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Abstract

We investigate the identifiability problem of latent stochastic processes charac-1

terized by high dynamics that occur in continuous time with varying intensities2

(e.g., a multivariate Hawkes process), and we provide the corresponding identifi-3

ability theory. Building on this theoretical foundation, we implement MUTATE,4

a variational autoencoder framework with a time-adaptive transition module to5

evaluate stochastic dynamics on both synthetic stochastic processes and real-world6

biological signal data. This work advances causal representation learning theory7

by extending it to continuous-time and stochastic settings via weak topology and8

algebraic signature, highlighting the importance of this approach in addressing9

scientific questions, such as the accumulation of mutations in genomics and the10

mechanisms driving neuron spike triggers in response to time-varying dynamics.11

1 Introduction12

Inferring causal relationships among variables from observations capitalizes the potential of machine13

learning to advance scientific discovery, as it reveals underlying mechanisms that are not identifiable14

from observational distributions alone [1]. However, because of limited data sources and the challenge15

of interpreting high-dimensional perceptual data, causal variables with their graphical structure are16

often unknown and thus can be learned in a non-interpretable manner, which causes the difficulty of17

identifiability [2, 3]. Recently, a growing number of studies on the disentanglement of latent causal18

representation advance the identifiability guarantee and propose methods for latent causal variable19

estimation. Seminal works among them establish identifiability by leveraging sufficient variability in20

latent distribution due to multiple-source data [4, 5], auxiliary variable [2, 6, 7, 8], or intervention to21

a latent causal graph [9, 10, 11, 12, 13].22

Most concurrent work aforementioned aims at recovering the latent causal variables in the time-series;23

A common condition they heavily hinge on is step-wise conditional independence [4, 5], termed as24

the number of time lags in their claims, among variables. These works mainly address cases when25

the mixing is assumed invertible, such that latent variables can be recovered up to component-wise26

indeterminacy. However, the latent dynamics driven by a stochastic process or system of stochastic27

differential equations are less explored. For example, in biology, fatal diseases such as cancer are28

principally caused by cumulative multiple mutations found in driver genes as the colonial expansion29

proceeds. In neuroscience, the latent event dynamics trigger visible biological signals [14, 15].30

Finding cancer-associated mutational genes and tracking their behavior through their representation31

has been given much more paramount importance in recent few decades [16, 17, 18]. Therefore, a32

formal theoretical guarantee for its identifiability is missing for stochastic causal dynamics and their33

intervention effects.34

This paper aims to establish the identifiability of latent spaces governed by stochastic dynamics driven35

by the intensity λt. Our main results demonstrate that such stochastic processes are compatible with36
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the current causal representation learning framework and converge to an equivalent infinite-order37

INAR process, provided that an integrated fluctuation term is added. Building on this foundation, the38

identifiability of dynamic processes is ensured by precisely controlling the geometry of the latent39

space via the subtle algebraic structure of cumulants.40

2 Causal disentanglement in stochastic process41

2.1 Generative model for stochastic process42

Let Ot ∈ Rn be observable data, and Zt ∈ Rp be a latent process. Ot is being generated from43

latent point processes Zt through an unknown mixing function f . A⊗d denotes the tensor/Kronecker44

product. In a time process, Φ denotes the transition operator (e.g., an autoregressive coefficient matrix45

or continuous kernel matrix) and symbol ⋆ denotes the convolution operator. We formally set up our46

problem to learn dynamics of Zt from Ot in Def. 2.1 .47

Definition 2.1. Consider a series of latent processes that are stochastic and self-exciting as time48

increases, that is, Zt := Nt , the cumulative counting process at time t. Suppose we only have access49

to Ot without knowledge about Zt. The conditional intensity λt of Nt [19] and generative model of50

Ot is written as:51

Ot = f(Nt(∆)), λt = h(u+Φt ⋆ dNt) (1)
Then, the objective is to recover f , λt as well as its causal structure Φ52

h(·) is an unknown function reflecting how Φt and dNt are mixed under a regular convolution. A53

simple choice h(·) = x immediately reduces a convolution to linear point processes. ϕ is one element54

of Φt, an integrated kernel matrix and dN i
t the measure of a counting process N j

t , as well as the55

integral measure in Itô calculus. The counting process N i
t and the conditional intensity λtt satisfy:56

N i
t+∆t −N i

t = N i
∆t = dN i

t and λit =
E[dNi

t |Ft]
dt . For a point process to be well-defined, non-trivial57

constraints are needed, one of which is the stationary condition, an assumption widely adopted in58

most stochastic process literature to ensure a unique process. We summarize the necessary conditions59

to define an inhomogeneous point process in A.4.60

2.2 A graph isomorphism to causal kernels61

The seminal result in [20], establish the weak convergence of continuous stochastic processes under62

the corresponding weak topology. In particular, for any compact interval [a, b], a subsequence INAR63

process converges to the point process Nt. This convergence is crucial for constructing a causal graph64

structure compatible with the term causal representation in our paper.65

Lemma 1 (Bounding Point Process in Variational Approximation). Let Nt ∈ Rp be a multivariate66

point process whose conditional intensity function is governed by a convolution structure described67

in Eq. (1). Suppose the noise term ϵt is mean-zero and mutually independent, then the intensity model68

admits the following weak convergence:69

Z(∆) := INAR(p)
w−→ N, p→ ∞ (2)

We then show that Φ in INAR(p) admits an augmented DAG structure GK in Lem. 2 .70

Lemma 2. Given a bipartite graph of the proposed point process with Φ, it admits a kernel DAG,71

denoted by GK , corresponding to a matrix MGK
∈ R2p×2p such that I2p − MGK

is invertible.72

Consequently, its inverse can be expressed as a finite order k expansion of MGK
,73

(I2p −MGK
)−1 =

k∑
i=0

Mi
GK
, k ≤ p, MGK

=

[
MGK

[U ] Φ
0 MGK

[V ]

]
where k corresponds to the length of the longest path in the DAG and MGK

[U ] = MGK
[V ] = 0p×p74

3 Recovery from algebraic signature of mixed manifolds75

The endowed topological structure in MG leads to a spectrum of polynomials qi, and an algebraic76

variety V (I) is associated with the generating ideals I of those polynomials. We emphasize that the77

dimension of V (I) determines the identifiability through algebraic quantities.78
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3.1 Algebraic structure for stochastic causal representation79

Cumulant is an important algebraic signature of its geometric property, as a full order cumulant80

precisely encodes the entire distribution, including the component-wise and time-wise dependency81

among variables. This enables the fine-grained mathematical nature of intervention effects beyond82

traditional mean and variance shifts. Under generic (non-Gaussian) conditions, the d-th order cumu-83

lant of a random variable X = As admits closed-form expressions as κd(X) =
∑p

j=1 κd(s)(Aj)
⊗d,84

which is a secant variety σk(X) that views each tensor factor (Aj)
⊗d as indeterminate. If the matrix85

A is generic in an open set, the Kruskal rank condition is satisfied and thus
∑p

j=1 κd(s)(Aj)
⊗d has a86

unique decomposition. This means the idea I : ⟨κd(X)−
∑p

j=1 κd(s)(Aj)
⊗d⟩ has dimension zero.87

We connect our reasoning to this and illustrate how high-order cumulants can capture sufficient88

statistical variability in the system, even under temporally independent Gaussian noise. In particular,89

we adapt the setting in [21], modifying it to allow additive noise that is independent over time. To this90

end, we establish a result for full recovery of INAR processes in the asymptotic regime p→ ∞, by91

formulating identifiability conditions through algebraic-geometric constraints imposed on the latent92

space.93

3.2 Generic identification from algebraic structure94

Let Jf be the Jacobian matrix of f and K = Jf (Ip − Φ)−1. JG and KG are augmented matrices by95

filling Jf ,K in a larger matrix to match the dimension of M. We present the following assumption.96

Assumption 1.97

1. f is a generic Cd map with a full rank Jf almost surely.98

2. There exist at least p nonzero tensors κ̄d(∆Ot) for d ∈ D := {d | κ̄d+1(∆Ot) = 0},99

where κ̄d(∆Ot) is the difference cumulant truncated at the first-order Taylor expansion of100

Ot := f(Zt).101

3. The ideal I⋆ : ⟨JG −K(k)
G (I2p−M(k)), k = 1, 2, · · · , p⟩ has a zero-dimensional associated102

variety V(I⋆)103

Theorem 1. Under Assum. 1, the latent sources with their causal structure are identifiable up to104

permutation and component-wise scaling.105

The Cd assumption is strictly weaker than requiring f to be a diffeomorphism, since even in the106

presence of directional collapse within the latent space, the cumulants may still faithfully transmit the107

non-redundant dependency structure to the observed domain. The core idea of our proof leverages the108

propagation behavior of algebraic structure under nonlinear transformations, allowing us to identify109

latent structure via the observed partial geometric-algebraic information on the mixed manifold Ot.110

