
Neuro-symbolic Training for Reasoning over Spatial Language

Anonymous ACL submission

Abstract

Recent research shows that more data and001
larger models can provide more accurate solu-002
tions to natural language problems requiring003
reasoning. However, models can easily fail to004
provide solutions in unobserved complex input005
compositions due to not achieving the level of006
abstraction required for generalizability. To al-007
leviate this issue, we propose training the lan-008
guage models with neuro-symbolic techniques009
that can exploit the logical rules of reason-010
ing as constraints and provide additional su-011
pervision sources to the model. Training mod-012
els to adhere to the regulations of reasoning013
pushes them to make more effective abstrac-014
tions needed for generalizability and transfer015
learning. We focus on a challenging problem016
of spatial reasoning over text. Our results on017
various benchmarks using multiple language018
models confirm our hypothesis of effective do-019
main transfer based on neuro-symbolic train-020
ing.021

1 Introduction022

Large language models dramatically altered the023

world of natural language processing (NLP) re-024

search through their performance on various025

benchmarks (OpenAI, 2023; Brown et al., 2020).026

Nevertheless, several limitations have been ad-027

dressed by many researchers. One of the signifi-028

cant limitations is complex reasoning (Valmeekam029

et al., 2023a; Hao et al., 2023). Reasoning plays a030

crucial role in human cognition. Therefore, rea-031

soning abilities are essential for establishing more032

reliable human-like intelligent systems (Huang033

and Chang, 2023). The high performance of the034

LLMs (OpenAI, 2023; Brown et al., 2020; Tou-035

vron et al., 2023) promised the research commu-036

nity that they could achieve the level of abstrac-037

tion required for the reasoning process and achieve038

a deeper understanding of natural language. Par-039

ticularly, the recent results on QA tasks indicate040

that the LLMs are competitive with human per- 041

formance, and LLMs also show significant im- 042

provements in various reasoning of LLMs, such as 043

mathematical reasoning (Imani et al., 2023), and 044

logical reasoning (Creswell et al., 2022). How- 045

ever, it is still unclear whether LLMs are capable 046

of true reasoning or simply memorizing patterns 047

from training data (Huang and Chang, 2023). Re- 048

cent research also illustrates that LLMs lack funda- 049

mental properties for generalization and perform- 050

ing human-like interactions (Gendron et al., 2023). 051

One type of reasoning where LLMs still lag signif- 052

icantly is spatial reasoning. 053

Spatial reasoning is essential for many applica- 054

tions, including language grounding (Zhang et al., 055

2021), computer vision (Zhang and Kordjamshidi, 056

2022; Liu et al., 2023), robotics (Sisbot et al., 057

2007; Yadollahi et al., 2023) and more specific 058

fields such as medical domain (Atif et al., 2007; 059

Datta et al., 2020; Gong et al., 2023). Recent 060

works (Liu et al., 2023; Chen et al., 2024) on high- 061

level domains highlight this significant shortcom- 062

ings in the spatial reasoning abilities of LLMs. 063

Moreover, LLMs alone occasionally falter in ab- 064

stract reasoning when multiple hops of reasoning 065

in basic domains (Yang et al., 2023; Mirzaee and 066

Kordjamshidi, 2023a). This indicates the chal- 067

lenge of spatial reasoning that needs attention. In 068

this paper, we focus on one basic domain, spa- 069

tial reasoning over text. Improvements in this 070

area could potentially encourage advancements in 071

more complex domains. 072

In the context of utilizing explicit logic to ad- 073

dress multi-hop spatial reasoning, Yang et al. 074

2023 incorporates LLMs in a neuro-symbolic 075

framework to pass the formal extractions to the 076

Answer Set Programming for solving the problem. 077

This technique overcomes the lack of spatial rea- 078

soning of LLMs and achieves a very high accuracy 079

over a synthetic benchmark. However, utilizing 080

this technique requires human-engineered knowl- 081
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edge that often does not cover all possible sce-082

narios and rules. In particular, formalizing all re-083

quired commonsense knowledge for utilizing this084

framework is not possible in realistic domains.085

We tackle the issue of spatial reasoning in086

LLMs and their difficulty in achieving the abstrac-087

tions required for generalizability in unobserved088

complex situations with a more generic neuro-089

symbolic framework. The main idea is to exploit090

spatial knowledge with available data and knowl-091

edge. Exploiting knowledge can alleviate the092

need for huge amounts of data and provide more093

robust models in unobserved situations (Faghihi094

et al., 2023). We proposed to fine-tune the lan-095

guage models with a neuro-symbolic technique096

that leverages available spatial logical rules of rea-097

soning to strengthen the level of abstraction ob-098

tained by the pre-trained language model. Partic-099

ularly, we train the models to minimize not only100

the cross-entropy loss but also the violation of log-101

ical constraints. Our hypothesis is that obtaining102

supervision from logical knowledge enriches the103

models with levels of abstraction that improve gen-104

eralizability. The advantage of our proposed ap-105

proach is that it does not require full access to106

logical knowledge. Any partially available knowl-107

edge can be exploited during training without fur-108

ther use at inference time. This is crucial since109

inference-time symbolic reasoning can be prob-110

lematic for real-time applications.111

We select three benchmarks, SPARTQA-112

HUMAN (Mirzaee et al., 2021), ResQ (Mirzaee113

and Kordjamshidi, 2022), and STEPGAME (Shi114

et al., 2022) to evaluate our proposed method. Our115

improved results confirm our hypothesis about the116

impact of neuro-symbolic training on generaliz-117

ability. The contribution1 of this paper can be118

summarized as follows, (1) We propose to ex-119

ploit the available logical spatial knowledge in tun-120

ing language models to deal with their lack of121

spatial reasoning indicated by previous research.122

(2) We provide extensive experimental results and123

analysis on the existing benchmarks. Our results124

consistently confirm the effectiveness of our pro-125

posed approach in both encoder-based and genera-126

tive language models and their generalizability for127

transferring knowledge to different domains. (3)128

We show that the smaller models with our pro-129

posed method generalize better on out-of-domain130

and complex reasoning compared to using prompt-131

1all the code will be publicly available upon publication

engineered larger models. 132

C: There are three blocks called A, B, and C. A is to the left of B and B 
is to the left of C. In A, there is a small yellow square near and to the 
left of a large yellow circle. The large circle is near and to the left of a 
large blue triangle. In B, there is a small yellow square near and 
below a large blue triangle. There is a medium black triangle near 
and above the large blue triangle. In C, there is a small black square 
far to the left and above a small blue circle. The blue circle is near 
and to the left of a large yellow square.”
q1: Is the small black thing to the right of medium black thing?
a1:Yes
q2: What is the position of small black thing relative to medium black 
thing.
a2: Right

Figure 1: An example of story and questions of SQA.
q1 is Yes-No and q2 is Find relation type of questions.

2 Related Works 133

Investigating the reasoning capability of NLP 134

models has become a trending research topic given 135

the instability in the performance of LLMs (Gen- 136

dron et al., 2023; Valmeekam et al., 2023b; Feng 137

et al., 2024; Chen et al., 2024). Usually, this 138

ability is measured via question-answering bench- 139

marks (Weston et al., 2015; Zhou et al., 2020; Tan 140

et al., 2023). However, there are fewer studies 141

focusing on spatial reasoning over text. Recent 142

benchmarks, such as SPARTUN (Mirzaee and Ko- 143

rdjamshidi, 2022) and STEPGAME (Shi et al., 144

2022) datasets, are created to address this issue by 145

providing evaluation resources. 146

Some studies based on the aforementioned 147

benchmarks report the performance of LLMs and 148

highlight their struggle even when reasoning based 149

on synthetic benchmarks (Yang et al., 2023). This 150

is problematic when multi-hop reasoning is in- 151

volved in inferring the answer. Multiple research 152

papers have tried to improve the spatial reasoning 153

capability of LLMs. Mirzaee and Kordjamshidi 154

2022 utilizes fine-tuning on synthetic data and il- 155

lustrates an improvement in multi-hop reasoning 156

even when applied to realistic domains. Another 157

approach was designing the specialized memory 158

network based on the recurrence neural network 159

to manipulate the deep reasoning questions (Shi 160

et al., 2022). Nevertheless, it was less effective 161

than tuning pre-trained language models (PLMs). 162

Some papers also focus on improving in-context 163

learning approaches. Sharma 2023 proposes a 164

prefix-based prompting that retrieves specific few- 165

shot examples, aiming to transfer knowledge from 166

simple to more complex spatial relations. Mean- 167

while, Hu et al. presents the idea of modify- 168
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ing the commonly used in-context learning tech-169

