

000
001
002
003

TINA: TINY REASONING MODELS VIA LORA

004
005
006
007
008
009010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053010 Paper under double-blind review
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

How cost-effectively can strong reasoning abilities be achieved in language models? Driven by this question, we present Tina, a family of tiny reasoning models achieved with high cost-efficiency. Tina shows that substantial reasoning performance can be developed using only minimal resources, by applying low-rank adaptation (LoRA) during reinforcement learning (RL), to an already tiny 1.5B parameter base model. This minimalist approach produces models that are competitive with, and sometimes surpass, SOTA RL reasoning models built upon the same base model. Crucially, this is achieved at a tiny fraction of the computational cost employed by existing models. In fact, the best Tina model achieves a >20% reasoning performance increase and 43.33% zero-shot Pass@1 accuracy on AIM24, at only \$9 USD cost (i.e., an estimated 260x reduction). Our work reveals the surprising effectiveness of efficient RL reasoning via LoRA. We validate this across multiple open-source reasoning datasets and various ablation settings starting with a single, fixed set of hyperparameters. Furthermore, we explore the hypothesis that this effectiveness and efficiency stem from LoRA rapidly adapting the model to the structural format of reasoning rewarded by RL, while largely preserving the base model's underlying knowledge. In service of accessibility and open research, we fully open-source all code, training logs, model weights, and checkpoints.

1 INTRODUCTION

Language models (LMs) demonstrate increasing proficiency across a variety of tasks, but achieving robust, multi-step reasoning remains a frontier challenge (Xu et al., 2025; Liu et al., 2025a). Enhancing complex reasoning via supervised fine-tuning (SFT) is a well-adopted technique, often utilizing a distillation process (Min et al., 2024; Huang et al., 2024) by which the model learns to mimic reasoning traces generated by more advanced models such as o1 (OpenAI, 2024) and R1 (DeepSeek-AI, 2025). This approach, while effective, can run the risk of instilling a shallow form of imitation in the learning model. In contrast, reinforcement learning (RL) enables models to learn directly from verifiable reward signals derived from curated data (DeepSeek-AI, 2025; Lambert et al., 2025). In doing so, RL can lead the model to explore a greater variety of logical paths and discover more robust solutions. However, RL pipelines are often complex and notoriously resource-intensive, typically involving substantial compute. This raises a fundamental question anchoring our research:

How cost-effectively can one perform RL to efficiently instill reasoning abilities in LMs?

This question is motivated by the need to establish efficiency limits for RL reasoning, i.e., understanding the minimal requirements needed to achieve meaningful reasoning improvements. We focus on low-resource settings with tiny models and minimal parameter updates to probe the fundamental limits of instilling reasoning via RL, isolating training dynamics from sheer model scale. Although quantized small models offer an alternative path to efficient deployment, our aim is to understand how far RL-based reasoning can be pushed under tight compute budgets. (RUCAIBOX STILL Team, 2025; Luo et al., 2025; Dang and Ngo, 2025) As shown in Appendix C.3.1, the same trends hold for larger models, clarifying how tiny-model insights extend across scales. Moreover, understanding these efficiency limits addresses fundamental questions about the nature of reasoning in LMs. Specifically, recent studies indicate that reasoning and knowledge storage are distinct capabilities: while knowledge capacity scales primarily with model size, reasoning performance may be less coupled to parameter count alone (Allen-Zhu and Li, 2024). This decoupling suggests that smaller models may possess untapped reasoning potential. Furthermore, evidence shows that parameter-efficient methods

Figure 1: **Comparison between Tina and baseline models** Reasoning performance denotes the average score across AIME24/25, AMC23, MATH500, GPQA, and Minerva. The calculation of each comparative metric is detailed in Appendix B.1.

can adapt models for specific capabilities without degrading existing knowledge (Han et al., 2024), thereby offering a promising avenue for reasoning.

Therefore, in this paper we combine two key efficiency strategies: employing compact tiny base models (e.g., 1.5B) (DeepSeek-AI, 2025) and applying low-rank adaptation (LoRA) during RL. LoRA enables us to modify model behavior by training only a small fraction of parameters, making it an ideal technique for efficient reasoning. The synergy between these approaches forms the foundation of our Tina (Tiny Reasoning Models via LoRA) modeling framework. Importantly, this paper not only introduces the Tina models but also uses this minimalist setup to characterize reasoning improvements and explain why such a low-cost approach is effective. While our approach is a straightforward synthesis of LoRA and GRPO, the core contribution lies not in the method’s complexity, but in the surprising discovery that substantial reasoning can be achieved at such a minimal cost, supported by an analysis of the training dynamics and a novel hypothesis to explain this effectiveness. We summarize our contributions as follows:

- **Surprising Effectiveness of Efficient RL Reasoning via LoRA** We show that our Tina models achieve performance competitive with, and in some cases even superior to, SOTA baseline models built on the same base model with full-parameter training, as shown in Figure 1 and in more detail in Table 2. In particular, the best Tina model achieves a >20% performance increase and 43.33% zero-shot Pass@1 accuracy on AIME24. Notably, the cost of reproducing the best Tina checkpoint stands at only **\$9**, and of reproducing everything (all experiments, ablations, evaluations, etc.) presented in this paper *from scratch* at **\$798**. **We also additionally show FLOPS for Tina in Figure 2 and Appendix B.1.**
- **Rapid Reasoning Format Adaptation Hypothesis** Based on our observations in RL post-training Tina, we hypothesize that LoRA’s effectiveness and efficiency stem from rapidly adapting the reasoning format under RL while preserving base model knowledge—a likely more compute-efficient process than the deep knowledge integration of full-parameter training. Partial support comes from studies showing tiny LMs can reason effectively (Hugging Face, 2025; DeepSeek-AI, 2025), while large LMs can store broader world knowledge (Allen-Zhu and Li, 2025). This distinction suggests reasoning capabilities can be significantly enhanced by focusing on adapting the output format itself, consistent with our hypothesis about LoRA.

2 RELATED WORK

Open-source reasoning replicas Following the release of o1-preview (OpenAI, 2024), a number of open-source models have emerged to replicate or exceed its reasoning capabilities. STILL (Min et al., 2024) introduced a minimal yet high-quality training recipe designed to elicit reasoning with modest compute, demonstrating that imitation learning from curated traces remains competitive. Sky-T1 (NovaSky Team, 2025) further explored scaling using open instruction-tuned checkpoints, while SimpleRL (Zeng et al., 2025) highlighted the potential of lightweight RL without requiring large-scale reward models. PRIME (Cui et al., 2025) and DeepScaleR (Luo et al., 2025) introduced process supervision and scaling experiments to isolate how reasoning quality evolves with model size and context length. s1 (Muennighoff et al., 2025) showed that even strong base models such as Qwen2.5-32B-Instruct benefit from fine-tuning on only 1k high-quality and long chain-of-thought data, which

108 is curated to elicit reasoning capabilities. L1 (Aggarwal and Welleck, 2025) combined prompt
 109 engineering with data curation for RL, resulting in models that can efficiently and adaptively control
 110 their response length. Meanwhile, OREAL (Lyu et al., 2025) and OpenThinker (OpenThoughts
 111 Team, 2025) investigated self-correction and latent structure emergence through unsupervised and
 112 hybrid paradigms. The release of Open Reasoner Zero (Hu et al., 2025) and Open-RS (Dang and Ngo,
 113 2025) further emphasized efficient RL-based strategies for reasoning with small models, completing
 114 a landscape of public alternatives for interpretability and reproducibility.

115 **RL with verifiable rewards** Reasoning tasks are well-suited to RL paradigms, as the correctness or
 116 quality of the final output often provides verifiable reward signals (e.g., the validity of a logical deduction).
 117 Such signal can effectively guide the model towards learning more robust reasoning strategies.
 118 Consequently, various RL approaches have been explored within this domain. Certain methods
 119 introduce auxiliary reward models or critics to assess reasoning quality, such as ReFT (Luong et al.,
 120 2024) and REFINER (Paul et al., 2024). Other techniques employ explicit rule-based verification for
 121 self-correction (Wu et al., 2024). Some leverage self-play dynamics and exploration, such as mutual
 122 reasoning (Qi et al., 2024), or utilize inference-aware fine-tuning that optimizes performance under
 123 different sampling strategies (Chow et al., 2024). Notably, group relative policy optimization (GRPO)
 124 has been proposed as a variant of proximal policy optimization (PPO) which removes the need
 125 for a separate value network by using a group-based baseline for advantage estimation, improving
 126 training efficiency and leading to better reward alignment (Shao et al., 2024), as demonstrated by
 127 DeepSeek-R1 (DeepSeek-AI, 2025). Subsequently, Dr.GRPO (Liu et al., 2025b) introduced a subtle
 128 modification of GRPO addressing its bias to produce long responses.

129 3 METHOD

131 Tina is our family of models created by post-training the DeepSeek-R1-Distill-Qwen-1.5B
 132 base model using LoRA during RL (employing a GRPO-style algorithm). The “Tiny” designation
 133 encapsulates a deliberate focus on minimalism and efficiency across the entire framework. This
 134 encompasses not only the tiny base model architecture and the tiny parameter updates enabled by
 135 LoRA, but also extends to a tiny overall resource footprint. This minimized footprint is achieved
 136 through an efficient training pipeline leveraging accessible open-source resources, and requires only
 137 minimal hardware and budget resources (detailed in Section 4).

138 **GRPO formulation** Recall the following formulation of GRPO: For each question q , GRPO samples
 139 a group $G = \{o_1, o_2, \dots, o_G\}$ of outputs from the old policy $\pi_{\theta_{\text{old}}}$ and optimizes the policy π_{θ} by
 140 maximizing the following objective:

$$142 \mathbb{E}_{\substack{q \sim P(Q), \\ \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(O|q)}} \left[\frac{1}{G} \sum_{i=1}^G (\min(\delta_i A_i, \text{clip}(\delta_i, 1 - \epsilon, 1 + \epsilon) A_i) - \beta \mathbb{D}_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}})) \right], \quad (1)$$

145 where we define $\delta_i = \frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{\text{old}}}(o_i|q)}$ and A_i denotes the advantage computed from a group of rewards
 146 $\{r_1, r_2, \dots, r_G\}$,

$$148 \quad A_i = \frac{r_i - \text{mean}(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\})},$$

150 and

$$152 \quad \mathbb{D}_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}) = \frac{\pi_{\text{ref}}(o_i|q)}{\pi_{\theta}(o_i|q)} - \log \frac{\pi_{\text{ref}}(o_i|q)}{\pi_{\theta}(o_i|q)} - 1.$$

153 Note that ϵ and β are parameters controlling the clipping range and KL penalty, respectively.

155 **LoRA formulation** While most existing open-source models that enable reasoning rely on the
 156 more expensive full-parameter training (Min et al., 2024; NovaSky Team, 2025; Zeng et al., 2025;
 157 Muennighoff et al., 2025; Aggarwal and Welleck, 2025; Cui et al., 2025; Luo et al., 2025; Lyu
 158 et al., 2025; OpenThoughts Team, 2025; Hu et al., 2025; Dang and Ngo, 2025), we investigate the
 159 use of LoRA for parameter-efficient post-training of reasoning models (Hu et al., 2021). Our goal
 160 is to assess whether updating only a small fraction of parameters can still yield strong reasoning
 161 capabilities (Han et al., 2024). We follow the standard LoRA setup (Hu et al., 2021) that given
 a frozen pretrained weight matrix $W_0 \in \mathbb{R}^{d \times k}$ and trainable low-rank matrices $A \in \mathbb{R}^{d \times r}$ and

162 $B \in \mathbb{R}^{r \times k}$ with $r \ll \min(d, k)$, the original forward pass $h(x) = W_0x$ is modified to be
 163

$$164 \quad \hat{h}(x) = W_0x + ABx.$$

165 In addition to its computational efficiency, LoRA provides modularity: by training only a low-rank
 166 decomposition of the parameter updates, it becomes possible to toggle reasoning behavior without
 167 maintaining multiple full model copies.
 168

169 4 MODEL TRAINING DETAILS

170 4.1 TRAINING SETUP

171 We present our main training setup as follows. Please refer to Appendix B for additional details.
 172

173 **Training datasets & evaluation benchmarks** To facilitate meaningful comparisons and enable
 174 precise ablations, we post-train our Tina models via RL using the setups inherited from publicly
 175 available reasoning models. Tina models use open-source training recipes and training datasets
 176 from models like **STILL-3** (RUCAIBox STILL Team, 2025), **DeepScaleR** (Luo et al., 2025), and
 177 **Open-RS** (Dang and Ngo, 2025). These models are also used as baselines. We evaluate the reasoning
 178 capabilities of our Tina models and the baselines across a diverse suite of six challenging benchmarks,
 179 primarily focused on mathematical and scientific reasoning: **AIME24/25** (Art of Problem Solving,
 180 2024), **AMC23** (Art of Problem Solving, 2023), **MATH500** (Hendrycks et al., 2021; Lightman et al.,
 181 2023), **GPQA Diamond** (Rein et al., 2024), and **Minerva** (Lewkowycz et al., 2022).
 182

183 Table 1: **Computational cost breakdown** Costs for all tasks in this paper, measured in USD. Our
 184 calculation is based on the full set of experiments shown in Appendix C.
 185

186 EXPERIMENTAL TASK	187 TRAINING COST EST.	188 EVALUATION COST EST.	189 TOTAL COST EST.
190 Baseline Models Re-Evaluation	191 -	192 \$10	193 \$10
194 Robust Evaluation	195 -	196 \$110	197 \$110
198 Main: Tina-STILL-3-1.5B-preview	199 \$59	200 \$7	201 \$66
202 Main: Tina-DeepScaleR-1.5B-Preview	203 \$84	204 \$10	205 \$94
206 Main: Tina-Open-RS1	207 \$40	208 \$11	209 \$51
210 Main: Tina-Open-RS2	211 \$15	212 \$17	213 \$32
214 Main: Tina-Open-RS3	215 \$15	216 \$17	217 \$32
218 Ablation: OpenThoughts Dataset	219 \$84	220 \$10	221 \$94
222 Ablation: OpenR1 Dataset	223 \$59	224 \$7	225 \$66
226 Ablation: II-Thought Dataset	227 \$84	228 \$10	229 \$94
230 Ablation: LIMR Dataset	231 \$4	232 \$4	233 \$8
234 Ablation: Dr.GRPO Algorithm	235 \$15	236 \$17	237 \$32
239 Ablation: Learning Rate	240 \$7	241 \$8	242 \$15
244 Ablation: LoRA Rank/Alpha	245 \$14	246 \$16	247 \$30
249 Ablation: Format Reward Only	250 \$15	251 \$17	252 \$32
254 Ablation: Long Completion Length	255 \$15	256 \$17	257 \$32
259 Total: All Tasks	260 \$510	261 \$288	262 \$798
264 Total: Main Tasks	265 \$213	266 \$62	267 \$275
269 Total: Best Ckpt. in Each Main Task	270 \$80	271 \$5	272 \$85
275 Total: All Ckpt. in Best-Performance Task	276 \$14	277 \$17	278 \$31
281 Total: Best Ckpt. in Best-Performance Task	282 \$8	283 \$1	284 \$9

285 **Computational cost breakdown** We use a minimal setup with just two GPUs (NVIDIA L40S
 286 GPUs), accessible via commercial cloud platforms at an approximate rate of \$1 USD per GPU hour,
 287 including 300 GB storage, based on pricing observed at the time of writing (Cudo Compute). The RL
 288 training process for our LoRA models proves to be highly efficient, with a single RL step typically
 289 completing within one minute on this hardware. Evaluating a model checkpoint across our entire
 290 suite of six reasoning benchmarks requires approximately 1 L40S GPU hour on average. To ensure
 291 cost control, we initially established a conservative maximum budget of \$100 USD for each complete
 292 experimental run, encompassing all stages from training to evaluation and miscellaneous tasks. As
 293

216 detailed in Table 1, our actual expenditures were significantly below this ceiling. Notably, all of our
 217 experiments required only minimal efforts on hyperparameter search, as detailed in Appendix B.3.
 218

219 **4.2 TRAINING TRICKS**
 220

221 Our training methodology for Tina models is designed to maximize cost-effectiveness and rapidly
 222 instill reasoning abilities, aligning with our core hypothesis that LoRA can efficiently adapt a tiny
 223 model to the structural format of reasoning (detailed in Section 6). Towards this goal, the following
 224 strategies were employed, utilizing a single, fixed set of hyperparameters across experiments to
 225 underscore robustness and minimize tuning overhead:

226 • **Concise reasoning with restricted completion length** To encourage the model to quickly
 227 learn the essence of effective reasoning—namely, achieving accurate results through concise
 228 and well-structured reasoning paths—we restrict the maximum completion length to 3,000
 229 tokens during training for all Tina models. This not only guides the model towards more
 230 efficient problem-solving expressions but also reduces the computational load per training
 231 instance, further enhancing overall training speed and cost-efficiency. An ablation study on
 232 longer completion lengths is discussed in Section 6.2.