That is, the cumulant hierarchy of each observed component has finite depth d, and the non-vanishing111

cumulants up to this order are sufficiently rich to ensure identifiability via tensor decomposition.112

The proposed rank condition (1) is classic and results in a generically unique decomposition of d113

order tensor κd(Ot), which uniquely recovers the component vi up to permutation and rescaling.114

Condition (2) ensures we can find such p different tensors so that JG and (I2p−M)−1 can be further115

disentangled up to the same indeterminacy. The proof strategy converts the identifiability problem116

into the precise geometry of latent manifolds associated with the time-dependent process. See the117

proof in B.1.118

4 Recovery from MUTATAE119

4.1 Architecture of MUTATE120

Building upon our identifiability theory, we formally introduce MUTATE (MUlti -Time Adaptive121

Transition Encoder), a novel estimation framework for latent multivariate self-exciting point processes.122

MUTATE is designed as a causal representation learning architecture capable of modeling continuous-123

time stochastic dynamics. Importantly, the framework is modular and can be readily adapted to124

other types of stochastic processes with suitable modifications. Unlike prior frameworks that rely125

primarily on conditional independence to enforce latent structure, our approach accounts for the126
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nature of progressively adaptive stochastic processes. In such systems, the filtration FT , which127

captures the intrinsic history of the process, is defined as σ
(⋃

0<t<T σ(Z
∆
t )
)

and grows strictly over128

time (Figure. 1). This dynamically expanding information structure poses unique challenges for both129

identifiability and representation learning, which MUTATE is explicitly designed to address.130

Zt0 Zt1 Zt2

Ft1

Ft2

Figure 1: visualization of information loss in in-
creasing filtration

Time adaptive transition module. We first131

employ an encoder qϕ(Z∆
t |X∆

t ) to learn the es-132

timated latents Z(∆)
t ∼ qϕ(Z

∆
t | X∆

t ) as com-133

monly applied in representation learning frame-134

works. Recall that the latent process is modeled135

as Zt = Φ ⋆ Zt +Rt, where Φ denotes a global136

convolution kernel and Rt = U + ϵt is a resid-137

ual process. Under our weak convergence con-138

dition, Zt receives a well-structured representa-139

tion Zt = (I− Φ)−1 ⋆ (U + ϵt), which is also140

a (U + ϵt)-measurable process with tractable141

Power Spectrum Density (PSD): S
Z

(∆)
t

(w) = (I − Φ)−1ΣRt
(I − Φ)−H , where the baseline U142

is treated as a learnable parameter in the model and AH is the Hamilton conjugate transpose of143

A. w is a continuous frequency variable. The inverse mapping f−1
Z is an encoder with training144

parameters of neural networks. Importantly, the learned functional f maps the observation Zt to145

a space of independent varying noise through the designated PSD decomposition that enforces Σ146

to be diagonal and recursively infers H† = (I − Φ)−1. Then, the evaluated prior from the PSD147

module is sent to calculate the KL divergence. Decomposing S(w), each of the transitions satisfies148

log p(Z
(∆)
t |Ft−) = log p[(I − Φ) ⋆ R∆

t ], which is the main part of the latent prior estimation. Our149

model is trained based on the Variational Auto-encoding framework. Therefore, we aim to max-150

imize the log likelihood of observation log pdata(X) through the rule of the ELBO lower bound:151

ELBO = −Lrecon − αLKL.152

4.2 Simulation Study153

To validate our identifiability results, we evaluate against several representative baselines, including154

TDRL [4], BetaVAE [22], SlowVAE [23], and PCL [7]. Among them, PCL and TDRL incorporate155

temporal dependencies by leveraging historical information and explicitly enforcing conditional156

independence among latent variables to recover underlying dynamics. In contrast, BetaVAE and157

SlowVAE assume independent latent components and disregard any time-delayed mechanisms. A158

detailed simulation procedure is included in D.1.159

Performance of all baselines and our model is shown in Table 1 and extended results are reported160

in Table A2. During training, both BetaVAE and SlowVAE tend to converge prematurely, typically161

reaching a local optimum within the first epoch and triggering early stopping. This behavior highlights162

their limitations in modeling temporal structures essential for identifying latent event-driven processes.163

TDRL performs reasonably when the lag module is set to a longer one (we use L = 9 in experiments)164

since it can harness shorter temporary contextual information. It is noticed that our identifiability can165

be readily applied to the prior framework by either adding the domain index in synthetic datasets or166

modulating the distribution shifts that change pairs of edges in the latent space. However, we also167

realize that the fully non-parametric setting is hard to interpret since our identifiability avoids such a168

case.169

Table 1: MCC Scores with standard deviations for five kernels

Method Ave. Exponential Powerlaw Rectangular nonlinear nonparametric

TDRL [4] 0.599 0.593±0.028 0.609±0.043 0.618±0.056 0.556±0.016 0.616±0.043
BetaVAE [22] 0.141 0.153±0.863 0.128± 0.077 0.128±0.078 0.146±0.108 0.149±0.096
SlowVAE [23] 0.115 0.108±0.075 0.104±0.073 0.104±0.073 0.126±0.074 0.131±0.076
PCL [7] 0.375 0.395±0.034 0.330±0.029 0.330±0.029 0.414±0.028 0.404±0.028
MUTATE(ours) 0.837 0.853±0.218 0.938±0..036 0.879±0.102 0.921±0.029 0.598±0.013
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A Useful Lemmata325

A.1 Preliminary lemmas326

Lemma A.1 (Weak Convergence [24]). Let (S,S) be a Polish space equipped with its Borel σ-327

algebra, and let {Zn}n∈N and Z be S-valued random elements defined on a common probability328

space. Then the sequence {Zn} converges in distribution (i.e., weakly) to Z, denoted Zn ⇒ Z, if329

and only if330

lim
n→∞

E[f(Zn)] = E[f(Z)]
for all bounded continuous functions f : S → R.331

The proof and demonstration of this lemma is classic in basic probability that we omit here. The332

weak convergence, in most cases, corresponds to the convergence of finite dimension distribution of a333

process or a variable.334

Lemma A.2 (Tightness of the Measure PZ(∆) ). Let {Z(∆)
n }n∈N be a sequence of S-valued random335

elements (e.g., stochastic processes or path evaluations) indexed by ∆ and defined on a Polish space336

S with Borel σ-algebra. Then the sequence of corresponding probability measures {P
Z

(∆)
n

} is tight.337

In particular, any subsequence admits a further weakly convergent subsequence.338

Tightness of a sequence of probability measures ensures the existence of well-behaved subsequences:339

every subsequence admits a further weakly convergent subsequence. This property is particularly340

useful in Polish spaces, where tightness is equivalent to relative compactness (precompactness)341

under the weak topology. However, it is important to note that precompactness does not imply full342

compactness; in general, a tight sequence need not converge without an additional uniqueness or343

limit identification argument. Thus, tightness provides necessary control over subsequential behavior,344

but does not guarantee full convergence of the entire sequence.345

Lemma A.3 (Higher-Order Moment Bound Implies Lower-Order Bounds). Let {Zn}n∈N be a346

sequence of real-valued random variables defined on a common probability space. Fix an integer347

d > 0. Suppose there exists a constant C > 0 such that348

sup
n∈N

E[|Zn|d] ≤ C.

Then for any 0 < p < d, there exists a constant Cp > 0 such that349

sup
n∈N

E[|Zn|p] ≤ Cp.