nique, Chain-of-Thought (CoT) (Wei et al., 2023).170

They replace the textual explanation of spatial rela-171

tions with symbolic representation. The approach172

has significantly improved spatial understanding173

in simple environments but is less applicable to174

environments with more diverse and complex re-175

lations. Another notable methodology is the dis-176

entangling of relation extraction and reasoning.177

Yang et al. 2023 uses GPT to perform extraction178

and then applies Answer set programming (ASP)179

to perform the reasoning process. While Mirzaee180

and Kordjamshidi 2023b utilizes fine-tuned mod-181

els for both extraction and reasoning procedures.182

In this work, we take the spatial-logical knowl-183

edge into account of the language models, so-184

called a neuro-symbolic training approach to solve185

the reasoning problem. There are many studies186

that emphasize the usefulness of logical knowl-187

edge to solve question-answering tasks (Sun et al.,188

2022; Amizadeh et al., 2020; Prager et al., 2004).189

We utilize logical knowledge in the form of logical190

constraints. Similar approaches have been used in191

solving multiple NLP problems. For example, Lu192

et al. 2021 uses a heuristic function inspired by193

the A* algorithm to restrict the generator given a194

set of constraints. While Qin et al. 2022 uses a195

sampling method looking for the most optimal so-196

lution that satisfies the constraints. However, both197

of these techniques apply the constraints during198

inference, which is different from what we pro-199

posed for using them during the training. There200

is also the benchmark that investigates the ben-201

efits of logical constraints in several NLP prob-202

lems (Faghihi et al., 2023) under the DomiKnowS203

framework (Faghihi et al., 2021). Though we use204

techniques previously proposed to integrate the205

logic, our approach utilizes constraints solely dur-206

ing training, eliminating the need for access to log-207

ical constraints during inference where using them208

might be problematic for real-time applications.209

As demonstrated in our experiments, leveraging210

logic can guide models to achieve higher levels of211

abstraction during training, resulting in better gen-212

eralization at test time.213

3 Methodology214

3.1 Problem Definition215

For the spatial QA task, the input consists of tex-216

tual context C and a textual question Q asking217

about spatial relations of objects within the scene218

description. The output is the answer(s) to the 219

question, denoted as A. There are two types of 220

questions/answers. The first type is Yes/No (YN) 221

questions, and the other is find-relation (FR) ques- 222

tions. We restrict the answer domain of YN to A 223

= {Y es,No}, while the answers for FR depend 224

on the dataset. An example of answer domain for 225

FR is A = {left, right, above, below,. . . }. More 226

details on the variations of FR answer(s) are pro- 227

vided in the experimental section. 228

3.2 Backbone Language Models 229

We selected two types of language models, which 230

are encoder-based models, BERT family (De- 231

vlin et al., 2019), and generative models, Flan- 232

T5 (Chung et al., 2022), to evaluate the effective- 233

ness of our proposed neuro-symbolic fine-tuning 234

approach. Furthermore, we evaluate the perfor- 235

mance of Large Language Models, GPT-family, 236

and Llama3 on these tasks to compare them with 237

our proposed approach. 238

3.2.1 Encoder-based Language Models 239

We utilize BERT as the backbone architecture, fol- 240

lowing previously reported results (Mirzaee and 241

Kordjamshidi, 2022). We fine-tune BERT with an 242

additional classification layer to perform QA tasks. 243

For the YN domain, we use a binary classifica- 244

tion layer, while for the FR domain, we use mul- 245

tiple binary classification layers to conduct multi- 246

label/multi-class classification. The number of bi- 247

nary classification layers in the FR domain de- 248

pends on the number of possible answers, |A|. The 249

input to the BERT model is formed by concatenat- 250

ing the question, Q, and the context, C. After feed- 251

ing this input to BERT, we use the [CLS] token 252

from the last layer as the input to the classification 253

layer(s) for final answer prediction. 254

3.2.2 Generative Language Models 255

We use Flan-T5 (Chung et al., 2022) as the gen- 256

erative baseline model, which is an open-source 257

model for our fine-tuning purposes. To reduce the 258

intensive computational cost, we utilize the LoRA 259

adapter (Hu et al., 2021), which decreases the num- 260

ber of training parameters. 261

We applied the YN setting to Flan-T5, where 262

processing the output is more straightforward 263

since the first token can simply represent the out- 264

puts and be accessible from the generation of the 265

model. We select the highest probability between 266

the Yes and No tokens from the first token of the 267
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Flan-T5 output as the answer to the input question.268

The input prompt to the Flan-T5 model has the fol-269

lowing structure, "Answer based on the context: C270

Q."271

For In-context Learning, we select Llama3-272

8B (AI@Meta, 2024), GPT3.5 (Brown et al.,273

2020), and GPT-4 (OpenAI, 2023) as the back-274

bone LLMs for prompt engineering. Then, we ap-275

ply Zero_shot, Few_shot techniques as the base-276

line of prompt-based learning.277

Zero-shot. We give the prompt to LLMs for an-278

swers based on the scene description and the ques-279

tion without having any examples.280

Few-shots. We randomly select four questions281

from the training set. Then, we add the informa-282

tion about the response format for each question283

with the corresponding label. We provide these ex-284

amples along with the scene description and target285

question to GPT for querying the answer.286

q1: Box above 
triangle q2: Square is in box 

q3: Triangle 
below box

q4: Box contain 
square

T: Triangle below 
Square

Target

Intermediate

Initial facts

+

Converse: 
Above(X, Y) :- 

Below(Y, X) 

Topological: 
Below(X, Y) + Contain(Y, Z) + :- 

Below(X, Z) 

Converse: 
CoveredBy(X, Y) :- 

Contain(Y, X) 

Figure 2: An example of the chain of reasoning ques-
tions (Q-chain). Note that the factual sentences will
turn to questions like "Is triangle below square?"

3.3 Training with Spatial Logic287

To address the challenge of multi-hop spatial rea-288

soning, we utilize symbolic knowledge that ex-289

presses logical spatial reasoning rules during train-290

ing. We assume a formal knowledge base (KB) of291

rules, referred to as spatial logic, is given during292

training time. This spatial logic does not need to293

be exhaustive or cover all reasoning aspects. Any294

available knowledge can be exploited to enhance295

the reasoning ability of the underlying Language296

Model. In this work, we use 79 rules of reason-297

ing collected in (Mirzaee and Kordjamshidi, 2022).298

These rules are divided into four categories: con-299

verse, inverse, transitive, and transitive + topolog-300

ical. The KB covers rules between 15 spatial re-301

lations, including directional and topological rela-302

tions, such as "If above(x,y) then below (y,x)." or303

"If inside(x,y) and left(x,z) then left(y,z)." Our main304

hypothesis is that providing supervision from high- 305

level logical knowledge enables the model to cap- 306

ture higher levels of abstraction, improving gen- 307

eralization to other domains. To exploit the spa- 308

tial logic, we follow two steps, 1) Translate spatial 309

logic: we convert the spatial logic into example- 310

based logical constraints, 2) Obtain the soft logic 311

surrogate: we convert the logical constraints to dif- 312

ferentiable soft logic, 3) Incorporate Constraints: 313

we add the constraint violations as the part of train- 314

ing loss objective. 315

Translate spatial logic. As questions in the 316

dataset require multiple hops of reasoning follow- 317

ing spatial logic, we formulate the constraints to 318

express consistency with this chain of reasoning. 319

An example of a question is shown in Figure 2. 320

The target question asks about the relation be- 321

tween a triangle and a square, "Is the triangle be- 322

low square?". To answer this question, we intro- 323

duce the intermediate facts and turn them into a set 324

of questions, denoted as Q-chain. An example of 325

intermediate questions in Q-chain is shown in the 326

green boxes of Figure 2. Given the chain of reason- 327

ing, we observe that two initial facts, q1 entails q3, 328

q2 entails q4 and q4 using the converse rule. Both 329

q3 and q4 entail the target question using the tran- 330

sitivity rule. The corresponding logical constraint 331

between q1 and q3 is q1 ⇒ q3. More constraints 332

associated with this example can be found in Ta- 333

ble 1. All conversions of spatial logic to constraint 334

can be found in Appendix B. 335

Obtain the soft logic surrogate There are three 336

commonly used types of conversions for mapping 337

logical constraints into differentiable soft logic: 338

t-norm product, t-norm ukasiewicz, and t-norm 339

Gödel (Li et al., 2019). We use the t-norm product 340

for our conversion, ¬A is 1 - a, A ∧ B is ab, A B 341

is a + b - ab, and A ⇒ B is min(1, b
a ) where A, B 342

are concepts with probabilities a, b, respectively. 343

Incorporate Constraints. Optimization of an ob- 344

jective that includes both task performance and 345

soft constraints loss has been proposed in several 346

previous research (Li et al., 2019; Asai and Ha- 347

jishirzi, 2020; Étienne Bamas et al., 2020). In- 348

spired by them, we use the following objective, 349

∇wL(w; Λ) = ∇wL(w) +
K∑
k=1

λk∇whk(w) (1) 350

where L(w) is the task-performance loss function, 351

i.e. Cross-Entropy loss, K is the number of logi- 352

cal constraints, hk measures the violation from a 353
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given logical constraint in soft logic differentiable354

form, and λk is a learning parameter indicating the355

importance of obeying kth rule.356

In fact, in this work, we utilize the implemen-357

tation in DominKnowS (Faghihi et al., 2021) for358

integration of the constraints. The DomiKnowS359

framework provides a declarative language to in-360

tegrate symbolic knowledge as logical constraints.361

We provide the original logical forms, and it auto-362

matically converts them to the differentiable form363

and facilitates incorporating them in the loss func-364

tion. We, specifically, use an implemented opti-365

mization that exploits a dual formulation of the366

original loss proposed in (Étienne Bamas et al.,367

2020), called the Primal-Dual(PD) program.368

Creating the Q-chain. We automatically aug-369

mented the questions in the training data to include370

the Q-chain for every question. To automatically371

create the Q-chain, we use the initial fact annota-372

tions provided in SpaRTUN to obtain the interme-373

diate facts for concluding the target answer. We374

exhaustively search for finding the resolution tree375

for the target fact. 2

Rules Constraints in YN Constraints in FR
R1 q1 ⇒ q3 Above(q1) ⇒ Below(q3)
R2 q2 ⇒ q4 CoveredBy(q2) ⇒ Contain(q4)
R3 q3 ∧ q4 ⇒ t Below(q3) ∧ Contain(q4) ⇒ Below(t)

