 0.952 | 2.53e-01  8.45e-02 0.998 | 3.43e+01 1.14e+01  0.736 | 0.243 | 1/log(n)
Cora GAT 6.71e-02  224e-02  0.999 | 1.41e+00 4.71e-01  0.972 | 9.12¢-03  3.04e-03  1.000 | 9.87e+00 3.29¢+00 0.804 | 0.245 | 1/log(n)
Cora GraphSAGE | 1.52e+00  5.08e-01  0.990 | 9.36e+00 3.12¢+00 0.938 | 2.62e-01  8.73e-02  0.998 | 5.30e+01 1.77e+01  0.649 | 0.220 | 1/log(n)
Reddit GCN 5.65e+01 9.42e+00 0.835 | 7.52e+01 1.25e+01 0.781 | 1.44e+02 2.40e+01 0.580 | 1.30e+02 2.17e+01 0.621 | 0.304 | I/sqrt(n)
Reddit GAT 7.13e+01  1.19e+01 0.762 | 1.87e+02 3.12e+01 0.374 | 2.89e+01 4.81e+00 0.904 | 1.16e+02 1.93e+01 0.612 | 0.120 | 1/log(n)
Reddit GraphSAGE | 2.41e+02  4.02e+01 0.983 | 8.25e+03 1.38e+03 0.427 | 9.58e+01 1.60e+01 0.993 | 4.44e+03 7.39e+02  0.692 | 0.227 | 1/log(n)
QM9 GCN 4.94e+00 8.23e-01  0.928 | 2.49e+01 4.15e+00 0.635 | 2.93e+00 4.88e-01 0957 | 1.62e+02 2.70e+01 -1.377 | 0.100 | 1/log(n)
QM9 GAT 8.78e-01 1.46e-01  0.790 | 2.12e+00 3.53e-01 0.493 | 1.10e+00 1.84e-01 0.736 | 9.52e-01 1.59e-01  0.772 | 0.360 | 1/sqrt(n)
QM9 GraphSAGE | 1.69e-01  2.81e-02  0.990 | 3.05e+00 5.09¢-01 0.816 | 1.83e+00 3.05e-01 0.890 | 2.29e+01 3.81e+00 -0.378 | 0.100 | 1/sqrt(n)
Facebook GCN 4.61e-01  1.54e-01 0.978 | 1.56e+00 5.19e-01  0.927 | 1.91e-01  6.37e-02 0.991 | 5.70e-01  1.90e-01  0.973 | 0.552 | 1/log(n)
Facebook ~ GAT 2.12e-02  7.06e-03  0.998 | 5.60e-01 1.87e-01 0.954 | 7.11e-03  2.37e-03  0.999 | 8.95e-04 2.98e-04 1.000 | 0.420 1/n”

Facebook  GraphSAGE | 1.77e-02  5.92e-03  0.999 | 2.45¢-01 8.16e-02 0.991 | 1.39e-01 4.64e-02 0.995 | 7.72e-01 2.57e-01  0.971 | 0.449 | 1/sqrt(n)

Different architectures often show different slopes on the same dataset, a phenomenon likely influ-
enced by smoothing, overlap, and bias—variance tradeoffs (Appendix [L).

Overall, the empirical results show that convergence rates frequently decay more slowly than the
classical 1/4/n bound, often approaching 1/log(n). This slower rate is consistent with Theorem
which predicts weaker convergence under limited structural regularization. In practice, this implies
that GNNs may require substantially more data to generalize effectively on graphs with small spectral
gaps or weak homophily.

The clear emergence of 1/log(n) scaling on Cora across all models (Figure exemplifies this trend:
community structure and weak spectral gap appear to constrain diffusion, raising sample complexity
beyond the optimistic 1/+/n rate. On Reddit, GCN fits 1/1/n while GAT and GraphSAGE align with
1/log(n), suggesting that architectural sophistication alone may not offset structural limits. On QM9,
regression tasks show mixed scaling, while Facebook link prediction exhibits task-specific behavior,
with GAT following 1/n".

Taken together, these results highlight the importance of structure-aware generalization bounds that
account for both graph topology and task characteristics, rather than relying solely on universal rates.

GraphSAGE
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Figure 1: Test error vs. sample size n on Cora.
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Figure 2: Test error vs. sample size n on Reddit.
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Figure 3: Test error vs. sample size n on QM9.
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Figure 4: Test error vs. sample size n on Facebook.

6 CONCLUSION

We develop a theoretical foundation for the sample complexity of ReLU-based Graph Neural Net-
works (GNNs), addressing a central gap in understanding their statistical limits. Using minimax
analysis, we show that while GNNs can in principle match the 1/4/n scaling of feed-forward networks,
realistic structural assumptions—such as strong homophily and bounded spectral expansion—force
risk to decay no faster than 1/log(n). This implies that reliable generalization on structured data
may require substantially more samples than previously assumed.