A.2 Background of Hawkes Process350

Assumption A.4 (Stability and stationary Increment, Proposition 1 in [25]). The process Nt has351

asymptotically stationary increments, and intensity λt is asymptotically stationary if the kernel352

satisfies the assumption:353

ρΦ(t) = ∥Φ(t)∥ =

∫ t

0

|Φ(t)| dt has spectral radium smaller than 1 (A1)

Asm. A.4 gives a necessary condition so that the point process has stable, stationary increments354

in its intensity. In particular, it means the entire process tends to be stable with an unknown but355

fixed expectation of the conditional intensity E[λit] = Λi. Restricted by the stationary increment356

assumption, the existence of the corresponding process is ensured by Lem. 3. To illustrate those357

conditions, we show a simpler version kernel in Example 1.358

Lemma 3 (Proposition 6 in [20]). If all conditions and results in Asm. A.4 hold almost everywhere,359

there exists only one determined process whose dynamics match observations with regard to Λi.360

Example 1. Consider a point process whose kernel functions relay causal influence with an exponential361

decay to other processes. The generating process thus be accordingly362

λit = ui +

p∑
j=1

∫ t

0

αije−β(t−t′) dN j
t′

shows the exponential kernel triggers influences that are sustaining but decaying as time proceeds.363

Technically, the induced causal influences, although decaying from inside the system dynamics, will364

not disappear unless the causal strength α = 0 for all j.365
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A.2.1 Remarks on the filtration366

In probability theory, the filtration Ft is defined as the smallest σ-algebra that renders the intensity367

process λt to be Ft-adapted and measurable. This filtration is constructed by the minimal closure368

under set operations (e.g., union, intersection) over past events, ensuring that λt evolves consistently369

with the observable history [26, 27]. Therefore, for any filtration as its internal history, we have370

Fs ⊆ Ft, for s ≤ t. Note that the filtration Ft may theoretically differ from the intrinsic history371

Ht, which introduces additional challenges in the evaluation and modeling of point processes.372

For a comprehensive discussion on scenarios where Ft and Ht are defined differently, we refer373

the interested reader to [27]. We occasionally overload the notation dN i
t , which represents an374

integral element in stochastic calculus, to distinguish it from its deterministic counterpart. Despite375

potential similarities in notation, they are fundamentally different: while standard calculus considers376

infinitesimal increments over fixed mesh widths (e.g., dg(x) as ∆t → 0), the increment dN i
t is a377

random variable governed by the stochastic process. Specifically, its realization at each infinitesimal378

interval is drawn from a Bernoulli process with intensity λit, such that P(dN i
t > 0 | Ft) = λit, dt. In379

contrast to deterministic differentials, dN i
t encapsulates the uncertainty of event occurrences within380

each interval. The kernel matrix Φt consists of time-decaying kernel functions that transmit the381

influence of past events across processes. It captures both time-delayed and causal dependencies, and382

plays a central role in modeling self-exciting or mutually-exciting dynamics.383

A.3 Cumulants and Tensors384

Cumulant tensor notation. The d-th order cumulant tensor of a random vector X ∈ Rp is385

denoted κd(X) ∈ Rp×···×p, and is symmetric in all modes. In ICA and CRL settings, cumulants of386

independent components often admit a CP form:387

κd(X) =

R∑
r=1

λr · v⊗d
r ,

where vr ∈ Rp and λr ∈ R. This structure enables identifiability of latent sources from cumulant388

information.389

Tensor notation and operations. We denote an order d tensor as T ∈ RI1×I2×···×Id . The outer390

product u(1) ⊗ · · · ⊗ u(d) ∈ RI1×···×Id produces a rank-1 tensor with entries:391

Ti1,...,id = u
(1)
i1

· · ·u(d)id
.

Given a tensor T ∈ RI1×···×IN and a matrix U ∈ RJ×In , the mode-n product T ×n U ∈392

RI1×···×In−1×J×In+1×···×IN is defined as:393

(T ×n U)i1,...,in−1,j,in+1,...,iN =

In∑
in=1

Ti1,...,iN · Uj,in .

B Proof of Identifiability Theory394

B.1 Proof of Thm. 1395

B.1.1 Useful Lemmas396

To potentially identify any latent components of dynamics, we must introduce tensor algebra beyond397

our current setting as we present the following important results.398

Corollary B.1 (CP decomposition). Let T ∈ RI1×I2×···×IN be an order-N tensor. We say that T399

admits an exact rank-R Canonical Polyadic (CP) decomposition if there exist component vectors400

a
(n)
r ∈ RIn for each r = 1, . . . , R, n = 1, . . . , N , such that:401

T =

R∑
r=1

a(1)r ⊗ a(2)r ⊗ · · · ⊗ a(N)
r = JA(1), A(2), . . . , A(N)K,

Where A(n) = [a
(n)
1 a

(n)
2 · · · a(n)R ] ∈ RIn×R are the factor matrices.402
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Corollary B.2. Let X(1), X(2), . . . , X(n) ∈ Rp be independent random vectors with nonzero d-th403

order cumulants, such that each admits the form404

κd(X
(i)) = λi · v⊗d

i , for i = 1, . . . , n,

with vi ∈ Rp and λi ∈ R \ {0}. Let T := κd(X
(1) + · · · + X(n)) ∈ Rp×···×p be the d-th order405

cumulant tensor of their sum.406

Assume that the matrix V = [v1 v2 · · · vn] ∈ Rp×n satisfies407

krank(V ) ≥
⌈
2n+ (d− 1)

d

⌉
.

Then the CP decomposition408

T =

n∑
i=1

λi · v⊗d
i

is unique up to scaling and permutation.409

B.1.2 Proof of Thm. 1410

We prove Thm. 1 by showing that the tuple (f,Φ, U) is identifiable up to a component-wise trans-411

formation and permutation. Our proof is based on the dimension of the associated variety defining412

special hypersurfaces in a polynomial ring Kn. We study the nonlinear propagation of the cumulant413

structure to find the identifiability conditions for INAR processes. Given a generic nonlinear f , its414

exact cumulant κd(Ot) follows an order d expansion of with Bell polynomial coefficients. For a415

smooth map f : Zt → f(Zt), we can construct O: = f(Zt+∆t) using Taylor expansion:416

f(Zt+∆t) = f(Zt) +
∂

∂Zt
f(Zt)∆Zt +

1

2

∂2

∂Z2
t

f(Zt)(∆Zt)
2 + o(∆Z3

t )

At this time, the expansion has rather abnormal behavior, as the order can be extremely large.417

However, the truncated expansion at order 1 has intriguing theoretical attractions. Let higher-order418

components be R(1), and recall Zt = H ⋆ ϵt , we obtain the truncated differential process ∆f̃(Zt),419

denoted as:420

∆f(Zt)−R(1) = Jf

t∑
k=1

Ht−sϵs (A1)

We treat all quantities appearing in Eq. (A1) as indeterminates in a polynomial ring421

R = k
[
{∆f(Zt)}t, R(1), Jf , {Ht−s}s, {ϵs}s

]
,

where k is a base field such as R or C. For each time index t, the defining polynomial is gt :=422

∆f(Zt) − R(1) − Jf
∑t

s=1Ht−sϵs ∈ R. This polynomial generates the principal ideal It =423

⟨gt⟩ ⊂ R , and considering all time indices t = 1, 2, . . . , T , we obtain the global ideal I =424

⟨g1, g2, . . . , gT ⟩ ⊂ R . The corresponding affine variety is then425

V (I) =
{
(Zt,∆f(Zt), Jf , Ht−s, ϵs,R(1)) ∈ kN

∣∣∣ gt = 0 for all t
}
.

It is evident that V (I) is positive-dimensional, since the defining relations do not specify finitely426

many points. To obtain more structure, we consider higher-order statistics. In particular, the d-th427

order cumulant tensor of the transformed increments takes the form428

κd

(
∆f̃(Zt)

)
=

t∑
s=1

p∑
j=1

κ
(j)
d (ϵ) ·

(
JfH

(:,j)
t−s

)⊗d

.

This expression shows that the cumulant naturally defines a point in the projective tensor space429

P(V n ⊗ V n ⊗ · · · ⊗ V n) ,

where the number of tensor factors equals d. Hence, while the affine variety V (I) is too large to430

give identifiability, the cumulant tensors lift the problem into a projective geometric setting, where431

connections to secant varieties of the Veronese embedding provide a natural framework for studying432

uniqueness and decomposition. So far, the generic mixing f is preserved by its Jacobian matrix Jf ;433

hence, identifying Jf is equivalent to the recovery of f up to a constant. Now, we are ready to prove434

our main theorem. Without loss of generality, we write Jf as F since they behave the same way in an435

algebraically closed field.436
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Step 1: Uniqueness of mixing kernel F (Ip−Φ)−1 We prove this supporting result via an extension437

of Proposition 3.1 in [21]. In the classical linear source decomposition (LSD) setting, the d-th order438

cumulant of X admits the following tensor decomposition: κd(X) =
∑q

i=1 κd(ϵi) · (Bi)
⊗d under439

the assumption that the components of ϵ are non-Gaussian with non-vanishing d-order cumulants,440

and that multiple interventions are available. The sufficient order d cumulant of each Zt for a fixed441

t = ti is442

κd(Zt) = κd[(I − Φ)−1 ⋆ ϵt] = κd[

t∑
k=1

Ht−sϵs]

for each s, the linear transformation Ht−s results in a multi-linear transformation of their cumulants443

κd(Ht−sϵk) = (Ht−s)
⊗dCd

ϵs =

p∑
i=1

κd(ϵ
i
s)(Ht−s)

⊗d
j

The full order d cumulant of the mixed manifold Ot is444

κd(Ot) = κd(FZt, FZt, . . . , FZt︸ ︷︷ ︸
d times

)