233 • **Accelerated adaptation with rank-alpha ratio and learning rate scheduling** To facilitate
 234 rapid assimilation of the new reasoning format, we deviate from common LoRA configurations
 235 and learning rate schedules. Specifically:

236 – We set the LoRA alpha to be four times the LoRA rank (*e.g.*, rank 32, alpha 128), rather than
 237 the conventional two times. This amplified alpha encourages the model to more strongly
 238 incorporate the adaptations learned by the LoRA parameters, effectively making it “lean
 239 towards” the new reasoning structures reinforced during RL.
 240 – We employ an unconventional learning rate schedule. Instead of scheduling the learning rate
 241 decay over the standard training horizon, we schedule it over twice the training horizon. This
 242 results in a comparatively larger learning rate being applied at each step within the actual
 243 training period, promoting faster adaptation of the LoRA parameters to the reward signals.

244 These adaptation strategies are chosen to align with our goal of achieving significant reasoning
 245 improvements with minimal computational costs, and thus promote efficient learning.
 246

247 **5 EMPIRICAL RESULTS**
 248

249 **5.1 SURPRISING EFFECTIVENESS OF EFFICIENT RL REASONING VIA LORA**
 250

252 The results presented in Table 2 demonstrate that significant reasoning performance can be achieved
 253 efficiently, yielding models that are competitive with, or outperform, relevant baselines despite the
 254 inherent resource constraints of using parameter-efficient tuning.¹
 255

256 **Table 2: Tina model evaluation** Performance comparison between Tina models and corresponding
 257 full-parameter-trained SOTA models on six reasoning tasks. The value in the *Steps* column indicates
 258 the training steps of the best model checkpoint within one epoch, while the full model checkpoint
 259 evaluation is shown in Appendix C.4. The *Baseline* column represents the average score achieved by a
 260 baseline model with full-parameter RL (all details of baseline evaluations described in Appendix C.1).
 261

TINA MODEL	STEPS (% OF 1 EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.	BASELINE
Tina-STILL-3-1.5B-preview	53%	36.67	30.00	77.50	84.60	33.33	26.84	48.16	44.86
Tina-DeepScaleR-1.5B-Preview	19%	43.33	26.67	67.50	86.20	37.88	28.68	48.38	48.74
Tina-Open-RS1	34%	43.33	20.00	80.00	84.00	35.35	28.68	48.56	44.47
Tina-Open-RS2	51%	43.33	26.67	77.50	87.00	36.36	32.72	50.60	41.60
Tina-Open-RS3	57%	36.67	23.33	82.50	85.20	37.37	31.62	49.45	46.06

262 ¹Tables 2 and 3 adopt a consistent naming pattern where “Tina-X” denotes that our model is the LoRA
 263 counterpart of a baseline model X or is trained on a dataset X (possibly followed with an extra ablation setup).
 264 This can reflect the model origin and serve as a direct reference to the public checkpoints for reproducibility.
 265

In Table 2, all Tina models exhibit substantial reasoning aptitude, achieving average scores in the range of 48.16% to 50.60%. By default, our reported scores are zero-shot Pass@1 Mean@1 performance. We also conduct robust evaluation experiment in Appendix C.2 with zero-shot Pass@1 Mean@10 performance to show the robustness of our approach in this paper. Significantly, nearly all Tina models notably outperform their corresponding baseline average scores, indicating marked improvements instilled by the parameter-efficient RL. The Tina-Open-RS2 model yielded the highest average performance observed at 50.60%. Furthermore, these strong results were achieved with very limited training durations, ranging from just 19% to 57% of a full training epoch, highlighting the efficiency and rapid adaptation enabled by the Tina approach. These findings strongly support our central hypothesis: robust reasoning capabilities can be effectively and economically cultivated in small language models through the targeted application of LoRA and RL.

Table 3: **Tina ablation variants evaluation** Performance evaluation of Tina’s ablation variants on six reasoning tasks. The value in the *Steps* column indicates the training steps of the best model checkpoint within one epoch, and the full model checkpoint evaluation is shown in Appendix C.4.

ABLATION ON DATASETS	STEPS (% OF 1 EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
Tina-OpenR1 (93.7k)	13%	36.67	26.67	75.00	86.80	39.90	30.51	49.26
Tina-OpenThoughts (66.1k)	30%	36.67	26.67	72.50	84.80	41.41	33.09	49.19
Tina-II-Thought (53.3k)	30%	40.00	20.00	80.00	86.00	33.84	26.84	47.78
Tina-DeepScaleR (40.3k)	19%	43.33	26.67	67.50	86.20	37.88	28.68	48.38
Tina-STILL-3 (33k)	53%	36.67	30.00	77.50	84.60	33.33	26.84	48.16
Tina-Open-S1 (18.6k)	34%	43.33	20.00	80.00	84.00	35.35	28.68	48.56
Tina-Open-RS (7k)	51%	43.33	26.67	77.50	87.00	36.36	32.72	50.60
Tina-LIMR (1.39k)	58%	46.67	20.00	75.00	83.80	34.85	30.51	48.47
ABLATION ON LEARNING RATE	STEPS (% OF 1 EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
Tina-LIMR-5e-6-1r	29%	36.67	26.67	75.00	83.60	35.86	29.41	47.87
Tina-LIMR-1e-6-1r	58%	46.67	20.00	75.00	83.80	34.85	30.51	48.47
Tina-LIMR-5e-7-1r	58%	43.33	16.67	77.50	84.60	34.85	30.51	47.91
ABLATION ON LoRA RANK	STEPS (% OF 1 EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
Tina-LIMR-64-LoRA-rank	29%	20.00	30.00	77.50	84.20	38.38	31.62	46.95
Tina-LIMR-32-LoRA-rank	58%	46.67	20.00	75.00	83.80	34.85	30.51	48.47
Tina-LIMR-16-LoRA-rank	58%	43.33	33.33	70.00	83.20	35.35	28.31	48.92
Tina-LIMR-8-LoRA-rank	29%	30.00	26.67	82.50	83.80	33.84	30.51	47.89
Tina-LIMR-4-LoRA-rank	86%	36.67	20.00	85.00	83.80	31.82	29.04	47.72
ABLATION ON RL ALGORITHM	STEPS (% OF 1 EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
Tina-Open-RS3-GRPO	57%	36.67	23.33	82.50	85.20	37.37	31.62	49.45
Tina-Open-RS3-DrGRPO	17%	43.33	23.33	80.00	85.00	35.35	30.15	49.53

5.2 ABLATION STUDY: KEY FACTORS

To better understand the factors influencing the performance and efficiency of our Tina models within the proposed low-cost framework, we conduct a series of ablation studies. These studies systematically investigate the impact of key design choices and hyperparameters: the underlying training dataset, the learning rate for LoRA updates, the rank of the LoRA adapters, and the specific RL algorithm employed. In each study, we typically vary one factor while holding others constant, often based on a high-performing configuration identified in our main experiments or preliminary runs. The results, summarized in Table 3, provide valuable insights of our economical approach.

- **Impact of training dataset** The first section of Table 3 highlights the influence of the dataset used for RL. We compared seven distinct datasets, varying significantly in size (from $\approx 1.4k$ to $\approx 94k$ samples). Strikingly, the Tina-Open-RS model, trained on a concise dataset of merely 7k examples, achieved the highest average score (50.60%). This outcome surpasses models trained on considerably larger datasets, such as Tina-OpenR1 (93.7k samples, 49.26% avg). This observation strongly supports our core “Tiny” premise and reflects the intuition that the quality and diversity of the dataset can matter more than the data size.
- **Impact of learning rate** Using the Tina-LIMR configuration as a testbed (second section of Table 3), we assessed sensitivity to the learning rate. Among the tested values (5×10^{-6} , 1×10^{-6} ,

324 and 5×10^{-7}), a learning rate of 1×10^{-6} yielded the optimal average performance (48.47%)
 325 for this setup. While performance differences were not drastic, this indicates that learning rate
 326 selection remains a factor, although effective results were obtained without extensive tuning.
 327

328 • **Impact of LoRA rank** The third ablation study investigated the impact of LoRA rank, which
 329 directly controls the number of trainable parameters. Testing ranks 4, 8, 16, 32, and 64 on
 330 the Tina-LIMR setup, we observed considerable robustness. Ranks 8, 16, and 32 all produced
 331 strong results, with average scores clustering between 47.89% and 48.92%. Notably, rank 16
 332 achieved the peak performance (48.92%) in this comparison, slightly outperforming rank 32
 333 (48.47%). Performance decreased slightly at the extremes (rank 4 and 64). This study validates
 334 that highly parameter-efficient configurations (low ranks like 16 or 32) are effective, further
 335 enhancing the cost-effectiveness and minimal overhead of the Tina approach.
 336

337 • **Impact of RL algorithm** Finally, we compared two RL algorithms, GRPO and Dr.GRPO (Liu
 338 et al., 2025b), using the Tina-Open-RS3 setup (final section of Table 3). Both algorithms led to
 339 similar peak average performance levels (49.45% for GRPO vs. 49.53% for Dr.GRPO). However,
 340 Dr.GRPO reached its best checkpoint significantly earlier in the training process (17% of an
 341 epoch vs. 57% for GRPO). This suggests potential advantages in sample efficiency for Dr.GRPO
 342 in this context with an alternative normalization in loss calculation, offering potentially faster
 343 convergence and further reductions in training time and cost.
 344

6 EMERGING HYPOTHESIS

6.1 RAPID REASONING FORMAT ADAPTATION

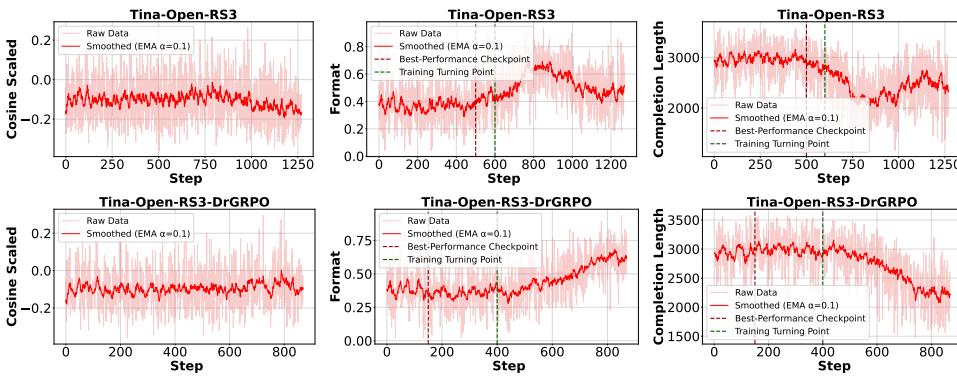
To understand why LoRA facilitates both effective and efficient reasoning improvements via RL, we analyze the relationship between training compute and performance, alongside training dynamics.

Less is more for reasoning As shown in Figure 2, plotting reasoning performance against approximate training FLOPs reveals a stark contrast between full-parameter and LoRA-based training regimes. [We show FLOPS because they are more invariant than price for cost comparison](#). First, our LoRA-based Tina models achieve reasoning scores comparable or superior to fully fine-tuned baselines while requiring (in some cases) orders of magnitude fewer training FLOPs. We observe that in Tina models, increased training compute inversely affects performance, in contrast to full-parameter ones. This highlights a “less compute can yield more performance” phenomenon.

368 **Figure 2: Less is more for reasoning** Approximate training FLOPs vs. reasoning performance
 369 comparison between Tina and baseline models. The calculation is detailed in Appendix B.1.
 370

371 This finding supports our hypothesis regarding how LoRA is able to achieve such high efficiency,
 372 which relates to the principle of “learn structure/format, maintain knowledge.” We posit that LoRA
 373 excels in this scenario because RL for reasoning heavily rewards the model’s ability to generate
 374 outputs in a specific, verifiable format or structure (*e.g.*, step-by-step reasoning chains). LoRA
 375 appears to be highly adept at learning these structural and stylistic patterns with minimal parameter
 376 changes, thus requiring very few FLOPs. At the same time, because LoRA modifies only a tiny
 377 fraction of the weights, it largely preserves the base model’s vast pre-trained knowledge. Therefore,
 LoRA efficiently teaches the model how to format its existing knowledge into effective reasoning

378 traces, rather than potentially imposing costly relearning of concepts or procedures that extensive
 379 full-parameter updates might entail. We hypothesize that this focus on structural adaptation allows
 380 Tina to achieve high reasoning performance with minimal computational investment.
 381



382
 383 **Figure 3: Phase transition in LoRA-based RL** The “training turning point” in the legend means
 384 the step where the format-like metrics (e.g., format reward, completion length) start to destabilize.
 385 Refer to Appendix D for the full set of plots for all Tina models. All raw data is from the Weights &
 386 Biases training logs and smoothed via exponential moving average (EMA) with factor 0.1.
 387

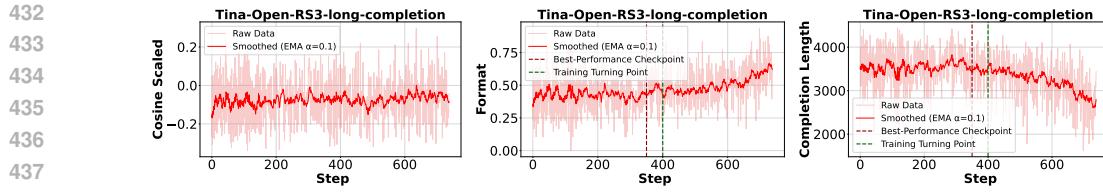
388 **Phase transition** We use the term “phase transition” to describe a specific, observable training
 389 dynamic: a sharp, distinct turning point in format-related metrics (e.g., format reward, completion
 390 length) that is decoupled from the more gradual evolution of the accuracy reward. As shown in
 391 Figure 3, we consistently observe such a training phase transition, or turning point, evident in the
 392 format-related metrics (format reward, *column 2*; completion length, *column 3*) across most Tina
 393 models, thus not a random success during training. Around this transition point (indicated by the
 394 green vertical dashed line), the format reward often peaks or destabilizes, while the completion length
 395 frequently reaches a maximum before potentially reversing its trend. Notably, this relatively sharp
 396 transition observed in format and length metrics does not typically have a corresponding distinct
 397 turning point in the accuracy reward plots (*column 1*). The accuracy reward often exhibits more
 398 gradual fluctuations or slower drift over the training duration, without a clear inflection aligned with
 399 the format transition.
 400