Table 1: Example of logical constraints presented in
above example of Q − chain, where Ri refer to pre-
sented rule i used in the example.

376

3.4 In-context Learning with Spatial Logic377

We utilize spatial logical reasoning to create few-378

shot examples in the in-context prompting ap-379

proaches, including Chain-of-Thoughts (Wei et al.,380

2023), Chain-of-Symbols (Hu et al., 2023), and381

others. The intention of these experiments is382

to analyze and compare the LLMs’ performance383

against our proposed fine-tuning method.384

Chain-of-Thought (CoT). To enable LLMs to385

provide reasoning explanations rather than a single386

answer, we use CoT. In this setting, we manually387

augment the answer response with the reasoning388

explanations based on spatial logical rules. Then,389

we give these CoT examples alongside prompt and390

target questions to generate the target answer with391

an explanation. An example of a reasoning expla-392

nation of CoT is given in Table 2.393

2Our augmented is attached to the submission and will be
publicly available upon acceptance.

Logical Representation (LR). Generating the 394

chain of reasoning requires applying spatial log- 395

ical rules such as symmetric and transitivity. In 396

our problem setting, we further modify the CoT 397

format to a first-order logical form. The predicate- 398

argument form, R(obji, objj) represents relation 399

R holds between arguments obji and objj that de- 400

note object i and object j respectively. We fol- 401

low the same pipeline for CoT by replacing the 402

response format with this logical form. An exam- 403

ple of CoT using formal rules format, denoted as 404

LR, is provided in Table 2. 405

Chain of Symbol (CoS). This approach was intro- 406

duced in (Hu et al., 2023). This method illustrates 407

the advantage of symbolic representation over nat- 408

ural language on both number of tokens and perfor- 409

mance effectiveness. We construct the symbolic 410

explanations of our CoT with their proposed for- 411

mat. An example of the CoS counterpart of our 412

CoT expression is shown in Table 2. 413

Step-by-Step Reasoning. Based on the few-shot 414

examples of the SPARTQA-Human dataset, often 415

scene descriptions are complex and long. There- 416

fore, we decided to simplify the context. We take 417

an additional prompting step to split the context 418

using LLMs before asking the question. In this set- 419

ting, we expect that each line of generated context 420

contains only one simple spatial description. An 421

example of the original context is "There exists a 422

big red square, and medium red square in a block 423

called A. The big one is touching the right edge of 424

the block." The expected generated context from 425

LLM should be in the form of "The big red square 426

in block A. The big red square is touching the right 427

edge of block A..." More examples can be found 428

in Appendix A.2. We call this prompting approach 429

Step-by-Step Reasoning in the experiments. 430

Domain Text
Chain of Thought(CoT) large red square is to the left of a small green square

Logical Representation(LR) Left(large red square, small green square)
Chain of Symbol(CoS) (large, red, square) < (small, green, square)

Table 2: An example of a spatial relation used in Chain
of Thought, Logical Representation, and Chain of Sym-
bol.

4 Experimental 431

The main focus of the experiments is evaluating 432

the ability of LMs in spatial reasoning by look- 433

ing into both fine-tuning and in-context learning. 434

Moreover, we explore the impact of using spatial 435

logic in both models, especially demonstrating the 436
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advantage of our proposed neuro-symbolic model.437

4.1 Datasets438

Our experiments are conducted on the following439

datasets: SpaRTUN, SPARTQA-Human, ResQ,440

and STEPGAME. However, we only evaluate441

models on three out of four datasets, which are442

SPARTQA-Human, ResQ, and STEPGAME. This443

decision is based on the previous results (Mirzaee444

and Kordjamshidi, 2022) that demonstrate the445

challenge of these datasets compared to testing on446

SpaRTUN which is likely to be solved with typical447

fine-tuning on SpaRTUN.448

SpaRTUN (Mirzaee and Kordjamshidi, 2022) is a449

synthetic SQA dataset. This dataset contains both450

YN and FR types of questions that require multi-451

hop reasoning to answer. It covers a wide range452

of spatial relations.3 The answer for YN is A =453

{Y es,No}. While, the answer for the FR is the454

subset of A = {left, right, above, below, behind,455

front, near, far, dc, ec, po, tpp, ntpp, tppi, ntppi}.456

The dataset provides the chain of reasoning anno-457

tations which we use to create the Q− chains for458

our proposed training method.459

SPARTQA-Human (Ver.1) (Mirzaee et al., 2021)460

is a small human-annotated SQA dataset. The461

dataset contains both YN and FR types of ques-462

tions. We only use the YN portion of this dataset463

to fine-tune and evaluate our models.464

SPARTQA-HUMAN (Ver.2), we follow the465

methodologies from (Mirzaee et al., 2021) to fur-466

ther extend the human annotation dataset with the467

new contexts and questions. The purpose of cre-468

ation is to enrich the SPARTQA-HUMAN with a469

larger test for more diverse patterns and questions.470

Annotators included authors and an undergrad stu-471

dent paid as a research assistant.472

ResQ (Kordjamshidi et al., 2017; Mirzaee and Ko-473

rdjamshidi, 2022) is a small realistic domain SQA474

dataset that includes multi-hop reasoning ques-475

tions. The depth of reasoning is smaller than other476

synthetic datasets, but it often requires common-477

sense knowledge to infer the answer. It includes478

the information about the depth of reasoning de-479

noted as k that can be 1 or 2. For many questions,480

the reasoning is complex and mixed up with com-481

monsense in which case this is annotated as un-482

classified depth. 12.30% of the test examples fall483

in the k=1 split, 23.93% fall in the k=2 split, and484

3The dataset also includes Don’t Know questions but for
simplicity we assume a closed world assumption and use No
label for those questions.