= F⊗d · κd(Zt, Zt, . . . , Zt︸ ︷︷ ︸
d times

) (A2)

= F ⊗ F ⊗ · · · ⊗ F︸ ︷︷ ︸
d times

·κd


t∑

s1=1

Ht−s1ϵs1 ,

t∑
s2=1

Ht−s2ϵs2 , . . . ,

t∑
sd=1

Ht−sdϵsd︸ ︷︷ ︸
d times


= F ⊗ F ⊗ · · · ⊗ F︸ ︷︷ ︸

d times

·
t∑

s1=1

· · ·
t∑

sd=1

κd (Ht−s1ϵs1 , Ht−s2ϵs2 , . . . ,Ht−sdϵsd)

= F ⊗ F ⊗ · · · ⊗ F︸ ︷︷ ︸
d times

·
t∑

s1=1

· · ·
t∑

s=1

p∑
j=1

κd

(
H

(:,j)
t−s ϵ

(j)
s , H

(:,j)
t−s ϵ

(j)
s , . . . ,H

(:,j)
t−s ϵ

(j)
s

)

= F ⊗ F ⊗ · · · ⊗ F︸ ︷︷ ︸
d times

·

 t∑
s=1

p∑
j=1

κ
(j)
d (ϵ) ·H(:,j)

t−s ⊗H
(:,j)
t−s ⊗ · · · ⊗H

(:,j)
t−s︸ ︷︷ ︸

d times


=

 t∑
s=1

p∑
j=1

κ
(j)
d (ϵ) · F ⊗ F ⊗ · · · ⊗ F︸ ︷︷ ︸

d times

·
(
H

(:,j)
t−s

)⊗d


=

t∑
s=1

p∑
j=1

κ
(j)
d (ϵ) ·

(
FH

(:,j)
t−s

)⊗d

(A3)

Unlike in a time-free process, the joint cumulant of a time process is of order d that is coupled with445

the number of time lags:446

κd(Ot1 , . . . , Otd) =

min(t1,...,td)−1∑
s=1

p∑
j=1

κ
(j)
d (ϵ) ·

d⊗
ℓ=1

(
FH

(:,j)
tℓ−s

)

=

p∑
j=1

min(t1,...,td)−1∑
s=1

κ
(j)
d (ϵ) ·

d⊗
ℓ=1

(
FH

(:,j)
tℓ−s

)
(A4)

We denote the Fourier transform of x(t) with respect to time t as F [x](ω). Using the convolution447

theorem and linearity of the Fourier transform, we have:448

F [κd(Ot)](ω) = F

 t∑
s≥0

p∑
j=1

κ
(j)
d (ϵ) ·

(
FH

(:,j)
t−s

)⊗d


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= F

∫ t

0

p∑
j=1

κ
(j)
d (ϵ) ·

(
FH(t− s)(:,j)

)⊗d

ds


=

 p∑
j=1

κ
(j)
d (ϵ) · F

[(
FH(:,j)

)⊗d

⋆ U(t− s)

]
=

 p∑
j=1

κ
(j)
d (ϵ) · F

[(
FH(:,j)

)⊗d
]
(ω) ·

(
πδ(ω) +

1

iω

) (A5)

Since δ(ω) vanishes everywhere except at ω = 0, multiplying it by ω gives zero, Eq. (A5) yields449

iωF [κd(Ot)](ω) =

iω p∑
j=1

κ
(j)
d (ϵ) · F

[(
FH(:,j)

)⊗d
]
(ω) ·

(
πδ(ω) +

1

iω

)
=

 p∑
j=1

κ
(j)
d (ϵ) · F

[(
FH(:,j)

)⊗d
]
(ω) · iω ·

(
πδ(ω) +

1

iω

) .

which reads450  p∑
j=1

κ
(j)
d (ϵ) · F

[(
FH(:,j)

)⊗d
]
(ω) · iω ·

(
πδ(ω) +

1

iω

) =

 p∑
j=1

κ
(j)
d (ϵ) · F

[(
FH(:,j)

)⊗d
]
(ω) · 1


(A6)

By assuming non-Gaussianity in ϵt, for each j, Eq. (A6), hence iωF [κd(Ot)](ω) has a unique de-451

composition of the summation of rank-1 tensor. Therefore, each column of the sub-linear mixing452

transferring matrix F
[(
FH(:,j)

)]
is theoretically recovered up to a scaling and permutation π if all453

assumptions made are satisfied in Φ. This indicates that even if one needs to calculate the tensor de-454

composition unnecessarily, such uniqueness guarantees the possibility of further disentanglement. In455

the sequel, F
[(
FH(:,j)

)]
DP is available; we thus obtain the unique indeterminacy as an immediate456

result of Lemma. B.3.457

Lemma B.3. Consider F is an algebraically closed field, the unknown indeterminacyDP is preserved458

in F, that is the following relation459

FH(:,j)
τ = F̂ Ĥ(:,j)

τ Dj,τPj,τ ,

with (Pj,τ , Dj,τ ) ∈ {(Pj , Dj) | F [FH(:,j)]DjPj = F [F̂ Ĥ(:,j)]}.

Proof. Let F be a field and n ≥ 1 an integer. The general linear group of degree n over F is460

GLn(F) := {A ∈Mn(F) | det(A) ̸= 0 }.
Equivalently, if V is a n-dimensional vector space over F,461

GL(V ) := AutF(V ) = {T : V → V linear isomorphisms },
and any choice of basis identifies GL(V ) with GLn(F). It is obvious that F [F] is exactly a subgroup462

of GL(F) as the group GLn(F) satisfies: i) It is precisely the set of all invertible linear transformations463

(invertible matrices). ii) If F = R or C, then GLn(F) is an open subset of Mn(F) since GLn(F) =464

det−1(F \ {0}), and it is a Lie group. By the definition of kernel matrix, one notes i) trivially holds465

due to the maximal spectrum being less than 1. For ii), det−1 denotes the preimage of the open set466

F \ {0} under det. Cutting the one-dimensional line at 0 produces two open intervals (for F = R) or467

a punctured plane (for F = C), hence the preimage is open in Mn(F). Therefore, the permutation468

and scaling must be preserved in M ∈ Rp×p.469

So far, the original kernel mixing matrix FHτ is recovered up to the same permutation and scaling470

for any τ . In the sequel, what needs to be proved is the recovery of the causal structure as well471

as its full parameter space. Our proof focuses on the polynomial system and its associated ideal I472

generated by the multi-linear constrained polynomial system.473
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Step 2: Uniqueness of causal kernel Φ474

Example 2. Consider a kernel matrix Φ ∈ R2×2 with internal arrows allowed:475

ΨU =
[
0 ψ12
0 0

]
, Ψ =

[
ϕ11 ϕ12
ϕ21 ϕ22

]
,ΨV =

[
0 ψ′

34
0 0

]
where ΨU ,ΨV encodes the internal arrows of the sub-graph GU and GV ; Φ encodes time-delayed476

kernel effects from s to t.477

The corresponding expanded kernel matrix M ∈ R4×4 is478

M =

0 ψ12 ϕ11 ϕ12
0 0 ϕ21 ϕ22
0 0 0 ψ′

34
0 0 0 0

 .
Proof. Let MGk

∈ R2p×2p be the kernel matrix associated with the bipartite graph, where the479

variables are partitioned into two subsets U and V . Consider a topological ordering where all nodes480

in U precede those in V .481

Since edges from V to U are forbidden by the bipartite structure, no element in the lower-left block482

of M can be nonzero. Moreover, edges within U are not allowed, so the diagonal and upper-left483

block corresponding to U have zeros on the diagonal. The edges within V form a DAG, and under a484

topological ordering of V , the corresponding block in M is strictly upper-triangular. Therefore, M485

as a whole is strictly upper-triangular, which implies that it represents a DAG.486

Because MGK
is strictly upper-triangular, it is nilpotent. Let k denote the length of the longest487

directed path in the DAG. Then Mk+1
GK

= 0, and the inverse of I−MGK
can be expressed as a finite488

sum of powers of M:489

(I−MGK
)−1 =

k∑
i=0

Mi
GK
.

