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ABSTRACT

How cost-effectively can strong reasoning abilities be achieved in language models?
Driven by this question, we present Tina, a family of tiny reasoning models achieved
with high cost-efficiency. Tina shows that substantial reasoning performance can
be developed using only minimal resources, by applying low-rank adaptation
(LoRA) during reinforcement learning (RL), to an already tiny 1.5B parameter base
model. This minimalist approach produces models that are competitive with, and
sometimes surpass, SOTA RL reasoning models built upon the same base model.
Crucially, this is achieved at a tiny fraction of the computational cost employed
by existing models. In fact, the best Tina model achieves a >20% reasoning
performance increase and 43.33% zero-shot Pass@1 accuracy on AIME24, at only
$9 USD cost (i.e., an estimated 260x reduction). Our work reveals the surprising
effectiveness of efficient RL reasoning via LoRA. We validate this across multiple
open-source reasoning datasets and various ablation settings starting with a single,
fixed set of hyperparameters. Furthermore, we explore the hypothesis that this
effectiveness and efficiency stem from LoRA rapidly adapting the model to the
structural format of reasoning rewarded by RL, while largely preserving the base
model’s underlying knowledge. In service of accessibility and open research, we
fully open-source all code, training logs, model weights, and checkpoints.

1 INTRODUCTION

Language models (LMs) demonstrate increasing proficiency across a variety of tasks, but achieving
robust, multi-step reasoning remains a frontier challenge (Xu et al., 2025; Liu et al., 2025a). Enhancing
complex reasoning via supervised fine-tuning (SFT) is a well-adopted technique, often utilizing
a distillation process (Min et al., 2024; Huang et al., 2024) by which the model learns to mimic
reasoning traces generated by more advanced models such as o1 (OpenAI, 2024) and R1 (DeepSeek-
AI, 2025). This approach, while effective, can run the risk of instilling a shallow form of imitation in
the learning model. In contrast, reinforcement learning (RL) enables models to learn directly from
verifiable reward signals derived from curated data (DeepSeek-AI, 2025; Lambert et al., 2025). In
doing so, RL can lead the model to explore a greater variety of logical paths and discover more robust
solutions. However, RL pipelines are often complex and notoriously resource-intensive, typically
involving substantial compute. This raises a fundamental question anchoring our research:

How cost-effectively can one perform RL to efficiently instill reasoning abilities in LMs?

This question is motivated by the need to establish efficiency limits for RL reasoning, i.e., under-
standing the minimal requirements needed to achieve meaningful reasoning improvements. We focus
on low-resource settings with tiny models and minimal parameter updates to probe the fundamental
limits of instilling reasoning via RL, isolating training dynamics from sheer model scale. Although
quantized small models offer an alternative path to efficient deployment, our aim is to understand
how far RL-based reasoning can be pushed under tight compute budgets. (RUCAIBox STILL Team,
2025; Luo et al., 2025; Dang and Ngo, 2025) As shown in Appendix C.3.1, the same trends hold for
larger models, clarifying how tiny-model insights extend across scales. Moreover, understanding
these efficiency limits addresses fundamental questions about the nature of reasoning in LMs. Specif-
ically, recent studies indicate that reasoning and knowledge storage are distinct capabilities: while
knowledge capacity scales primarily with model size, reasoning performance may be less coupled to
parameter count alone (Allen-Zhu and Li, 2024). This decoupling suggests that smaller models may
possess untapped reasoning potential. Furthermore, evidence shows that parameter-efficient methods
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Figure 1: Comparison between Tina and baseline models Reasoning performance denotes the
average score across AIME24/25, AMC23, MATH500, GPQA, and Minerva. The calculation of each
comparative metric is detailed in Appendix B.1.

can adapt models for specific capabilities without degrading existing knowledge (Han et al., 2024),
thereby offering a promising avenue for reasoning.

Therefore, in this paper we combine two key efficiency strategies: employing compact tiny base
models (e.g., 1.5B) (DeepSeek-AI, 2025) and applying low-rank adaptation (LoRA) during RL. LoRA
enables us to modify model behavior by training only a small fraction of parameters, making it an
ideal technique for efficient reasoning. The synergy between these approaches forms the foundation
of our Tina (Tiny Reasoning Models via LoRA) modeling framework. Importantly, this paper not only
introduces the Tina models but also uses this minimalist setup to characterize reasoning improvements
and explain why such a low-cost approach is effective. While our approach is a straightforward
synthesis of LoRA and GRPO, the core contribution lies not in the method’s complexity, but in the
surprising discovery that substantial reasoning can be achieved at such a minimal cost, supported
by an analysis of the training dynamics and a novel hypothesis to explain this effectiveness. We
summarize our contributions as follows:

• Surprising Effectiveness of Efficient RL Reasoning via LoRA We show that our Tina models
achieve performance competitive with, and in some cases even superior to, SOTA baseline
models built on the same base model with full-parameter training, as shown in Figure 1 and
in more detail in Table 2. In particular, the best Tina model achieves a >20% performance
increase and 43.33% zero-shot Pass@1 accuracy on AIME24. Notably, the cost of reproducing
the best Tina checkpoint stands at only $9, and of reproducing everything (all experiments,
ablations, evaluations, etc.) presented in this paper from scratch at $798. We also additionally
show FLOPS for Tina in Figure 2 and Appendix B.1.

• Rapid Reasoning Format Adaptation Hypothesis Based on our observations in RL post-
training Tina, we hypothesize that LoRA’s effectiveness and efficiency stem from rapidly
adapting the reasoning format under RL while preserving base model knowledge—a likely more
compute-efficient process than the deep knowledge integration of full-parameter training. Partial
support comes from studies showing tiny LMs can reason effectively (Hugging Face, 2025;
DeepSeek-AI, 2025), while large LMs can store broader world knowledge (Allen-Zhu and Li,
2025). This distinction suggests reasoning capabilities can be significantly enhanced by focusing
on adapting the output format itself, consistent with our hypothesis about LoRA.

2 RELATED WORK

Open-source reasoning replicas Following the release of o1-preview (OpenAI, 2024), a number
of open-source models have emerged to replicate or exceed its reasoning capabilities. STILL (Min
et al., 2024) introduced a minimal yet high-quality training recipe designed to elicit reasoning with
modest compute, demonstrating that imitation learning from curated traces remains competitive. Sky-
T1 (NovaSky Team, 2025) further explored scaling using open instruction-tuned checkpoints, while
SimpleRL (Zeng et al., 2025) highlighted the potential of lightweight RL without requiring large-scale
reward models. PRIME (Cui et al., 2025) and DeepScaleR (Luo et al., 2025) introduced process
supervision and scaling experiments to isolate how reasoning quality evolves with model size and
context length. s1 (Muennighoff et al., 2025) showed that even strong base models such as Qwen2.5-
32B-Instruct benefit from fine-tuning on only 1k high-quality and long chain-of-thought data, which
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is curated to elicit reasoning capabilities. L1 (Aggarwal and Welleck, 2025) combined prompt
engineering with data curation for RL, resulting in models that can efficiently and adaptively control
their response length. Meanwhile, OREAL (Lyu et al., 2025) and OpenThinker (OpenThoughts
Team, 2025) investigated self-correction and latent structure emergence through unsupervised and
hybrid paradigms. The release of Open Reasoner Zero (Hu et al., 2025) and Open-RS (Dang and Ngo,
2025) further emphasized efficient RL-based strategies for reasoning with small models, completing
a landscape of public alternatives for interpretability and reproducibility.

RL with verifiable rewards Reasoning tasks are well-suited to RL paradigms, as the correctness or
quality of the final output often provides verifiable reward signals (e.g., the validity of a logical deduc-
tion). Such signal can effectively guide the model towards learning more robust reasoning strategies.
Consequently, various RL approaches have been explored within this domain. Certain methods
introduce auxiliary reward models or critics to assess reasoning quality, such as ReFT (Luong et al.,
2024) and REFINER (Paul et al., 2024). Other techniques employ explicit rule-based verification for
self-correction (Wu et al., 2024). Some leverage self-play dynamics and exploration, such as mutual
reasoning (Qi et al., 2024), or utilize inference-aware fine-tuning that optimizes performance under
different sampling strategies (Chow et al., 2024). Notably, group relative policy optimization (GRPO)
has been proposed as a variant of proximal policy optimization (PPO) which removes the need
for a separate value network by using a group-based baseline for advantage estimation, improving
training efficiency and leading to better reward alignment (Shao et al., 2024), as demonstrated by
DeepSeek-R1 (DeepSeek-AI, 2025). Subsequently, Dr.GRPO (Liu et al., 2025b) introduced a subtle
modification of GRPO addressing its bias to produce long responses.