the rest are unclassified. This dataset contains only 485

YN questions. We use this dataset to evaluate the 486

performance of our models in realistic domains. 487

STEPGAME (Shi et al., 2022) is a synthetic SQA 488

dataset containing extensive multi-hop reasoning 489

questions over spatial relations until the depth of 490

ten with annotation denoted as k in our tables of 491

experimental results. This dataset contains only 492

FR questions. The domain of answer is a = {left, 493

right, above, below, overlap, lower-left, lower- 494

right, upper-left, upper-right}. The advantage 495

of utilizing this dataset is the possibility of eval- 496

uating the performance of the models at various 497

depths of reasoning. 498

4.2 Experimental Models 499

4.2.1 Fine-tuning Models 500

BERT. This is the baseline architecture described 501

in Section 3.2.1. We use bert-based-uncased as the 502

initial checkpoint. This model only fine-tune with 503

the target dataset in each experiment. 504

BERT-T. This is the baseline model for transfer 505

learning. We fine-tune the model with SpaRTUN 506

first. Then, we further fine-tune with the target 507

dataset of each experiment. 508

BERT-T + Q-Chain. We follow the method- 509

ology explained in section 3.3 to inject logical 510

knowledge into the BERT-T model via training 511

with constraints using the DomiKnowS frame- 512

work (Faghihi et al., 2021). 513

Flan-T5. We follow the methodology described in 514

section 3.2.2. We selected the flan-t5-base in this 515

experiment as the starting checkpoint. 516

Flan-T5-T. We utilize the same setting as the Flan- 517

T5 model. However, we further fine-tuned the 518

model with SpaRTUN before finally fine-tuning it 519

with the target dataset. 520

Flan-T5-T + Q-Chain. We inject the logical 521

knowledge into Flan-T5-T model using proposed 522

method in section 3.3. The backbone is the same 523

as the baseline model without any changes. 524

Experimental Setup. We use the same hyperpa- 525

rameters on all experiments. The learning rate was 526

one of {1e − 5, 8e − 6, 1e − 6}. For SPARTQA- 527

Human and ResQ, the number of epochs was 100, 528

whereas for STEPGAME, it was 30. For fine- 529

tuning with SPARTUN, 12 epochs for BERT and 530

8 epochsfor Flan-T5 were used. The final hyper- 531

parameters were selected using the development 532

portion of the target dataset. The loss function in 533

all experiments was Cross-Entropy Loss, and the 534
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SPARTQA-Human ResQ
Model Ver.1 Ver.2 k=1 k=2 unclassified All Line
BERT 54.54 53.57 70.67 56.85 60.66 60.98 1
RoBERTa 54.54 - 76.00 56.16 58.87 60.33 2
BERT-T 55.94 58.03 76.00 54.79 61.18 61.15 3
RoBERTa-T 49.65 - 64.67 57.87 55.78 56.72 4
BERT-T+Q-Chain (Our) 59.44 58.92 72.00 58.90 59.90 61.31 5
Flan-T5 54.54 60.71 74.67 56.16 61.44 61.80 6
Flan-T5-T 49.65 57.14 81.33 54.79 61.44 62.30 7
Flan-T5-T+Q-Chain (Our) 55.94 61.61 81.33 57.53 63.75 64.43 8
GPT3.5 (zero-shot) 58.04 58.03 74.67 60.95 66.58 66.22 9
GPT3.5 (few-shot) 62.23 58.92 84.00 68.49 68.12 70.16 10
GPT3.5 (CoT) 65.73 71.43 86.67 67.12 68.64 70.49 11
GPT-4 (zero-shot) 77.62 68.75 84.00 73.97 76.86 77.05 12
Llama-3 (zero-shot) 61.54 50.89 80.00 64.38 67.35 68.20 13
Llama-3 (few-shot) 62.94 60.71 82.67 69.86 71.46 72.46 14
Llama-3 (CoT) 67.83 70.54 82.76 76.03 67.10 71.15 15

Table 3: Accuracy of SPARTQA-Human and ResQ with various models. For ResQ, k is the number of the
reasoning steps required for answering the questions. Unclassified indicates the cases in which k was a challenge
for human annotators to decide.

optimizer was Adam with amsgrad parameters set535

to True. We run all experiments on 8 A6000 GPUs,536

taking roughly 100 GPU hours.537

4.2.2 In-context Learning with LLMs.538

As explained in Section 3.2.2 and Section 3.4, we539

evaluate the performance of all selected LLMs,540

GPT3.5, GPT-4, and Llama3-8B, using ResQ541

and SPARTQA-Human to compare with our fine-542

tuning approach. The selected examples and543

prompts for each in-context learning method can544

be found in the Appendix A.2.545

Zero-shot. We directly ask LLMs to answer the546

question given the corresponding context.547

Few-shot. We provide LLMs with four randomly548

selected examples from the training data.549

CoT. We augment the few-shot setting with rea-550

soning explanations along with the CoT examples.551

CoT-Formal. We provide the few-shot examples552

with the described logical format in Section 3.4.553

CoS. We further alter the few-shot examples with554

the CoS symbolic forms explained in Section 3.4.555

4.3 Results556

Realistic Domain. ResQ is our realistic domain.557

As observed in Table 3, using the Q-chain demon-558

strates its effectiveness on both fine-tuning mod-559

els (BERT and Flan-T5) with more significant560

improvement on Flan-T5. Specifically, Flan-T5-561

T+Q-chain (line 8) shows a 2% improvement562

over Flan-T5-T (line 7). For a deeper analysis of563

this result, we evaluated the performances of the564

three different splits of ResQ. Based on our obser-565

vations in Table 3, it revleals that our model con-566

sistently imporve on k = 2, but adversely affects 567

BERT’s performance on k = 1 and the unclassi- 568

fied categories. We emphasize that the k = 2 split 569

requires more hops of reasoning, while the unclas- 570

sified portion requires commonsense knowledge. 571

It is expected that our method enhances deeper rea- 572

soning steps while it does not address the lack of 573

commonsense knowledge in the model. This hy- 574

pothesis is confirmed by results with LLMs. We 575

can observe that LLMs, on average, achieve higher 576

performance on this dataset, especially in unclas- 577

sified category (lines 9 to 15). LLMs consistently 578

show around 2% to 13% improvement over Flan- 579

T5+T+Q-Chain. This indicates that most LLMs’ 580

improvement is mainly due to their commonsense 581

knowledge rather than their complex reasoning 582

capability, the main objective of our proposed 583

method. We tried few-shot and CoT prompting, 584

and the results did not significantly vary the results. 585

Therefore, we believe integrating our method into 586

the baselines with a stronger commonsense capa- 587

bility will increase the overall performance. This 588

improvement can be seen when comparing Flan- 589

T5 to BERT, where the larger generative model 590

(Flan-T5 here) shows a larger improvement on the 591

unclassified category. Consequently enhancing its 592

performance in other sub-categories as well. 593

Synthetic Domain with More Complex Logical 594

Reasoning. We evaluated SPARTQA-Human and 595

STEPGAME for this analysis. We consistently ob- 596

serve improvement with our proposed Q-chain in 597

this domain, which requires multiple hops of rea- 598

soning. As observed in Table 3, Q-chain con- 599

sistently shows improvement in both Flan-T and 600
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Model k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
BERT 98.51 95.53 91.68 66.71 49.11 41.47 41.47 32.09 28.94 28.16

BERT-T 98.50 95.32 93.26 76.78 66.36 58.76 53.70 46.27 42.71 40.12
BERT-T+Q-Chain (Our) 98.70 96.45 93.03 74.58 64.95 59.04 54.38 49.23 45.36 44.05

GPT3 (few-shot) 55.00 37.00 25.00 30.00 32.00 29.00 21.00 22.00 34.00 31.00
GPT3 (CoT) 61.00 45.00 30.00 35.00 35.00 27.00 22.00 24.00 23.00 25.00

Llama-3 (few-shot) 38.01 27.87 24.15 21.27 19.75 18.03 16.88 15.52 15.17 14.70

Table 4: Accuracy of STEPGAME on several models including results of GPT3 reported in (Yang et al., 2023).

BERT compared to fine-tuning without it. More-601

over, the gap between small PLMs and LLMs is602

much less on this dataset compared to the real-603

istic domain (ResQ). This is expected, as LLMs604

are better at commonsense rather than complex605

reasoning, as previously explained. This result is606

further supported when evaluating the model on607

STEPGAME. As seen in Table 4, the fine-tuning608

method consistently demonstrates significant dif-609

ferences in all steps of reasoning compared to610

LLMs. The struggle of GPT3 on reasoning on this611

dataset is also investigated in (Yang et al., 2023).612

We took the reported results from this paper in Ta-613

ble 4. Looking into the details of STEPGAME,614

we notice that our proposed method consistently615

gains an improvement of 1% - 4% on high hops of616

reasoning (k = 6 to k = 10), similar to the obser-617

vation in ResQ. Overall, these results confirm our618

main hypothesis that our proposed method equips619

the models with a higher level of logical abstrac-620

tion to conduct deeper steps of reasoning.

Model Raw Context Step by step
GPT3.5 (zero-shot) 58.04 63.64
GPT3.5 (few-shot) 62.23 64.33

GPT3.5 (CoT) 65.73 67.83
GPT3.5 (LR) 64.33 59.44
GPT3.5 (CoS) 60.14 58.74

GPT-4 (zero-shot) 77.62 78.32

Table 5: The accuracy of LLMs on SPARTQA-
HUMAN.