Each term Mi
GK

corresponds to contributions from paths of length i in the DAG. This shows that the490

inverse is fully determined by path products up to the longest path length k, completing the proof.491

By Lem. 2, identifying the space of all parameters in F and Φ is equivalent to solving the following492

ideal I : ⟨FG − FG (I2p −MGK
)−1(I2p −MGK

)⟩.493

In latent causal models, FG ,MGK
are filled as indeterminates that need to be recovered, where FG494

is the expanded linear mixing obtained by filling F ∈ Rn×p in a larger block-diagonal matrix of size495

2n× 2p, denoted by FG . Remember, we have F (I−Φ(τ))−1 to be unique due to decomposition up496

to a scaling and permutation. We write HG = (I2p −MGK
)−1, then497

FG (I2p −MGK
)−1 =

[
F 0
0 F

] [
HG (U) HG (Φ)

0 HG (V )

]
=

[
FHG (U) FH(Φ)

0 FHG (V )

]
= KG

Under INAR, the diagonal blocks of KG are 0 matrix. Therefore, we have the ideal:I : ⟨FG −498

KG (I2p −MGK
)⟩ where KG is known because FH is known, so not considered as indeterminate499

and thus does not contribute any degrees in the dimension of I . Clearly, under passively observational500

settings, recovery of full models is never possible as the current I must be positive dimensional,501

leading to no fixed points defined in the associated variety V . This leads to a central goal to find502

the number of contexts that indicate sufficient variability or interventional settings, to recover the503

parameter space. To this end, we need to first discuss important properties of FG .504

Lemma B.4. F ∈ Rn×p is a generic full-rank matrix. Then FG is full rank with rank(FG ) =505

2 · rank(F ) = 2min(n, p), and it is not generic in an open dense subset of R2n×2p due to the506

additional linear constraints imposed by the block-diagonal structure. Consequently, FG belongs to507

a proper linear subvariety of R2n×2p defined by508

VI⋆ :=
{
B ∈ R2n×2p : B =

(
F ′ 0
0 F ′

)
, F ′ ∈ Rn×p

}
.

Therefore, for any square matrix A2p with rank(A) ≤ r, rank(FGA) ≤ r509
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Proof. This proof is trivial by linear algebra.510

Note we have p processes; we generally assume we obtain different contextual information from at511

least K environments (i.e., K = p), which is a mild condition in causal representation learning. Each512

sub-ideal Ik : ⟨FG −KG (I2p −MGK
)⟩ constitutes a polynomial system, denoted by Sk

P such that:513

FG +K
(k)
G M(k)

GK
= K

(k)
G . (A7)

There are 2n× 2p indeterminates for FG and 2|e(G)| for M since each environment k introduces a514

new Mk,j . Considering all K ideals (I0, I2, · · · , IK), we obtain the union of all K varieties:515

V (I) =
{
(FG ,M(0)

GK
, . . . ,M(K)

GK
)
∣∣∣ FG −K

(k)
G

(
I2p −M(k)

GK

)
= 0, ∀k ∈ K

}
. (A8)

Adding polynomial constraints by subtracting Eq.(A7) for 0 from that for k obtains:516

V (I⋆) =
{
V (I)

∣∣∣ K(k)
G M(k)

GK
−K

(0)
G M(0)

GK
−
(
K

(k)
G −K

(0)
G ) = 0, ∀k ∈ K

}
. (A9)

that induces a coordinate ring R/I in a polynomial ring R = k(FGi,j ,Mk
i,j). The order of the517

coordinate ring is the dimension of the original variety. We use
( )

to represent the blocked518

system so as not to confuse with the matrix bracket. For each m ∈ [n], j ∈ [p], and i ∈ chG(j), we519

have |chG(j)| columns for MG . Fv,M(k)
v write entries fi,j ,Mk

m,i as vectors, which describe the520

polynomial constraints as a linear system:521 (
I4np ⋆
0 ⋆

) Fv

M(0)
v

M(k)
v

 =

(
K

(k)
G

K
(k)
G −K

(0)
G

)
. (A10)

In INAR (∞), each Mt−s preserves all paths {(φ(j) → φ(i)|Z∆
φ(j),t−s → Z∆

φ(i),t,Mi,j ̸= 0} from522

Φt−s through an isomorphism φ. Therefore, entry (I2p −M)−1
i,j is the product of Mn,m for path523

j → m → n → i. We drop the time index and graph label whenever the context is clear. Such524

(I2p −M)−1
i,j admits the representation525

(I2p −M)−1 = I+M.

Results from [21] are applied to get rank(I2p −M(k))−1 − (I2p −M0)−1 ≤ 1. Using Lem. B.4,526

we obtain rank(FG (I2p −M(k))−1 − FG (I2p −M0)−1) ≤ 1. Therefore, the left part of Eq.(A10)527

has columns that are multiples of each other:528

(K
(k)
G −K

(0)
G )l,j = (K

(0)
G )l,k∆k,i, ∆ := (I −Mk)−1 − (I −M0)−1 (A11)

We examine the non-zero sub-blocks of the lower-right block ⋆ in Eq.(A10), which has size |de(j) \529

ch(j)| × |ch(j)|. Following the convention, we represent the sunblocks as M [j] and choose the530

smaller blocks [K(k)
G −K

(0)
G ] corresponding to the size of M [j] and write it as b[j]. The dimension531

of variety V (I⋆) is the dimension of the points (M0
i,j), i ∈ ch(j) that satisfy:532

M [j](M0
i,j) = b[j] (A12)

The variety is a null set when the above constraints lead to no solutions. Therefore, we require533

rank(M [j]) = rank(M [j]|b[j]). [M [j] | b[j]] is the common augmented matrix to check the534

stability of a polynomial equation system. We conclude our proof by making a formal statement535

about the dimension of V(I⋆) in the next lemma.536

Lemma B.5. For generic F and FH arising from the cumulant decomposition, the full generating537

model is identifiable if and only if the variety V(I⋆) has dimension zero, that is,538

dim(V(I⋆)) =

q∑
j=1

ch(j)− rank(M [j]) = 0.

Proof. Recall the kernel-delayed DAG structure. For the left subset Us, each node j has outgoing539

edges only to nodes i in the right subset Vt, all of which are direct children of j. By construction,540

no edges exist within Us or within Vt. Consequently, for each j, we have M [j] = ∅, since de(j) =541

ch(j).542
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Step 3: Independent conditions for each Φ under the generic F When Mt−s is fully recovered,543

the full matrix FG can be obtained as544

FG = KG (I2p −MGK
).

If Fv is injective, identification of Fv (and hence FG and F ) is equivalent to identifying each M545

individually, due to the direct multiplication of F−1 (or the pseudo-inverse F †) with K. However,546

identification of the full generating model is hindered by the genericity of F . Even if KG is547

unique up to the usual indeterminacies, recovering other kernel matrices Mt−s′ requires analogous548

identifiability conditions for each individual kernel matrix.549

Under k ∈ 1, 2, ...,K distinct contexts—each introducing sufficient variability in the distribution, or550

ensuring that each lag k receives at least one intervention that shifts the downstream mechanism—the551

full latent structure is identifiable up to the same indeterminacy.552

Recovery of baseline U Once the full causal structure is recovered up to a scaling and permutation553

matrix, lower level moments of E[F (Ip − Φ)−1 ⋆ (U + ϵt)] are can be directly computed to find U554

up to the same indeterminacy.555

B.1.3 Identifiability under Gaussian Noise556

Now we focus on the case where non-Gaussianity does not hold for the entire time process. When the557

noise is Gaussian, κd(Ot) = 0 for all d ≥ 3, which leads to a 0 ∈ Rp×d

(the d-th order zero tensor).558

The solution of decomposition is infinite, thus FH cannot be recovered up to a column scaling and559

permutation, nor can the latent transition graph G. We argue that preserving only d- order cumulant of560

order d ≤ 2 is a minimal building block for identification. κ2(Ot) is an order 2 variance-covariance561

matrix. Let M1,M2, . . . ,MT ∈ Rp×p be a collection of order-2 tensors. We define the order-3562

tensor X ∈ RT×p×p via concatenation along the first mode (tensor slices):563

Kc = con (M1,M2, . . . ,MT ) , where Xt,:,: =Mt. (A13)

By standard tensor algebra, an order-3 tensor X ∈ RT×p×p can be reshaped or flattened into a564

higher-order tensor, under a specific indexing scheme. More generally, given a desired tensor order d,565

and assuming T = pd−2, we define a transformation:566

T : RT×p×p → Rpd

, κd(εt) ∈ R
p× · · · × p︸ ︷︷ ︸

d times

567

κ2(εt) =


σ11 σ12 · · · σ1p
σ21 σ22 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σpp

 ∈ Rp×p, κ3(Xt) =


0p×p

0p×p

...