Empirical studies on four benchmarks and three architectures support this refined picture: in most
regimes with community structure or small spectral gaps, generalization follows the slower 1/log(n)
rate rather than the classical 1/1/n. These results identify graph topology as a primary driver of
sample efficiency, beyond architectural design alone.

In sum, we provide the first sharp lower bounds for GNNs under realistic structures, together with
empirical evidence that these slower rates arise in practice. Future work should investigate whether
alternative architectures, regularization, or pre-training can overcome the inherent data inefficiency
induced by weak homophily and limited spectral expansion.
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7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All theoretical assumptions,
theorems, and the proof sketch of Theorem |I]are explicitly stated in Section[3] The complete proofs of
Theorem|[I]and Theorem 2] are provided in Appendix [B]and Section[d] respectively. Supporting tech-
nical components—including degenerate GNN realizations (Appendix [A), spectral and homophily
assumptions (Appendix [C), Fano’s inequality (Appendix D)), mixing-time arguments (Appendix [F)),
and operator-norm control for attention (Appendices [[HJ)—are all provided for completeness. Ex-
perimental protocols are described in Section [5] while dataset descriptions, training procedures, and
infrastructure details appear in Appendix To further support verification, we provide the full
source code as supplementary material, including implementations for data loading, model training,
evaluation, and error analysis. The package also contains scripts to reproduce all experimental results,
regenerate ISIEX tables, and visualize learning curves. Together, these resources ensure that both
the theoretical and empirical results reported in this paper can be independently reproduced and
validated.
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A DEGENERATE GNN REALIZATION

We construct a one-layer ReLU GNN on the original graph (with self-loops) using the identity
aggregator, Agg = identity. In this case, each node aggregates only its own features—a degenerate
vs (0
LK Sj

but still admissible instance of the message passing. With weights set as W; = and zero bias,

the network output is

which lies in Fgnn(vs, 1). Although message passing here reduces to self-loops, this subclass is
included in our hypothesis space. Since minimax lower bounds apply to any subclass, establishing
hardness for these degenerate cases certifies hardness for the full class.
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B MINIMAX LOWER BOUND (PROOF OF THEOREMED

We begin with a technical packing lemma, which establishes the key combinatorial bound used in
Step 1 of the proof of Theorem|I]

Lemma 1 (Packing for ReLU under Gaussian features). Let X ~ N(0, 1) and ¢(z) = max{0, z}.
Consider Fonn (vs, L), the class of L-layer ReLU GNNs with

L-1

D UIWOL +[BOh) < vs.
=0

There exist absolute constants ¢, C'y > O such that for every € € (O7 cvg/ L}, the 2e-packing number
of Fonn (vs, L) with respect to the Lo(Px ) metric satisfies

2

v
log M(2¢, Fann(vs, L), || - [l 1o(py)) = Ca LTSGQ log d.

Proof. Fix L > 1 and vs > 0. We construct a family {fs} indexed by r-subsets S C [d], for a
choice of r defined below, and we show it is a 2e-packing.
(L1) Realizable subclass and budget. Letr € {1,...,d} and define

fs(x) = anﬁ(xj) with  a =

JES

Co Vs
Lr’

where ¢y € (0,1) is an absolute constant to be fixed. We claim fs € Fonn(vs, L). Realize fs by
using the first layer to compute the r hidden coordinates {¢(z;) : j € S} with weights whose ¢; sum
is ra (so this layer spends ra = covs/ L of budget). Use the last layer as a linear readout that sums
these = hidden coordinates with weights of total ¢; norm at most vs/ L, and set all intermediate layers
to the zero operator. The overall output equals a ) jes ¢(z;). The total ¢, budget used is at most

(co+1)vs/L <wsforeg < 1,80 fg € Fann(vs, L). (Absolute constants can be absorbed into cg;
no rate is affected.)

(L2) L, separation. Let Z, Z' """ N (0,1). Standard ReLU-Gaussian moments give E[¢(Z)] =
1/V2m, E[¢(Z)?] = 1/2, and for independent Z, Z', E[¢p(Z)¢p(Z')] = 1/(27). Hence for j # k,

E[(6(X;) — 6(Xx))?] = (% - %) + (% - ﬁ) >1-1 = ¢, €(0,1).
Let S,T C [d] with |S| = |T| = r, and write D = SAT (symmetric difference), m := |D|. By

independence across coordinates and the display above,
2

fs—fT||%2(px>=a2E[(§¢<Xj>—§j¢<Xk>)2] S

keT

(Since cross-covariances between distinct coordinates vanish, we retain only the diagonal terms as a
conservative lower bound. Accounting for the exact covariance yields the slightly larger constant c,
in place of 1/2, but the simpler factor 1/2 already provides a valid bound.)