401 Another crucial observation is the timing of optimal performance: the best-performing checkpoint,
 402 yielding the highest reasoning accuracy on held-out evaluations, consistently occurs just prior to
 403 or around this observed phase transition point in the format metrics. This decoupling between the
 404 dynamics of accuracy-based and format-based metrics suggests that the LoRA-based RL process
 405 rapidly optimizes the model’s ability to adhere to the structural elements rewarded by the format
 406 score and length constraints. The subsequent transition point may signify where this structural
 407 optimization saturates, and becomes unstable. The fact that peak reasoning accuracy is achieved just
 408 before this format-driven transition implies that while learning the correct output format is essential
 409 and efficiently achieved via LoRA, pushing further on format-centric optimization alone does not
 410 necessarily yield better reasoning, and may even be detrimental.
 411

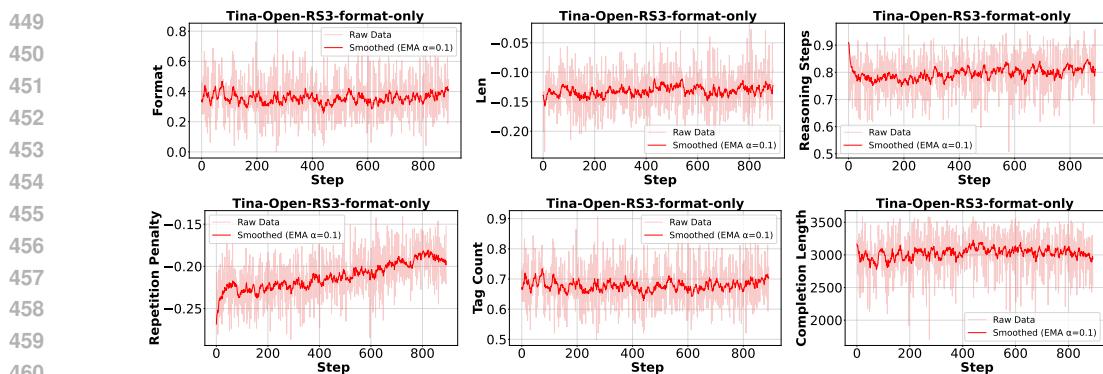
412 6.2 ABLATION STUDY: COMPLETION LENGTH AND FORMAT REWARD

413 To further probe the “learn structure/format, maintain knowledge” effect and understand the dynamics
 414 of the observed “phase transition,” we conducted targeted ablation studies.
 415

416 **Long-completion training** One of the training tricks detailed in Section 4.2 is the restricted
 417 completion length (3k tokens), aiming to foster concise reasoning. To assess whether this restriction
 418 significantly influences the learning dynamics or inadvertently caps performance, we conducted an
 419 ablation where the maximum completion length was substantially increased to 10k tokens for a Tina
 420 model variant. As shown in Figure 4, increasing the completion length did not alter the training
 421 dynamics. The model’s generated completion lengths during training peaked at approximately 4k
 422 tokens, remaining well below the 10k limit and comparable to the effective lengths observed with
 423 the default 3k setting. Crucially, the “phase transition” effect in format-related metrics persisted,
 424



443 mirroring the patterns observed in Figure 3. The accuracy reward also followed a similar trajectory.
444 The persistence of the phase transition indicates that this phenomenon is a robust characteristic
445 of the LoRA-driven format adaptation process, rather than an artifact of a restrictive length cap.
446 Furthermore, the final reasoning evaluation scores of this model variant are comparable to those
447 achieved with the 3k limit, *i.e.*, now 350 steps with 50.63 average score v.s. previously 500 steps with
448 49.45 average score (detailed in Appendix C.4).



465 **Format-only training** Our hypothesis posits that LoRA excels at adapting the model to the format
466 of reasoning that is rewarded by RL, particularly when this format is linked to reasoning accuracy. To
467 dissect the roles of format and accuracy rewards, we conducted an ablation study where a Tina model
468 variant was trained using only format-based reward components, with the accuracy-based reward
469 entirely removed. Illustrated in Figure 5, the “phase transition” disappeared in this format-only
470 training regime. While the individual format-related reward components and completion length
471 still evolved, the sharp turning point or destabilization signifying the phase transition was absent.
472 The disappearance of the phase transition suggests that this dynamic is an emergent property of
473 the interplay between LoRA’s rapid adaptation to format requirements and the simultaneous drive
474 to achieve reasoning accuracy. When the accuracy incentive is removed, LoRA may still adapt to
475 the specified format objectives, but this adaptation becomes ineffective from the goal of producing
476 correct reasoning. Specifically, it takes longer training time to reach similar reasoning performance,
477 *i.e.*, now 850 steps with 50.56 average score v.s. previously 500 steps with 49.45 average score.
478 This underscores that while LoRA is highly efficient at learning structural patterns, this capability is
479 harnessed when guided by the objective of accurate problem-solving (detailed in Appendix C.4).
480

7 CONCLUSION

481 We presented Tina models to show that effective reasoning capabilities can be instilled in language
482 models with high cost-efficiency. By combining LoRA with RL, we showed it is possible to achieve
483 reasoning performance competitive with larger models that necessitate far more costly full-parameter
484 training. We posited that LoRA’s effectiveness stems from its ability to rapidly adapt the structural
485 format of reasoning rewarded by RL, while largely preserving the knowledge embedded within the
486 base model. This adaptation of reasoning pathways appears to be a more compute-efficient process.

486 8 REPRODUCIBILITY STATEMENT
487488 All experiments and results presented in this paper are reproducible. We have included our complete
489 source code as supplementary material, which relies solely on publicly available datasets and open-
490 source libraries. The code is structured to allow for easy replication of our experiments and ablation
491 studies. Upon acceptance, we will release the non-anonymized code and pre-trained models under a
492 permissive open-source license in a public repository.
493494 REFERENCES
495496 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
497 Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao, Yuwei Yan, Qinglong Yang,
498 Yiwen Song, Sijian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li. Towards large
499 reasoning models: A survey of reinforced reasoning with large language models, 2025. URL
500 <https://arxiv.org/abs/2501.09686>.501 Yue Liu, Jiaying Wu, Yufei He, Ruihan Gong, Jun Xia, Liang Li, Hongcheng Gao, Hongyu Chen,
502 Baolong Bi, Jiaheng Zhang, et al. Efficient inference for large reasoning models: A survey. *arXiv*
503 *preprint arXiv:2503.23077*, 2025a.504 Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang,
505 Xiaoxue Cheng, Huatong Song, Wayne Xin Zhao, Zheng Liu, Zhongyuan Wang, and Ji-Rong Wen.
506 Imitate, explore, and self-improve: A reproduction report on slow-thinking reasoning systems,
507 2024. URL <https://arxiv.org/abs/2412.09413>.
508509 Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie Xia, Yiwei
510 Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey – part 2: Surpassing o1-preview
511 through simple distillation, big progress or bitter lesson?, 2024. URL <https://arxiv.org/abs/2411.16489>.
512513 OpenAI. OpenAI o1 system card, 2024. URL <https://arxiv.org/abs/2412.16720>.
514515 DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning capability in llms via reinforcement learning,
516 2025. URL <https://arxiv.org/abs/2501.12948>.
517518 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
519 Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
520 Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
521 Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
522 Pushing frontiers in open language model post-training, 2025. URL <https://arxiv.org/abs/2411.15124>.
523524 RUCAIBox STILL Team. STILL-3-1.5B-preview: Enhancing slow thinking abilities of small
525 models through reinforcement learning. 2025. URL https://github.com/RUCAIBox/Slow_Thinking_with_LLMs.
526527 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
528 Jeffrey Luo, Tianjun Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. DeepScaleR: Surpassing
529 o1-preview with a 1.5b model by scaling rl, 2025. URL <https://agentica-project.com/>.
530531 Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works and
532 what doesn't, 2025. URL <https://arxiv.org/abs/2503.16219>.
533534 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling
535 laws. *arXiv preprint arXiv:2404.05405*, 2024.536 Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
537 for large models: A comprehensive survey, 2024. URL <https://arxiv.org/abs/2403.14608>.
538539 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.
540

540 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling
 541 laws. In *Proceedings of International Conference on Learning Representations (ICLR)*, 2025.

542

543 NovaSky Team. Sky-T1: Train your own o1 preview model within \$450, 2025. URL <https://novasky-ai.github.io/posts/sky-t1>.

544

545 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. SimpleRL-
 546 Zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
 547 URL <https://arxiv.org/abs/2503.18892>.

548

549 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu,
 550 Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan Yao,
 551 Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning Ding. Process
 552 reinforcement through implicit rewards, 2025. URL <https://arxiv.org/abs/2502.01456>.

553 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 554 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 555 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

556

557 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
 558 reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.04697>.

559

560 Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
 561 Shuaibin Li, Qian Zhao, Haian Huang, Weihan Cao, Jiangning Liu, Hongwei Liu, Junnan Liu,
 562 Songyang Zhang, Dahua Lin, and Kai Chen. Exploring the limit of outcome reward for learning
 563 mathematical reasoning, 2025. URL <https://arxiv.org/abs/2502.06781>.

564

565 OpenThoughts Team. Open Thoughts, January 2025. URL <https://open-thoughts.ai>.

566

567 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, and Heung-Yeung Shum Xiangyu Zhang. Open-
 568 Reasoner-Zero: An open source approach to scaling reinforcement learning on the base model,
 569 2025. URL <https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero>.

570

571 Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. ReFT:
 572 Reasoning with reinforced fine-tuning, 2024. URL <https://arxiv.org/abs/2401.08967>.

573

574 Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West, and
 575 Boi Faltings. REFINER: Reasoning feedback on intermediate representations. In *Proceedings of
 576 European Chapter of the ACL (EACL)*, pages 1100–1126, 2024.

577

578 Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan Tan, Chao Shen, and Meng Jiang. Large
 579 language models can self-correct with key condition verification. In *Proceedings of Conference on
 580 Empirical Methods in Natural Language Processing (EMNLP)*, pages 12846–12867, 2024.

581

582 Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reasoning
 583 makes smaller LLMs stronger problem-solvers, 2024. URL <https://arxiv.org/abs/2408.06195>.

584

585 Yinlam Chow, Guy Tennenholz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig
 586 Boutilier, Rishabh Agarwal, Aviral Kumar, and Aleksandra Faust. Inference-aware fine-tuning
 587 for Best-of-N sampling in large language models, 2024. URL <https://arxiv.org/abs/2412.15287>.

588

589 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 590 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the limits of mathematical
 591 reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

592

593 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
 594 Min Lin. Understanding r1-zero-like training: A critical perspective, 2025b. URL <https://arxiv.org/abs/2503.20783>.

595

596 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 597 and Weizhu Chen. LoRA: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

594 Art of Problem Solving. Aime problems and solutions, February 2024. URL https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.

595

596

597 Art of Problem Solving. Amc problems and solutions, 2023. URL https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions.

598

599 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, 600 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL 601 <https://arxiv.org/abs/2103.03874>.

602

603 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan 604 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *Proceedings* 605 *of International Conference on Learning Representations (ICLR)*, 2023.

606

607 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien 608 Dirani, Julian Michael, and Samuel R Bowman. GPQA: A graduate-level google-proof Q&A 609 benchmark. In *Proceedings of Conference on Language Modeling (COLM)*, 2024.

610

611 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay 612 Ramasesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam 613 Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with 614 language models. In *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, 615 volume 35, pages 3843–3857, 2022.

616 Cudo Compute. Nvidia L40S pricing. URL <https://www.cudocompute.com/products/gpu-cloud/nvidia-l40s>. Accessed: 2025-04-21.

617

618 Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, 619 Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, 620 Guillaume Lample, and Stanislas Polu. NuminaMath, 2024. URL <https://huggingface.co/AI-MO/NuminaMath-CoT>.

621

622 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma, 623 Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan, 624 Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni- 625 MATH: A universal olympiad level mathematic benchmark for large language models, 2024a. URL <https://arxiv.org/abs/2410.07985>.

626

627 Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Man- 628 grulkar, Marc Sun, and Benjamin Bossan. Accelerate: Training and inference at scale made simple, 629 efficient and adaptable., 2022. URL <https://github.com/huggingface/accelerate>.

630

631 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan 632 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement 633 learning, 2020. URL <https://github.com/huggingface/trl>.

634

635 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimization 636 towards training A trillion parameter models. *CoRR*, abs/1910.02054, 2019. URL <http://arxiv.org/abs/1910.02054>.

637

638 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, 639 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings* 640 *of European Conference on Computer Systems (EuroSys)*, EuroSys '25, page 1279–1297. ACM, 641 March 2025. doi: 10.1145/3689031.3696075. URL <http://dx.doi.org/10.1145/3689031.3696075>.

642

643 Clémentine Fourrier, Nathan Habib, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Lighteval: 644 A lightweight framework for llm evaluation, 2023. URL <https://github.com/huggingface/lighteval>.

645

646 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, 647 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, 648 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, 649 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot 650 language model evaluation, 07 2024b. URL <https://zenodo.org/records/12608602>.

648 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
649 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
650 serving with pagedattention. In *Proceedings of Symposium on Operating Systems Principles*
651 (*SOSP*), 2023.

652 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
653 Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
654 bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
655 scientific problems, 2024. URL <https://arxiv.org/abs/2402.14008>.

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
704

APPENDIX

705
706

A THE USE OF LARGE LANGUAGE MODELS (LLMs)

707
708
709

We declare that LLMs were used to assist with grammar, phrasing, and polishing of the manuscript’s text. All core concepts, methodologies, and scientific contributions are entirely the work of the authors.

710
711
712

B ADDITIONAL EXPERIMENTAL DETAILS

713
714

B.1 TRAINING BUDGET: COST BREAKDOWN

715
716
717

We provide further details on how training data amounts, computational cost, time cost, and performance metrics reported in this paper – particularly those presented in figures like Figures 1 and 2 – were determined and should be interpreted.

718
719
720
721
722
723

Overall comparison (Figure 1) For the baseline models included in Figure 1, the approximate training data amounts, computational costs (typically reported as GPU hours or total FLOPs), and training times are sourced from their respective technical reports or publications, leveraging the helpful summary provided in the Open-RS paper (Dang and Ngo, 2025). Reasoning performance scores for all models, encompassing both baselines and our Tina models, stem from results presented in Tables 2 and 6.

724
725

Also, it is crucial to understand the scope of reported costs:

726
727
728

- Epoch vs. Best Checkpoint: Costs cited for Tina and baseline models reflect the resources needed to complete a full training epoch or a predefined training run, not necessarily the minimal cost to reach the single best-performing checkpoint within that run.
- Training vs. Evaluation: Reported costs cover training only, omitting the computational expense required for model evaluation across benchmarks since such information is missing from several baseline models.

729
730
731
732

Particularly, the \$9 USD in the abstract represents the estimated cost to train the Tina model up to its best-performing checkpoint and subsequently evaluate that specific checkpoint. For context comparing potential full training runs, the cost to train a Tina model for a complete epoch is \$14 USD (training only). Including evaluation costs for such a full run would increase the total to approximately \$31 USD. We emphasize the \$9 as representing the efficient path to the best Tina model.

733
734
735
736
737

FLOPs estimation (Figure 2) The approximate training FLOPs shown in Figure 2 serve as a hardware-agnostic measure of computational work. For both Tina and baseline models, these values were estimated based on reported training durations and hardware configurations sourced from technical reports or the Open-RS summary, using standard FLOPs calculation methodologies.

738
739
740
741742
743
744745
746
747748
749
750751
752
753754
755

756 B.2 TRAINING SETUP
757758 **Baselines & Datasets.** Tina models inherit training recipes (e.g., hyperparameter and reward design)
759 and training datasets all from public reasoning models. These models are used as baselines in the
760 paper. All Tina and baseline models adopt DeepSeek-R1-Distill-Qwen-1.5B as their base model
761 checkpoint with default open-source weights.