0p×p

 ∈ Rp×p×p

that re-indexes the tensor slices Mt to fill the missing indices of an order d cumulant tensor. The568

replacing and re-indexing rule is illustrated in an order 3 tensor as a real plane, assuming d− 1 is the569

maximal order such that κd = 0.570

Under this transformation, each sliceMt is interpreted as contributing to a specific mode configuration571

of the higher-order tensor. That is, the tensor X is “lifted” into a d-way tensor by embedding each572

p × p matrix slice as filling in the cumulant entries with fixed positions in the first d − 2 indices573

corresponding to t ∈ {1, . . . , T}, and varying the remaining two indices over p× p. This leads to574

the same form as Eq. (A4) where all κd(ϵt) ̸= 0. Under Corollary B.1 and B.2, the new tensor has575

a unique decomposition of rank-1 tensor summation. To be specific, we assume vi has no pair of576

columns to be collinear. This ensures the identification of F (I − Φ)−1 and restricts F to be injective577

to only span(Hj) .578

The sequential steps are the same for non-Gaussian noise since the construction of the ideal I⋆579

associated with its variety is not influenced by ϵ once FH is fixed up to a permutation and scaling.580
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Discussion of noise. Consequently, when Gaussianity is assumed, the distribution of Ot is fully581

characterized by the first two cumulants. This property implies that the entire cumulant expansion,582

and hence any higher-order dependency, collapses at second order. In this sense, the Gaussian583

distribution is the unique fixed point of the cumulant hierarchy at order two. In temporal parametric584

transition [28], a widely known condition to ensure the component-wise identifiability of the latent585

process Zt is to require that the driving noise ϵ is not a fully isotropic Gaussian. That is, the Gaussian586

noise distribution must shift under either intervention [13] or exhibit heterogeneity in its variance.587

This is because all cumulants of order p > 2, which encode the exact causal dependencies, vanish for588

Gaussian noise. As a result, sufficient variability can only arise from changes in the second-order589

cumulant. Our results reflect that non-isotropic Gaussian noise is a necessary but not a sufficient590

condition for full identifiability of the time-delayed generative model and parameters.591

B.1.4 Identifying causal structure592

Our proof is constructive: with the minimal hierarchy HC by soft interventions such that no fixed593

value of entry (i→ j) in Φ(w) induces a dependence removal, the transitive closure Ḡ of the ground594

truth process with its causal structure can be recovered up to the trivial transformation aforementioned.595

If a time process has no instantaneous influence it must have TC(G) = G, we can recover the original596

process and its causal structure up to a scaling and permutation π.597

C Proof of Supportive Results598

C.1 Proof of Lem. 1599

This lemma significantly constitutes the reasoning chains that lead to our identifiability results. We600

restate the original statement to cover more details and background in point process and theory of601

weak topology and convergence.602

Lemma C.1 (Bounding Point Process in intensity, constructive). For a measurable mapping N∆ :603

(Ω,F) → (Mp,M) such that ω 7→ N(ω) is a point process at scale ∆. Let ∆ be the control operator604

for any subsequence of its point process. Consider A ∈ B generated by the topology Mp := B(Mp).605

λ and ϵ is defined on this metric space. If λ satisfies the stationary increment condition, then we can606

establish the weak convergence of the constructed equivalent class:607 ∑
k:k∆∈A

λ
(∆)
k + ϵ

(∆)
k

w⇒ N(A) for λ∆k = lim
∆→0

lim
δ→0

E[dN∆|F ]

δ

Proof. We start the proof with a trivial case. If δ = ∆1 = 1, the condition always trivially holds. In608

this case, we only need to show N
(∆1)
t = λ

(∆1)
t +Rt by simply using the tower rule. Therefore, our609

proof gives more attention to the non-trivial case for δ ̸= 1.610

Case 2: δ ∈ (0,∆1)611

The reasoning of this case becomes more complicated if the time step operator used for generating sub-612

sequences proportionally shrinks to a sufficiently small unit in (0,∆1). We rewrite the approximating613

sequence N to leverage the metricizability of the space. Since we work in a Polish space, the Borel614

δ-algebra is countably generated and the space is separable and metrizable. Given a measurable set615

A ∈ B, and a metric ρ, define the open δ-neighborhood as:616

A = Aδ := {x ∈ Rd : ρ(x,A) < δ}
By outer regularity of Borel probability measures on Polish spaces, for every ϵ > 0, there exists a617

countable collection of open sets {Ai}i∈N such that
⋃

iAi ⊃ A and
∑

i µ(Ai \A) < ϵ. This allows618

us to approximate any compact subset from outside using open sets with arbitrarily small excess619

mass and ensures the approximating sequence is defined on a non-decreasing base. We paraphrase620

the convergence as621 ∑
k:k∆∈A

lim
i→∞

E[N∆(Ai)|F ]

|Ai|
+ ϵ

(∆)
k

w⇒ N(A) for ∆ → 0 (A1)

The equation above is adapted from the continuous-time intensity for point processes. However,622

it requires us to work with two limit conditions for Ai with the 1/k closed ball shrinking to zero623

17



measure and for the subsequence operator ∆ approaching to 0. A common method is to ensure624

dominated and uniform convergence of the limit. To harness information regarding the intensity in625

our convergence to a more generalized process, we work with only ∆ to induce the same time scale626

of intensity function. Therefore, we have the equivalent condition627

∑
k:k∆∈A

E[
∑
k=1

Z∆
k −

∑
k=1

Z∆
k−1|F ]

|Ai|
+ ϵ

(∆)
k =

∑
k:k∆∈A

E[Z∆(∆)|F ]

∆
+ ϵ

(∆)
k

w⇒ N(A) for ∆ → 0

(A2)

We remove the limit condition as it is clear that |Ai| is of measure zero when ∆ = 0, which ensures628

the alignment between our topological property and plausibility to analyze only subsequences in629

the sequel. According to Lemma.2 by [20], for any compact interval [a, b](δ) with the number of630

bins [b− a]/δ, E[N (δ)([a, b])] < (b− a+ 2)(I −G(δ)(a, b))−1Λ where G(a, b) =
∫ b

a
Φ(s)ds is a631

solution of the stochastic differential equation systems632

E[λ([a, b])] = E[u+G(a, b)Λ], for E[λ(a, b)] = Λ

Note that, by reapplying tower rule, Eq. (A1) implies:633

lim
δ→0

E[N (δ∈(0,1))
A ] → lim

δ→0
E[

E[N (δ)
A |Ft]

δ
]

Next, we show the necessity of tightness of the corresponding probability measure P∆ for the left-634

hand of Eq. (A2) to achieve the desired convergence. Without loss of generality, we consider a635

nonparametric intensity function λt = ψ(u+
∫
ϕ(t− s)Z∆(s) ds). Consequently, E[λt] = Λ and636

E[λt] = E[ψ(u+
∫
ϕ(t− s)Z∆(s) ds)]. Assume that ψ is α-Lipschitz and α∥ϕ∥1 < 1 [29], so the637

mapping F (Λ) = ψ(u + ∥ϕ∥1Λ) is a contraction on R+. By Banach’s fixed-point theorem, there638

exists a unique solution Λ⋆ to the equation:639

Λ⋆ = ψ(u+ ∥ϕ∥1Λ⋆)

Formally, this can be rearranged as:640

ψ−1(Λ⋆)− ∥ϕ∥1Λ⋆ = u =⇒ Λ⋆ =
(
id− ∥ϕ∥1 · ψ−1

)−1
(−u)

provided that id− ∥ϕ∥1 · ψ−1 is invertible on the image of ψ.641

To control the tail probability, we apply Markov’s inequality:642

P

( ∑
k:k∆∈A

E[Z∆(∆)|F ]

∆
+ ϵ

(∆)
k > Mε

)
≤

E[
∑

k Λ
∆]

Mε
≤ (b− a+ 2δ) · Λ⋆

Mε

Here, we define:643

Mε :=
(b− a+ 2δ) · Λ⋆

ε
where Λ⋆ = ψ(u+ ∥ϕ∥1Λ⋆)

This choice ensures the upper bound remains within the prescribed ε-level for all ∆ ∈ (0,∆1). Since644

the only thing we need is the precompactness, we will not establish any tighter bound. Tightness645

of measure indicates we can always find a subsequence λ∆kn
+ ϵ∆kn

in λ∆k + ϵ∆k converges weakly646

to a sequence λ⋆ + ϵ⋆. This weak convergence of subsequences, however, cannot control the limit647

uniqueness for each sequence. Therefore, we also should further control the limiting behavior of648

each sequence by uniform convergence of the characteristic functional defined by the approximating649

process and the target process.650

D Detailed MUTATE Configuration651

D.1 Simulation Regime652

We simulate multivariate point processes and their converging equivalent class Zt extensively studied653

in our identifiability theory. We sample all point processes using the Poisson Superposition method654
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(rejection sampling from the upper bound of conditional intensity [30, 31]) in order to mimic highly655

dynamic changes in conditional intensity, to capture denser information contained in stochastic656

processes. Then we create corresponding converging classes as a proof-of-concept validation: A total657

of 20,000 latent trajectories are sampled for each of the five kernel functions—exponential, power-law,658

rectangular, simple nonlinear, and flexible mixing—under two noise regimes: heterogeneous noise659

and Gaussian mixture noise. To illustrate the latent events underlying the unstructured data, we also660

simulate stochastic dynamics for biological data using SERGIO [32], a GRN-guided gene expression661

simulator used in Lorch et al.’s [15] causal modeling as well. All observation Ot is obtained from662

latents Zt through MLP and LeakyReLU nonlinearity mixing.663

We demonstrate the generative process for INAR equivalent classes. For a fair comparison to664

those baselines mainly addressing step-wise conditional independence, we generate for both time-665

step dynamics and denser dynamics by changing the setup to very short kernel effects with τ ∈666