(L3) Constant-weight code. By the Varshamov-Gilbert bound for constant-weight codes, there
exists C C {S C [d] : |S| = r} such that for all distinct S, T € C, |SAT| > r/2 and |C| > (cd/r)"
for a universal ¢ € (0, 1). Combining with (L2) gives, for S # T € C,

a~/T
Il fs — frllcopy)y = \Tf

(L4) Choosing r to achieve 2¢ separation. We want | fs — fr|/,(py) > 2¢ for all distinct
S, T eC,ie., a‘f > 2e. With a = (cus)/(Lr) this becomes

2 .2
g vs
> 2 <+ r < —= =
- — 16 L2¢2

CoUs

YNNG
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We take y
cg s J Vg
= | =2 and assume € < ¢; —
{32 L2¢2 =

with ¢; > 0 small enough so that 1 < r < d/2 (thus log(d/r) > 3 logd). Then {fs : S € C}isa
2e-packing.

(L5) Packing size. From (L3) and r < d/2 we get

/

C
log M(26, Fax, | ,(r)) > log|C] > crlog(d/r) > 5 logd.

Substituting the choice of r from (L4) and absorbing absolute constants (including cg, ¢/, %, and the
ReLU-Gaussian factor) yields

2
s

log M(2¢, Fanns [| - l2(px) 2 Ca 155

for a universal C'4 > 0, proving the claim. O

v
55 logd,

With Lemma [I| established, we now prove Theorem|[I]

Proof. The proof proceeds by Fano’s inequality, which requires (i) a large packing set inside Fonn,
and (ii) a KL-divergence bound (Appendix D). Step 1 invokes Lemma[I] whose proof appears above.

Step 1: Packing number. By Lemma for every € < cv,/L, there exists a 2¢-packing M* =
{fla ceey fM} of Fann with

v2logd
log M > Ag/e2,  Ay=Ca Lf
Step 2: Fano’s inequality. LetY = f*(X)+ U, with U ~ N(0,0?) i.i.d. For any two f;, fx €
M, the corresponding distributions satisfy

Hfj - fk-“%Q(pX)
202 '
Because the packing is constructed at radius 2e, all pairs obey || f; — fill7, > (2¢)*. To avoid
degenerate constants, we further assume that separation does not exceed a constant factor, i.e.
Ilf; — fk||2L2 < Ok, €2 for some Ckr1, > 2.

(If all pairs are exactly 2e-apart, then Cky, = 2.) Thus KL < Cxr,€? / o2.

KL(P; | Pr) =

We apply the fixed-radius form of Fano’s inequality (Lemma [2):

62 nC 62 0,2+10 2
Rn,jv))(Fann) > Sup{(l K€"/ g |

e>0 2 A0/62

Step 3: Optimizing over e. Let 2 = ¢2. The bound reads
z(_ nCxrz?/o? + xlog 2
2 Ag '

Maximizing g(x) exactly requires solving a cubic. For a clean bound it suffices to choose x so that
the parenthesis is 1/2, i.e.

g(r) =

1 nCxra?/o? + xlog 2 1
Ao T

[

This yields the quadratic
nCkr,
o2

2?2 + (log 2)x — % =0,

whose positive root is given by
2

r = €2 U (— log 2 + \/(log 2)2 + 2”‘4002(]“) .

- 2nCkr,
For a detailed derivation, we provide the quadratic solution in Appendix [B.1]

For this choice,
Rn vy (Fann) > e

13
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Step 4: Asymptotics and constant. When n is large enough that % > (log 2)?, we expand
the square root:

e =~ g Ao
V20k, V"
Thus .
g o \ ov
Rn > - @:( Ca ) S logd.
mivpFann) = 7 Zmm=y 5 = (T ) 7 Vs

Define Kyew = 7 \/V% > 0.

Step 5: Validity for all n. The exact root expression for €2 shows that the bound holds for all
n > 1, not just asymptotically. Writing

2 2

€ g
— = | =log?2 log 2)2 + 2nAcCxL
4  8nCki, < g2+ \/( 0g2)% + = ’

one checks that the bracketed term is Q(n'/2), hence the rate K, (cvs/L)+/(logd)/n holds uni-
formly in n (with a smaller constant if n is very small).

Step 6: Dimension condition. Finally, d > 2 ensures log d > 0 so that Ay > 0.
This completes the proof of Theorem [T} O
B.1 EXACT QUADRATIC SOLUTION FOR €2

In Step 3 of the proof of Theorem we choose €2 = z so that the parenthetical term in Fano’s bound
equals 1/2:

nCxra?/o? + xlog 2 1 v2logd
1— = 5 Ag = 2 .
AO 2 0 CA 72
This yields the quadratic
C A
nggL 22 + (log2)z — 70 = 0,
whose positive root is
2
2 g 2nAOCKL
=2z = —log2 log 2)2 — . 20
¢ “ 2nCxr, ( 082 \/( 0g2)* + 02 > 20)

Substituting Eq. into the fixed-radius Fano inequality (Lemma 2) gives

€ o? 2nAgCkr,
Rn,jv))(Fann) > T~ %0 (—logQ + \/(1og2)2 + — |- (21

Asymptotics. When n is large enough that % > (log2)?, a first-order expansion of the
square root in Eq. (20) gives

2 7 Ao VTa | OUs logd
pu— — P > logd .
€ \/m\/: (1+O(1))a = R(n,IV\)(-FGNN) > (4@) T - (1—‘1-0(1))

Uniform-in-n bound. Define

QTLAO CKL

2

®(n) == —log2 + \/(logQ)2 + .