- 762 • **STILL-3-1.5B-preview** (RUCAIBox STILL Team, 2025) is a slow-thinking reasoning model
763 developed through iterative RL on a curated dataset of 33k reasoning traces. The data originates
764 from mathematics competitions and includes problems from MATH (Hendrycks et al., 2021;
765 Lightman et al., 2023), NuminaMathCoT (LI et al., 2024), and AIME (1983–2023) (Art of
766 Problem Solving, 2024). Tina-STILL-3-1.5B-preview uses the same dataset and reward
767 pipeline.
- 768 • **DeepScaleR-1.5B-Preview** (Luo et al., 2025) focuses on long-context mathematical rea-
769 soning via RL, and is trained over approximately 40k problem-answer pairs drawn from
770 the AIME (Art of Problem Solving, 2024), AMC (Art of Problem Solving, 2023),
771 OMNI-MATH (Gao et al., 2024a), and STILL (RUCAIBox STILL Team, 2025) datasets.
772 Tina-DeepScaleR-1.5B-Preview uses this dataset and mirrors the reward design.
- 773 • **Open-RS1/2/3** (Dang and Ngo, 2025) are three models from the Open-RS project exploring
774 reasoning performance in 1.5B models trained via RL. All Open-RS models are trained on
775 small, high-quality datasets further curated from the s1 (Muennighoff et al., 2025) (*i.e.*, Open-
776 S1) and DeepScaleR (Luo et al., 2025) (*i.e.*, Open-DeepScaleR) datasets. The Tina models
777 (Tina-Open-RS1/2/3) replicate these setups, using identical data splits and reward scaffolding.

779 **Hyperparameter and Reward Design.** We initiated parameter selection by replicating key param-
780 eters from OpenR1 (Hugging Face, 2025) and OpenRS (Dang and Ngo, 2025). For all experiments
781 presented in this paper, we deliberately adopted the default or recommended hyperparameter configu-
782 rations provided in their works. These settings were kept largely fixed across different runs (Table 4).
783 For ablation studies, only the specific factor under investigation (e.g., learning rate, LoRA rank/alpha,
784 RL algorithm) was varied (Table 5). This approach intentionally circumvents costly hyperparameter
785 search procedures for our specific setup, ensuring negligible tuning overhead and focusing on the
786 efficacy of the core LoRA-based RL methodology.787 For the main Tina results (Section 5.1), only reward designs were adjusted to ensure fair comparison
788 of LoRA-trained models with their full-parameter counterparts. Particularly, all the reward designs
789 including Accuracy, Format, Length, Cosine, Tag Count, Reasoning Steps, Repetition Penalty, are
790 defined and implemented by the OpenR1 code repository.²791 We show our default choice of hyperparameter in Table 4 and the varied hyperparameter and reward
792 design in Table 5 for all the LoRA-based RL experiments.793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

²<https://github.com/huggingface/open-r1>

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

Table 4: Common hyperparameter of Tina models.

Tina-STILL-3-1.5B-preview	LoRA
Tina-DeepScaleR-1.5B-Preview	LoRA
Tina-Open-RS{X}-{Y}	LoRA
Tina-LIMR-{Z}	LoRA
Tina-OpenR1	LoRA
Tina-OpenThoughts	LoRA
LoRA Modules	query, key, value, dense
LoRA Rank	32
LoRA α	128
LoRA Dropout	0.05
Algorithm	GRPO
Optimizer	AdamW
Optimizer Momentum	$\beta_1, \beta_2 = 0.9, 0.999$
Learning Rate	1e-6
LR Scheduler	Cosine with Min LR
Warmup Ratio	0.1
Precision	BF16-mixed
Gradient Accumulation Step	4
Total Train Batch Size	32
Epochs	1
Hardware	2 × NVIDIA L40S
Max Prompt Length	512
Max Completion Length	3584
Number of Generation	4
Vilm GPU Memory Utilization	0.4
Vilm Max Model Length	4608

Table 5: Varied hyperparameter and reward design of Tina models where “-” means unchanged from the common settings in Table 4.

Model	LoRA Rank	LoRA Alpha	LoRA Dropout	Algorithm	Learning Rate	Reward Type	Reward Weights
Tina-STILL-3-1.5B-preview	-	-	-	-	-	Accuracy, Length	2, 1
Tina-DeepScaleR-1.5B-Preview	-	-	-	-	-	Accuracy, Format	2, 1
Tina-Open-RS3	-	-	-	-	-	Cosine, Format	2, 1
Tina-Open-RS3-DrGRPO	-	-	-	DrGRPO	-	Cosine, Format	2, 1
Tina-Open-RS2	-	-	-	-	-	Accuracy, Format	2, 1
Tina-Open-RS1	-	-	-	-	-	Accuracy, Format	2, 1
Tina-LIMR	-	-	-	-	-	Accuracy, Format	2, 1
Tina-LIMR-5e-6-lr	-	-	-	-	5e-6	Accuracy, Format	2, 1
Tina-LIMR-5e-7-lr	-	-	-	-	5e-7	Accuracy, Format	2, 1
Tina-LIMR-64-LoRA-rank	64	256	-	-	-	Accuracy, Format	2, 1
Tina-LIMR-16-LoRA-rank	16	64	-	-	-	Accuracy, Format	2, 1
Tina-LIMR-8-LoRA-rank	8	32	-	-	-	Accuracy, Format	2, 1
Tina-LIMR-4-LoRA-rank	4	16	-	-	-	Accuracy, Format	2, 1
						Accuracy, Cosine, Format, Length, Tag Count, Reasoning Steps, Repetition Penalty	1, 1, 1, 1, 1, 1, 1
Tina-OpenR1	-	-	-	-	-	Accuracy, Cosine, Format, Length, Tag Count, Reasoning Steps, Repetition Penalty	1, 1, 1, 1, 1, 1, 1
Tina-OpenThoughts	-	-	-	-	-	Accuracy, Cosine, Format, Length, Tag Count, Reasoning Steps, Repetition Penalty	1, 1, 1, 1, 1, 1, 1

864
865

B.3 TRAINING INFRASTRUCTURE & EVALUATION

866
867
868
869
870
871
872
873
874

- **Hardware** A key element of our low-cost approach was minimizing the hardware footprint. While distributed RL training algorithms like GRPO often benefit from using three or more GPUs (*e.g.*, dedicating one GPU to an inference engine such as vLLM for faster sample generation), we deliberately targeted a minimal setup using only two NVIDIA L40S GPUs.³ To enable this, we co-located the RL training process and the vLLM on the same two GPUs by constraining vLLM’s GPU memory usage. The training itself utilized data parallelism across both GPUs. While running inference and training concurrently on two GPUs might result in a longer wall-clock training time compared to a setup with dedicated inference GPUs, it significantly reduces the hardware requirement.
- **Codebase** Our implementation builds upon OpenR1,⁴ a fully open reproduction of DeepSeek-R1 (DeepSeek-AI, 2025) which combines the Accelerate (Gugger et al., 2022) and Tr1 (von Werra et al., 2020) libraries and the DeepSpeed ZeRO optimization (Rajbhandari et al., 2019). It aims to transparently replicate and extend RL methods used for improving reasoning in language models, particularly focusing on aligning model behavior with reasoning-oriented objectives via verifiable reward signals. Our methodology inherits its scaffolding, training utilities, and reward interfaces.

882

We evaluate the reasoning capabilities of our Tina models and the baselines across a diverse suite of six challenging benchmarks, primarily focused on mathematical and scientific reasoning:

883
884
885
886
887

- **AIME24/25** (Art of Problem Solving, 2024) contains 30 high-school-level math problems in algebra, geometry, number theory, and combinatorics from the 2024/2025 American Invitational Mathematics Examination. Each problem demands precise multi-step reasoning.
- **AMC23** (Art of Problem Solving, 2023) includes 40 problems from the 2023 American Mathematics Competition, offering a mix of logic and symbolic manipulation tasks.
- **MATH500** (Hendrycks et al., 2021; Lightman et al., 2023) is a benchmark comprising 500 competition mathematics problems derived from various sources, covering different difficulty levels and often necessitating multi-step derivation and calculation.
- **GPQA Diamond** (Rein et al., 2024), hereafter referred to as GPQA, consists of 198 PhD-level science questions across biology, chemistry, and physics. Each question is multiple-choice with subtle distractors.
- **Minerva** (Lewkowycz et al., 2022) includes 272 quantitative reasoning problems generally at the undergraduate level. The questions span multiple STEM fields, including physics, biology, chemistry, and economics, often requiring mathematical modeling or calculation steps. Includes tasks such as calculating enzyme kinetics from reaction data.

891
892
893
894
895
896
897
898
899
900901
902
903
904
905
906
907
908
909
910
911
912
913
914915
916
917

³Occasionally, NVIDIA RTX 6000 Ada GPUs were used instead, which is reflected in the system configuration metadata on Weights & Biases. From our practical experience, these two GPU types are similar in terms of cost and computational performance. For consistency, we report costs and compute metrics based on the L40S.

⁴<https://github.com/huggingface/open-r1>

918 C ADDITIONAL EMPIRICAL RESULTS
919920 C.1 BASELINE MODELS PERFORMANCE EVALUATION
921

922 For existing SOTA reasoning models, we note that performance scores reported in the literature for
923 relevant models often stem from evaluations using disparate frameworks (*e.g.*, `ver1` (Sheng et al.,
924 2025), `lighteval` (Fourrier et al., 2023), `lm-eval-harness` (Gao et al., 2024b)) and inconsistent
925 inference settings (such as different generation hyperparameters or varying numbers of GPUs).
926 These variations can influence reported metrics, creating potential inconsistencies and hindering
927 comparisons between models.

928 Table 6: Baseline models evaluation (all scores are zero-shot Pass@1 Mean@1).
929

931 BASELINE MODEL	932 AIME24	933 AIME25	934 AMC23	935 MATH500	936 GPQA	937 MINERVA	938 AVG.
932 DeepSeek-R1-Distilled-Qwen-1.5B	933 23.33	934 16.67	935 62.50	936 82.60	937 31.82	938 30.15	939 41.18
932 II-Thought-1.5B-Preview	933 30.00	934 23.33	935 72.50	936 86.80	937 31.90	938 30.88	939 45.90
932 STILL-3-1.5B-preview	933 26.67	934 26.67	935 67.50	936 86.40	937 34.34	938 27.57	939 44.86
932 DeepScaleR-1.5B-Preview	933 36.67	934 26.67	935 77.50	936 87.80	937 31.82	938 31.99	939 48.74
932 Open-RS1	933 26.67	934 20.00	935 72.50	936 83.60	937 35.35	938 28.68	939 44.47
932 Open-RS2	933 26.67	934 13.33	935 62.50	936 85.40	937 34.85	938 26.84	939 41.60
932 Open-RS3	933 43.33	934 20.00	935 67.50	936 83.00	937 33.84	938 28.68	939 46.06
932 FastCurl-1.5B-Preview	933 26.67	934 20.00	935 82.50	936 83.40	937 35.88	938 30.25	939 46.45
932 L1-Exact	933 30.00	934 30.00	935 75.00	936 85.40	937 33.33	938 33.82	939 47.93
932 L1-Max	933 20.00	934 23.33	935 67.50	936 84.60	937 37.88	938 33.09	939 44.40

943 To mitigate these confounding factors, we performed a comprehensive re-evaluation of key baseline
944 models using a single, consistent methodology throughout this paper. All baseline evaluations
945 reported herein utilize the `lighteval` framework integrated with the `vLLM` (Kwon et al., 2023)
946 inference engine for efficient generation. For comparability with prior work such as `OpenR1`, we
947 maintained a fixed hardware configuration (two L40S GPUs) and applied a standardized set of `vLLM`
948 inference parameters across all evaluated baseline models. All scores are zero-shot Pass@1 Mean@1
949 performance. The following is the evaluation command we use to combine `lighteval` and `vLLM`
950 for performance evaluation on reasoning tasks. The `MODEL_PATH` should be replaced with either
951 the local path or `huggingface` identifier to the model to be evaluated. `TASK` should be one of the
952 six reasoning tasks including `aime24`, `aime25`, `amc23`, `math_500`, `gpqa:diamond`, and `minerva`.
953 `PATH_TO_OPEN_R1_EVALUATE_SCRIPT` should be the path to the custom evaluate script provided
954 by `OpenR1`.⁵

```
955 MODEL_ARGS=""
956 pretrained=$MODEL_PATH,
957 dtype=bfloat16,
958 data_parallel_size=2,
959 max_model_length=32768,
960 gpu_memory_utilization=0.5,
961 generation_parameters={"max_new_tokens":32768,temperature:0.6,top_p:0.95}"

962 lighteval vllm $MODEL_ARGS "custom|$TASK|0|0"
963 --custom-tasks $PATH_TO_OPEN_R1_EVALUATE_SCRIPT
964 --use-chat-template
```

966
967
968
969
970
971 ⁵https://github.com/huggingface/open-r1/blob/4f5b21e21dec473af9729bce8e084deb16223ae4/src/open_r1/evaluate.py

972 C.2 ROBUST EVALUATION EXPERIMENT
973

974 We also provide a robust evaluation experiment on the reasoning benchmarks. Specifically, we
975 average the scores of AIME24/25 and AMC23 over 10 independent runs with different random
976 seeds (i.e., they are zero-shot Pass@1 Mean@10 performance) and also add another benchmark,
977 Olympiadbench (He et al., 2024). We run this robust experiment on all baseline models and our
978 Tina-DeepScaleR-1.5B-Preview for demonstration. As shown in Tables 7 and 8, the performance
979 perturbation on average is around 2% and does not affect our conclusion in the paper.

980 Table 7: Robust baseline models evaluation.
981

983 BASELINE MODEL	984 AIME24	985 AIME25	986 AMC23	987 MATH500	988 GPQA	989 MINERVA	990 OLYMPIAD	991 AVG.	992 NON-ROBUST AVG.
DeepSeek-R1-Distilled-Qwen-1.5B	29.00	21.67	71.50	82.60	31.82	30.15	53.63	45.77	41.18
II-Thought-1.5B-Preview	32.33	26.67	73.25	86.80	31.90	30.88	54.78	48.09	45.90
STILL-3-1.5B-preview	31.00	27.00	74.25	86.40	34.34	27.57	54.67	47.89	44.86
DeepScaleR-1.5B-Preview	37.00	25.67	68.25	87.80	31.82	31.99	56.00	48.36	48.74
Open-RS1	28.67	26.00	75.00	83.60	35.35	28.68	53.33	47.23	44.47
Open-RS2	31.33	20.33	70.00	85.40	34.85	26.84	53.93	46.10	41.60
Open-RS3	30.00	25.67	68.75	83.00	33.84	28.68	49.48	45.63	46.06
FastCurl-1.5B-Preview	32.33	22.67	78.25	83.40	35.88	30.25	56.00	48.40	46.45
L1-Exact	23.67	21.00	73.50	85.40	33.33	33.82	52.89	46.23	47.93
L1-Max	24.33	21.00	73.00	84.60	37.88	33.09	53.04	46.71	44.40

993 Table 8: Robust evaluation of Tina-DeepScaleR-1.5B-Preview.
994

995 CHECKPOINT STEPS (5039 STEPS PER EPOCH)	996 AIME24	997 AIME25	998 AMC23	999 MATH500	1000 GPQA	1001 MINERVA	1002 OLYMPIAD	1003 AVG.	1004 NON-ROBUST AVG.
500	30.00	24.00	74.50	82.40	39.39	31.25	53.93	47.93	45.65
1000	37.00	24.67	71.50	86.20	37.88	28.68	52.00	48.27	48.38
1500	30.33	23.67	71.75	84.80	32.83	29.41	50.81	46.23	46.17
2000	24.00	22.00	57.00	80.60	29.29	24.26	42.96	40.02	39.72
2500	18.67	16.00	55.00	75.00	31.31	18.01	41.33	36.47	34.47
3000	18.67	17.67	58.50	78.60	28.79	23.16	44.74	38.59	38.57
3500	23.67	22.00	60.75	80.40	31.82	24.26	44.59	41.07	40.94
4000	20.00	23.67	17.33	67.25	41.41	27.94	47.70	43.90	43.56
4500	23.33	27.00	19.67	66.00	34.85	26.47	49.04	43.40	42.99
5000	29.67	22.67	66.75	80.80	33.33	29.41	48.15	44.40	44.20

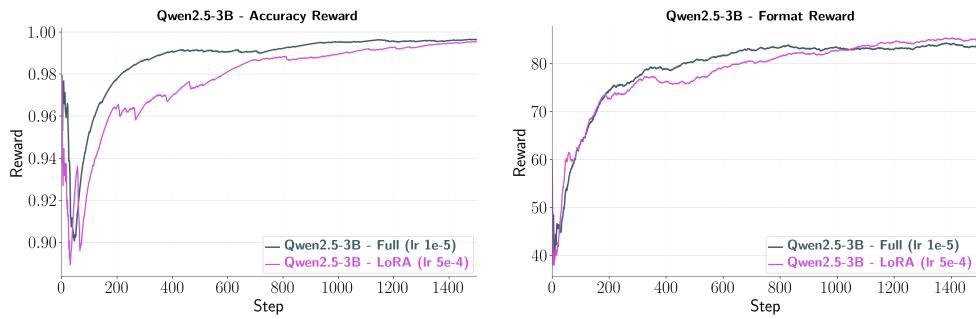
1026 C.3 EXTENSIONS OF TINA
10271028 C.3.1 SCALING TINA ACROSS MODELS AND SIZES
10291030 We evaluate the scalability of Tina by applying GRPO with LoRA to multiple model sizes and
1031 families. Specifically, we experiment with Qwen2.5 base models at 3B, 7B, and 14B parameters, as
1032 well as Llama3.1-8B and OctoThinker-3B-Hybrid-Base (mid-trained on Llama3.2-3B).1033 All training runs use a per-GPU batch size of 2. The GRPO sampling group size was 4, and the
1034 maximum generation length was 512 tokens. LoRA settings are fixed across all variants: applied to
1035 every transformer layer with LoRA rank 1, LoRA alpha 2, and no dropout. All raw data is smoothed
1036 via exponential moving average (EMA) with factor 0.99.1037 The results in Figures 6-10 demonstrate that even with a minimal LoRA rank of 1, LoRA-based
1038 GRPO achieves performance comparable to full-parameter GRPO across different model sizes and
1039 architectures. This highlights the robustness and generality of the Tina approach.1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 6: Full-parameter v.s. LoRA-based GRPO of Qwen2.5-3B on GSM8K.