(0.001, 0.01) = t − t′. We generate stochastic point processes from three basic kernel response667

functions:668

ϕexponential(t) = αe−βt′ , α ∼ uniform(0.1, 0.5) and β ∼ uniform[0.5, 2)

ϕpowerlaw(t) =
α

(t+ c)β
· 1, α ∼ uniform(0.5, 1.2), β ∼ uniform[0.1, 0.8) and γ ∈ uniform(1, 3, 1.8)

ϕrectangular(t) =
1

T − T ′ · 1{t′≤T}

The baseline intensity u0 is sampled from uniform(0, 1, 0.2). All parameters of the basic kernel669

are uniformly sampled by ensuring α < β in exponential responses, α < γ in power-law response,670

respectively, to satisfy the stationary increment condition such that |ϕ| < 1. In the simulation, we also671

consider two extreme cases for simple nonlinear intensity and nonparametric intensity. We construct672

the conditional intensity function by mixing latent features through a linear transformation followed673

by a non-linear activation. Specifically, we first compute a log-linear intensity using the expression674

λt = log(1 + exp(zℓ − rℓ[:,∆, :]))

that ensures positivity and controls the scale of the output through a smoothed ReLU (i.e., softplus).In675

an alternative setting (kernel == "np"), we learn the intensity function using a small neural network676

(MLP): a two-layer perceptron with ReLU activation, ending in a Softplus to maintain positive outputs.677

This setup enables flexible, data-driven modeling of intensity dynamics beyond purely additive or678

linear forms. We define the mixing intensity function using a two-layer feedforward neural network679

with ReLU and Softplus activations. Formally, the architecture is given by:680

λt = σ+ (W2 · ReLU(W1λt(l) + b1) + b2) , (A1)

where681

• λt(l) ∈ Rd is the input linear basic intensity at time t,682

• W1 ∈ R64×d, b1 ∈ R64 are the weights and bias of the first layer,683

• W2 ∈ Rd×64, b2 ∈ Rd are the weights and bias of the second layer,684

• σ+(x) := log(1 + ex) denotes the Soft-plus activation.685

This design ensures the output λt remains strictly positive and can model complex dependencies in686

the latent dynamics while maintaining numerical stability.687

We model the transformation from the latent variable Zt ∈ Rd to the observational space via a688

multi-layer mixing network. Specifically, for each layer l = 1, . . . , L − 1, the transformation is689

given by Z(l)
t = A(l) · σleaky(Z

(l−1)
t ), where A(l) ∈ Rd×d is an orthogonal mixing matrix and σleaky690

denotes the leaky ReLU activation with slope α = 0.2. The initial input is Z(0)
t = Zt, and the final691

output Z(L−1)
t represents the observation-space signal.692

D.2 Prior decomposition of time-adaptive module693

Without loss of generality, we consider non-finite steps for a latent stochastic generative process,694

as discussed in Lem. 1, where ∆t→ 0. This induces an equivalence that the intrinsic history—the695

filtration Ft := σ
(⋃

0<t<T σ(Z
∆
t )
)
—ensures that the process Z(∆)

t is Ft-adaptive and measurable.696
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We decompose the ELBO objective as follows:697

ELBO = log p(O)−DKL(qϕ(Z|O)∥p(Z))

= Ez∼q(Zt|Ot)[log p(Ot|Zt)] + Ez∼q(Zt|Ot)

[
log

q(Zt|Ot)

p(Zt)

]
= Ez∼q(Zt|Ot)[log p(Ot|Zt)]− Ez∼q(Zt|Ot) [log q(Zt|Ot)− log p(Zt)]

= Ez∼q(Zt|Ot) [log p(Ot|Zt)− log q(Zt|Ot)] + Ez∼q(Zt|Ot) [log p(Zt)]

= Ez∼q(Zt|Ot) [log p(Ot|Zt)− log q(Zt|Ot)] + Ez∼q(Zt|Ot)

FT∑
F+

0

log p(Z
(∆)
t |Ft)


The reason we can segment the increasing filtration in the last term is due to the nice property of698

Ft-measurable sequence. We can show that filtration of Zt|Zs, Rt and Zt|Rs is equal because it is699

well known that any p-order INAR sequence with stationary increments admits a moving average700

(MA) representation. Further construction of their filtration F̃t(resp.Rs<t) and Ft(resp.Zs<t, Rt)701

can show702

F̃t = Ft

We prove the result in the sequel. For F̃t, Zt is a measurable function for s < t. By causality of the703

convolution kernel Ψ = (I−Φ)−1 satisfying Ψτ = 0 for τ < 0, which indicates Zt ∈ σ(Rs : s < t).704

Then, we construct another filtration F̃s : σ(Ru : u < s). By adaptivity F̃s : σ(Ru : u < s) ⊆ F̃t :705

σ(Ru : u < t). Therefore, Zs is also σ(Ru : u < t)-measurable. Since the minimal σ-algebra of the706

original Ft-measurable function must be contained in its σ-algebra, we have σ(Zs) ⊆ σ(Ru : u < t)707

and σ(
⋃
s≤t

σ(Zs)) ⊆ σ(Ru : u < t). For Ft, Rt = Zt −Ψ ⋆ Zt so Rt is σ(Zs : s ≤ t)-measurable.708

Therefore, by a similar construction, it is evident that σ(
⋃
s<t

σ(Rs)) ⊆ σ(Zs : s ≤ t). Therefore,709

because F̃t ⊆ Ft and Ft ⊆ F̃t, there must be F̃t = Ft.710

Following this set-up, the prior becomes:711

Zt | Ft ∼ N


 u1(t)

u2(t)

...
up(t)

∑
t′<t

(I − Φ)−1,
∑
t′<t

(I − Φ)−1Σt′(I − Φ)−T


The latents are generated by Zt = (I − Φ) ⋆ Rt, where Rt is modeled as isotropic Gaussian noise712

with mean U and variance Σ. Note that the variance matrix ΣZt is zero for any t − t′ ̸= 0. By713

the Wiener-Khinchin Theorem, we have the covariance matrix CZt
(0) = 1

N

N−1∑
k=0

Sz(wk), we drop714

the sub-index Zt whenever no confusion is caused. Now we can derive the decomposition of the715

convolution prior as716

Ez∼q(Zt|Ot)


FT∑

F+
0 ,Zt

log p(Z
(∆)
t |Ft)


= Ez∼q(Zt|Ot)


FT∑

F+
0 ,Zt

log p
[
(I − Φt) ⋆ R̂

(∆)
t

] = Ez∼q(Zt|Ot)


FT∑

F+
0 ,Zt

log p

[∫ t

0

(I − Φt−t′)R̂
(∆)
t′ dt

]
= Ez∼q(Zt|Ot)


FT∑

F+
0 ,Zt

log p

[
N (ÛR,

∑
H−1

t ΣR̂′
t
H−T

t )

]
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= Ez∼q(Zt|Ot)


FT∑

F+
0 ,Zt

log p

N (ÛR,
∑

H−1
t (PSDẐt

)ΣR̂′
t
H−T

t (PSDẐt
))︸ ︷︷ ︸

Cp(Zt)
(0)




= Ez∼q(Zt|Ot)


FT∑

F+
0 ,Zt

log p

N (Û
∑
t′<t

(I − Φ(t− t′))−1︸ ︷︷ ︸
(1−Φ)(wk)−1Σ(1−Φ)(wk)−H=SZ(wk)

,
1

N

N−1∑
k=0

SZt(wk))




(A2)

= Ez∼q(Zt|Ot)


FT∑

F+
0 ,Zt

log p

N (Û
∑

τ>0,w=0

(I − Φ(τ))−1e−jwτ

︸ ︷︷ ︸
the inverse Fourier at w=0

,
1

N

N−1∑
k=0

SZt
(wk))




= Ez∼q(Zt|Ot)


FT∑

F+
0 ,Zt,N∈(N0,T )

log p

[
N (ÛPSDZt(H(0)),

1

N

N−1∑
k=0

SZt
(wk))