3 METHOD

Tina is our family of models created by post-training the DeepSeek-R1-Distill-Qwen-1.5B
base model using LoRA during RL (employing a GRPO-style algorithm). The “Tiny” designation
encapsulates a deliberate focus on minimalism and efficiency across the entire framework. This
encompasses not only the tiny base model architecture and the tiny parameter updates enabled by
LoRA, but also extends to a tiny overall resource footprint. This minimized footprint is achieved
through an efficient training pipeline leveraging accessible open-source resources, and requires only
minimal hardware and budget resources (detailed in Section 4).

GRPO formulation Recall the following formulation of GRPO: For each question q, GRPO samples
a group G = {o1, o2, . . . , oG} of outputs from the old policy πθold

and optimizes the policy πθ by
maximizing the following objective:

E q∼P (Q),
{oi}Gi=1∼πθold (O∣q)

[ 1

G

G

∑
i=1

(min (δiAi, clip (δi, 1 − ϵ, 1 + ϵ)Ai) − β DKL(πθ∥πref))] , (1)

where we define δi =
πθ(oi∣q)
πθold (oi∣q)

and Ai denotes the advantage computed from a group of rewards

{r1, r2, . . . , rG},

Ai =
ri − mean({r1, r2, . . . , rG})

std({r1, r2, . . . , rG})
,

and

DKL(πθ∥πref) =
πref(oi∣q)
πθ(oi∣q)

− log
πref(oi∣q)
πθ(oi∣q)

− 1.

Note that ϵ and β are parameters controlling the clipping range and KL penalty, respectively.

LoRA formulation While most existing open-source models that enable reasoning rely on the
more expensive full-parameter training (Min et al., 2024; NovaSky Team, 2025; Zeng et al., 2025;
Muennighoff et al., 2025; Aggarwal and Welleck, 2025; Cui et al., 2025; Luo et al., 2025; Lyu
et al., 2025; OpenThoughts Team, 2025; Hu et al., 2025; Dang and Ngo, 2025), we investigate the
use of LoRA for parameter-efficient post-training of reasoning models (Hu et al., 2021). Our goal
is to assess whether updating only a small fraction of parameters can still yield strong reasoning
capabilities (Han et al., 2024). We follow the standard LoRA setup (Hu et al., 2021) that given
a frozen pretrained weight matrix W0 ∈ Rd×k and trainable low-rank matrices A ∈ Rd×r and
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B ∈ Rr×k with r ≪ min(d, k), the original forward pass h(x) = W0x is modified to be

ĥ(x) = W0x +ABx.

In addition to its computational efficiency, LoRA provides modularity: by training only a low-rank
decomposition of the parameter updates, it becomes possible to toggle reasoning behavior without
maintaining multiple full model copies.

4 MODEL TRAINING DETAILS

4.1 TRAINING SETUP

We present our main training setup as follows. Please refer to Appendix B for additional details.

Training datasets & evaluation benchmarks To facilitate meaningful comparisons and enable
precise ablations, we post-train our Tina models via RL using the setups inherited from publicly
available reasoning models. Tina models use open-source training recipes and training datasets
from models like STILL-3 (RUCAIBox STILL Team, 2025), DeepScaleR (Luo et al., 2025), and
Open-RS (Dang and Ngo, 2025). These models are also used as baselines. We evaluate the reasoning
capabilities of our Tina models and the baselines across a diverse suite of six challenging benchmarks,
primarily focused on mathematical and scientific reasoning: AIME24/25 (Art of Problem Solving,
2024), AMC23 (Art of Problem Solving, 2023), MATH500 (Hendrycks et al., 2021; Lightman et al.,
2023), GPQA Diamond (Rein et al., 2024), and Minerva (Lewkowycz et al., 2022).

Table 1: Computational cost breakdown Costs for all tasks in this paper, measured in USD. Our
calculation is based on the full set of experiments shown in Appendix C.

EXPERIMENTAL TASK TRAINING COST EST. EVALUATION COST EST. TOTAL COST EST.
Baseline Models Re-Evaluation - $10 $10

Robust Evaluation - $110 $110

Main: Tina-STILL-3-1.5B-preview $59 $7 $66

Main: Tina-DeepScaleR-1.5B-Preview $84 $10 $94

Main: Tina-Open-RS1 $40 $11 $51

Main: Tina-Open-RS2 $15 $17 $32

Main: Tina-Open-RS3 $15 $17 $32

Ablation: OpenThoughts Dataset $84 $10 $94

Ablation: OpenR1 Dataset $59 $7 $66

Ablation: II-Thought Dataset $84 $10 $94

Ablation: LIMR Dataset $4 $4 $8

Ablation: Dr.GRPO Algorithm $15 $17 $32

Ablation: Learning Rate $7 $8 $15

Ablation: LoRA Rank/Alpha $14 $16 $30

Ablation: Format Reward Only $15 $17 $32

Ablation: Long Completion Length $15 $17 $32

Total: All Tasks $510 $288 $798
Total: Main Tasks $213 $62 $275
Total: Best Ckpt. in Each Main Task $80 $5 $85
Total: All Ckpt. in Best-Performance Task $14 $17 $31
Total: Best Ckpt. in Best-Performance Task $8 $1 $9

Computational cost breakdown We use a minimal setup with just two GPUs (NVIDIA L40S
GPUs), accessible via commercial cloud platforms at an approximate rate of $1 USD per GPU hour,
including 300 GB storage, based on pricing observed at the time of writing (Cudo Compute). The RL
training process for our LoRA models proves to be highly efficient, with a single RL step typically
completing within one minute on this hardware. Evaluating a model checkpoint across our entire
suite of six reasoning benchmarks requires approximately 1 L40S GPU hour on average. To ensure
cost control, we initially established a conservative maximum budget of $100 USD for each complete
experimental run, encompassing all stages from training to evaluation and miscellaneous tasks. As
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detailed in Table 1, our actual expenditures were significantly below this ceiling. Notably, all of our
experiments required only minimal efforts on hyperparameter search, as detailed in Appendix B.3.

4.2 TRAINING TRICKS

Our training methodology for Tina models is designed to maximize cost-effectiveness and rapidly
instill reasoning abilities, aligning with our core hypothesis that LoRA can efficiently adapt a tiny
model to the structural format of reasoning (detailed in Section 6). Towards this goal, the following
strategies were employed, utilizing a single, fixed set of hyperparameters across experiments to
underscore robustness and minimize tuning overhead:

• Concise reasoning with restricted completion length To encourage the model to quickly
learn the essence of effective reasoning—namely, achieving accurate results through concise
and well-structured reasoning paths—we restrict the maximum completion length to 3,000
tokens during training for all Tina models. This not only guides the model towards more
efficient problem-solving expressions but also reduces the computational load per training
instance, further enhancing overall training speed and cost-efficiency. An ablation study on
longer completion lengths is discussed in Section 6.2.

• Accelerated adaptation with rank-alpha ratio and learning rate scheduling To facilitate
rapid assimilation of the new reasoning format, we deviate from common LoRA configurations
and learning rate schedules. Specifically:
– We set the LoRA alpha to be four times the LoRA rank (e.g., rank 32, alpha 128), rather than

the conventional two times. This amplified alpha encourages the model to more strongly
incorporate the adaptations learned by the LoRA parameters, effectively making it “lean
towards” the new reasoning structures reinforced during RL.

– We employ an unconventional learning rate schedule. Instead of scheduling the learning rate
decay over the standard training horizon, we schedule it over twice the training horizon. This
results in a comparatively larger learning rate being applied at each step within the actual
training period, promoting faster adaptation of the LoRA parameters to the reward signals.

These adaptation strategies are chosen to align with our goal of achieving significant reasoning
improvements with minimal computational costs, and thus promote efficient learning.

5 EMPIRICAL RESULTS

5.1 SURPRISING EFFECTIVENESS OF EFFICIENT RL REASONING VIA LORA

The results presented in Table 2 demonstrate that significant reasoning performance can be achieved
efficiently, yielding models that are competitive with, or outperform, relevant baselines despite the
inherent resource constraints of using parameter-efficient tuning.1

Table 2: Tina model evaluation Performance comparison between Tina models and corresponding
full-parameter-trained SOTA models on six reasoning tasks. The value in the Steps column indicates
the training steps of the best model checkpoint within one epoch, while the full model checkpoint
evaluation is shown in Appendix C.4. The Baseline column represents the average score achieved by a
baseline model with full-parameter RL (all details of baseline evaluations described in Appendix C.1).