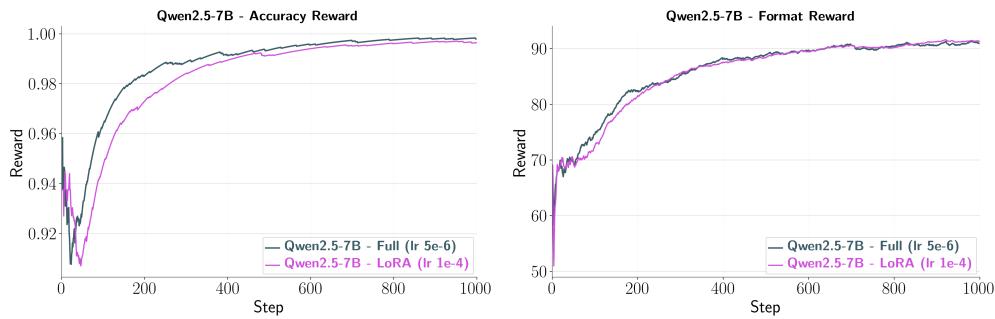


Figure 7: Full-parameter vs. LoRA-based GRPO of Qwen2.5-7B on GSM8K.

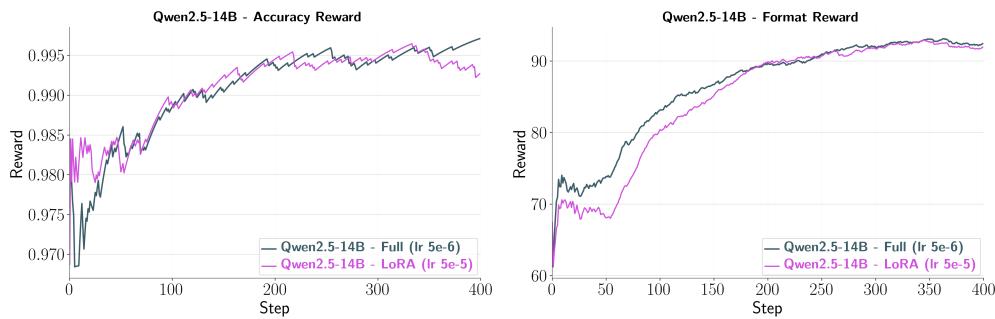


Figure 8: Full-parameter vs. LoRA-based GRPO of Qwen2.5-14B on GSM8K.

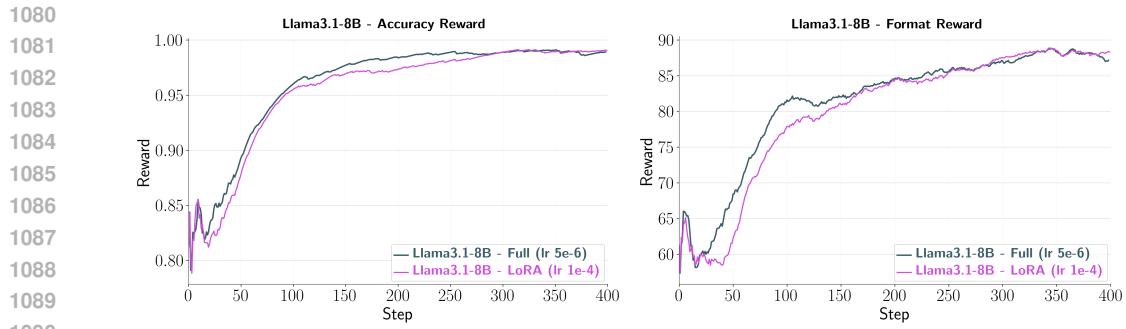


Figure 9: Full-parameter vs. LoRA-based GRPO of Llama3.1-8B on GSM8K.

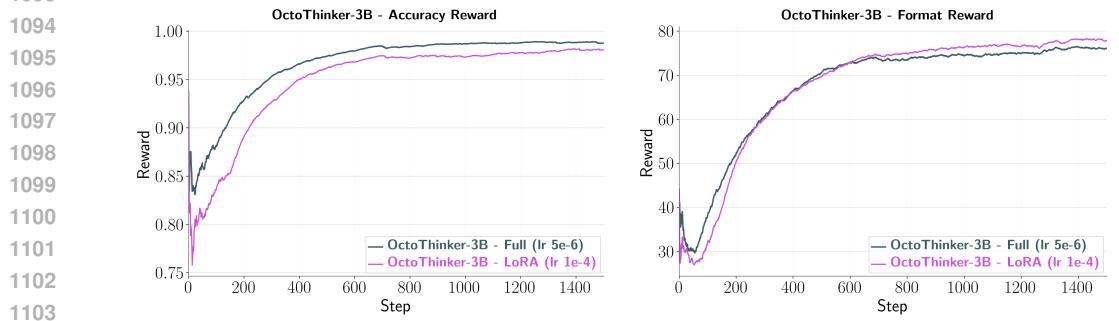
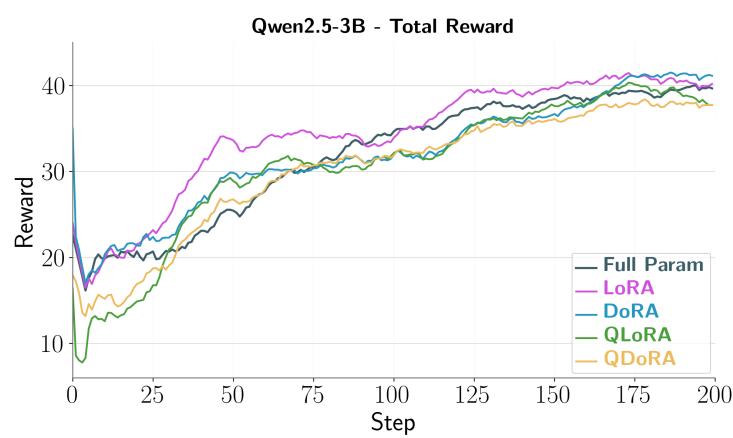


Figure 10: Full-parameter vs. LoRA-based GRPO of Octothinker-3B on GSM8K.

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 C.3.2 LORA VARIANTS COMPARISON
1135

1136 We further explore low-rank and quantization-based variants of LoRA: DoRA, QLoRA, and QDoRA.
 1137 Experiments were conducted using Qwen2.5-3B on GSM8K, under consistent settings: two GPUs,
 1138 per-GPU batch size 2, GRPO sample size 4, and sequence length 512. For LoRA, DoRA, QLoRA,
 1139 and QDoRA, the rank is set as 1 and the alpha is set as 2. For QLoRA and QDoRA, the base model
 1140 is quantized to 4 bits. LoRA-based methods use a learning rate 20x higher than full-parameter GRPO
 1141 (i.e., 2×10^{-4} vs. 1×10^{-5}). All raw data is smoothed via exponential moving average (EMA) with
 1142 factor 0.99.

1158 Figure 11: Full-parameter vs. different LoRA-based GRPO of Qwen2.5-3B on GSM8K.
1159

1160 The results in Figure 11 illustrate the reward dynamics during training. LoRA-based methods—despite
 1161 minimal trainable parameters and the addition of quantization—achieve comparable reward trajec-
 1162 tories to full-parameter GRPO. This further supports the central claim that LoRA-based GRPO is both
 1163 highly efficient and surprisingly effective for reasoning tasks.

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 C.4 ALL TINA MODELS PERFORMANCE EVALUATION
11891190 We present all Tina models' detailed evaluation performance during post-training across six reasoning
1191 tasks including AIME24/25, AMC23, MATH500, GPQA and Minerva.
11921193 Table 9: Evaluation of Tina-STILL-3-1.5B-preview.
1194

CHECKPOINT STEPS (3740 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
500	30.00	13.33	75.00	83.60	35.86	32.35	45.02
1000	36.67	20.00	65.00	84.80	32.32	27.94	44.46
1500	26.67	20.00	70.00	83.80	37.37	26.84	44.11
2000	36.67	30.00	77.50	84.60	33.33	26.84	48.16
2500	33.33	30.00	70.00	83.00	35.35	27.57	46.54
3000	30.00	20.00	67.50	82.60	30.81	25.74	42.78
3500	30.00	26.67	67.50	82.20	32.32	26.10	44.13

1204 Table 10: Evaluation of Tina-DeepScaleR-1.5B-Preview.
1205

CHECKPOINT STEPS (5039 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
500	30.00	23.33	67.50	82.40	39.39	31.25	45.65
1000	43.33	26.67	67.50	86.20	37.88	28.68	48.38
1500	30.00	20.00	80.00	84.80	32.83	29.41	46.17
2000	20.00	26.67	57.50	80.60	29.29	24.26	39.72
2500	13.33	16.67	52.50	75.00	31.31	18.01	34.47
3000	26.67	16.67	57.50	78.60	28.79	23.16	38.57
3500	23.33	23.33	62.50	80.40	31.82	24.26	40.94
4000	20.00	20.00	70.00	82.00	41.41	27.94	43.56
4500	23.33	20.00	72.50	80.80	34.85	26.47	42.99
5000	20.00	26.67	75.00	80.80	33.33	29.41	44.20

1218 Table 11: Evaluation of Tina-II-Thought-1.5B-Preview.
1219

CHECKPOINT STEPS (6660 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
500	33.33	23.33	77.50	83.20	31.31	27.57	46.04
1000	23.33	20.00	80.00	83.20	35.35	29.04	45.15
1500	40.00	20.00	80.00	86.00	33.84	26.84	47.78
2000	26.67	20.00	85.00	84.60	33.84	28.68	46.47
2500	30.00	23.33	75.00	85.00	40.40	26.47	46.70
3000	26.67	20.00	67.50	86.80	30.30	26.10	42.90
3500	33.33	16.67	67.50	84.00	40.91	30.88	45.55
4000	30.00	10.00	75.00	84.60	36.87	27.21	43.95
4500	26.67	16.67	72.50	85.40	33.84	25.37	43.41
5000	30.00	23.33	77.50	84.60	37.37	31.62	47.40

1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 12: Evaluation of Tina-Open-RS3.

CHECKPOINT STEPS (875 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	26.67	23.33	75.00	84.20	37.37	29.04	45.94
100	30.00	30.00	65.00	83.00	37.37	29.78	45.86
150	36.67	16.67	65.00	84.80	27.78	27.94	43.14
200	20.00	26.67	70.00	83.80	33.33	27.94	43.62
250	36.67	20.00	65.00	84.60	38.38	28.31	45.49
300	33.33	26.67	70.00	85.20	30.81	30.15	46.03
350	40.00	16.67	77.50	84.40	39.90	27.94	47.74
400	30.00	16.67	70.00	82.80	35.86	31.25	44.43
450	36.67	26.67	70.00	85.60	33.84	32.72	47.58
500	36.67	23.33	82.50	85.20	37.37	31.62	49.45
550	26.67	16.67	80.00	86.00	35.35	29.78	45.75
600	30.00	26.67	70.00	84.60	37.88	29.78	46.49
650	20.00	23.33	80.00	85.00	33.33	27.94	44.93
700	33.33	13.33	72.50	85.00	40.40	31.99	46.09
750	33.33	23.33	75.00	83.60	31.31	27.57	45.69
800	30.00	23.33	65.00	84.20	38.38	29.04	44.99
850	26.67	26.67	75.00	83.80	31.82	27.94	45.32

Table 13: Evaluation of Tina-Open-RS2.

CHECKPOINT STEPS (875 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	33.33	23.33	77.50	84.20	38.89	29.04	47.72
100	36.67	23.33	72.50	84.20	31.31	28.68	46.12
150	40.00	23.33	72.50	85.80	30.30	30.51	47.07
200	26.67	23.33	70.00	83.80	39.39	29.41	45.43
250	46.67	13.33	72.50	82.60	31.82	30.51	46.24
300	30.00	26.67	75.00	84.00	33.33	29.04	46.34
350	33.33	20.00	75.00	84.80	37.37	28.68	46.53
400	26.67	16.67	70.00	83.20	37.37	27.57	43.58
450	43.33	26.67	77.50	87.00	36.36	32.72	50.60
500	20.00	23.33	67.50	84.20	33.84	29.41	43.05
550	40.00	23.33	72.50	83.60	40.91	30.88	48.54
600	33.33	20.00	72.50	84.20	32.83	30.88	45.62
650	33.33	23.33	57.50	83.80	34.85	30.51	43.89
700	23.33	26.67	70.00	82.40	33.33	28.68	44.07
750	30.00	23.33	72.50	84.20	38.89	29.04	46.33
800	30.00	26.67	75.00	84.40	32.32	29.41	46.30
850	26.67	23.33	70.00	83.80	35.86	28.68	44.72

Table 14: Evaluation of Tina-Open-RS1.

CHECKPOINT STEPS (2327 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
400	33.33	20.00	75.00	83.80	31.82	29.78	45.62
600	30.00	30.00	77.50	84.20	34.34	31.62	47.94
800	43.33	20.00	80.00	84.00	35.35	28.68	48.56
1000	33.33	20.00	82.50	84.40	35.86	29.78	47.64
1200	36.67	20.00	67.50	84.40	37.88	30.15	46.10
1400	30.00	20.00	67.50	83.40	31.82	29.78	43.75
1600	23.33	13.33	65.00	83.40	35.86	26.84	41.29
1800	26.67	20.00	75.00	84.20	34.34	27.57	44.63
2000	30.00	26.67	72.50	83.00	36.36	27.94	46.08
2200	30.00	23.33	70.00	81.40	30.81	26.47	43.67
2400	30.00	23.33	67.50	81.80	30.30	27.57	43.42

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Table 15: Evaluation of Tina-LIMR.