] (A3)

D.3 Explicit control for convolution prior717

Zd
[w1]Zd

[w2]Zd
[w3]Zd

[w4]Zd
[w5]Zd

[w6]

T = N

T = N

Figure A2: Visually Time-adaptive PSD Computation

Encoder-PSD flow As shown in Eq. (A3), a key component of our module is to efficiently718

compute the decomposition of PSD matrix. However, under milder regularity conditions, the PSD719

decomposition is not unique, thus only be recovered up to the minimal-phase. By the Theorem, the720

energy of the time domain and frequency domain is equivalent. Therefore, the encoded distribution is721

not sufficient to decompose the PSD matrix for which a reparameterization is needed. An encoder722

receives a T -length sequence Ot and returns the latent variable vector. Fast Fourier Transformation723

converts the latent sequence to a vector of equal length up to t:724

[ZF0 , ZFt , · · · , ZT ] ⇒ {[Z[f0], Z[fk], · · · , Z[K]]|K = 0, 1, 2, · · · , T}

And the flow method is enforced by solving the following Wilson Factorization optimization problem725

for each [Z[f0], Z[fk], · · · , Z[K]] , finding the transfer matrix726

H† = arg min
Σt=σ2I

PSD(Zt)−H†ΣtH
†H

That is then sent to evaluate the true prior distribution, supporting the joint optimization of all loss727

components.728

The summation of kernel products and integrated noise variables is guaranteed to converge to the729

true time-adaptive process under Ft, provided that the time discretization is sufficiently dense. The730
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latent variable Z∆
t is sampled from the encoder distribution qϕ and passed to the PSD decomposition731

module to compute the frequency-domain representation of the full kernel matrix Fw[1− Φt] and732

the power spectral density SR̂t
. We further remark that the key step, spectrum decomposition, is733

completed for the entire encoded trajectory Ẑt0:T , and the prior structure is ensured by segmenting734

filtration. This features the major difference in prior work that recursively constructs an equal-length735

sliding window for each latent. Filtration segmentation can work with causal masks that a more736

expressive encoder leverages. Note that transformer modules are not a required component for737

shorter sequences, i.e. T < 100. However, when the sequence is extremely long, as simulated in the738

conventional class of stochastic point processes, a transformer can be used in place of a common739

MLP encoder to learn much more expressive latent embeddings by utilizing the filtration attention740

from arbitrarily long past events.741

Overall training loss. To encourage sparsity in transferring kernels, we follow the widely used742

penalty to jointly optimize:743

LTotal = LRecon − βLKLD − γ|Φ| − ωLPSD (A4)

This training objective ensures the learned latent process is driven by a family of generalized white744

processes, as, in the Encoder-PSD flow, the decomposition is enforced by the prescribed isotropic745

noise, which omits any discriminator module as used in [28]. The coefficients in sparsity loss and746

PSD accuracy are registered as tunable hyperparameters.747

D.4 Extended Results748

Table A2: Reporting the best performance for each baseline
Method Metric Kernel Ave. Exp Power. Rect. Nonlin. Nonpar.

TDRL MCC
Lvae

0.657
0.449

0.629
0.308

0.653
0.302

0.773
0.302

0.584
0.871

0.644
0.461

BetaVAE MCC
Lvae

0.419
9.480

0.395
8.538

0.414
7.533

0.420
8.424

0.433
11.683

0.433
11.220

SlowVAE MCC
Lvae

0.410
362.890

0.384
395.107

0.405
448.105

0.420
452.472

0.425
238.520

0.412
280.247

PCL MCC
Lvae(train)

0.440
0.693

0.469
0.693

0.379
0.694

0.430
0.693

0.474
0.693

0.449
0.693

MUTATE MCC
Lvae

0.811
0.670

0.922
0.448

0.784
0.508

0.964
0.253

0.885
0.942

0.501
1.201

E Related Work749

Causal disentanglement and learning time series. Although estimating and predicting time series750

is a classical problem in both traditional statistics and modern machine learning, representation751

learning has opened new avenues for leveraging latent information to better characterize time series752

data [33, 34]. Recently, learning causal representations in time series has become a foundational753

approach for enabling new scientific discoveries. This line of research primarily focuses on estab-754

lishing identifiability of causal latent variables by exploiting nonstationary data [28, 4] and modular755

distribution shifts [5, 35] with sparsity constraints [36, 37] on the latent transition. Those works solve756

the identifiability problem of latent causal models by leveraging sufficient variability that can come757

from proper interventions or passive distribution shifts. Another line of research focuses on learning758

the underlying causal graph among latent variables759

Learning Causality in Stochastic Processes. While learning causality remains a considerably760

more challenging task than causal discovery or representation learning, several efforts have been made761

to bridge these areas. Here we review existing approaches that link causal learning with stochastic762

modeling. Our scope is not limited to causal representation learning with stochastic processes, but763

extends to a broader set of problems that are closely related to either domain.764
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One representative direction in causal learning for dynamical systems is the study of Granger765

causality—a broader and looser notion compared to strictly structured causal models [38]. It is widely766

acknowledged that full causal recovery in such systems is impossible. Consequently, even the most767

recent work on stochastic processes can only determine whether a point process a is Granger-causal or768

non-causal with respect to another process b, typically formalized through local independence and the769

δ-separation rule [39]. Another active line of work concerns identifiability in dynamical systems [40].770

However, to the best of our knowledge, none of these models provides provable guarantees for highly771

dynamical systems such as self-exciting or more general stochastic processes.772

Connections between causal representation and dynamical systems have also been explored through773

ordinary differential equations (ODEs) [41]. Technically, these approaches recover only a set of774

parameters that are difficult to interpret as causal in the latent space, or at best allow stochastic775

dynamics in the observed variables. More recently, causal diffusion models have been proposed [42,776

15], yet they largely treat diffusion as a standard denoising process and thus do not permit a well-777

structured stochastic latent causal representation.778

Another important line of research investigates interventions on stochastic processes and the corre-779

sponding post-intervention distributions, which serve as the basis for causal inference [43, 44, 45, 46,780

15]. The first attempt to introduce a causal interpretation into stochastic differential equations (SDEs)781

was made by the authors of [47], where interventions are defined as the removal of single variables782

in SDEs. They showed that causal principles in SDEs can be formalized as interventions, with the783

resulting post-interventional distribution identifiable via the infinitesimal generator. However, such784

interventions are too restrictive to capture more complex dynamical scenarios. Following this initial785

line of work, [44] further develops methods for estimating stationary causal models by minimizing786

the deviation of stationarity of diffusion.787

Stochastic representation in biological science. Prior work on the dynamics of cancer genomics788

has investigated modeling the underlying stochastic processes, typically under the assumption that789

all mutations can be identified through observable changes in protein binding and synthesis. A790

seminal line of studies focuses on methods and conditions under which mutation rates are treated as791

fixed for each driver mutation during tumor progression. Under these assumptions, the evolutionary792

dynamics can be effectively modeled using a linear Moran process with fixed population size [48,793

49]. One branch of this literature aims to identify driver mutations that are directly manifested in794

observations. However, given the limited prior knowledge, mutation interactions are unlikely to795

be strictly linear or fixed. As a result, due to the inherent stochasticity and dynamical nature of796

cancer development, most driver mutations remain latent and their patterns are not readily discernible797

in protein sequences [50, 51, 52]. More recently, [52] reformulated this problem by introducing a798

framework to distinguish between weak and strong driver mutations to better characterize cancer799

progression. For example, in several cell cycles, a normal cell must accumulate multiple mutations in800

tumor-susceptibility genes to trigger oncogenesis. This process is inherently stochastic, and many801

mutational events may be dependent, self-exciting, or regulated by other processes. Identifying latent802

processes underlying disease-specific mutations and recovering their causal relationships is therefore803

crucial for computational biology and the planning of sequential cancer treatment regimens.804

F Conclusion and Limitation805

Our paper makes extensions of causal representation learning framework to stochastic causal dynamics806

(i.e., multivariate Hawkes Processes), a topic not yet covered in current CRL literature. We propose a807

new perspective that a branch of stochastic processes can be viewed as the corresponding equivalent808

class through INAR representation and weak convergence. Under those conditions, we show that809

the latent stochastic process can be identified up to a component-wise transformation and a scaling810

permutation matrix. Our theoretical result bridges the gap between stochastic modeling and causal811

representation. We also propose a novel framework to learn the time-adaptive transition dynamics812

to accurately estimate the latent processes. However, our work avoids the most complicated case813

for a fully nonparametric kernel, which, most of the time, can be replaced with a simpler kernel.814

Future direction may include solving this condition and causal representation learning for stochastic815

differential processes that manifest in rich scientific questions.816

817
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