621
In-context Learning. For comparison, we also622

experimented with variations of in-context learn-623

ing and prompt engineering. According to Table 3,624

Table 5, we found that CoT is the most effective625

way to conduct spatial reasoning in both LLMs626

(GPT and Llama). We also investigated whether627

using Formal Representations in the context would628

make a difference in the performance. However,629

our results in Table 5 (line 4), show that the formal630

representation slightly worsened the performance,631

and using natural language in CoT was more ef-632

fective. We further evaluated a CoS symbolic rep-633

resentation alternative in our experiments. Our re-634

sults show that CoT and LR outperform the CoS 635

while using the same in-context examples. This 636

demonstrates the advantage of using natural lan- 637

guage text in the prompt compared to the symbolic 638

representation proposed in CoS. To evaluate more 639

sophisticated prompting techniques, we ran the 640

step-by-step reasoning explained in Section 3.4 on 641

LLMs. As shown in Table 5, step-by-step reason- 642

ing achieves higher results compared to the major- 643

ity of natural prompting techniques including zero- 644

shot, few-shot, and CoT. The improvement ranges 645

from 2% to 5%, indicating a simpler and shorter 646

context can lead to a better understanding of the 647

spatial relations in LLMs. Lastly, to compare the 648

opened-source, Llama, and closed-source models, 649

GPT. Our experiments indicate that Llama-3 is 650

competitive with the closed-source GPT3.5, with 651

only a small difference in the Yes/No domain as 652

shown in Table 3. Therefore, we prioritize utiliz- 653

ing open-source models in our future research. 654

5 Conclusion 655

Given the importance of spatial reasoning in many 656

real-world applications, we focus on improving 657

this reasoning skill in language models. We equip 658

LLMs with neuro-symbolic supervision to lever- 659

age logical knowledge during fine-tuning. This 660

practice boosts their capability of capturing the 661

necessary level of abstraction for spatial reasoning 662

and enhances the generalizability for transferring 663

knowledge across domains. We demonstrate that 664

our constraint-based training technique achieves 665

higher accuracy compared to other competitive 666

Spatial Question-answering baselines across var- 667

ious benchmarks. Furthermore, the results in- 668

dicate that our model performs better in scenar- 669

ios requiring more reasoning steps. Lastly, we 670

compare our models with state-of-the-art LLMs. 671

Experimental comparisons show that while large 672

LLMs like GPT3.5 perform better in common- 673

sense reasoning, we achieve higher performance 674

in multi-hop spatial question-answering with com- 675

paratively smaller language models like BERT. 676
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6 Limitations677

While we improve the reasoning capability of the678

models, our approach by no means solves the gen-679

eral reasoning problem. The trustworthiness and680

reliability of the LLMs are still a research chal-681

lenge. Our models will need GPU resources to run682

which might be expensive. Our research is based683

on open source data and code and the results will684

be reproducible. We do not see any ethical con-685

cerns in our research approach and in the impact686

of our results. Our data, being limited to the spa-687

tial reasoning domain, does not include any spe-688

cific type of bias that can harm minority people689

belonging to any specific gender or race.690
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A Appendix915

A.1 Data Statistic916

The data statistic of each dataset is shown in Ta-917

ble 6.

Dataset Train Test Dev
SpaRTUN (YN) 20633 3232 3152
SpaRTUN (FR) 18400 2818 2830
Q-Chain (YN) 56987 - -
Q-Chain (FR) 46750 - -

SPARTQA-Human(Ver.1) 161 143 51
SPARTQA-Human(Ver.2) 200 112 60

ResQ 1008 610 333
STEPGAME 50000 5000 100000

Table 6: Size of each SQA benchmark used in experi-
ments

918

A.2 In-context Learning Examples919

The example of each in-context learning prompt920

and example is indicated below.921

A.2.1 Few-Shot922

system : You will be given story and question.923

Then, you will answer either only Yes or No based924

on given story. Candidate answer: [Yes, No]925

user : There exist a big red square, a big red tri-926

angle, a medium red square, and a small green cir-927

cle in a block called A. The triangle and medium928

square are touching the bottom edge of the block. 929

The big and medium square are touching the right 930

edge of the block. And the circle is above the big 931

square which is above the medium square. There 932

is another block called B to the left of block A. A 933

medium green square is touching the left edge of 934

block B and is below a medium red square. The 935

medium red square is above and to the left of a 936

small green square. Also a medium red triangle is 937

below and to the left of the small square. Is the 938

medium red triangle below the red square in block 939

B? 940

assistant : Yes 941

user : There are three blocks A, B and C. Block 942

A has a medium white triangle and a small red rect- 943

angle. There exists a medium white rectangle to 944

the left of the triangle and to the right of the red 945

rectangle. Aove block A there is block B. It has a 946

small white oval touching the bottom edge of the 947

block and a medium white triangle to the right of 948

it. Below block A there is block C. Its has a small 949

green triangle touching the top edge of the block. 950

A medium white triangle is below a small green 951

rectangle. Another small green triangle is below 952

and to the right of the white triangle. Are all rect- 953

angles above a white triangle?’ 954

assistant : Yes 955

user : There is a block called A. Inside A, there 956

is a black triangle that is above and to the left of a 957

black circle. There is another block called B which 958

is to the right of A. In B, there are two yellow cir- 959

cles, a blue circle, and a blue square. The blue cir- 960

cle is touching the left edge of B. One of the yellow 961

circles is to the right of the blue circle and to the 962

left of the blue square. The blue square is touching 963

the right edge of B and is above the other yellow 964

circle, Which is also touching the right edge of B. 965

Does block B have all of the circles inside it? 966

assistant : No 967

user : There is a block called A. In A, there is 968

a large blue square near and below a medium blue 969

triangle. Far to the left of the medium blue triangle 970

is a small yellow square. Far above the medium 971

blue triangle is a small blue triangle. There is an- 972

other block called B, which is to the right of A. In 973

B, There is a small yellow circle touching the left 974

edge of B. Far to the right of the circle is a large 975

yellow square. Near and above the large square 976

is a small yellow square. There is another block 977

called C, which is to the right of B. In C, there is a 978

small blue circle near and to the left of a large yel- 979

low triangle. The large yellow triangle is near and 980
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to the left of a large blue triangle. The large blue981

triangle is far above a large blue circle. The large982

blue circle is touching the bottom edge of C. Are983

the large blue things in C to the left of the large984

blue thing in A?985

assistant : No986

user : There is a block called A. In A there is987

a red triangle Which is above a black circle. The988

black circle is touching the bottom of A. A yellow989

square is touching the top edge of A and below that990

there is a red oval is touching the right edge of A.991

There is a second block call B Which is to the left992

of A. Inside B there are 3 squares, a brown one,993

a green one, and a red one. The green square is994

above the red square and touching the left edge of995

B. The brown square is touching both the bottom996

edge and the right edge of B. The red square is997

touching the left edge of the brown square. Is the998

oval to the right of the brown thing?999

A.2.2 Chain of Thought1000

system : You will be given story and question.1001

Then, you will answer either Yes or No with ex-1002

planation based on given story step by step. Can-1003

didate answer: [Yes, No]1004

user : There exist a big red square, a big red tri-1005

angle, a medium red square, and a small green cir-1006

cle in a block called A. The triangle and medium1007

square are touching the bottom edge of the block.1008

The big and medium square are touching the right1009

edge of the block. And the circle is above the big1010

square which is above the medium square. There1011

is another block called B to the left of block A. A1012

medium green square is touching the left edge of1013

block B and is below a medium red square. The1014

medium red square is above and to the left of a1015

small green square. Also a medium red triangle is1016

below and to the left of the small square. Is the1017

medium red triangle below the red square in block1018

B?1019

assistant : From information provided:The1020

medium red square is above a small green square1021

in B.Therefore, the small green square is below the1022

medium red square in B. The medium red trian-1023

gle is below the small square in B, and the small1024

green square is below the medium red square in1025

B.Therefore, the medium red triangle is below the1026

medium red square in B. Answer: Yes1027

user : There are three blocks A, B and C. Block1028

A has a medium white triangle and a small red rect-1029

angle. There exists a medium white rectangle to1030

the left of the triangle and to the right of the red1031

rectangle. Aove block A there is block B. It has a 1032

small white oval touching the bottom edge of the 1033

block and a medium white triangle to the right of 1034

it. Below block A there is block C. Its has a small 1035

green triangle touching the top edge of the block. 1036

A medium white triangle is below a small green 1037

rectangle. Another small green triangle is below 1038

and to the right of the white triangle. Are all rect- 1039

angles above a white triangle?’ 1040

assistant : From given information: A 1041

medium white triangle is below a small green rect- 1042

angle in C.Then, small green rectangle is above 1043

medium white triangle in C.A small red rectan- 1044

gle in block A, a medium white triangle in C, 1045

and block C is below block A.Then, a medium 1046

white triangle is below a A small red rectangle. A 1047

medium white triangle is below a A small red rect- 1048

angle. Therefore, a small red rectangle is above a 1049

medium white triangle.A medium white rectangle 1050

is in A,a medium white triangle in C, and block C 1051

is below block A.Then, a medium white triangle 1052

is below a A medium white rectangle. A medium 1053

white triangle is below a A medium white rectan- 1054

gle. Therefore, a medium white rectangle is above 1055

a medium white triangle.A medium white rectan- 1056

gle is above a medium white triangle.Thus, all rect- 1057

angles from given story are above a white triangle. 1058

Answer: Yes’ 1059

user : There is a block called A. Inside A, there 1060

is a black triangle that is above and to the left of a 1061

black circle. There is another block called B which 1062

is to the right of A. In B, there are two yellow cir- 1063

cles, a blue circle, and a blue square. The blue cir- 1064

cle is touching the left edge of B. One of the yellow 1065

circles is to the right of the blue circle and to the 1066

left of the blue square. The blue square is touching 1067

the right edge of B and is above the other yellow 1068

circle, Which is also touching the right edge of B. 1069

Does block B have all of the circles inside it? 1070

assistant : From given relation, A black trian- 1071

gle is above a black circle in A.Then, there is black 1072

circle in A.Therefore, not all circle are in B. An- 1073

swer: No 1074

user : There is a block called A. In A, there is 1075

a large blue square near and below a medium blue 1076

triangle. Far to the left of the medium blue triangle 1077

is a small yellow square. Far above the medium 1078

blue triangle is a small blue triangle. There is an- 1079

other block called B, which is to the right of A. In 1080

B, There is a small yellow circle touching the left 1081

edge of B. Far to the right of the circle is a large 1082

yellow square. Near and above the large square 1083
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is a small yellow square. There is another block1084