Then ®(n) is strictly increasing in n, satisfies ®(0) = 0, and ®(n) ~ /2nA¢CkL /0 as n — oo.
From Eq. ),

Rn,jvp(Faonn) =

o? ( ot o2 ®(m) )~K*- 1

P >
8nCkr, (n) — \1<m<no 8mCxkry, Ky

14
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for any fixed ng € N and target rate K, := @. Choosing

, { VCa . o ®(m) }
Kiew = ming ———, min —————r—=1 >0,
4y/2Cky,” 1<m=no 4y/2Cky, /mA,

we obtain the uniform (in n > 1) lower bound

OUs log d
Rn,jv)(Fenn) > KnewT %

This shows the Q((ov,/L)+/(log d)/n) rate holds for all n > 1 (with a possibly smaller Kpey for

very small n), while the asymptotic constant - \/;VQ%?Q is recovered as n — oo.

Remark 3 (Why path graphs?). The path graph P,, minimizes connectivity and mixing: each node
has degree at most two, and lazy random-walk mixing is slow, so one message-passing step propagates
information only along a single chain. This bottlenecks information flow per layer, making depth the
dominant factor. More connected graphs (e.g., expanders or dense random graphs) mix faster, which
can only help learning. Hence, demonstrating hardness on path graphs suffices to certify a minimax
lower bound for all admissible graphs—standard practice in worst-case lower-bound arguments.

Remark 4 (Where topology enters the proof, and why a path). Graph topology influences the proof
in two places:

1. Packing construction. Let N1 (v) denote the radius-1 neighborhood. We choose a set S of
m nodes and vary only their first-layer weights. To avoid interference, we require {N1(v) :
v € S} to be pairwise disjoint. On a path P, this holds if the distance between consecutive
nodes in S is at least 2, giving |S| = ©(m). On a graph with maximum degree A, disjointness
typically forces spacing > A+1, reducing |S| by a factor ¢(A) < 1 and thus shrinking the
packing number by constants.

2. KL—divergence control. For Gaussian noise,

L 2
KLy P = I - LS ) —

202

With disjoint neighborhoods, a perturbation affects only outputs inside N1(v). On Py,
|NV1(v)| <2, so the KL scales like O(|S|) for fixed perturbation size. On degree- graphs,
IN1(v)| < A, so for the same perturbation size the KL is larger by O(A). To keep KL bounded,
we rescale the perturbation by 1/ VA, which weakens the separation by the same factor. Both
effects alter constants in Fano’s inequality, not the n—dependence.

Consequence. Because paths minimize degree (A = 2) and maximize the number of disjoint
radius-1 neighborhoods, they yield the tightest constants and the cleanest exposition. Moreover, any
graph containing an induced path of length QX(n) admits the same lower-bound rate as Theorem
(up to universal constants) by restricting the construction to that path.

C INTERPRETING THE SPECTRAL-HOMOPHILY ASSUMPTION

Structural, not label-based. The assumption \y(£,) < x/logn concerns the spectrum of the
normalized Laplacian of the subgraph induced by the n labeled nodes. It constrains expansion and
mixing properties of the graph and is independent of labels or features. In particular, the condition
can hold even if labels are adversarially assigned; no form of label homophily is required.

Why it makes learning harder. A small \3(L,,) implies low conductance and slow random-
walk mixing by Cheeger-type inequalities (Bandeira et al.| [2013). In this regime, message passing
repeatedly reuses the same information: after O(r) hops, neighborhoods overlap substantially. Our
proof shows that = ©(logn) suffices to reduce cross-block dependence below a fixed constant, so
only ©(log n) blocks behave “nearly independently.” This effective reduction in sample size yields
the 2(d/ log n) lower bound.
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When the condition fails. Graphs with strong cross-cluster connectivity (i.e., good expansion)
typically have A2 bounded away from 0 (often ©(1)). Such graphs fall outside the assumption, and

the guarantee reverts to the € \/log d/n) rate of Theorem

Examples.
* Paths, cycles, or chain-of-cliques: \2(L) decays with graph size. For sufficiently large n, the
condition Ay < 1/ logn is satisfied, often by a wide margin.

* Expanders and dense random graphs: A2(L) = O(1), so the condition fails and the analysis falls
back to Theorem[I]

D FANO’S INEQUALITY (FIXED-RADIUS FORM)

We state the specific version of Fano’s inequality used throughout the proofs. It is a standard corollary
of Lemma 2.10 in|T'sybakov|(2009).