CHECKPOINT STEPS (174 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	20.00	26.67	67.50	85.40	37.88	30.51	44.66
100		46.67	20.00	75.00	83.80	34.85	30.51
150		26.67	20.00	72.50	84.00	37.37	30.15
200		33.33	30.00	62.50	83.40	29.80	30.88
							44.99

Table 16: Evaluation of Tina-OpenR1.

CHECKPOINT STEPS (11716 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
500	30.00	20.00	77.50	85.20	33.84	30.15	46.12
1000		23.33	72.50	85.60	33.84	26.67	45.32
1500	36.67	26.67	75.00	86.80	39.90	30.51	49.26
2000		23.33	67.50	83.20	29.80	31.62	43.69
2500		30.00	72.50	83.80	33.84	26.84	45.05
3000		20.00	30.00	67.50	84.60	34.34	28.31
3500		36.67	23.33	67.50	83.60	31.31	25.74
							44.69

Table 17: Evaluation of Tina-OpenThoughts.

CHECKPOINT STEPS (8259 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
500	33.30	16.67	77.50	84.20	35.86	30.15	46.28
1000		23.33	80.00	85.20	24.75	32.72	46.56
1500	30.00	23.33	70.00	86.00	37.88	29.04	46.04
2000		23.33	70.00	84.20	33.33	28.31	44.86
2500	36.67	26.67	72.50	84.80	41.41	33.09	49.19
3000		23.33	75.00	83.60	34.34	32.72	45.94
3500		20.00	16.67	60.00	84.20	32.32	26.10
4000		33.33	23.33	72.50	83.60	38.38	27.94
4500		30.00	20.00	65.00	85.00	33.84	26.84
5000		20.00	33.33	65.00	84.80	40.91	30.88
							45.82

Table 18: Evaluation of Tina-Open-RS3-DrGRPO.

CHECKPOINT STEPS (875 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	33.33	16.67	75.00	83.80	37.37	26.84	45.50
100		20.00	70.00	83.20	33.33	26.47	41.61
150	43.33	23.33	80.00	85.00	35.35	30.15	49.53
200	30.00	23.33	70.00	84.00	39.90	28.68	45.99
250		30.00	65.00	83.80	34.34	28.31	45.80
300		36.67	16.67	67.50	84.40	37.88	29.78
350		26.67	30.00	75.00	84.00	37.88	29.78
400		36.67	23.33	72.50	84.40	32.83	27.57
450		36.67	16.67	72.50	85.60	29.29	27.57
500		30.00	20.00	72.50	85.60	37.37	29.41
550		30.00	23.33	77.50	84.80	36.87	31.62
600		33.33	26.67	72.50	83.80	30.30	28.31
650		26.67	20.00	77.50	82.40	37.88	27.94
700		36.67	20.00	80.00	83.80	35.35	31.25
750		30.00	26.67	75.00	84.20	38.89	27.57
800		20.00	30.00	75.00	82.40	35.86	28.31
850		23.33	20.00	72.50	85.40	36.36	30.15
							44.62

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Table 19: Evaluation of Tina-Open-RS3-long-completion.

CHECKPOINT STEPS (875 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	26.67	20.00	72.50	87.00	35.35	29.41	45.16
100	26.67	26.67	77.50	85.80	31.31	27.21	45.86
150	20.00	30.00	67.50	85.00	34.34	30.15	44.50
200	30.00	16.67	80.00	84.40	32.83	29.78	45.61
250	26.67	23.33	75.00	83.00	36.87	33.09	46.33
300	33.33	16.67	70.00	86.40	32.32	27.21	44.32
350	43.33	23.33	82.50	83.20	40.91	30.51	50.63
400	26.67	23.33	72.50	84.40	35.35	27.57	44.97
450	33.33	16.67	67.50	83.40	33.84	34.19	44.82
500	26.67	20.00	80.00	84.60	30.81	30.51	45.43
550	33.33	23.33	70.00	84.20	38.38	29.78	46.50
600	33.33	23.33	67.50	84.80	33.33	27.57	44.98
650	26.67	20.00	75.00	84.20	36.36	30.51	45.46
700	30.00	33.33	70.00	84.20	37.37	28.68	47.26
750	30.00	30.00	72.50	84.60	38.38	27.94	47.24
800	30.00	20.00	77.50	86.60	37.37	26.47	46.32
850	33.33	26.67	72.50	84.00	30.30	31.62	46.40

Table 20: Evaluation of Tina-Open-RS3-format-only.

CHECKPOINT STEPS (875 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	40.00	20.00	77.50	85.80	32.32	29.04	47.44
100	26.67	30.00	70.00	84.20	31.82	27.21	44.98
150	30.00	23.33	72.50	84.60	35.35	29.41	45.87
200	30.00	16.67	75.00	84.60	31.82	33.46	45.26
250	26.67	20.00	70.00	84.20	32.83	28.31	43.67
300	33.33	23.33	70.00	84.80	27.27	29.04	44.63
350	36.67	16.67	67.50	85.60	38.38	27.21	45.34
400	40.00	20.00	57.50	85.80	33.33	27.21	43.97
450	30.00	26.67	77.50	84.20	29.29	29.41	46.18
500	30.00	16.67	67.50	83.60	32.32	30.88	43.50
550	33.00	30.00	80.00	84.80	32.32	27.21	47.89
600	26.67	20.00	75.00	86.00	34.85	28.31	45.14
650	40.00	23.33	75.00	85.40	36.36	27.94	48.01
700	43.33	26.67	70.00	84.00	34.34	29.78	48.02
750	33.33	23.33	77.50	86.20	30.81	30.51	46.95
800	30.00	30.00	75.00	84.60	36.36	33.09	48.18
850	40.00	30.00	82.50	84.60	35.35	30.88	50.56

Table 21: Evaluation of Tina-LIMR-5e-6-1r with learning rate 5e-6.

CHECKPOINT STEPS (174 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	20.00	26.67	67.50	85.40	37.88	30.51	44.66
100	46.67	20.00	75.00	83.80	34.85	30.51	48.47
150	26.67	20.00	72.50	84.00	37.37	30.15	45.12
200	33.33	30.00	62.50	83.40	29.80	30.88	44.99

1404

1405

1406

Table 22: Evaluation of Tina-LIMR-5e-7-1r with learning rate 5e-7.

1407

1408

CHECKPOINT STEPS (174 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	40.00	13.33	72.50	83.00	34.34	29.04	45.37
100	43.33	16.67	77.50	84.60	34.85	30.51	47.91
150	30.00	23.33	72.50	86.20	37.37	30.51	46.65
200	33.33	13.33	70.00	83.20	29.29	31.25	43.40

1413

1414

1415

1416

1417

Table 23: Evaluation of Tina-LIMR-64-LoRA-rank with LoRA rank 64 and alpha 512.

1418

1419

CHECKPOINT STEPS (174 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	20.00	30.00	77.50	84.20	38.38	31.62	46.95
100	30.00	23.33	72.50	84.60	32.32	29.78	45.42
150	36.67	20.00	70.00	83.40	31.82	30.88	45.46
200	33.33	20.00	72.50	85.00	29.80	29.41	45.01

1424

1425

1426

1427

1428

Table 24: Evaluation of Tina-LIMR-16-LoRA-rank with LoRA rank 16 and alpha 64.

1429

1430

CHECKPOINT STEPS (174 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	33.33	23.33	62.50	84.20	38.89	31.25	45.58
100	43.33	33.33	70.00	83.20	35.35	28.31	48.92
150	26.67	16.67	72.50	83.40	35.35	29.04	43.94
200	36.67	20.00	75.00	83.00	39.39	30.51	47.43

1435

1436

1437

1438

1439

Table 25: Evaluation of Tina-LIMR-8-LoRA-rank with LoRA rank 8 and alpha 32.

1440

1441

CHECKPOINT STEPS (174 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	30.00	26.67	82.50	83.80	33.84	30.51	47.89
100	26.67	16.67	72.50	84.00	36.87	29.78	44.42
150	53.33	20.00	60.00	83.20	37.37	30.88	47.46
200	23.33	20.00	72.50	85.40	32.83	28.68	43.86

1446

1447

1448

1449

1450

Table 26: Evaluation of Tina-LIMR-4-LoRA-rank with LoRA rank 4 and alpha 16.

1451

1452

CHECKPOINT STEPS (174 STEPS PER EPOCH)	AIME24	AIME25	AMC23	MATH500	GPQA	MINERVA	AVG.
50	30.00	23.33	65.00	85.00	35.35	29.78	44.74
100	26.67	26.67	72.50	82.80	34.85	29.04	45.42
150	36.67	20.00	85.00	83.80	31.82	29.0	47.72
200	33.33	23.33	77.50	85.40	35.86	28.31	47.29

1457

1458 D ALL TINA MODELS TRAINING PHASE TRANSITION
14591460 We present all Tina models’ training phase transitions along the training dynamics. The raw data is
1461 from the Weights & Biases training logs and smoothed via exponential moving average (EMA) with
1462 factor 0.1. Specifically, we observe clear transitions in Tina-DeepScaleR-1.5B-Preview,
1463 Tina-STILL-3-1.5B-preview, Tina-II-Thought-1.5B-Preview, Tina-Open-RS1,
1464 Tina-Open-RS2, Tina-Open-RS3, Tina-Open-RS3-GRPO, Tina-Open-RS3-long-completion,
1465 as shown in Figures 12, 13, 14, 15, and. For Tina-OpenR1 and Tina-Thoughts (Figures 16
1466 and 17), the observation is similar, except the best-performing checkpoint is achieved after the
1467 training turning point, rather than before.1468 However, we do not observe such a transition in all Tina variants on the LIMR dataset, as
1469 shown in Figures 18, 19, and 20, possibly because its small data size leads to training periods
1470 which are too brief to extract meaningful information. Also, we do not observe the transition in
1471 Tina-Open-RS3-format-only in Figure 21 due to the absence of accuracy rewards.1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

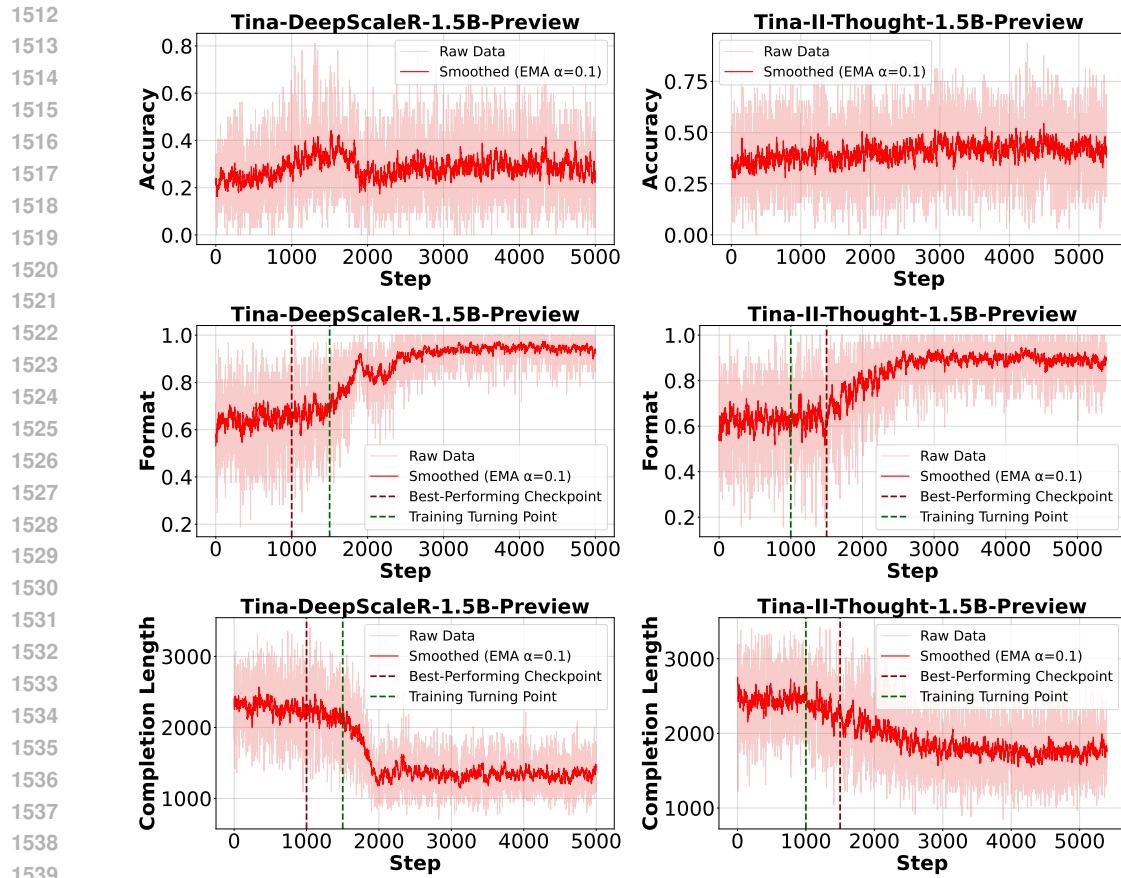


Figure 12: Transition in Tina-DeepScaleR-1.5B-Preview and Tina-II-Thought-1.5B-Preview.

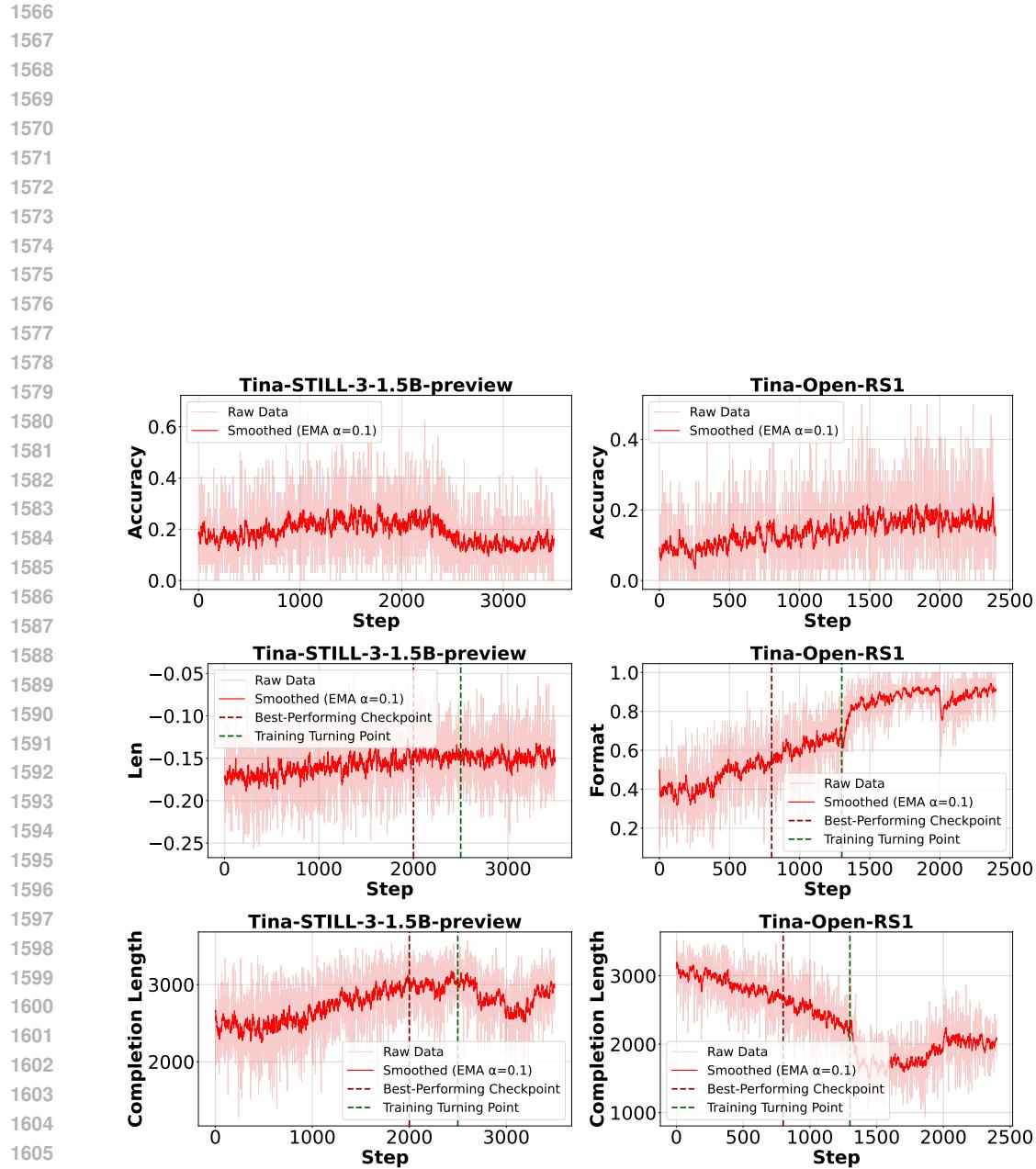


Figure 13: Transition in Tina-STILL-3-1.5B-preview and Tina-Open-RS1.

