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Abstract

We investigate the identifiability problem of latent stochastic processes charac-
terized by high dynamics that occur in continuous time with varying intensities
(e.g., a multivariate Hawkes process), and we provide the corresponding identifi-
ability theory. Building on this theoretical foundation, we implement MUTATE,
a variational autoencoder framework with a time-adaptive transition module to
evaluate stochastic dynamics on both synthetic stochastic processes and real-world
biological signal data. This work advances causal representation learning theory
by extending it to continuous-time and stochastic settings via weak topology and
algebraic signature, highlighting the importance of this approach in addressing
scientific questions, such as the accumulation of mutations in genomics and the
mechanisms driving neuron spike triggers in response to time-varying dynamics.

1 Introduction

Inferring causal relationships among variables from observations capitalizes the potential of machine
learning to advance scientific discovery, as it reveals underlying mechanisms that are not identifiable
from observational distributions alone [1]. However, because of limited data sources and the challenge
of interpreting high-dimensional perceptual data, causal variables with their graphical structure are
often unknown and thus can be learned in a non-interpretable manner, which causes the difficulty of
identifiability [2, 3]. Recently, a growing number of studies on the disentanglement of latent causal
representation advance the identifiability guarantee and propose methods for latent causal variable
estimation. Seminal works among them establish identifiability by leveraging sufficient variability in
latent distribution due to multiple-source data [4, 5], auxiliary variable [2, 6, 7, 8], or intervention to
a latent causal graph [9, 10, 11, 12, 13].

Most concurrent work aforementioned aims at recovering the latent causal variables in the time-series;
A common condition they heavily hinge on is step-wise conditional independence [4, 5], termed as
the number of time lags in their claims, among variables. These works mainly address cases when
the mixing is assumed invertible, such that latent variables can be recovered up to component-wise
indeterminacy. However, the latent dynamics driven by a stochastic process or system of stochastic
differential equations are less explored. For example, in biology, fatal diseases such as cancer are
principally caused by cumulative multiple mutations found in driver genes as the colonial expansion
proceeds. In neuroscience, the latent event dynamics trigger visible biological signals [14, 15].
Finding cancer-associated mutational genes and tracking their behavior through their representation
has been given much more paramount importance in recent few decades [16, 17, 18]. Therefore, a
formal theoretical guarantee for its identifiability is missing for stochastic causal dynamics and their
intervention effects.

This paper aims to establish the identifiability of latent spaces governed by stochastic dynamics driven
by the intensity A;. Our main results demonstrate that such stochastic processes are compatible with
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the current causal representation learning framework and converge to an equivalent infinite-order
INAR process, provided that an integrated fluctuation term is added. Building on this foundation, the
identifiability of dynamic processes is ensured by precisely controlling the geometry of the latent
space via the subtle algebraic structure of cumulants.

2 Causal disentanglement in stochastic process

2.1 Generative model for stochastic process

Let O; € R" be observable data, and Z; € RP be a latent process. O is being generated from
latent point processes Z; through an unknown mixing function f. A®? denotes the tensor/Kronecker
product. In a time process, ¢ denotes the transition operator (e.g., an autoregressive coefficient matrix
or continuous kernel matrix) and symbol x denotes the convolution operator. We formally set up our
problem to learn dynamics of Z; from O; in Def. 2.1 .

Definition 2.1. Consider a series of latent processes that are stochastic and self-exciting as time
increases, that is, Z; := Ny , the cumulative counting process at time ¢. Suppose we only have access
to O; without knowledge about Z;. The conditional intensity A\; of Ny [19] and generative model of
O; is written as:

O¢ = [(Ni(A)), At = h(u + ;% dNy) ()
Then, the objective is to recover f, A; as well as its causal structure ¢

h(-) is an unknown function reflecting how ®; and dN; are mixed under a regular convolution. A
simple choice h(-) = = immediately reduces a convolution to linear point processes. ¢ is one element
of ®;, an integrated kernel matrix and d N} the measure of a counting process N7, as well as the

integral measure in Ito calculus. The counting process N} and the conditional intensity \! satisfy:

toar — N} = Nj, = dN{ and X} = %. For a point process to be well-defined, non-trivial

constraints are needed, one of which is the stationary condition, an assumption widely adopted in
most stochastic process literature to ensure a unique process. We summarize the necessary conditions
to define an inhomogeneous point process in A.4.

2.2 A graph isomorphism to causal kernels

The seminal result in [20], establish the weak convergence of continuous stochastic processes under
the corresponding weak topology. In particular, for any compact interval [a, b, a subsequence INAR
process converges to the point process IV;. This convergence is crucial for constructing a causal graph
structure compatible with the term causal representation in our paper.

Lemma 1 (Bounding Point Process in Variational Approximation). Let N; € RP be a multivariate
point process whose conditional intensity function is governed by a convolution structure described
in Eq. (1). Suppose the noise term €, is mean-zero and mutually independent, then the intensity model
admits the following weak convergence:

Z®) .= INAR(p) = N, p— o0 )

We then show that ® in INAR(p) admits an augmented DAG structure &k in Lem. 2 .