called C, which is to the right of B. In C, there is a1085

small blue circle near and to the left of a large yel-1086

low triangle. The large yellow triangle is near and1087

to the left of a large blue triangle. The large blue1088

triangle is far above a large blue circle. The large1089

blue circle is touching the bottom edge of C. Are1090

the large blue things in C to the left of the large1091

blue thing in A?1092

assistant : Based on the provided content.1093

Block B is to the right if block A.Block C is to the1094

right of block B.Therefore, block C is to the right1095

of block A.In block C, the yellow triangle is near1096

and to the left of large blue triangle. Therefore,1097

there is large blue triangle in C.In block A, there1098

is a large blue square near and below a medium1099

blue triangle.Therefore, there is large blue square1100

in A.Then, large blue triangle in C is to the right of1101

large blue square in A.So, large blue triangle in C1102

is not to the left of large blue square in A. Answer:1103

No1104

user : There is a block called A. In A there is1105

a red triangle Which is above a black circle. The1106

black circle is touching the bottom of A. A yellow1107

square is touching the top edge of A and below that1108

there is a red oval is touching the right edge of A.1109

There is a second block call B Which is to the left1110

of A. Inside B there are 3 squares, a brown one,1111

a green one, and a red one. The green square is1112

above the red square and touching the left edge of1113

B. The brown square is touching both the bottom1114

edge and the right edge of B. The red square is1115

touching the left edge of the brown square. Is the1116

oval to the right of the brown thing?1117

A.2.3 Formal Language1118

system : You will be given story and question.1119

Then, you will answer either Yes or No with ex-1120

planation based on given story step by step. Can-1121

didate answer: [Yes, No]1122

user : There exist a big red square, a big red tri-1123

angle, a medium red square, and a small green cir-1124

cle in a block called A. The triangle and medium1125

square are touching the bottom edge of the block.1126

The big and medium square are touching the right1127

edge of the block. And the circle is above the big1128

square which is above the medium square. There1129

is another block called B to the left of block A. A1130

medium green square is touching the left edge of1131

block B and is below a medium red square. The1132

medium red square is above and to the left of a1133

small green square. Also a medium red triangle is1134

below and to the left of the small square. Is the 1135

medium red triangle below the red square in block 1136

B? 1137

assistant : Below(Medium red triangle in B, 1138

red square in block B) Answer: Yes 1139

user : There are three blocks A, B and C. Block 1140

A has a medium white triangle and a small red rect- 1141

angle. There exists a medium white rectangle to 1142

the left of the triangle and to the right of the red 1143

rectangle. Above block A there is block B. It has 1144

a small white oval touching the bottom edge of the 1145

block and a medium white triangle to the right of 1146

it. Below block A there is block C. Its has a small 1147

green triangle touching the top edge of the block. 1148

A medium white triangle is below a small green 1149

rectangle. Another small green triangle is below 1150

and to the right of the white triangle. Are all rect- 1151

angles above a white triangle?’ 1152

assistant : Below(C, A) => Above(A, C) Con- 1153

tain(A, Small red rectangle) + Above(A, C) + Con- 1154

tain(C, Medium white triangle)=>Above(Small 1155

red rectangle, Medium White triangle) Above(A, 1156

C) & Contain(A, Medium white rectangle) & Con- 1157

tain(C, Medium white triangle)=>Above(Medium 1158

white rectangle, Medium White triangle) Be- 1159

low(Medium white triangle in C, small green 1160

rectangle in C) =>Above(small green rectangle, 1161

Medium white triangle)Answer: Yes 1162

user : There is a block called A. Inside A, there 1163

is a black triangle that is above and to the left of a 1164

black circle. There is another block called B which 1165

is to the right of A. In B, there are two yellow cir- 1166

cles, a blue circle, and a blue square. The blue cir- 1167

cle is touching the left edge of B. One of the yellow 1168

circles is to the right of the blue circle and to the 1169

left of the blue square. The blue square is touching 1170

the right edge of B and is above the other yellow 1171

circle, Which is also touching the right edge of B. 1172

Does block B have all of the circles inside it? 1173

assistant : Contain(A, Black Circle) => 1174

¬Contain(B, Black Circle) ¬Contain(B, Black Cir- 1175

cle) => Some x, ¬Contain(B, x) where x is Circle. 1176

Answer: No 1177

user : There is a block called A. In A, there is 1178

a large blue square near and below a medium blue 1179

triangle. Far to the left of the medium blue triangle 1180

is a small yellow square. Far above the medium 1181

blue triangle is a small blue triangle. There is an- 1182

other block called B, which is to the right of A. In 1183

B, There is a small yellow circle touching the left 1184

edge of B. Far to the right of the circle is a large 1185

yellow square. Near and above the large square 1186
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is a small yellow square. There is another block1187

called C, which is to the right of B. In C, there is a1188

small blue circle near and to the left of a large yel-1189

low triangle. The large yellow triangle is near and1190

to the left of a large blue triangle. The large blue1191

triangle is far above a large blue circle. The large1192

blue circle is touching the bottom edge of C. Are1193

the large blue things in C to the left of the large1194

blue thing in A?1195

assistant : Question: Left(large blue thing in1196

C, large blue thing in A)Related relation from1197

story: Right(B, A), Right(C, B), Contain(C, large1198

blue triangle), Contain(A, large blue square)Steps:1199

Right(C, B) + Right(B, A) => Right(C, A) Con-1200

tain(C, large blue triangle) + Right(C, A) + Con-1201

tain(A, large blue square) => Right(large blue tri-1202

angle in C, large blue square in A)Right(large1203

blue triangle in C, large blue square in A) =>1204

!Left(large blue thing in C, large blue thing in A)1205

Answer: No1206

user : There is a block called A. In A there is1207

a red triangle Which is above a black circle. The1208

black circle is touching the bottom of A. A yellow1209

square is touching the top edge of A and below that1210

there is a red oval is touching the right edge of A.1211

There is a second block call B Which is to the left1212

of A. Inside B there are 3 squares, a brown one,1213

a green one, and a red one. The green square is1214

above the red square and touching the left edge of1215

B. The brown square is touching both the bottom1216

edge and the right edge of B. The red square is1217

touching the left edge of the brown square. Is the1218

oval to the right of the brown thing?1219

A.2.4 Chain of Symbol1220

system : You will be given story and question.1221

Then, you will answer either Yes or No with ex-1222

planation based on given story step by step. Can-1223

didate answer: [Yes, No]1224

user : There exist a big red square, a big red tri-1225

angle, a medium red square, and a small green cir-1226

cle in a block called A. The triangle and medium1227

square are touching the bottom edge of the block.1228

The big and medium square are touching the right1229

edge of the block. And the circle is above the big1230

square which is above the medium square. There1231

is another block called B to the left of block A. A1232

medium green square is touching the left edge of1233

block B and is below a medium red square. The1234

medium red square is above and to the left of a1235

small green square. Also a medium red triangle is1236

below and to the left of the small square. Is the1237

medium red triangle below the red square in block 1238

B? 1239

assistant : Let analyze the relations given 1240

from context to answer question.B: 1. (medium, 1241

red, triangle) , < (small, red, square)Based on 1242

the information, B: 1. (medium, red, triangle) , 1243

< (small, red, square)2. (medium, red, triangle) 1244

(small, red, square)Answer: Yes 1245

user : There are three blocks A, B and C. Block 1246

A has a medium white triangle and a small red rect- 1247

angle. There exists a medium white rectangle to 1248

the left of the triangle and to the right of the red 1249

rectangle. Above block A there is block B. It has 1250

a small white oval touching the bottom edge of the 1251

block and a medium white triangle to the right of 1252

it. Below block A there is block C. Its has a small 1253

green triangle touching the top edge of the block. 1254

A medium white triangle is below a small green 1255

rectangle. Another small green triangle is below 1256

and to the right of the white triangle. Are all rect- 1257

angles above a white triangle?’ 1258

assistant : Let consider the related relations 1259

to answer the questions,A: 1. (small, red, rectan- 1260

gle) 2. (medium, white, rectangle) C: 1. (small, 1261

green, rectangle) = edge 2. (medium, white, tri- 1262

angle) ) (small, green, rectangle) C A Based on 1263

the information, let determined the relation of all 1264

rectangle and white triangles, 1. C A. There- 1265

fore, A C 2. A C, A: (small, red, rectangle), 1266

and C: (medium, white, triangle). Therefore, A: 1267

(small, red, rectangle) C: (medium, white, trian- 1268

gle) 3. A C, A: (medium, white, rectangle), and C: 1269

(medium, white, triangle). Therefore, A: (medium, 1270

white, rectangle) C: (medium, white, triangle). 1271

4. C: (medium, white, triangle) ) (small, green, 1272

rectangle). Therefore, (small, green, rectangle) 1273

(medium, white, triangle).5. A: (small, red, rect- 1274

angle) C: (medium, white, triangle), A: (medium, 1275

white, rectangle) C: (medium, white, triangle), 1276

and C: (small, green, rectangle) (medium, white, 1277

triangle), therefore,all rectangle above a white tri- 1278

angle. Answer: Yes 1279

user : There is a block called A. Inside A, there 1280

is a black triangle that is above and to the left of a 1281

black circle. There is another block called B which 1282

is to the right of A. In B, there are two yellow cir- 1283

cles, a blue circle, and a blue square. The blue cir- 1284

cle is touching the left edge of B. One of the yellow 1285

circles is to the right of the blue circle and to the 1286

left of the blue square. The blue square is touching 1287

the right edge of B and is above the other yellow 1288

circle, Which is also touching the right edge of B. 1289
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Does block B have all of the circles inside it?1290