Lemma 2 (Fano-Tsybakov, fixed-radius form). Let (©, d) be a metric space, and let {Pg : 0 € O}
be a family of distributions on X. Suppose there exist M > 2 points 61, ...,0y € © such that:

(i) Separation: d(0;,0;) > 2¢ for all j # k;
(ii) KL control: max ., KL(Py, || Py, ) < 3.

Then, for any estimator é,

2
. PPN € B + log 2
o > — R .
inf sup E@[d(ﬁ,@) ] z 5 <1 Tog M

The bound is meaningful whenever 5 < % log M — log 2.

This fixed-radius form is the one applied in all lower-bound arguments. It follows directly from
Lemma 2.10 in [Tsybakov]| (2009), but is stated here for completeness and to keep the paper self-
contained.

E MIXING TIME AND SPECTRAL GAP

F MIXING TIME AND THE SPECTRAL GAP

We formally justify that the spectral-homophily condition in Theorem [2]implies logarithmic random-
walk mixing time.

Lemma 3 (Mixing time via spectral gap). Let G = (V, E) be a finite, connected, undirected graph,
and let P = %I + %D_lA be the lazy random-walk transition matrix, where A is the adjacency
matrix and D = diag(deg(v)). The stationary distribution is

_ deg(v)
T((’U) - 2|E| I

veV,

so that
1 1

7Tmin Z all Z Nr1o°
20E] — [V
Foreverye € (0,1),

log(1/(emmin)) < 2log |V| + log(1/¢)

tmix S = )
() 1— A 1— A

where Ao is the second largest eigenvalue of P (the spectral gap is 1 — Ao > 0). (Levin & Peres|
2017, Theorem 12.4, (12.10)).
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Proof. By reversibility of P, the stationary distribution is 7(v) = deg(v)/(2|F|). Hence

degmin > 1 > 1

0B — 20E] © VP

Tmin = Minw(v) =
v

since |E| < |V|(|]V] - 1)/2.

Let Ao = A\2(P) denote the second largest eigenvalue. Standard spectral bounds for lazy reversible
chains (Levin & Peres| 2017, Theorem 12.4) yield

log(1/(emmin))

tmix S )
() T

Substituting the bound on 7,3, gives

10g<wmn) < log(é) + 2log|V].

€ (0,1).

Thus
Fon(2) < 2log |V] + log(l/e).
1— g
If \s < k/logn with n = |V| and fixed «, then for sufficiently large n we have 1 — Ay >
1 — k/logn > c for some universal ¢ € (0, 1). Hence tmix(¢) = O(logn). O

Implication. The bound implies that a mixing radius of order ,;x = ©(log n) suffices. Consequently,
we may select K (Ao, k) = ©(log n) nodes whose neighborhoods can be treated as effectively disjoint
in our hypothesis construction. This is encoded through the constant ¢y (A2, k) used in Section

F.1 LOWER BOUND ON THE STATIONARY DISTRIBUTION

For completeness, we justify the lower bound on 7y, used above. Since 7(v) = deg(v)/(2|E|) for
the lazy walk,
degin 1
Tmin = =i
2|E| 2|E
As |E| < |V|(|V] — 1)/2, it follows that

1
Tmin Z W

This universal bound is adopted in Lemma Sharper bounds (e.g., Tmin > ¢/|V|) require minimum-

degree assumptions such as deg,;, > c¢|V|, which we do not impose here. Our rates therefore
conservatively rely on the 1/|V|? bound.

G REFINING ' IN THE LOWER BOUND

As shown in the main proof in Sectlon | the minimax risk is lower bounded by a rate of - T oan log —. This

appendix refines the constant I' =T'./(2¢2) in that bound by specifying sufficient conditions under
which the inequality in Eq is satisfied. The condition was ¢; Ko?L? K > Agv2+202L*K log 2.

Substituting Ay ~ w%cd.
1602d 164
o K202L% > g v 4202 2K log2 = o K2L%> 1605 o2 K logo.
C C

This condition essentially requires that 16d”

16dv

== is not too large compared to K2L? = (logn)?L?.

Specifically, we need I'. > Yo SR o 55
dvS dv?

KTz = (10gn)s2L2' We also need I'. > 6402 (for Ay < d/4). So, I'. must be chosen as a
sufficiently large universal constant, potentially depending on fixed universal constants like ¢; and
desired Fano factor ¢, and satisfying these conditions. If dv2/((logn)?L?) is bounded by a constant
(which is often an implicit assumption on how d can scale with n for the bound to be non-trivial or
for the construction to be valid), then T'. can be chosen as a constant. The resulting I' = I"../(2¢2) is
then a universal constant, depending on properties of the function class (implicitly through L, v, in
the conditions for I';) and the packing construction (through cy, c3).