TINA MODEL STEPS (% OF 1 EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG. BASELINE

Tina-STILL-3-1.5B-preview 53% 36.67 30.00 77.50 84.60 33.33 26.84 48.16 44.86

Tina-DeepScaleR-1.5B-Preview 19% 43.33 26.67 67.50 86.20 37.88 28.68 48.38 48.74
Tina-Open-RS1 34% 43.33 20.00 80.00 84.00 35.35 28.68 48.56 44.47

Tina-Open-RS2 51% 43.33 26.67 77.50 87.00 36.36 32.72 50.60 41.60

Tina-Open-RS3 57% 36.67 23.33 82.50 85.20 37.37 31.62 49.45 46.06

1Tables 2 and 3 adopt a consistent naming pattern where “Tina-X” denotes that our model is the LoRA
counterpart of a baseline model X or is trained on a dataset X (possibly followed with an extra ablation setup).
This can reflect the model origin and serve as a direct reference to the public checkpoints for reproducibility.

5
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In Table 2, all Tina models exhibit substantial reasoning aptitude, achieving average scores in the range
of 48.16% to 50.60%. By default, our reported scores are zero-shot Pass@1 Mean@1 performance.
We also conduct robust evaluation experiment in Appendix C.2 with zero-shot Pass@1 Mean@10
performance to show the robustness of our approach in this paper. Significantly, nearly all Tina models
notably outperform their corresponding baseline average scores, indicating marked improvements
instilled by the parameter-efficient RL. The Tina-Open-RS2 model yielded the highest average
performance observed at 50.60%. Furthermore, these strong results were achieved with very limited
training durations, ranging from just 19% to 57% of a full training epoch, highlighting the efficiency
and rapid adaptation enabled by the Tina approach. These findings strongly support our central
hypothesis: robust reasoning capabilities can be effectively and economically cultivated in small
language models through the targeted application of LoRA and RL.

Table 3: Tina ablation variants evaluation Performance evaluation of Tina’s ablation variants on
six reasoning tasks. The value in the Steps column indicates the training steps of the best model
checkpoint within one epoch, and the full model checkpoint evaluation is shown in Appendix C.4.

ABLATION ON DATASETS STEPS (% OF 1 EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
Tina-OpenR1 (93.7k) 13% 36.67 26.67 75.00 86.80 39.90 30.51 49.26

Tina-OpenThoughts (66.1k) 30% 36.67 26.67 72.50 84.80 41.41 33.09 49.19

Tina-II-Thought (53.3k) 30% 40.00 20.00 80.00 86.00 33.84 26.84 47.78

Tina-DeepScaleR (40.3k) 19% 43.33 26.67 67.50 86.20 37.88 28.68 48.38

Tina-STILL-3 (33k) 53% 36.67 30.00 77.50 84.60 33.33 26.84 48.16

Tina-Open-S1 (18.6k) 34% 43.33 20.00 80.00 84.00 35.35 28.68 48.56

Tina-Open-RS (7k) 51% 43.33 26.67 77.50 87.00 36.36 32.72 50.60
Tina-LIMR (1.39k) 58% 46.67 20.00 75.00 83.80 34.85 30.51 48.47

ABLATION ON LEARNING RATE STEPS (% OF 1 EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
Tina-LIMR-5e-6-lr 29% 36.67 26.67 75.00 83.60 35.86 29.41 47.87

Tina-LIMR-1e-6-lr 58% 46.67 20.00 75.00 83.80 34.85 30.51 48.47
Tina-LIMR-5e-7-lr 58% 43.33 16.67 77.50 84.60 34.85 30.51 47.91

ABLATION ON LORA RANK STEPS (% OF 1 EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
Tina-LIMR-64-LoRA-rank 29% 20.00 30.00 77.50 84.20 38.38 31.62 46.95

Tina-LIMR-32-LoRA-rank 58% 46.67 20.00 75.00 83.80 34.85 30.51 48.47

Tina-LIMR-16-LoRA-rank 58% 43.33 33.33 70.00 83.20 35.35 28.31 48.92
Tina-LIMR-8-LoRA-rank 29% 30.00 26.67 82.50 83.80 33.84 30.51 47.89

Tina-LIMR-4-LoRA-rank 86% 36.67 20.00 85.00 83.80 31.82 29.04 47.72

ABLATION ON RL ALGORITHM STEPS (% OF 1 EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
Tina-Open-RS3-GRPO 57% 36.67 23.33 82.50 85.20 37.37 31.62 49.45

Tina-Open-RS3-DrGRPO 17% 43.33 23.33 80.00 85.00 35.35 30.15 49.53

5.2 ABLATION STUDY: KEY FACTORS

To better understand the factors influencing the performance and efficiency of our Tina models
within the proposed low-cost framework, we conduct a series of ablation studies. These studies
systematically investigate the impact of key design choices and hyperparameters: the underlying
training dataset, the learning rate for LoRA updates, the rank of the LoRA adapters, and the specific
RL algorithm employed. In each study, we typically vary one factor while holding others constant,
often based on a high-performing configuration identified in our main experiments or preliminary
runs. The results, summarized in Table 3, provide valuable insights of our economical approach.

• Impact of training dataset The first section of Table 3 highlights the influence of the dataset
used for RL. We compared seven distinct datasets, varying significantly in size (from ≈1.4k to
≈94k samples). Strikingly, the Tina-Open-RS model, trained on a concise dataset of merely
7k examples, achieved the highest average score (50.60%). This outcome surpasses models
trained on considerably larger datasets, such as Tina-OpenR1 (93.7k samples, 49.26% avg).
This observation strongly supports our core “Tiny” premise and reflects the intuition that the
quality and diversity of the dataset can matter more than the data size.

• Impact of learning rate Using the Tina-LIMR configuration as a testbed (second section of
Table 3), we assessed sensitivity to the learning rate. Among the tested values (5×10

−6, 1×10
−6,
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and 5 × 10
−7), a learning rate of 1 × 10

−6 yielded the optimal average performance (48.47%)
for this setup. While performance differences were not drastic, this indicates that learning rate
selection remains a factor, although effective results were obtained without extensive tuning.

• Impact of LoRA rank The third ablation study investigated the impact of LoRA rank, which
directly controls the number of trainable parameters. Testing ranks 4, 8, 16, 32, and 64 on
the Tina-LIMR setup, we observed considerable robustness. Ranks 8, 16, and 32 all produced
strong results, with average scores clustering between 47.89% and 48.92%. Notably, rank 16
achieved the peak performance (48.92%) in this comparison, slightly outperforming rank 32
(48.47%). Performance decreased slightly at the extremes (rank 4 and 64). This study validates
that highly parameter-efficient configurations (low ranks like 16 or 32) are effective, further
enhancing the cost-effectiveness and minimal overhead of the Tina approach.

• Impact of RL algorithm Finally, we compared two RL algorithms, GRPO and Dr.GRPO (Liu
et al., 2025b), using the Tina-Open-RS3 setup (final section of Table 3). Both algorithms led to
similar peak average performance levels (49.45% for GRPO vs. 49.53% for Dr.GRPO). However,
Dr.GRPO reached its best checkpoint significantly earlier in the training process (17% of an
epoch vs. 57% for GRPO). This suggests potential advantages in sample efficiency for Dr.GRPO
in this context with an alternative normalization in loss calculation, offering potentially faster
convergence and further reductions in training time and cost.

6 EMERGING HYPOTHESIS

6.1 RAPID REASONING FORMAT ADAPTATION

To understand why LoRA facilitates both effective and efficient reasoning improvements via RL, we
analyze the relationship between training compute and performance, alongside training dynamics.

Less is more for reasoning As shown in Figure 2, plotting reasoning performance against ap-
proximate training FLOPs reveals a stark contrast between full-parameter and LoRA-based training
regimes. We show FLOPS because they are more invariant than price for cost comparison. First,
our LoRA-based Tina models achieve reasoning scores comparable or superior to fully fine-tuned
baselines while requiring (in some cases) orders of magnitude fewer training FLOPs. We observe that
in Tina models, increased training compute inversely affects performance, in contrast to full-parameter
ones. This highlights a “less compute can yield more performance” phenomenon.

Figure 2: Less is more for reasoning Approximate training FLOPs vs. reasoning performance
comparison between Tina and baseline models. The calculation is detailed in Appendix B.1.