assistant : Let consider the related relations1291

to answer the questions,A: 1. (black, triangle) <1292

(black, circle)B: 1. (yellow, circle1) right (blue,1293

circle)2. (blue, square) (yellow, circle2) 3.(blue,1294

circle) =left edge of B Based on the information,1295

let determined the relation of all rectangle and1296

white triangles, 1. A: 1. (black, triangle) < (black,1297

circle). Therefore, A: (black, circle)2. A: (black,1298

circle). Therefore, B doesn’t have all circle. An-1299

swer: No1300

user : There is a block called A. In A, there is1301

a large blue square near and below a medium blue1302

triangle. Far to the left of the medium blue triangle1303

is a small yellow square. Far above the medium1304

blue triangle is a small blue triangle. There is an-1305

other block called B, which is to the right of A. In1306

B, There is a small yellow circle touching the left1307

edge of B. Far to the right of the circle is a large1308

yellow square. Near and above the large square1309

is a small yellow square. There is another block1310

called C, which is to the right of B. In C, there is a1311

small blue circle near and to the left of a large yel-1312

low triangle. The large yellow triangle is near and1313

to the left of a large blue triangle. The large blue1314

triangle is far above a large blue circle. The large1315

blue circle is touching the bottom edge of C. Are1316

the large blue things in C to the left of the large1317

blue thing in A?1318

assistant : Let consider the related relations to1319

answer the questions,B > A,C > BA: 1. (large, blue1320

square) (medium, blue square)C: 1. (large, yel-1321

low, triangle)Based on the information, let deter-1322

mined the relation large blue things in C and the1323

large blue thing in A,1. C > B and B > A. There-1324

fore, C > A2. A: 1. (large, blue, square) (medium,1325

blue square). Therefore, A: (large, blue, square)3.1326

C > A, A: (large, blue, square), and C: (large, yel-1327

low, triangle).Therefore, C: (large, yellow, trian-1328

gle) > A: (large, blue, square).4. C: (large, yel-1329

low, triangle) > A: (large, blue, square).Therefore,1330

C: (large, yellow, triangle) !< A: (large, blue,1331

square)large blue things in C is not to the left of1332

the large blue thing in A. Answer: No1333

user : There is a block called A. In A there is1334

a red triangle Which is above a black circle. The1335

black circle is touching the bottom of A. A yellow1336

square is touching the top edge of A and below that1337

there is a red oval is touching the right edge of A.1338

There is a second block call B Which is to the left1339

of A. Inside B there are 3 squares, a brown one,1340

a green one, and a red one. The green square is1341

above the red square and touching the left edge of 1342

B. The brown square is touching both the bottom 1343

edge and the right edge of B. The red square is 1344

touching the left edge of the brown square. Is the 1345

oval to the right of the brown thing? 1346

A.2.5 Clarify Sentence Prompting 1347

Rawcontext : There exist a big red square, a 1348

big red triangle, a medium red square, and a small 1349

green circle in a block called A. The triangle and 1350

medium square are touching the bottom edge of 1351

the block. The big and medium square are touch- 1352

ing the right edge of the block. And the circle is 1353

above the big square which is above the medium 1354

square. There is another block called B to the left 1355

of block A. A medium green square is touching 1356

the left edge of block B and is below a medium 1357

red square. The medium red square is above and 1358

to the left of a small green square. Also a medium 1359

red triangle is below and to the left of the small 1360

square. 1361

Spliting context : A big red square in block 1362

A. 1363

A big red triangle in block A. 1364

A medium red square in block A. 1365

A small green circle in block A. 1366

The triangle is touching the bottom edge of 1367

block A. 1368

The medium square is touching the bottom edge 1369

of block A. 1370

The big square is touching the right edge of 1371

block A. 1372

The medium square is touching the right edge 1373

of block A. 1374

The circle is above the big square in A. 1375

The big square is above the medium square in 1376

A. 1377

Block B is to the left of block A. 1378

A medium green square is touching the left edge 1379

of block B. 1380

A medium green square is below a medium red 1381

square in B. 1382

The medium red square is above a small green 1383

square in B. 1384

The medium red square is left of a small green 1385

square in B. 1386

The medium red triangle is below the small 1387

square in B. 1388

The medium red triangle is left the small square 1389

in B. 1390

15



B Spatial Logical Rules1391

The conversion from spatial logical rules proposed1392

in (Mirzaee and Kordjamshidi, 2022) to logical1393

constraints used in our experiment is shown in Ta-1394

ble 7.1395
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Rule Type Rule Constraints in YN Constraints in FR
above(x, y) ⇒ below(y, x) above(q0) ⇒ below(q1)
below(x, y) ⇒ above(y, x) below(q0) ⇒ above(q1)
left(x, y) ⇒ right(y, x) left(q0) ⇒ right(q1)
right(x, y) ⇒ left(y, x) right(q0) ⇒ left(q1)

front(x, y) ⇒ behind(y, x) front(q0) ⇒ behind(q1)
Converse behind(x, y) ⇒ front(y, x) q0 ⇒ q1 behind(q0) ⇒ front(q1)

coveredby(x, y) ⇒ cover(y, x) coveredby(q0) ⇒ cover(q1)
cover(x, y) ⇒ coveredby(y, x) cover(q0) ⇒ coveredby(q1)
inside(x, y) ⇒ contain(y, x) inside(q0) ⇒ contain(q1)
contain(x, y) ⇒ inside(y, x) contain(q0) ⇒ inside(q1)

near(x, y) ⇒ near(y, x) near(q0) ⇒ near(q1)
far(x, y) ⇒ far(y, x) far(q0) ⇒ far(q1)

Symmetric touch(x, y) ⇒ touch(y, x) q0 ⇒ q1 touch(q0) ⇒ touch(q1)
disconnected(x, y) ⇒ disconnected(y, x) disconnected(q0) ⇒ disconnected(q1)

overlap(x, y) ⇒ overlap(y, x) overlap(q0) ⇒ overlap(q1)

left(x, y) ∧ left(y, z) ⇒ left(x, z) left(q0) ∧ left(q1) ⇒ left(q2)
right(x, y) ∧ right(y, z) ⇒ right(x, z) right(q0) ∧ right(q1) ⇒ right(q2)
above(x, y) ∧ above(y, z) ⇒ above(x, z) above(q0) ∧ above(q1) ⇒ above(q2)
below(x, y) ∧ below(y, z) ⇒ below(x, z) below(q0) ∧ below(q1) ⇒ below(q2)

behind(x, y) ∧ behind(y, z) ⇒ behind(x, z) behind(q0) ∧ behind(q1) ⇒ behind(q2)
front(x, y) ∧ front(y, z) ⇒ front(x, z) front(q0) ∧ front(q1) ⇒ front(q2)
inside(x, y) ∧ inside(y, z) ⇒ inside(x, z) inside(q0) ∧ inside(q1) ⇒ inside(q2)

contain(x, y) ∧ contain(y, z) ⇒ contain(x, z) contain(q0) ∧ contain(q1) ⇒ contain(q2)
inside(x, y) ∧ coveredby(y, z) ⇒ inside(x, z) inside(q0) ∧ coveredby(q1) ⇒ inside(q2)
contain(x, y) ∧ cover(y, z) ⇒ contain(x, z) contain(q0) ∧ cover(q1) ⇒ contain(q2)

inside(x, y) ∧ left(y, z) ⇒ left(x, z) inside(q0) ∧ left(q1) ⇒ left(q2)
inside(x, y) ∧ right(y, z) ⇒ right(x, z) inside(q0) ∧ right(q1) ⇒ right(q2)
inside(x, y) ∧ above(y, z) ⇒ above(x, z) inside(q0) ∧ above(q1) ⇒ above(q2)
inside(x, y) ∧ below(y, z) ⇒ below(x, z) inside(q0) ∧ below(q1) ⇒ below(q2)