For large n, we can approximate this as I'. 2
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H CONSTANT DEFINITIONS AND EXPLICIT-K FORM

Definition of I" and its dependencies. I collects the universal constants that arise in the Fano
argument: (i) the packing/code-size constant from the Varshamov—Gilbert construction (cyg), (i1)
the constant in the upper bound on the KL divergence between hypotheses (ck1,), and (iii) the slack
constant from Fano’s inequality (cz). After Step 3 of the proof (Section[d)), the bound becomes

o?v? d ave) 1

node > . . R
(mG)(]:GNN) = L2 K(M\,k) 16ckn 2c2’

where K (A2, ) denotes the effective number of nearly independent blocks obtained from the mixing-
time argument. Thus, we may define
16
[ = T, (2c) with I,:=—KL
avel

These constants depend only on the geometry of the function class, as determined by the pack-
ing/separation construction (ReLU Lipschitz constant implied by the ¢;-budget v, the depth L, and
the orthogonality of features used in the packing), and on the fixed inequalities invoked in the proof.
Importantly, I" is independent of n and d, apart from the explicit factors already shown in the bound.

Equivalent statement with explicit spectral dependence. With this notation, the bound can be
written as 5 5

ov d

RnOdC F > S . 22

(i (Fann) = L KOwr) (22)
for a universal constant IV > 0 (absorbing the universal constants cyq, ckL, c2). Under the spec-
tral-homophily condition A2 < k/logn, one has K (A2, k) = ©(logn), and Eq. [22| reduces to
Theorem 2

Remark 5 (On the role of « and A2). The parameters k and Ao enter through K (A2, k), the
effective count of “independent blocks” provided by the mixing argument. Once we substitute
K(A2,k) = O(logn) under A2 < k/logn, their influence reduces to a constant multiplicative
factor, which is absorbed into T'.

I OPERATOR-NORM CONTROL FOR ADJACENCY-MASKED ATTENTION

This section provides the operator-norm analysis that underpins the applicability of Theorem [2]to
adjacency-masked attention layers. For the complementary GAT-specific discussion, see Appendix [J]

Conditions for applicability. Theorem [2]extends to attention-based GNNs provided the following
hold: (i) Adjacency masking: each head attends only to A/ (i) (or, more generally, an r-hop neigh-
borhood); (ii) Bounded layer operators: each layer is Lipschitz with uniformly bounded operator
norm (e.g., via bounding attention scores by temperature/clipping or constraining the attention matrix
norm); (iii) Finite depth L. Under (i)—(iii), the proof is unchanged up to constants depending on the
product of layer norms and, for r-hop masking, on r. Fully global (unmasked) attention is non-local
and therefore outside the locality premise of Theorem 2]

Norm-control derivation. Consider a single masked attention head with queries () = HW(,, keys

K = HWg, values V = HWy,, and adjacency mask M € {0, —oo}‘V'X VI restricting attention to
N (7) (or an r-hop pattern). With temperature 7 > 0 and row-wise softmax,

A= softmax((QKT + M)/7),

and the layer map is H — AV (plus a 1 x 1 mixing which we absorb into the operator norm).
Assume ||[Wgll2 < cq, [Wkll2 < ¢k, [[Wy |2 < ey, and rows of ), K are bounded in norm by B
(this holds if || H ||z is controlled inductively and layer norms are bounded). Then each masked row
of (QK ")/ has entries bounded by B2cgcg /T, so the softmax is a-Lipschitz on each row with
a < C and yields a row-stochastic A supported on the mask. Hence || 4|2 < 1 and

AV < [All2 (V2 < cv [[H]2.
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With residual/linear projections folded in, the per-layer Lipschitz constant is bounded by a product
of operator norms (one per submodule), yielding a uniform bound L, < oo per layer. Therefore a
depth- L masked-attention stack has overall Lipschitz constant < (L,,,)%. The proof of Theorem
uses only: (a) adjacency locality from masking, and (b) bounded layer Lipschitz constants. Both
hold under the above conditions, so the same packing, KL control, and Fano steps go through with
constants depending on L, (and on r for r-hop masks).

J  ADIJACENCY-MASKED GAT LAYERS UNDER THEOREM [2]

This section explains why standard GAT layers fit within the assumptions of Theorem [2] For the
accompanying operator-norm control argument, see Appendix [I}

Theorem [TJassumes (A1) and thus excludes input-dependent mixing (attention). By contrast, Theo-
rem 2] requires only adjacency-masked 1-hop receptive fields and bounded operator norms. Standard
GAT layers satisfy these conditions if attention is restricted to (¢) and softmax weights are bounded
(e.g., via temperature or clipping).

Formally, a single GAT layer with adjacency mask can be written as

BTV = oW ST o)A+ BORD |
JEN (D)
where 3 i) agf) ()=1, ag) > 0, and agf) = 0 for j ¢ N (7). Although the coefficients depend
on features (violating (A1)), they are adjacency-masked and convex.

Assume (i) the attention logits are bounded (e.g., softmax with temperature or clipping), so that
max; y. JEN() az(-f) < Cy and the Jacobian of the mapping H () — {ag)} is bounded; and (ii) the
linear maps satisfy the same ¢; budget as in (A2). Then the layer is Lipschitz with operator-norm

bound [|[W | - Cy + || BX)|| (with the dependence on the attention logits’ temperature absorbed
into Cyy).