Lemma 2. Given a bipartite graph of the proposed point process with ®, it admits a kernel DAG,
denoted by Y, corresponding to a matrix Mg, € R*P*?P such that Iy, — Mg, is invertible.
Consequently, its inverse can be expressed as a finite order k expansion of Mg,,

k
1 i _ Mfé’K [U] o
(HQP - M(fk) o ;Mgk’ k<p, MgK a 0 MgK [V]

where k corresponds to the length of the longest path in the DAG and Mg, U] = Mg, [V] = 0,x,

3 Recovery from algebraic signature of mixed manifolds

The endowed topological structure in Mg leads to a spectrum of polynomials ¢;, and an algebraic
variety V' (Z) is associated with the generating ideals Z of those polynomials. We emphasize that the
dimension of V' (Z) determines the identifiability through algebraic quantities.
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3.1 Algebraic structure for stochastic causal representation

Cumulant is an important algebraic signature of its geometric property, as a full order cumulant
precisely encodes the entire distribution, including the component-wise and time-wise dependency
among variables. This enables the fine-grained mathematical nature of intervention effects beyond
traditional mean and variance shifts. Under generic (non-Gaussian) conditions, the d-th order cumu-

lant of a random variable X = As admits closed-form expressions as kq(X) = ?21 ka(s)(A;)®,

which is a secant variety o1, (X) that views each tensor factor (A;)®? as indeterminate. If the matrix
A is generic in an open set, the Kruskal rank condition is satisfied and thus }°7_, ka(s)(A;)®? has a

unique decomposition. This means the idea Z : (kq(X) — le ka(s)(A;)®?) has dimension zero.

We connect our reasoning to this and illustrate how high-order cumulants can capture sufficient
statistical variability in the system, even under temporally independent Gaussian noise. In particular,
we adapt the setting in [21], modifying it to allow additive noise that is independent over time. To this
end, we establish a result for full recovery of INAR processes in the asymptotic regime p — oo, by
formulating identifiability conditions through algebraic-geometric constraints imposed on the latent
space.

3.2 Generic identification from algebraic structure

Let J¢ be the Jacobian matrix of f and K = J¢(I, — ®)~'. Jy and Ky are augmented matrices by
filling J¢, K in a larger matrix to match the dimension of M. We present the following assumption.

Assumption 1.
1. fis a generic C% map with a full rank J  almost surely.

2. There exist at least p nonzero tensors kq(AOy) for d € D := {d | Rq+1(AO;) = 0},
where kq(AOy) is the difference cumulant truncated at the first-order Taylor expansion of

Ot = f(Zt)
3. The ideal T* : (Jg —Kg(;)(ﬂgp —~ MW k=1,2,--- ,p) has a zero-dimensional associated
variety V(I*)

Theorem 1. Under Assum. 1, the latent sources with their causal structure are identifiable up to
permutation and component-wise scaling.

The C? assumption is strictly weaker than requiring f to be a diffeomorphism, since even in the
presence of directional collapse within the latent space, the cumulants may still faithfully transmit the
non-redundant dependency structure to the observed domain. The core idea of our proof leverages the
propagation behavior of algebraic structure under nonlinear transformations, allowing us to identify
latent structure via the observed partial geometric-algebraic information on the mixed manifold O;.
That is, the cumulant hierarchy of each observed component has finite depth d, and the non-vanishing
cumulants up to this order are sufficiently rich to ensure identifiability via tensor decomposition.
The proposed rank condition (1) is classic and results in a generically unique decomposition of d
order tensor x4(O;), which uniquely recovers the component v; up to permutation and rescaling.
Condition (2) ensures we can find such p different tensors so that Jy and (I, — M) ~! can be further
disentangled up to the same indeterminacy. The proof strategy converts the identifiability problem
into the precise geometry of latent manifolds associated with the time-dependent process. See the
proof in B.1.

4 Recovery from MUTATAE

4.1 Architecture of MUTATE

Building upon our identifiability theory, we formally introduce MUTATE (MUIti -Time Adaptive
Transition Encoder), a novel estimation framework for latent multivariate self-exciting point processes.
MUTATE is designed as a causal representation learning architecture capable of modeling continuous-
time stochastic dynamics. Importantly, the framework is modular and can be readily adapted to
other types of stochastic processes with suitable modifications. Unlike prior frameworks that rely
primarily on conditional independence to enforce latent structure, our approach accounts for the
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nature of progressively adaptive stochastic processes. In such systems, the filtration Fr, which
captures the intrinsic history of the process, is defined as o (Uo <t<T O’(ZtA)) and grows strictly over
time (Figure. 1). This dynamically expanding information structure poses unique challenges for both
identifiability and representation learning, which MUTATE is explicitly designed to address.