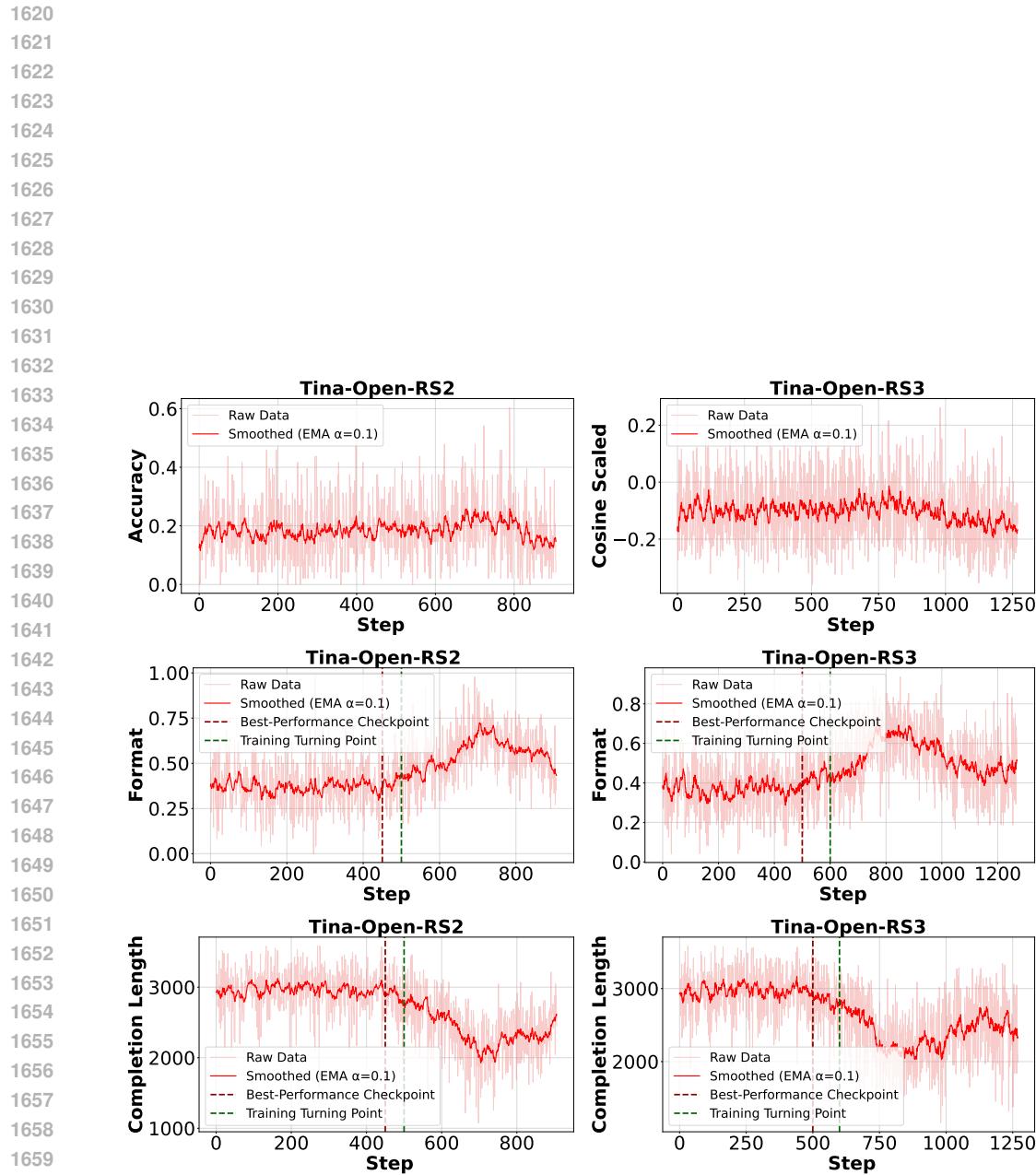


Figure 14: Transition in Tina-Open-RS2 and Tina-Open-RS3.

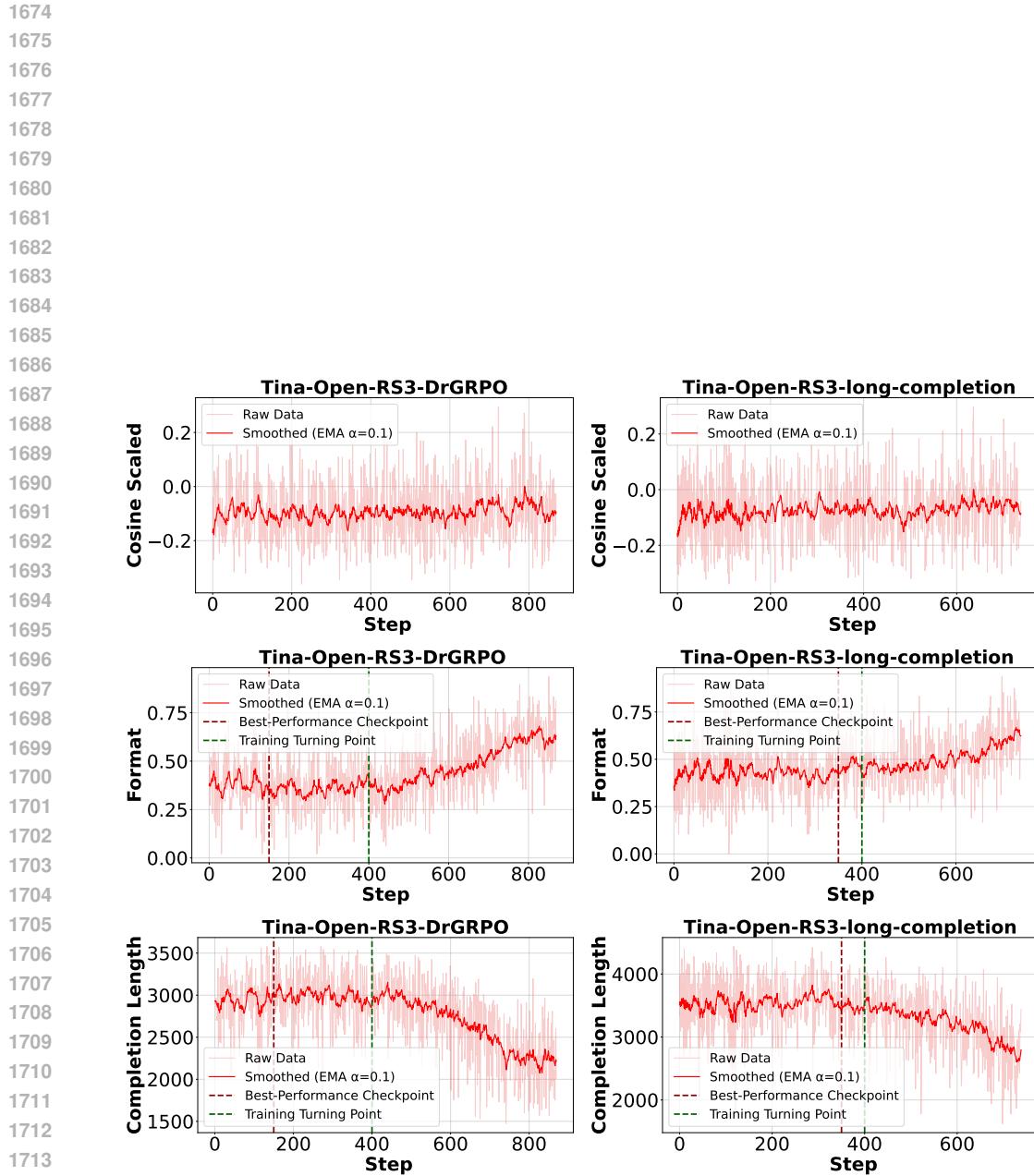


Figure 15: Transition in Tina-Open-RS3-GRPO and Tina-Open-RS3-long-completion.

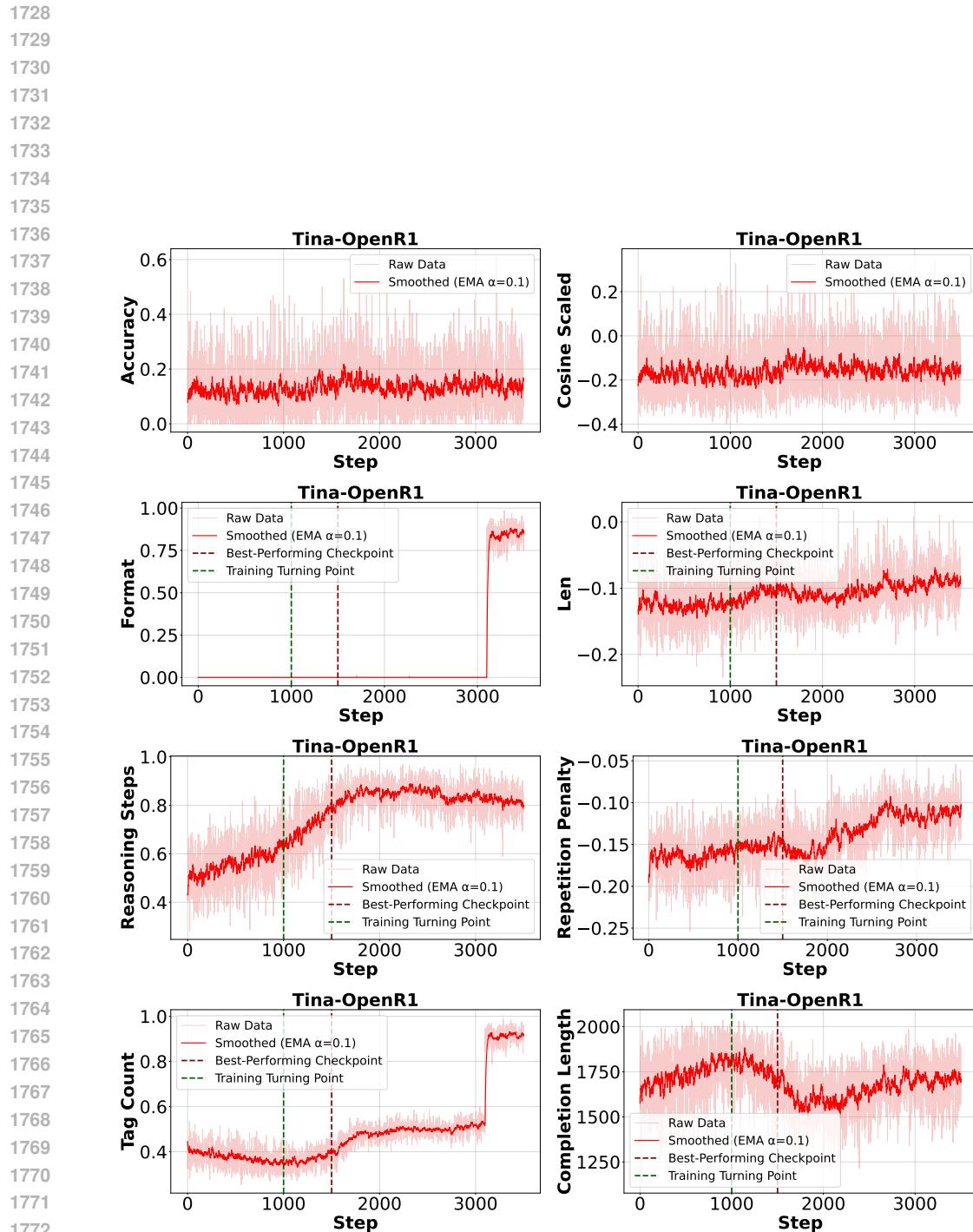


Figure 16: Transition in Tina-OpenR1.

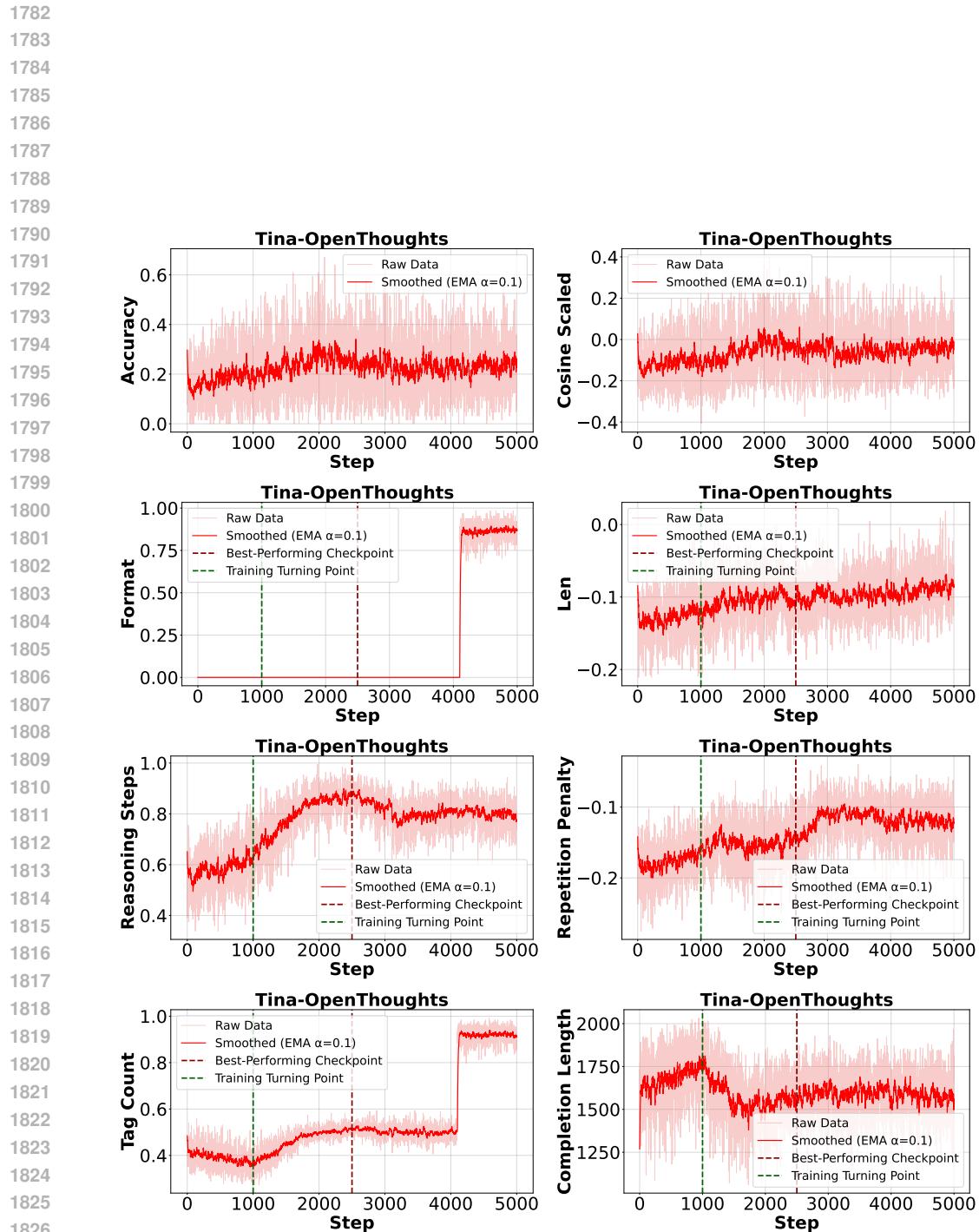


Figure 17: Transition in Tina-OpenThoughts.