This finding supports our hypothesis regarding how LoRA is able to achieve such high efficiency,
which relates to the principle of “learn structure/format, maintain knowledge.” We posit that LoRA
excels in this scenario because RL for reasoning heavily rewards the model’s ability to generate
outputs in a specific, verifiable format or structure (e.g., step-by-step reasoning chains). LoRA
appears to be highly adept at learning these structural and stylistic patterns with minimal parameter
changes, thus requiring very few FLOPs. At the same time, because LoRA modifies only a tiny
fraction of the weights, it largely preserves the base model’s vast pre-trained knowledge. Therefore,
LoRA efficiently teaches the model how to format its existing knowledge into effective reasoning
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traces, rather than potentially imposing costly relearning of concepts or procedures that extensive
full-parameter updates might entail. We hypothesize that this focus on structural adaptation allows
Tina to achieve high reasoning performance with minimal computational investment.
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Figure 3: Phase transition in LoRA-based RL The “training turning point” in the legend means
the step where the format-like metrics (e.g., format reward, completion length) start to destabilize.
Refer to Appendix D for the full set of plots for all Tina models. All raw data is from the Weights &
Biases training logs and smoothed via exponential moving average (EMA) with factor 0.1.

Phase transition We use the term “phase transition” to describe a specific, observable training
dynamic: a sharp, distinct turning point in format-related metrics (e.g., format reward, completion
length) that is decoupled from the more gradual evolution of the accuracy reward. As shown in
Figure 3, we consistently observe such a training phase transition, or turning point, evident in the
format-related metrics (format reward, column 2; completion length, column 3) across most Tina
models, thus not a random success during training. Around this transition point (indicated by the
green vertical dashed line), the format reward often peaks or destabilizes, while the completion length
frequently reaches a maximum before potentially reversing its trend. Notably, this relatively sharp
transition observed in format and length metrics does not typically have a corresponding distinct
turning point in the accuracy reward plots (column 1). The accuracy reward often exhibits more
gradual fluctuations or slower drift over the training duration, without a clear inflection aligned with
the format transition.

Another crucial observation is the timing of optimal performance: the best-performing checkpoint,
yielding the highest reasoning accuracy on held-out evaluations, consistently occurs just prior to
or around this observed phase transition point in the format metrics. This decoupling between the
dynamics of accuracy-based and format-based metrics suggests that the LoRA-based RL process
rapidly optimizes the model’s ability to adhere to the structural elements rewarded by the format
score and length constraints. The subsequent transition point may signify where this structural
optimization saturates, and becomes unstable. The fact that peak reasoning accuracy is achieved just
before this format-driven transition implies that while learning the correct output format is essential
and efficiently achieved via LoRA, pushing further on format-centric optimization alone does not
necessarily yield better reasoning, and may even be detrimental.

6.2 ABLATION STUDY: COMPLETION LENGTH AND FORMAT REWARD

To further probe the “learn structure/format, maintain knowledge” effect and understand the dynamics
of the observed “phase transition,” we conducted targeted ablation studies.

Long-completion training One of the training tricks detailed in Section 4.2 is the restricted
completion length (3k tokens), aiming to foster concise reasoning. To assess whether this restriction
significantly influences the learning dynamics or inadvertently caps performance, we conducted an
ablation where the maximum completion length was substantially increased to 10k tokens for a Tina
model variant. As shown in Figure 4, increasing the completion length did not alter the training
dynamics. The model’s generated completion lengths during training peaked at approximately 4k
tokens, remaining well below the 10k limit and comparable to the effective lengths observed with
the default 3k setting. Crucially, the “phase transition” effect in format-related metrics persisted,
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Figure 4: Phase transition with long completion length Training dynamics for Tina-Open-RS3-
long-completion with a 10k maximum completion length.

mirroring the patterns observed in Figure 3. The accuracy reward also followed a similar trajectory.
The persistence of the phase transition indicates that this phenomenon is a robust characteristic
of the LoRA-driven format adaptation process, rather than an artifact of a restrictive length cap.
Furthermore, the final reasoning evaluation scores of this model variant are comparable to those
achieved with the 3k limit, i.e., now 350 steps with 50.63 average score v.s. previously 500 steps with
49.45 average score (detailed in Appendix C.4).
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Figure 5: Absence of phase transition in format-only training Training dynamics for
Tina-Open-RS3-format-only trained solely on format-related rewards.

Format-only training Our hypothesis posits that LoRA excels at adapting the model to the format
of reasoning that is rewarded by RL, particularly when this format is linked to reasoning accuracy. To
dissect the roles of format and accuracy rewards, we conducted an ablation study where a Tina model
variant was trained using only format-based reward components, with the accuracy-based reward
entirely removed. Illustrated in Figure 5, the “phase transition” disappeared in this format-only
training regime. While the individual format-related reward components and completion length
still evolved, the sharp turning point or destabilization signifying the phase transition was absent.
The disappearance of the phase transition suggests that this dynamic is an emergent property of
the interplay between LoRA’s rapid adaptation to format requirements and the simultaneous drive
to achieve reasoning accuracy. When the accuracy incentive is removed, LoRA may still adapt to
the specified format objectives, but this adaptation becomes ineffective from the goal of producing
correct reasoning. Specifically, it takes longer training time to reach similar reasoning performance,
i.e., now 850 steps with 50.56 average score v.s. previously 500 steps with 49.45 average score.
This underscores that while LoRA is highly efficient at learning structural patterns, this capability is
harnessed when guided by the objective of accurate problem-solving (detailed in Appendix C.4).

7 CONCLUSION

We presented Tina models to show that effective reasoning capabilities can be instilled in language
models with high cost-efficiency. By combining LoRA with RL, we showed it is possible to achieve
reasoning performance competitive with larger models that necessitate far more costly full-parameter
training. We posited that LoRA’s effectiveness stems from its ability to rapidly adapt the structural
format of reasoning rewarded by RL, while largely preserving the knowledge embedded within the
base model. This adaptation of reasoning pathways appears to be a more compute-efficient process.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

All experiments and results presented in this paper are reproducible. We have included our complete
source code as supplementary material, which relies solely on publicly available datasets and open-
source libraries. The code is structured to allow for easy replication of our experiments and ablation
studies. Upon acceptance, we will release the non-anonymized code and pre-trained models under a
permissive open-source license in a public repository.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We declare that LLMs were used to assist with grammar, phrasing, and polishing of the manuscript’s
text. All core concepts, methodologies, and scientific contributions are entirely the work of the
authors.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 TRAINING BUDGET: COST BREAKDOWN

We provide further details on how training data amounts, computational cost, time cost, and perfor-
mance metrics reported in this paper – particularly those presented in figures like Figures 1 and 2 –
were determined and should be interpreted.

Overall comparison (Figure 1) For the baseline models included in Figure 1, the approximate
training data amounts, computational costs (typically reported as GPU hours or total FLOPs), and
training times are sourced from their respective technical reports or publications, leveraging the
helpful summary provided in the Open-RS paper (Dang and Ngo, 2025). Reasoning performance
scores for all models, encompassing both baselines and our Tina models, stem from results presented
in Tables 2 and 6.

Also, it is crucial to understand the scope of reported costs:

• Epoch vs. Best Checkpoint: Costs cited for Tina and baseline models reflect the resources
needed to complete a full training epoch or a predefined training run, not necessarily the minimal
cost to reach the single best-performing checkpoint within that run.

• Training vs. Evaluation: Reported costs cover training only, omitting the computational expense
required for model evaluation across benchmarks since such information is missing from several
baseline models.

Particularly, the $9 USD in the abstract represents the estimated cost to train the Tina model up
to its best-performing checkpoint and subsequently evaluate that specific checkpoint. For context
comparing potential full training runs, the cost to train a Tina model for a complete epoch is $14 USD
(training only). Including evaluation costs for such a full run would increase the total to approximately
$31 USD. We emphasize the $9 as representing the efficient path to the best Tina model.

FLOPs estimation (Figure 2) The approximate training FLOPs shown in Figure 2 serve as a
hardware-agnostic measure of computational work. For both Tina and baseline models, these values
were estimated based on reported training durations and hardware configurations sourced from
technical reports or the Open-RS summary, using standard FLOPs calculation methodologies.
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B.2 TRAINING SETUP

Baselines & Datasets. Tina models inherit training recipes (e.g., hyperparameter and reward design)
and training datasets all from public reasoning models. These models are used as baselines in the
paper. All Tina and baseline models adopt DeepSeek-R1-Distill-Qwen-1.5B as their base model
checkpoint with default open-source weights.

• STILL-3-1.5B-preview (RUCAIBox STILL Team, 2025) is a slow-thinking reasoning model
developed through iterative RL on a curated dataset of 33k reasoning traces. The data originates
from mathematics competitions and includes problems from MATH (Hendrycks et al., 2021;
Lightman et al., 2023), NuminaMathCoT (LI et al., 2024), and AIME (1983–2023) (Art of
Problem Solving, 2024). Tina-STILL-3-1.5B-preview uses the same dataset and reward
pipeline.