The proof of Theorem [2Juses only: (a) adjacency locality (receptive field confined to the graph),
(b) bounded layer Lipschitz constants, and (c) the graph mixing argument yielding K = ©(logn)
effectively independent blocks under A2(L) < k/logn. Conditions (a)—(b) hold for adjacency-
masked GAT with bounded logits, hence the same packing, KL control, and Fano steps go through
with the constants absorbed into I'. Therefore, the Q(d /log n) lower bound applies to standard GAT
under these mild norm constraints. In contrast, Theorem [T| explicitly relies on input-independent
aggregation and does not cover attention.

K PRACTICAL GUIDANCE FOR DATA-SCARCE GRAPHS

The structure-aware lower bound (Theorem [2) implies that when only O(log n) training nodes are
effectively independent, naive data scaling is statistically inefficient. Constants in the bound can often
be improved in practice, though the asymptotic rate £2(d/ log n) remains unchanged. The following
interventions help improve constants:

* Break neighborhood homogeneity / slow mixing. Add node individualization or positional
encodings (e.g., random/learned IDs, Laplacian/RW features) and consider heterophily-aware
layers; these reduce overlap of message-passing neighborhoods.

* Reduce effective dimension before fine-tuning. Use transfer or self-supervised pretraining
on large auxiliary graphs, then freeze most layers or select features to shrink the effective d
entering the bound.

* Diversify supervision. Active/coreset label selection that spreads labels across loosely con-
nected regions (far in graph distance or across communities) increases independence among
samples.

* Regularize against slow mixing / over-smoothing. Use residual/JK connections, PPR/teleport
propagation, DropEdge/edge sparsification, and limit depth; these shorten the mixing horizon,
raising the usable information per label.
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Takeaway. These choices increase the informative signal per labeled node and improve constants
. o2 d

m T2 @,
tral-homophily condition.

but the qualitative log n denominator remains the limiting factor under the spec-

L  ARCHITECTURAL DRIVERS OF HETEROGENEOUS SCALING

Why different models show different scaling on the same dataset. Even on a fixed graph,
architectures can induce different effective sample efficiencies due to variation in receptive-field
growth and information reuse. We identify two main drivers:

* Smoothing and receptive-field growth. GCN’s fixed, normalized adjacency (a graph-
dependent but input-independent filter) resembles a classical spectral filter. When the task’s
signal is spectrally aligned, this can yield faster apparent decay (closer to 1/y/n). By contrast,
GAT and GraphSAGE adapt mixing weights and thereby emphasize homophilous neighbor-
hoods; this adaptation increases overlap among message-passing neighborhoods and reduces
the effective number of independent samples, exposing the slower 1/ logn decay predicted by
Theorem 21

» Bias—variance tradeoffs and noise floors. Models with stronger inductive bias (e.g., GCN)
can reach a bias-dominated error floor early, which makes the observed asymptotic slope
appear steeper. More flexible models (GAT/GraphSAGE) reduce bias but incur higher variance,
which dissipates slowly because samples are not effectively independent under overlapping
neighborhoods.

This perspective helps explain the heterogeneous scaling observed in Table 2] (e.g., GCN on Reddit
favoring 1/+/n, versus GAT and GraphSAGE favoring 1/ logn).

M EXPERIMENTAL DETAILS AND SETTINGS

This appendix details all elements of the experimental setup, training configuration, evaluation
protocols, model fitting, and resource usage to ensure reproducibility of our results.

ENVIRONMENT AND COMPUTE RESOURCES

All experiments were conducted using PyTorch and PyTorch Geometric (PyG). We used a
GPU-enabled machine equipped with an NVIDIA Tesla V100 (32GB VRAM) and 64GB system
RAM. Each experiment (one training size n with one model on one dataset) typically completed in
under 5 minutes for smaller n < 1000, and under 15 minutes for large-scale datasets like Reddit and
QM9 with n = 50,000. The total compute budget, including all training, evaluation, curve fitting,
and figure/table generation, was under 50 GPU-hours.

DATASET LICENSES AND CITATIONS

The following publicly available datasets were used in this study, all accessed through the
torch_geometric.datasets module. Below we provide license information and cite the
original sources in accordance with reproducibility and usage guidelines.

* Cora (McCallum et al., 2000): A citation network with |V| = 2,708 nodes and |E| = 5,429
edges, used for node classification (error rate). Available via the LINQS dataset repository:
https://lings.org/datasets/l No license was explicitly stated in the original publi-
cation.

* Reddit (Hamilton et al., 2017): A large-scale social network with |V| = 232,965 nodes and
|E| = 11,606,948 edges, used for community detection (error rate). The dataset is derived from
Reddit data and is subject to Reddit’s API terms of service.

* QM9 (Ramakrishnan et al.,2014b)): A molecular graph dataset with average |V| ~ 18 nodes
and |E| ~ 40 edges, used for graph-level regression (mean squared error, MSE). Licensed
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under Creative Commons Attribution 4.0 International (CC BY 4.0) and available at https :
//doi.org/10.6084/m9.figshare.c.978904.v5.