Transitivity inside(x, y) ∧ behind(y, z) ⇒ behind(x, z) q0 ∧ q1 ⇒ q2 inside(q0) ∧ behind(q1) ⇒ behind(q2)
inside(x, y) ∧ front(y, z) ⇒ front(x, z) inside(q0) ∧ front(q1) ⇒ front(q2)
inside(x, y) ∧ near(y, z) ⇒ near(x, z) inside(q0) ∧ near(q1) ⇒ near(q2)
inside(x, y) ∧ far(y, z) ⇒ far(x, z) inside(q0) ∧ far(q1) ⇒ far(q2)

inside(x, y) ∧ disconnected(y, z) ⇒ disconnected(x, z) inside(q0) ∧ disconnected(q1) ⇒ disconnected(q2)
coveredby(x, y) ∧ left(y, z) ⇒ left(x, z) coveredby(q0) ∧ left(q1) ⇒ left(q2)

coveredby(x, y) ∧ right(y, z) ⇒ right(x, z) coveredby(q0) ∧ right(q1) ⇒ right(q2)
coveredby(x, y) ∧ above(y, z) ⇒ above(x, z) coveredby(q0) ∧ above(q1) ⇒ above(q2)
coveredby(x, y) ∧ below(y, z) ⇒ below(x, z) coveredby(q0) ∧ below(q1) ⇒ below(q2)
coveredby(x, y) ∧ behind(y, z) ⇒ behind(x, z) coveredby(q0) ∧ behind(q1) ⇒ behind(q2)
coveredby(x, y) ∧ front(y, z) ⇒ front(x, z) coveredby(q0) ∧ front(q1) ⇒ front(q2)
coveredby(x, y) ∧ near(y, z) ⇒ near(x, z) coveredby(q0) ∧ near(q1) ⇒ near(q2)
coveredby(x, y) ∧ far(y, z) ⇒ far(x, z) coveredby(q0) ∧ far(q1) ⇒ far(q2)

coveredby(x, y) ∧ disconnected(y, z) ⇒ disconnected(x, z) coveredby(q0) ∧ disconnected(q1) ⇒ disconnected(q2)

inside(x, y) ∧ inside(h, z) ∧ left(y, z) ⇒ left(x, h) inside(q0) ∧ inside(q1) ∧ left(q2) ⇒ left(q3)
inside(x, y) ∧ inside(h, z) ∧ right(y, z) ⇒ right(x, h) inside(q0) ∧ inside(q1) ∧ right(q2) ⇒ right(q3)
inside(x, y) ∧ inside(h, z) ∧ above(y, z) ⇒ above(x, h) inside(q0) ∧ inside(q1) ∧ above(q2) ⇒ above(q3)
inside(x, y) ∧ inside(h, z) ∧ below(y, z) ⇒ below(x, h) inside(q0) ∧ inside(q1) ∧ below(q2) ⇒ below(q3)
inside(x, y) ∧ inside(h, z) ∧ behind(y, z) ⇒ behind(x, h) inside(q0) ∧ inside(q1) ∧ behind(q2) ⇒ behind(q3)
inside(x, y) ∧ inside(h, z) ∧ front(y, z) ⇒ front(x, h) inside(q0) ∧ inside(q1) ∧ front(q2) ⇒ front(q3)
inside(x, y) ∧ inside(h, z) ∧ near(y, z) ⇒ near(x, h) inside(q0) ∧ inside(q1) ∧ near(q2) ⇒ near(q3)
inside(x, y) ∧ inside(h, z) ∧ far(y, z) ⇒ far(x, h) inside(q0) ∧ inside(q1) ∧ far(q2) ⇒ far(q3)

inside(x, y) ∧ inside(h, z) ∧ disconnected(y, z) ⇒ disconnected(x, h) inside(q0) ∧ inside(q1) ∧ disconnected(q2) ⇒ disconnected(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ left(y, z) ⇒ left(x, h) coveredby(q0) ∧ coveredby(q1) ∧ left(q2) ⇒ left(q3)

coveredby(x, y) ∧ coveredby(h, z) ∧ right(y, z) ⇒ right(x, h) coveredby(q0) ∧ coveredby(q1) ∧ right(q2) ⇒ right(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ above(y, z) ⇒ above(x, h) coveredby(q0) ∧ coveredby(q1) ∧ above(q2) ⇒ above(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ below(y, z) ⇒ below(x, h) coveredby(q0) ∧ coveredby(q1) ∧ below(q2) ⇒ below(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ behind(y, z) ⇒ behind(x, h) coveredby(q0) ∧ coveredby(q1) ∧ behind(q2) ⇒ behind(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ front(y, z) ⇒ front(x, h) coveredby(q0) ∧ coveredby(q1) ∧ front(q2) ⇒ front(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ near(y, z) ⇒ near(x, h) coveredby(q0) ∧ coveredby(q1) ∧ near(q2) ⇒ near(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ far(y, z) ⇒ far(x, h) coveredby(q0) ∧ coveredby(q1) ∧ far(q2) ⇒ far(q3)

Transitivity + Topological coveredby(x, y) ∧ coveredby(h, z) ∧ disconnected(y, z) ⇒ disconnected(x, h) q0 ∧ q1 ∧ q2 ⇒ q3 coveredby(q0) ∧ coveredby(q1) ∧ disconnected(q2) ⇒ disconnected(q3)
left(x, y) ∧ left(h, z) ∧ contain(y, z) ⇒ left(x, h) left(q0) ∧ left(q1) ∧ contain(q2) ⇒ left(q3)
left(x, y) ∧ left(h, z) ∧ cover(y, z) ⇒ left(x, h) left(q0) ∧ left(q1) ∧ cover(q2) ⇒ left(q3)

right(x, y) ∧ right(h, z) ∧ contain(y, z) ⇒ right(x, h) right(q0) ∧ right(q1) ∧ contain(q2) ⇒ right(q3)
right(x, y) ∧ right(h, z) ∧ cover(y, z) ⇒ right(x, h) right(q0) ∧ right(q1) ∧ cover(q2) ⇒ right(q3)

above(x, y) ∧ above(h, z) ∧ contain(y, z) ⇒ above(x, h) above(q0) ∧ above(q1) ∧ contain(q2) ⇒ above(q3)
above(x, y) ∧ above(h, z) ∧ cover(y, z) ⇒ above(x, h) above(q0) ∧ above(q1) ∧ cover(q2) ⇒ above(q3)

below(x, y) ∧ below(h, z) ∧ contain(y, z) ⇒ below(x, h) below(q0) ∧ below(q1) ∧ contain(q2) ⇒ below(q3)
below(x, y) ∧ below(h, z) ∧ cover(y, z) ⇒ below(x, h) below(q0) ∧ below(q1) ∧ cover(q2) ⇒ below(q3)

behind(x, y) ∧ behind(h, z) ∧ contain(y, z) ⇒ behind(x, h) behind(q0) ∧ behind(q1) ∧ contain(q2) ⇒ behind(q3)
behind(x, y) ∧ behind(h, z) ∧ cover(y, z) ⇒ behind(x, h) behind(q0) ∧ behind(q1) ∧ cover(q2) ⇒ behind(q3)
front(x, y) ∧ front(h, z) ∧ contain(y, z) ⇒ front(x, h) front(q0) ∧ front(q1) ∧ contain(q2) ⇒ front(q3)
front(x, y) ∧ front(h, z) ∧ cover(y, z) ⇒ front(x, h) front(q0) ∧ front(q1) ∧ cover(q2) ⇒ front(q3)
near(x, y) ∧ near(h, z) ∧ contain(y, z) ⇒ near(x, h) near(q0) ∧ near(q1) ∧ contain(q2) ⇒ near(q3)
near(x, y) ∧ near(h, z) ∧ cover(y, z) ⇒ near(x, h) near(q0) ∧ near(q1) ∧ cover(q2) ⇒ near(q3)
far(x, y) ∧ far(h, z) ∧ contain(y, z) ⇒ far(x, h) far(q0) ∧ far(q1) ∧ contain(q2) ⇒ far(q3)
far(x, y) ∧ far(h, z) ∧ cover(y, z) ⇒ far(x, h) far(q0) ∧ far(q1) ∧ cover(q2) ⇒ far(q3)

disconnected(x, y) ∧ disconnected(h, z) ∧ contain(y, z) ⇒ disconnected(x, h) disconnected(q0) ∧ disconnected(q1) ∧ contain(q2) ⇒ disconnected(q3)
disconnected(x, y) ∧ disconnected(h, z) ∧ cover(y, z) ⇒ disconnected(x, h) disconnected(q0) ∧ disconnected(q1) ∧ cover(q2) ⇒ disconnected(q3)

Table 7: The conversion from spatial logical rules proposed in (Mirzaee and Kordjamshidi, 2022) to logical
constraints used in our experiment.
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