• DeepScaleR-1.5B-Preview (Luo et al., 2025) focuses on long-context mathematical rea-
soning via RL, and is trained over approximately 40k problem-answer pairs drawn from
the AIME (Art of Problem Solving, 2024), AMC (Art of Problem Solving, 2023),
OMNI-MATH (Gao et al., 2024a), and STILL (RUCAIBox STILL Team, 2025) datasets.
Tina-DeepScaleR-1.5B-Preview uses this dataset and mirrors the reward design.

• Open-RS1/2/3 (Dang and Ngo, 2025) are three models from the Open-RS project exploring
reasoning performance in 1.5B models trained via RL. All Open-RS models are trained on
small, high-quality datasets further curated from the s1 (Muennighoff et al., 2025) (i.e., Open-
S1) and DeepScaleR (Luo et al., 2025) (i.e., Open-DeepScaleR) datasets. The Tina models
(Tina-Open-RS1/2/3) replicate these setups, using identical data splits and reward scaffolding.

Hyperparameter and Reward Design. We initiated parameter selection by replicating key param-
eters from OpenR1 (Hugging Face, 2025) and OpenRS (Dang and Ngo, 2025). For all experiments
presented in this paper, we deliberately adopted the default or recommended hyperparameter configu-
rations provided in their works. These settings were kept largely fixed across different runs (Table 4).
For ablation studies, only the specific factor under investigation (e.g., learning rate, LoRA rank/alpha,
RL algorithm) was varied (Table 5). This approach intentionally circumvents costly hyperparameter
search procedures for our specific setup, ensuring negligible tuning overhead and focusing on the
efficacy of the core LoRA-based RL methodology.

For the main Tina results (Section 5.1), only reward designs were adjusted to ensure fair comparison
of LoRA-trained models with their full-parameter counterparts. Particularly, all the reward designs
including Accuracy, Format, Length, Cosine, Tag Count, Reasoning Steps, Repetition Penalty, are
defined and implemented by the OpenR1 code repository.2

We show our default choice of hyperparameter in Table 4 and the varied hyperparameter and reward
design in Table 5 for all the LoRA-based RL experiments.

2https://github.com/huggingface/open-r1
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Table 4: Common hyperparameter of Tina models.

Tina-STILL-3-1.5B-preview LoRA
Tina-DeepScaleR-1.5B-Preview LoRA
Tina-Open-RS{X}-{Y} LoRA
Tina-LIMR-{Z} LoRA
Tina-OpenR1 LoRA
Tina-OpenThoughts LoRA

LoRA Modules query, key, value, dense
LoRA Rank 32
LoRA α 128
LoRA Dropout 0.05

Algorithm GRPO
Optimizer AdamW
Optimizer Momentum β1, β2 = 0.9, 0.999
Learning Rate 1e-6
LR Scheduler Cosine with Min LR
Warmup Ratio 0.1
Precision BF16-mixed

Gradient Accumulation Step 4
Total Train Batch Size 32
Epochs 1
Hardware 2 × NVIDIA L40S

Max Prompt Length 512
Max Completion Length 3584
Number of Generation 4
Vllm GPU Memory Utilization 0.4
Vllm Max Model Length 4608

Table 5: Varied hyperparameter and reward design of Tina models where “-” means unchanged from
the common settings in Table 4.

Model LoRA Rank LoRA Alpha LoRA Dropout Algorithm Learning Rate Reward Type Reward Weights

Tina-STILL-3-1.5B-preview - - - - - Accuracy, Length 2, 1
Tina-DeepScaleR-1.5B-Preview - - - - - Accuracy, Format 2, 1
Tina-Open-RS3 - - - - - Cosine, Format 2, 1
Tina-Open-RS3-DrGRPO - - - DrGRPO - Cosine, Format 2, 1
Tina-Open-RS2 - - - - - Accuracy, Format 2, 1
Tina-Open-RS1 - - - - - Accuracy, Format 2, 1
Tina-LIMR - - - - - Accuracy, Format 2, 1
Tina-LIMR-5e-6-lr - - - - 5e-6 Accuracy, Format 2, 1
Tina-LIMR-5e-7-lr - - - - 5e-7 Accuracy, Format 2, 1
Tina-LIMR-64-LoRA-rank 64 256 - - - Accuracy, Format 2, 1
Tina-LIMR-16-LoRA-rank 16 64 - - - Accuracy, Format 2, 1
Tina-LIMR-8-LoRA-rank 8 32 - - - Accuracy, Format 2, 1
Tina-LIMR-4-LoRA-rank 4 16 - - - Accuracy, Format 2, 1

Tina-OpenR1 - - - - -

Accuracy, Cosine,
Format, Length,

Tag Count,
Reasoning Steps,

Repetition Penalty

1, 1, 1, 1,
1, 1, 1

Tina-OpenThoughts - - - - -

Accuracy, Cosine,
Format, Length,

Tag Count,
Reasoning Steps,

Repetition Penalty

1, 1, 1, 1,
1, 1, 1
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B.3 TRAINING INFRASTRUCTURE & EVALUATION

• Hardware A key element of our low-cost approach was minimizing the hardware footprint.
While distributed RL training algorithms like GRPO often benefit from using three or more GPUs
(e.g., dedicating one GPU to an inference engine such as vLLM for faster sample generation), we
deliberately targeted a minimal setup using only two NVIDIA L40S GPUs.3 To enable this, we
co-located the RL training process and the vLLM on the same two GPUs by constraining vLLM’s
GPU memory usage. The training itself utilized data parallelism across both GPUs. While
running inference and training concurrently on two GPUs might result in a longer wall-clock
training time compared to a setup with dedicated inference GPUs, it significantly reduces the
hardware requirement.

• Codebase Our implementation builds upon OpenR1,4 a fully open reproduction of DeepSeek-
R1 (DeepSeek-AI, 2025) which combines the Accelerate (Gugger et al., 2022) and Trl (von
Werra et al., 2020) libraries and the DeepSpeed ZeRO optimization (Rajbhandari et al., 2019). It
aims to transparently replicate and extend RL methods used for improving reasoning in language
models, particularly focusing on aligning model behavior with reasoning-oriented objectives via
verifiable reward signals. Our methodology inherits its scaffolding, training utilities, and reward
interfaces.

We evaluate the reasoning capabilities of our Tina models and the baselines across a diverse suite of
six challenging benchmarks, primarily focused on mathematical and scientific reasoning:

• AIME24/25 (Art of Problem Solving, 2024) contains 30 high-school-level math problems in
algebra, geometry, number theory, and combinatorics from the 2024/2025 American Invitational
Mathematics Examination. Each problem demands precise multi-step reasoning.

• AMC23 (Art of Problem Solving, 2023) includes 40 problems from the 2023 American Mathe-
matics Competition, offering a mix of logic and symbolic manipulation tasks.

• MATH500 (Hendrycks et al., 2021; Lightman et al., 2023) is a benchmark comprising 500
competition mathematics problems derived from various sources, covering different difficulty
levels and often necessitating multi-step derivation and calculation.

• GPQA Diamond (Rein et al., 2024), hereafter referred to as GPQA, consists of 198 PhD-level
science questions across biology, chemistry, and physics. Each question is multiple-choice with
subtle distractors.

• Minerva (Lewkowycz et al., 2022) includes 272 quantitative reasoning problems generally at
the undergraduate level. The questions span multiple STEM fields, including physics, biology,
chemistry, and economics, often requiring mathematical modeling or calculation steps. Includes
tasks such as calculating enzyme kinetics from reaction data.

3Occasionally, NVIDIA RTX 6000 Ada GPUs were used instead, which is reflected in the system configura-
tion metadata on Weights & Biases. From our practical experience, these two GPU types are similar in terms of
cost and computational performance. For consistency, we report costs and compute metrics based on the L40S.

4
https://github.com/huggingface/open-r1
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C ADDITIONAL EMPIRICAL RESULTS

C.1 BASELINE MODELS PERFORMANCE EVALUATION

For existing SOTA reasoning models, we note that performance scores reported in the literature for
relevant models often stem from evaluations using disparate frameworks (e.g., verl (Sheng et al.,
2025), lighteval (Fourrier et al., 2023), lm-eval-harness (Gao et al., 2024b)) and inconsistent
inference settings (such as different generation hyperparameters or varying numbers of GPUs).
These variations can influence reported metrics, creating potential inconsistencies and hindering
comparisons between models.