» Facebook (Page-Page) (Rozemberczki et al.l|2019): A page-to-page graph from Facebook with
|V| = 4,039 nodes and |F/| = 88,234 edges, used for link prediction (1-AUC). The dataset is
distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license and
can be accessed viahttps://snap.stanford.edu/data/ego—-Facebook.html.

MODELS AND ARCHITECTURE

We evaluated the following Graph Neural Network (GNN) architectures:

* GCN: 2-layer Graph Convolutional Network using GCNConv, with 16 hidden units.

* GAT: 2-layer Graph Attention Network with 8 heads in the first layer, and a single head in
the second.

* GraphSAGE: 2-layer GraphSAGE model using SAGEConv, with 16 hidden units.

All models use ReLU activation after the first layer.

TASKS AND LOSS FUNCTIONS

We tested three standard graph learning tasks:

* Node Classification: Cross-entropy loss on node labels.

* Link Prediction: Binary classification using the inner product decoder and binary cross-
entropy with logits.

* Graph Regression: Molecular property prediction using mean squared error (MSE) on the
target scalar field.

TRAINING PROTOCOL

* Subset Sampling: For each experiment, a subset of n € {100, 500, 1k, 2.5k, 5k, 10k, 50k}
samples was randomly selected. For node and link tasks, subgraphs were constructed using
torch_geometric.utils.subgraph.

» Data Splits: A fixed 80%/20% train/test split was used.

« Optimizer: Adam with learning rate 0.01, weight decay 1074,
¢ Epochs: 200.

* Batch Size: 32 for all tasks.

* Evaluation Metrics:

— Misclassification rate for classification,
— MSE for regression,
— 1 — AUC for link prediction.

STATISTICAL SIGNIFICANCE AND ERROR REPORTING

Each experiment (fixed dataset, model, and n) was repeated 5 times with different random seeds. The
reported error metric includes the sample mean and standard deviation across the 5 runs. Standard
deviation is used for error bars and in weighted fitting procedures. These represent variation due
to random sampling and initialization. All error bars shown in figures correspond to £1 standard
deviation.
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CURVE FITTING AND LEARNING TREND ANALYSIS

To analyze sample complexity trends, we fit the test error curves to the following models:

Model 1: ¢1 + %
. B
Model 2: ¢y + —
n
Model 3: ¢35+
logn
1

Model 4: ¢4 + —
ny

Fits were performed using weighted least squares with weights w; = 1/0?, where o;
is the standard deviation of the ith data point. The power-law model was fitted using
scipy.optimize.curve_fit with bounded parameters and a robust initial guess. For each
model, we computed:

» Weighted Residual Sum of Squares (RSS)
» Weighted Mean Squared Error (MSE)
» Weighted R? value

The best fitting model for each dataset and architecture was determined based on the max-
imum R?. Fitted parameters and metrics were summarized in a LaTeX-formatted table
(final_comparison_table_weighted.tex), and model-specific figures were saved as
<dataset>_<model>_fits.png.

VISUALIZATION AND REPRODUCIBILITY ASSETS

All figures include error bars, and each plot overlays all fitted models for comparison. All code,
including data loading, model training, evaluation, fitting, table generation, and visualization, is
structured and commented for reproducibility.

CODE AND REPRODUCIBILITY

To support verification and reproducibility, we provide the full source code as supplementary material.
This includes implementations for data loading, model training, evaluation, error analysis, and curve
fitting, as well as scripts to reproduce all experimental results, generate LaTeX tables, and visualize
learning curves in line with reproducibility guidelines.

Summary: Every step necessary to replicate our results—datasets, architectures, parameters, training
and evaluation setup, fitting strategy, and visualizations—is fully disclosed and executable by third
parties with access to the same datasets and a standard GPU-enabled Python environment.

M.1 STRUCTURAL STATISTICS

To connect the empirical analysis with our theoretical results, we compute two structural measures
for each dataset.

Homophily is defined as

1
hG) = 18] Z Hyu = yo},
(u,v)EE
where F is the edge set and y,, denotes the ground-truth label of node w.

Spectral gap. We compute \2(L,,), the second-smallest eigenvalue of the normalized Laplacian
L,=1-D;'Y24,D;?
where A,, and D,, are the adjacency and degree matrices of the induced subgraph on labeled

nodes. Both measures are derived directly from the observed graph and label information, ensuring
consistency with the conditions stated in Theorem

22



Under review as a conference paper at ICLR 2026

N THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we used Large Language Models (LLMs) solely as general-purpose
assistive tools for grammar checking, language polishing, and improving clarity of exposition. LLMs
were not used for research ideation, theoretical development, experiment design, or analysis, and they
did not contribute any scientific content. The authors take full responsibility for the contents of the
paper, including any parts where LLMs were used to improve writing style.
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