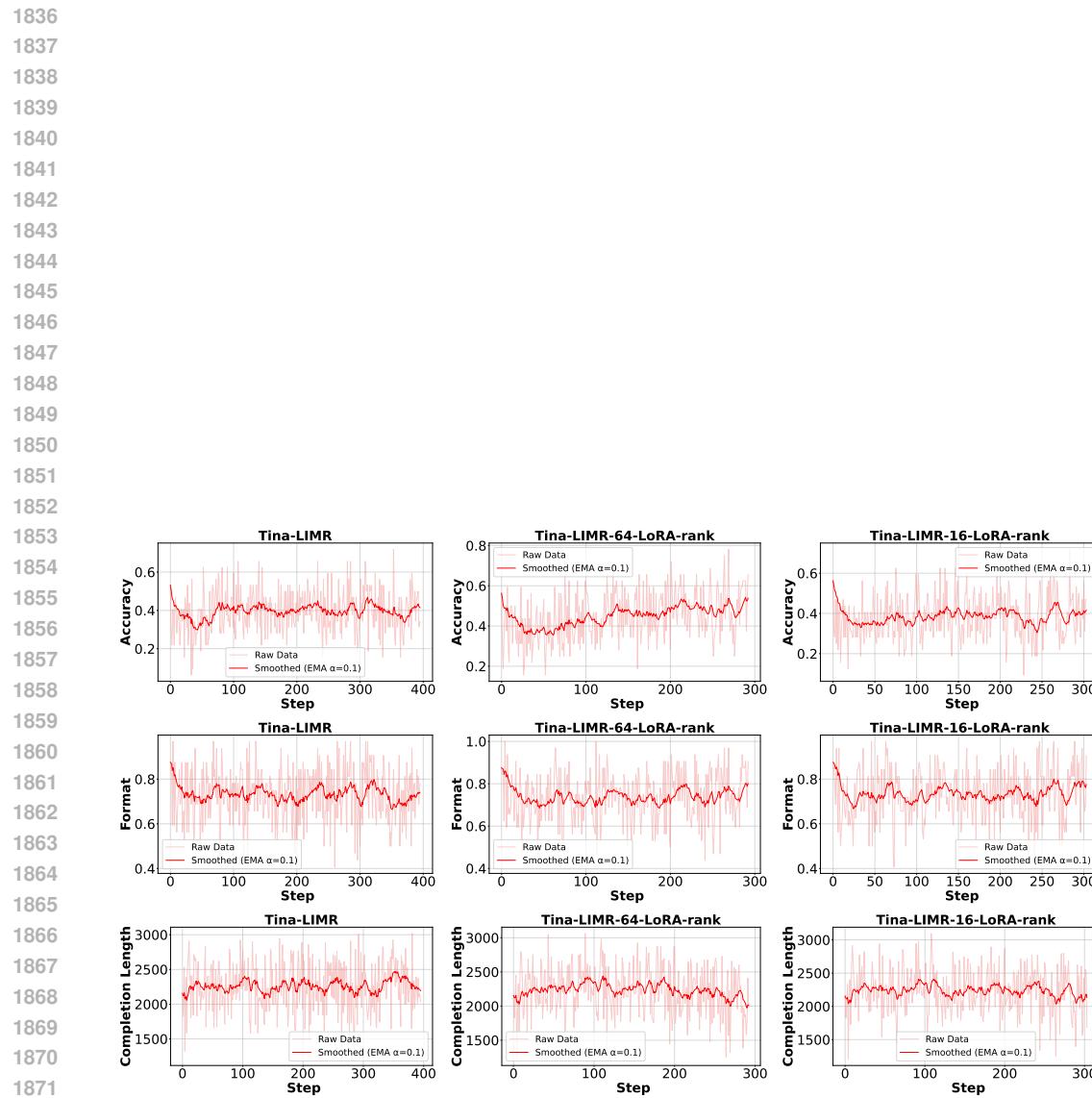


Figure 18: Transition in Tina-LIMR, Tina-LIMR-64-LoRA-rank and Tina-LIMR-16-LoRA-rank.

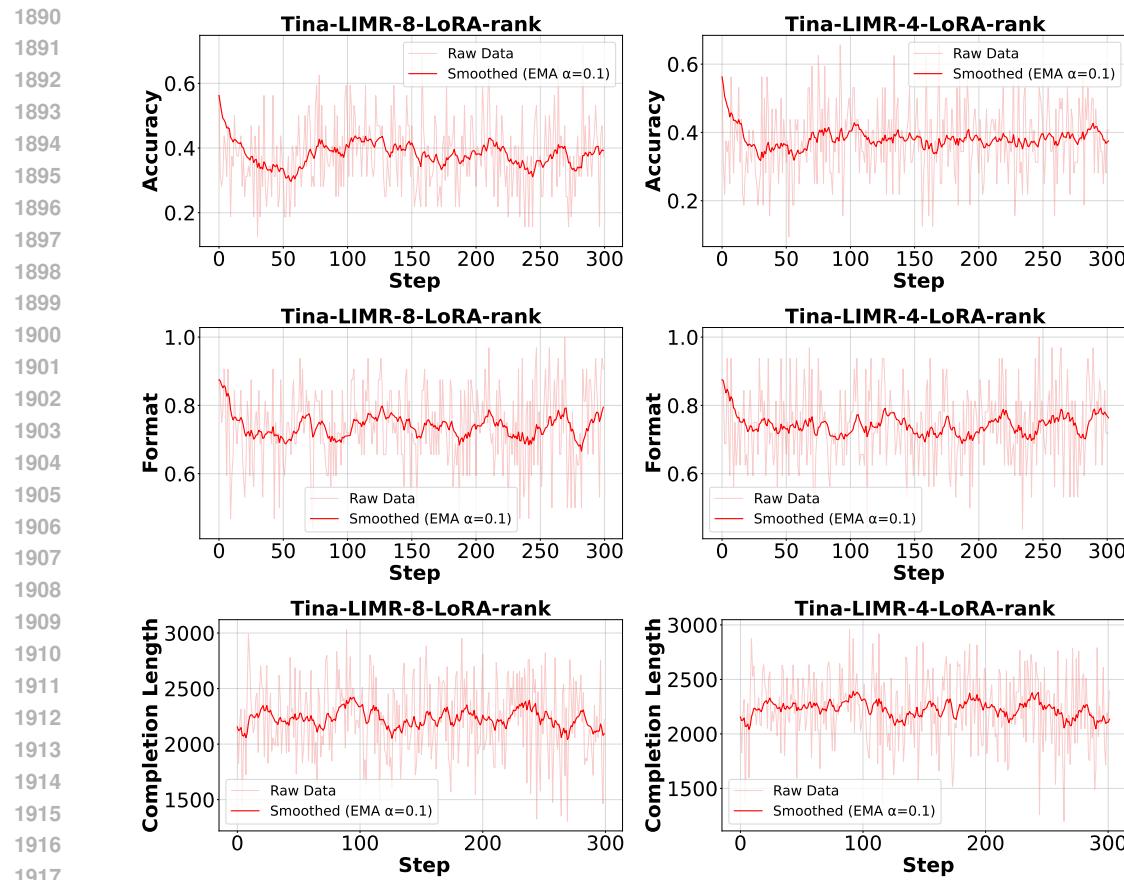


Figure 19: Transition in Tina-LIMR-8-LoRA-rank and Tina-LIMR-4-LoRA-rank.

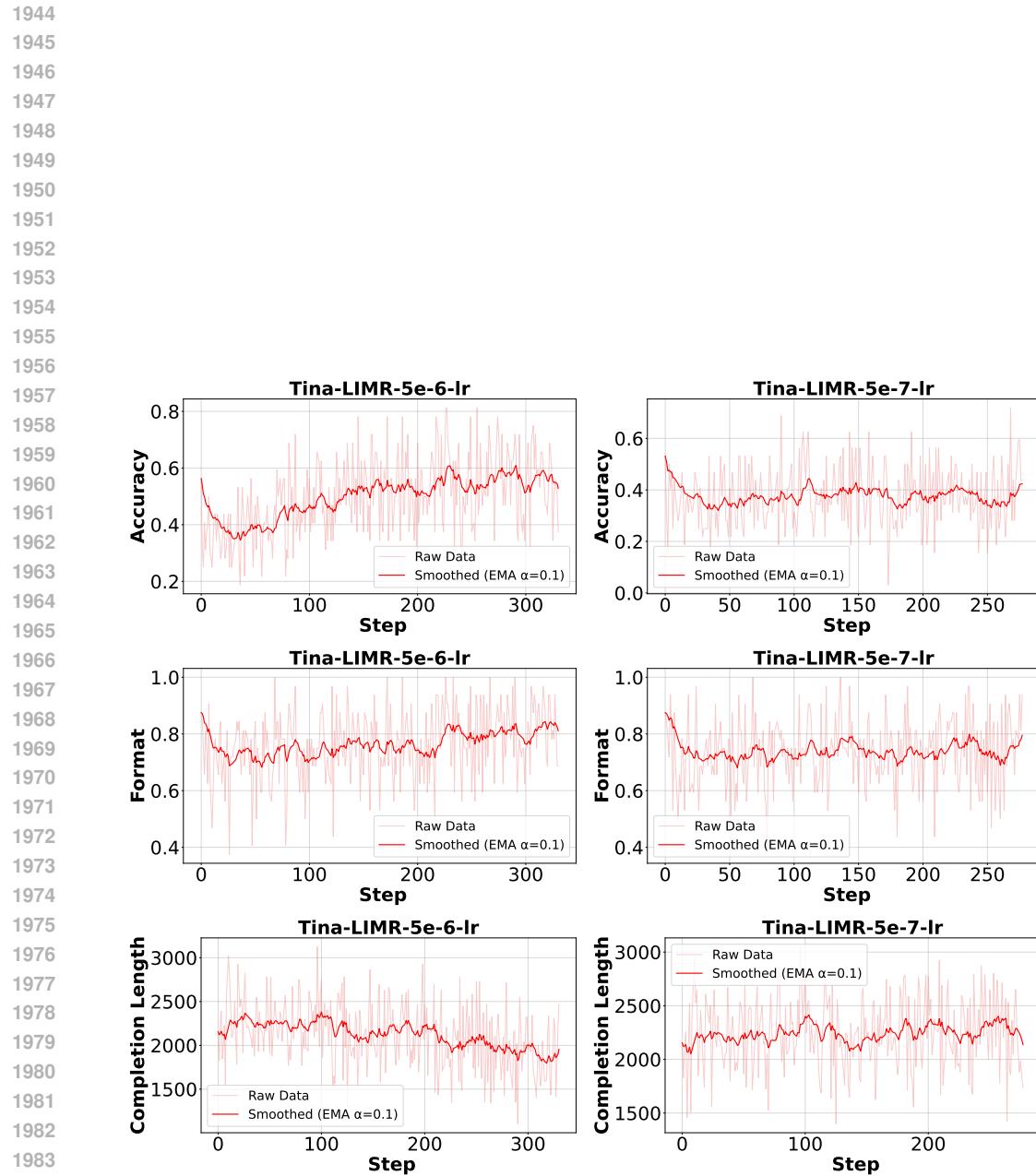


Figure 20: Transition in Tina-LIMR-5e-6-1r and Tina-LIMR-5e-7-1r.

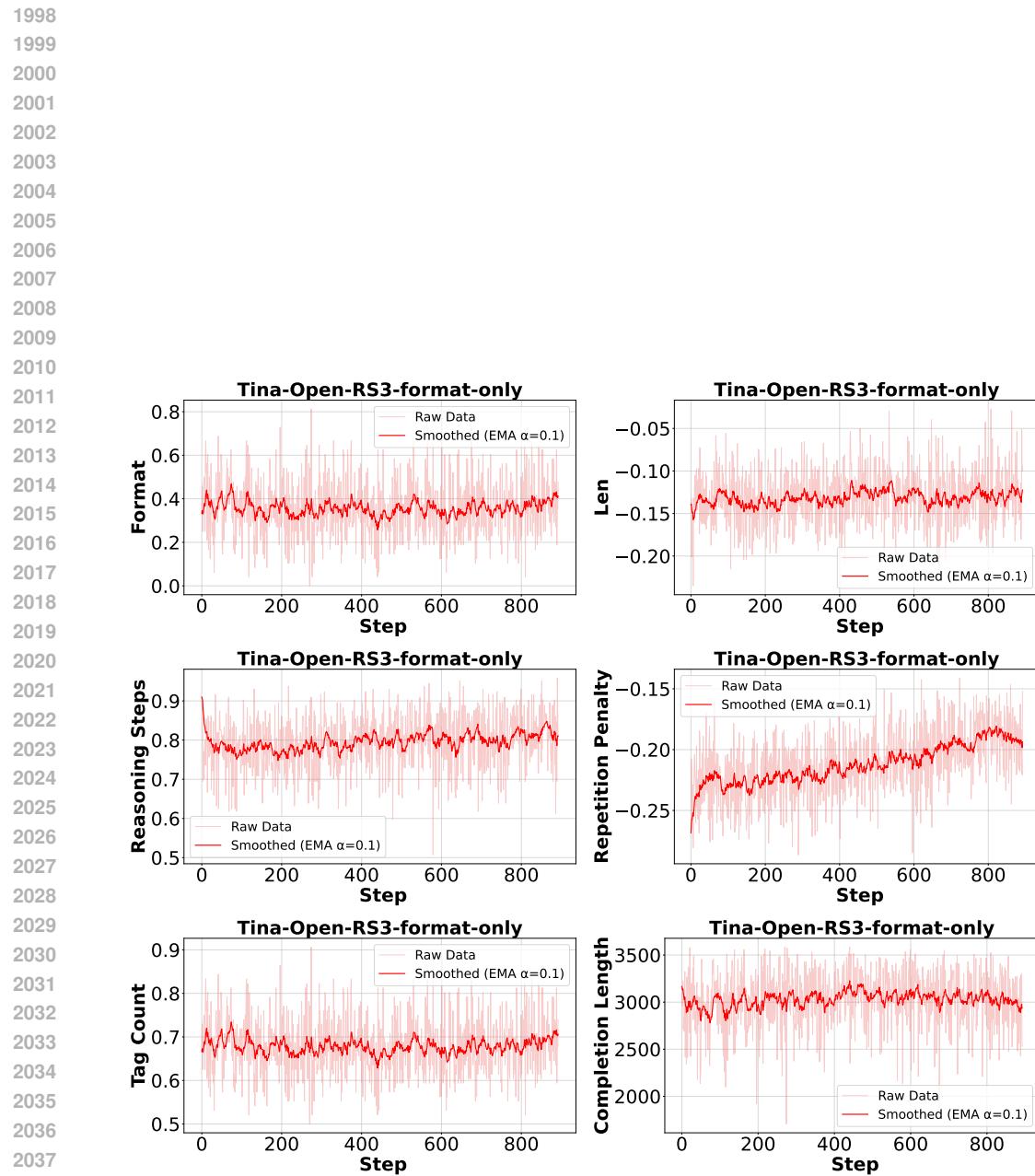


Figure 21: Transition in Tina-Open-RS3-format-only.