Table 6: Baseline models evaluation (all scores are zero-shot Pass@1 Mean@1).

BASELINE MODEL AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
DeepSeek-R1-Distilled-Qwen-1.5B 23.33 16.67 62.50 82.60 31.82 30.15 41.18

II-Thought-1.5B-Preview 30.00 23.33 72.50 86.80 31.90 30.88 45.90

STILL-3-1.5B-preview 26.67 26.67 67.50 86.40 34.34 27.57 44.86

DeepScaleR-1.5B-Preview 36.67 26.67 77.50 87.80 31.82 31.99 48.74
Open-RS1 26.67 20.00 72.50 83.60 35.35 28.68 44.47

Open-RS2 26.67 13.33 62.50 85.40 34.85 26.84 41.60

Open-RS3 43.33 20.00 67.50 83.00 33.84 28.68 46.06

FastCurl-1.5B-Preview 26.67 20.00 82.50 83.40 35.88 30.25 46.45

L1-Exact 30.00 30.00 75.00 85.40 33.33 33.82 47.93

L1-Max 20.00 23.33 67.50 84.60 37.88 33.09 44.40

To mitigate these confounding factors, we performed a comprehensive re-evaluation of key baseline
models using a single, consistent methodology throughout this paper. All baseline evaluations
reported herein utilize the lighteval framework integrated with the vLLM (Kwon et al., 2023)
inference engine for efficient generation. For comparability with prior work such as OpenR1, we
maintained a fixed hardware configuration (two L40S GPUs) and applied a standardized set of vLLM
inference parameters across all evaluated baseline models. All scores are zero-shot Pass@1 Mean@1
performance. The following is the evaluation command we use to combine lighteval and vLLM
for performance evaluation on reasoning tasks. The MODEL_PATH should be replaced with either
the local path or huggingface identifier to the model to be evaluated. TASK should be one of the
six reasoning tasks including aime24, aime25, amc23, math_500, gpqa:diamond, and minerva.
PATH_TO_OPEN_R1_EVALUATE_SCRIPT should be the path to the custom evaluate script provided
by OpenR1.5

MODEL_ARGS="
pretrained=$MODEL_PATH,
dtype=bfloat16,
data_parallel_size=2,
max_model_length=32768,
gpu_memory_utilization=0.5,
generation_parameters={max_new_tokens:32768,temperature:0.6,top_p:0.95}"

lighteval vllm $MODEL_ARGS "custom|$TASK|0|0"
--custom-tasks $PATH_TO_OPEN_R1_EVALUATE_SCRIPT
--use-chat-template

5https://github.com/huggingface/open-r1/blob/4f5b21e21dec473af9729bce8e084deb16223ae4/src/open_r1/evaluate.py
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C.2 ROBUST EVALUATION EXPERIMENT

We also provide a robust evaluation experiment on the reasoning benchmarks. Specifically, we
average the scores of AIME24/25 and AMC23 over 10 independent runs with different random
seeds (i.e., they are zero-shot Pass@1 Mean@10 performance) and also add another benchmark,
Olympiadbench (He et al., 2024). We run this robust experiment on all baseline models and our
Tina-DeepScaleR-1.5B-Preview for demonstration. As shown in Tables 7 and 8, the performance
perturbation on average is around 2% and does not affect our conclusion in the paper.

Table 7: Robust baseline models evaluation.

BASELINE MODEL AIME24 AIME25 AMC23 MATH500 GPQA MINERVA OLYMPIAD AVG. NON-ROBUST AVG.
DeepSeek-R1-Distilled-Qwen-1.5B 29.00 21.67 71.50 82.60 31.82 30.15 53.63 45.77 41.18

II-Thought-1.5B-Preview 32.33 26.67 73.25 86.80 31.90 30.88 54.78 48.09 45.90

STILL-3-1.5B-preview 31.00 27.00 74.25 86.40 34.34 27.57 54.67 47.89 44.86

DeepScaleR-1.5B-Preview 37.00 25.67 68.25 87.80 31.82 31.99 56.00 48.36 48.74
Open-RS1 28.67 26.00 75.00 83.60 35.35 28.68 53.33 47.23 44.47

Open-RS2 31.33 20.33 70.00 85.40 34.85 26.84 53.93 46.10 41.60

Open-RS3 30.00 25.67 68.75 83.00 33.84 28.68 49.48 45.63 46.06

FastCurl-1.5B-Preview 32.33 22.67 78.25 83.40 35.88 30.25 56.00 48.40 46.45

L1-Exact 23.67 21.00 73.50 85.40 33.33 33.82 52.89 46.23 47.93

L1-Max 24.33 21.00 73.00 84.60 37.88 33.09 53.04 46.71 44.40

Table 8: Robust evaluation of Tina-DeepScaleR-1.5B-Preview.

CHECKPOINT STEPS (5039 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA OLYMPIAD AVG. NON-ROBUST AVG.
500 30.00 24.00 74.50 82.40 39.39 31.25 53.93 47.93 45.65

1000 37.00 24.67 71.50 86.20 37.88 28.68 52.00 48.27 48.38
1500 30.33 23.67 71.75 84.80 32.83 29.41 50.81 46.23 46.17

2000 24.00 22.00 57.00 80.60 29.29 24.26 42.96 40.02 39.72

2500 18.67 16.00 55.00 75.00 31.31 18.01 41.33 36.47 34.47

3000 18.67 17.67 58.50 78.60 28.79 23.16 44.74 38.59 38.57

3500 23.67 22.00 60.75 80.40 31.82 24.26 44.59 41.07 40.94

4000 20.00 23.67 17.33 67.25 41.41 27.94 47.70 43.90 43.56

4500 23.33 27.00 19.67 66.00 34.85 26.47 49.04 43.40 42.99

5000 29.67 22.67 66.75 80.80 33.33 29.41 48.15 44.40 44.20
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C.3 EXTENSIONS OF TINA

C.3.1 SCALING TINA ACROSS MODELS AND SIZES

We evaluate the scalability of Tina by applying GRPO with LoRA to multiple model sizes and
families. Specifically, we experiment with Qwen2.5 base models at 3B, 7B, and 14B parameters, as
well as Llama3.1-8B and OctoThinker-3B-Hybrid-Base (mid-trained on Llama3.2-3B).

All training runs use a per-GPU batch size of 2. The GRPO sampling group size was 4, and the
maximum generation length was 512 tokens. LoRA settings are fixed across all variants: applied to
every transformer layer with LoRA rank 1, LoRA alpha 2, and no dropout. All raw data is smoothed
via exponential moving average (EMA) with factor 0.99.

The results in Figures 6-10 demonstrate that even with a minimal LoRA rank of 1, LoRA-based
GRPO achieves performance comparable to full-parameter GRPO across different model sizes and
architectures. This highlights the robustness and generality of the Tina approach.

Figure 6: Full-parameter v.s. LoRA-based GRPO of Qwen2.5-3B on GSM8K.

Figure 7: Full-parameter vs. LoRA-based GRPO of Qwen2.5-7B on GSM8K.

Figure 8: Full-parameter vs. LoRA-based GRPO of Qwen2.5-14B on GSM8K.
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Figure 9: Full-parameter vs. LoRA-based GRPO of Llama3.1-8B on GSM8K.

Figure 10: Full-parameter vs. LoRA-based GRPO of Octothinker-3B on GSM8K.
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C.3.2 LORA VARIANTS COMPARISON

We further explore low-rank and quantization-based variants of LoRA: DoRA, QLoRA, and QDoRA.
Experiments were conducted using Qwen2.5-3B on GSM8K, under consistent settings: two GPUs,
per-GPU batch size 2, GRPO sample size 4, and sequence length 512. For LoRA, DoRA, QLoRA,
and QDoRA, the rank is set as 1 and the alpha is set as 2. For QLoRA and QDoRA, the base model
is quantized to 4 bits. LoRA-based methods use a learning rate 20× higher than full-parameter GRPO
(i.e., 2 × 10

−4 vs. 1 × 10
−5). All raw data is smoothed via exponential moving average (EMA) with

factor 0.99.

Figure 11: Full-parameter vs. different LoRA-based GRPO of Qwen2.5-3B on GSM8K.

The results in Figure 11 illustrate the reward dynamics during training. LoRA-based methods—despite
minimal trainable parameters and the addition of quantization—achieve comparable reward trajecto-
ries to full-parameter GRPO. This further supports the central claim that LoRA-based GRPO is both
highly efficient and surprisingly effective for reasoning tasks.
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C.4 ALL TINA MODELS PERFORMANCE EVALUATION

We present all Tina models’ detailed evaluation performance during post-training across six reasoning
tasks including AIME24/25, AMC23, MATH500, GPQA and Minerva.

Table 9: Evaluation of Tina-STILL-3-1.5B-preview.

CHECKPOINT STEPS (3740 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
500 30.00 13.33 75.00 83.60 35.86 32.35 45.02

1000 36.67 20.00 65.00 84.80 32.32 27.94 44.46

1500 26.67 20.00 70.00 83.80 37.37 26.84 44.11

2000 36.67 30.00 77.50 84.60 33.33 26.84 48.16
2500 33.33 30.00 70.00 83.00 35.35 27.57 46.54

3000 30.00 20.00 67.50 82.60 30.81 25.74 42.78

3500 30.00 26.67 67.50 82.20 32.32 26.10 44.13

Table 10: Evaluation of Tina-DeepScaleR-1.5B-Preview.

CHECKPOINT STEPS (5039 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
500 30.00 23.33 67.50 82.40 39.39 31.25 45.65

1000 43.33 26.67 67.50 86.20 37.88 28.68 48.38
1500 30.00 20.00 80.00 84.80 32.83 29.41 46.17

2000 20.00 26.67 57.50 80.60 29.29 24.26 39.72

2500 13.33 16.67 52.50 75.00 31.31 18.01 34.47

3000 26.67 16.67 57.50 78.60 28.79 23.16 38.57

3500 23.33 23.33 62.50 80.40 31.82 24.26 40.94

4000 20.00 20.00 70.00 82.00 41.41 27.94 43.56

4500 23.33 20.00 72.50 80.80 34.85 26.47 42.99

5000 20.00 26.67 75.00 80.80 33.33 29.41 44.20

Table 11: Evaluation of Tina-II-Thought-1.5B-Preview.

CHECKPOINT STEPS (6660 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
500 33.33 23.33 77.50 83.20 31.31 27.57 46.04

1000 23.33 20.00 80.00 83.20 35.35 29.04 45.15

1500 40.00 20.00 80.00 86.00 33.84 26.84 47.78
2000 26.67 20.00 85.00 84.60 33.84 28.68 46.47

2500 30.00 23.33 75.00 85.00 40.40 26.47 46.70

3000 26.67 20.00 67.50 86.80 30.30 26.10 42.90

3500 33.33 16.67 67.50 84.00 40.91 30.88 45.55

4000 30.00 10.00 75.00 84.60 36.87 27.21 43.95

4500 26.67 16.67 72.50 85.40 33.84 25.37 43.41

5000 30.00 23.33 77.50 84.60 37.37 31.62 47.40
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Table 12: Evaluation of Tina-Open-RS3.

CHECKPOINT STEPS (875 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 26.67 23.33 75.00 84.20 37.37 29.04 45.94

100 30.00 30.00 65.00 83.00 37.37 29.78 45.86

150 36.67 16.67 65.00 84.80 27.78 27.94 43.14

200 20.00 26.67 70.00 83.80 33.33 27.94 43.62

250 36.67 20.00 65.00 84.60 38.38 28.31 45.49

300 33.33 26.67 70.00 85.20 30.81 30.15 46.03

350 40.00 16.67 77.50 84.40 39.90 27.94 47.74

400 30.00 16.67 70.00 82.80 35.86 31.25 44.43

450 36.67 26.67 70.00 85.60 33.84 32.72 47.58

500 36.67 23.33 82.50 85.20 37.37 31.62 49.45
550 26.67 16.67 80.00 86.00 35.35 29.78 45.75

600 30.00 26.67 70.00 84.60 37.88 29.78 46.49

650 20.00 23.33 80.00 85.00 33.33 27.94 44.93

700 33.33 13.33 72.50 85.00 40.40 31.99 46.09

750 33.33 23.33 75.00 83.60 31.31 27.57 45.69

800 30.00 23.33 65.00 84.20 38.38 29.04 44.99

850 26.67 26.67 75.00 83.80 31.82 27.94 45.32

Table 13: Evaluation of Tina-Open-RS2.

CHECKPOINT STEPS (875 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 33.33 23.33 77.50 84.20 38.89 29.04 47.72

100 36.67 23.33 72.50 84.20 31.31 28.68 46.12

150 40.00 23.33 72.50 85.80 30.30 30.51 47.07

200 26.67 23.33 70.00 83.80 39.39 29.41 45.43

250 46.67 13.33 72.50 82.60 31.82 30.51 46.24

300 30.00 26.67 75.00 84.00 33.33 29.04 46.34

350 33.33 20.00 75.00 84.80 37.37 28.68 46.53

400 26.67 16.67 70.00 83.20 37.37 27.57 43.58

450 43.33 26.67 77.50 87.00 36.36 32.72 50.60
500 20.00 23.33 67.50 84.20 33.84 29.41 43.05

550 40.00 23.33 72.50 83.60 40.91 30.88 48.54

600 33.33 20.00 72.50 84.20 32.83 30.88 45.62

650 33.33 23.33 57.50 83.80 34.85 30.51 43.89

700 23.33 26.67 70.00 82.40 33.33 28.68 44.07

750 30.00 23.33 72.50 84.20 38.89 29.04 46.33

800 30.00 26.67 75.00 84.40 32.32 29.41 46.30

850 26.67 23.33 70.00 83.80 35.86 28.68 44.72

Table 14: Evaluation of Tina-Open-RS1.

CHECKPOINT STEPS (2327 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
400 33.33 20.00 75.00 83.80 31.82 29.78 45.62

600 30.00 30.00 77.50 84.20 34.34 31.62 47.94

800 43.33 20.00 80.00 84.00 35.35 28.68 48.56
1000 33.33 20.00 82.50 84.40 35.86 29.78 47.64

1200 36.67 20.00 67.50 84.40 37.88 30.15 46.10

1400 30.00 20.00 67.50 83.40 31.82 29.78 43.75

1600 23.33 13.33 65.00 83.40 35.86 26.84 41.29

1800 26.67 20.00 75.00 84.20 34.34 27.57 44.63

2000 30.00 26.67 72.50 83.00 36.36 27.94 46.08

2200 30.00 23.33 70.00 81.40 30.81 26.47 43.67

2400 30.00 23.33 67.50 81.80 30.30 27.57 43.42
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Table 15: Evaluation of Tina-LIMR.

CHECKPOINT STEPS (174 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 20.00 26.67 67.50 85.40 37.88 30.51 44.66

100 46.67 20.00 75.00 83.80 34.85 30.51 48.47
150 26.67 20.00 72.50 84.00 37.37 30.15 45.12

200 33.33 30.00 62.50 83.40 29.80 30.88 44.99

Table 16: Evaluation of Tina-OpenR1.

CHECKPOINT STEPS (11716 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
500 30.00 20.00 77.50 85.20 33.84 30.15 46.12

1000 30.00 23.33 72.50 85.60 33.84 26.67 45.32

1500 36.67 26.67 75.00 86.80 39.90 30.51 49.26
2000 26.67 23.33 67.50 83.20 29.80 31.62 43.69

2500 30.00 23.33 72.50 83.80 33.84 26.84 45.05

3000 20.00 30.00 67.50 84.60 34.34 28.31 44.13

3500 36.67 23.33 67.50 83.60 31.31 25.74 44.69

Table 17: Evaluation of Tina-OpenThoughts.

CHECKPOINT STEPS (8259 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
500 33.30 16.67 77.50 84.20 35.86 30.15 46.28

1000 33.33 23.33 80.00 85.20 24.75 32.72 46.56

1500 30.00 23.33 70.00 86.00 37.88 29.04 46.04

2000 30.00 23.33 70.00 84.20 33.33 28.31 44.86

2500 36.67 26.67 72.50 84.80 41.41 33.09 49.19
3000 26.67 23.33 75.00 83.60 34.34 32.72 45.94

3500 20.00 16.67 60.00 84.20 32.32 26.10 39.88

4000 33.33 23.33 72.50 83.60 38.38 27.94 46.51

4500 30.00 20.00 65.00 85.00 33.84 26.84 43.45

5000 20.00 33.33 65.00 84.80 40.91 30.88 45.82

Table 18: Evaluation of Tina-Open-RS3-DrGRPO.

CHECKPOINT STEPS (875 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 33.33 16.67 75.00 83.80 37.37 26.84 45.50

100 16.67 20.00 70.00 83.20 33.33 26.47 41.61

150 43.33 23.33 80.00 85.00 35.35 30.15 49.53
200 30.00 23.33 70.00 84.00 39.90 28.68 45.99

250 33.33 30.00 65.00 83.80 34.34 28.31 45.80

300 36.67 16.67 67.50 84.40 37.88 29.78 45.48

350 26.67 30.00 75.00 84.00 37.88 29.78 47.22

400 36.67 23.33 72.50 84.40 32.83 27.57 46.22

450 36.67 16.67 72.50 85.60 29.29 27.57 44.72

500 30.00 20.00 72.50 85.60 37.37 29.41 45.81

550 30.00 23.33 77.50 84.80 36.87 31.62 47.35

600 33.33 26.67 72.50 83.80 30.30 28.31 45.82

650 26.67 20.00 77.50 82.40 37.88 27.94 45.40

700 36.67 20.00 80.00 83.80 35.35 31.25 47.85

750 30.00 26.67 75.00 84.20 38.89 27.57 47.06

800 20.00 30.00 75.00 82.40 35.86 28.31 45.26

850 23.33 20.00 72.50 85.40 36.36 30.15 44.62
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Table 19: Evaluation of Tina-Open-RS3-long-completion.

CHECKPOINT STEPS (875 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 26.67 20.00 72.50 87.00 35.35 29.41 45.16

100 26.67 26.67 77.50 85.80 31.31 27.21 45.86

150 20.00 30.00 67.50 85.00 34.34 30.15 44.50

200 30.00 16.67 80.00 84.40 32.83 29.78 45.61

250 26.67 23.33 75.00 83.00 36.87 33.09 46.33

300 33.33 16.67 70.00 86.40 32.32 27.21 44.32

350 43.33 23.33 82.50 83.20 40.91 30.51 50.63
400 26.67 23.33 72.50 84.40 35.35 27.57 44.97

450 33.33 16.67 67.50 83.40 33.84 34.19 44.82

500 26.67 20.00 80.00 84.60 30.81 30.51 45.43

550 33.33 23.33 70.00 84.20 38.38 29.78 46.50

600 33.33 23.33 67.50 84.80 33.33 27.57 44.98

650 26.67 20.00 75.00 84.20 36.36 30.51 45.46

700 30.00 33.33 70.00 84.20 37.37 28.68 47.26

750 30.00 30.00 72.50 84.60 38.38 27.94 47.24

800 30.00 20.00 77.50 86.60 37.37 26.47 46.32

850 33.33 26.67 72.50 84.00 30.30 31.62 46.40

Table 20: Evaluation of Tina-Open-RS3-format-only.

CHECKPOINT STEPS (875 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 40.00 20.00 77.50 85.80 32.32 29.04 47.44

100 26.67 30.00 70.00 84.20 31.82 27.21 44.98

150 30.00 23.33 72.50 84.60 35.35 29.41 45.87

200 30.00 16.67 75.00 84.60 31.82 33.46 45.26

250 26.67 20.00 70.00 84.20 32.83 28.31 43.67

300 33.33 23.33 70.00 84.80 27.27 29.04 44.63

350 36.67 16.67 67.50 85.60 38.38 27.21 45.34

400 40.00 20.00 57.50 85.80 33.33 27.21 43.97

450 30.00 26.67 77.50 84.20 29.29 29.41 46.18

500 30.00 16.67 67.50 83.60 32.32 30.88 43.50

550 33.00 30.00 80.00 84.80 32.32 27.21 47.89

600 26.67 20.00 75.00 86.00 34.85 28.31 45.14

650 40.00 23.33 75.00 85.40 36.36 27.94 48.01

700 43.33 26.67 70.00 84.00 34.34 29.78 48.02

750 33.33 23.33 77.50 86.20 30.81 30.51 46.95

800 30.00 30.00 75.00 84.60 36.36 33.09 48.18

850 40.00 30.00 82.50 84.60 35.35 30.88 50.56

Table 21: Evaluation of Tina-LIMR-5e-6-lr with learning rate 5e-6.

CHECKPOINT STEPS (174 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 20.00 26.67 67.50 85.40 37.88 30.51 44.66

100 46.67 20.00 75.00 83.80 34.85 30.51 48.47
150 26.67 20.00 72.50 84.00 37.37 30.15 45.12

200 33.33 30.00 62.50 83.40 29.80 30.88 44.99
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Table 22: Evaluation of Tina-LIMR-5e-7-lr with learning rate 5e-7.

CHECKPOINT STEPS (174 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 40.00 13.33 72.50 83.00 34.34 29.04 45.37

100 43.33 16.67 77.50 84.60 34.85 30.51 47.91
150 30.00 23.33 72.50 86.20 37.37 30.51 46.65

200 33.33 13.33 70.00 83.20 29.29 31.25 43.40

Table 23: Evaluation of Tina-LIMR-64-LoRA-rank with LoRA rank 64 and alpha 512.

CHECKPOINT STEPS (174 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 20.00 30.00 77.50 84.20 38.38 31.62 46.95
100 30.00 23.33 72.50 84.60 32.32 29.78 45.42

150 36.67 20.00 70.00 83.40 31.82 30.88 45.46

200 33.33 20.00 72.50 85.00 29.80 29.41 45.01

Table 24: Evaluation of Tina-LIMR-16-LoRA-rank with LoRA rank 16 and alpha 64.

CHECKPOINT STEPS (174 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 33.33 23.33 62.50 84.20 38.89 31.25 45.58

100 43.33 33.33 70.00 83.20 35.35 28.31 48.92
150 26.67 16.67 72.50 83.40 35.35 29.04 43.94

200 36.67 20.00 75.00 83.00 39.39 30.51 47.43

Table 25: Evaluation of Tina-LIMR-8-LoRA-rank with LoRA rank 8 and alpha 32.

CHECKPOINT STEPS (174 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 30.00 26.67 82.50 83.80 33.84 30.51 47.89
100 26.67 16.67 72.50 84.00 36.87 29.78 44.42

150 53.33 20.00 60.00 83.20 37.37 30.88 47.46

200 23.33 20.00 72.50 85.40 32.83 28.68 43.86

Table 26: Evaluation of Tina-LIMR-4-LoRA-rank with LoRA rank 4 and alpha 16.

CHECKPOINT STEPS (174 STEPS PER EPOCH) AIME24 AIME25 AMC23 MATH500 GPQA MINERVA AVG.
50 30.00 23.33 65.00 85.00 35.35 29.78 44.74

100 26.67 26.67 72.50 82.80 34.85 29.04 45.42

150 36.67 20.00 85.00 83.80 31.82 29.0 47.72
200 33.33 23.33 77.50 85.40 35.86 28.31 47.29
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D ALL TINA MODELS TRAINING PHASE TRANSITION

We present all Tina models’ training phase transitions along the training dynamics. The raw data is
from the Weights & Biases training logs and smoothed via exponential moving average (EMA) with
factor 0.1. Specifically, we observe clear transitions in Tina-DeepScaleR-1.5B-Preview,
Tina-STILL-3-1.5B-preview, Tina-II-Thought-1.5B-Preview, Tina-Open-RS1,
Tina-Open-RS2, Tina-Open-RS3, Tina-Open-RS3-GRPO, Tina-Open-RS3-long-completion,
as shown in Figures 12, 13, 14, 15, and. For Tina-OpenR1 and Tina-Thoughts (Figures 16
and 17), the observation is similar, except the best-performing checkpoint is achieved after the
training turning point, rather than before.

However, we do not observe such a transition in all Tina variants on the LIMR dataset, as
shown in Figures 18, 19, and 20, possibly because its small data size leads to training periods
which are too brief to extract meaningful information. Also, we do not observe the transition in
Tina-Open-RS3-format-only in Figure 21 due to the absence of accuracy rewards.
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Figure 12: Transition in Tina-DeepScaleR-1.5B-Preview and
Tina-II-Thought-1.5B-Preview.
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Figure 13: Transition in Tina-STILL-3-1.5B-preview and Tina-Open-RS1.
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Figure 14: Transition in Tina-Open-RS2 and Tina-Open-RS3.
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Figure 15: Transition in Tina-Open-RS3-GRPO and Tina-Open-RS3-long-completion.
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Figure 16: Transition in Tina-OpenR1.
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Figure 17: Transition in Tina-OpenThoughts.
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Figure 18: Transition in Tina-LIMR, Tina-LIMR-64-LoRA-rank and Tina-LIMR-16-LoRA-rank.
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Figure 19: Transition in Tina-LIMR-8-LoRA-rank and Tina-LIMR-4-LoRA-rank.
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Figure 20: Transition in Tina-LIMR-5e-6-lr and Tina-LIMR-5e-7-lr.
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Figure 21: Transition in Tina-Open-RS3-format-only.
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