Time adaptive transition module. We first

employ an encoder g,(Z£ | X2) to learn the es- o

timated latents Zt(A) ~ q4(ZP | XP) as com- %, 7 Z,
monly applied in representation learning frame- ~ ~_ 7

works. Recall that the latent process is modeled IIIIIIyTT Tt >
as Zy = ® x Z; + R, where ® denotes a global ey Fia

convolution kernel and R; = U + ¢; is aresid- . o . . o

ual process. Under our weak convergence con- Figure 1: visualization of information loss in in-

dition, Z; receives a well-structured representa- CT¢aS1Ng filtration

tion Z; = (I — ®)~! % (U + ¢), which is also

a (U + €;)-measurable process with tractable

Power Spectrum Density (PSD): S ,(a)(w) = (I — ®)"'Xg, (I — ®)~* , where the baseline U
t

is treated as a learnable parameter in the model and A¥ is the Hamilton conjugate transpose of
A. w is a continuous frequency variable. The inverse mapping f, ! is an encoder with training
parameters of neural networks. Importantly, the learned functional f maps the observation Z; to
a space of independent varying noise through the designated PSD decomposition that enforces X
to be diagonal and recursively infers HT = (I — ®)~!. Then, the evaluated prior from the PSD
module is sent to calculate the KL divergence. Decomposing S(w), each of the transitions satisfies

log p(Zt(A) |F;—) = logp[(I — ®) x R2], which is the main part of the latent prior estimation. Our
model is trained based on the Variational Auto-encoding framework. Therefore, we aim to max-
imize the log likelihood of observation 10g pgqtq(X) through the rule of the ELBO lower bound:
ELBO = _Erecon - aﬁKL.

4.2 Simulation Study

To validate our identifiability results, we evaluate against several representative baselines, including
TDRL [4], BetaVAE [22], SlowVAE [23], and PCL [7]. Among them, PCL and TDRL incorporate
temporal dependencies by leveraging historical information and explicitly enforcing conditional
independence among latent variables to recover underlying dynamics. In contrast, BetaVAE and
SlowVAE assume independent latent components and disregard any time-delayed mechanisms. A
detailed simulation procedure is included in D.1.

Performance of all baselines and our model is shown in Table | and extended results are reported
in Table A2. During training, both BetaVAE and SlowVAE tend to converge prematurely, typically
reaching a local optimum within the first epoch and triggering early stopping. This behavior highlights
their limitations in modeling temporal structures essential for identifying latent event-driven processes.
TDRL performs reasonably when the lag module is set to a longer one (we use L = 9 in experiments)
since it can harness shorter temporary contextual information. It is noticed that our identifiability can
be readily applied to the prior framework by either adding the domain index in synthetic datasets or
modulating the distribution shifts that change pairs of edges in the latent space. However, we also
realize that the fully non-parametric setting is hard to interpret since our identifiability avoids such a
case.

Table 1: MCC Scores with standard deviations for five kernels

Method Ave. Exponential Powerlaw  Rectangular nonlinear nonparametric

TDRL [4] 0.599 0.593+0.028 0.609+0.043 0.618+0.056 0.556£0.016 0.616+-0.043
BetaVAE [22]  0.141 0.153+0.863 0.128+ 0.077 0.128+0.078 0.146+0.108 0.149+0.096
SlowVAE [23]  0.115 0.108+0.075 0.104+0.073 0.104+0.073 0.126+£0.074 0.13140.076
PCL [7] 0.375 0.395+0.034 0.330+0.029 0.330+0.029 0.414+0.028 0.404=£0.028
MUTATE(ours) 0.837 0.853+0.218 0.938+0..036 0.879+0.102 0.921+0.029 0.598+0.013
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A Useful Lemmata

A.1 Preliminary lemmas

Lemma A.1 (Weak Convergence [24]). Let (S,S) be a Polish space equipped with its Borel o-
algebra, and let {Z,, },,en and Z be S-valued random elements defined on a common probability
space. Then the sequence {Z,} converges in distribution (i.e., weakly) to Z, denoted Z,, = Z, if

and only if
lim E[f(Z,)] = E[f(Z)]

n—roo

for all bounded continuous functions f : S — R.

The proof and demonstration of this lemma is classic in basic probability that we omit here. The
weak convergence, in most cases, corresponds to the convergence of finite dimension distribution of a
process or a variable.

Lemma A.2 (Tightness of the Measure P, (a)). Let {ZT(LA)}neN be a sequence of S-valued random
elements (e.g., stochastic processes or path evaluations) indexed by /A and defined on a Polish space
S with Borel o-algebra. Then the sequence of corresponding probability measures {P Z(A)} is tight.

In particular, any subsequence admits a further weakly convergent subsequence.

Tightness of a sequence of probability measures ensures the existence of well-behaved subsequences:
every subsequence admits a further weakly convergent subsequence. This property is particularly
useful in Polish spaces, where tightness is equivalent to relative compactness (precompactness)
under the weak topology. However, it is important to note that precompactness does not imply full
compactness; in general, a tight sequence need not converge without an additional uniqueness or
limit identification argument. Thus, tightness provides necessary control over subsequential behavior,
but does not guarantee full convergence of the entire sequence.

Lemma A.3 (Higher-Order Moment Bound Implies Lower-Order Bounds). Let {Z,}nen be a
sequence of real-valued random variables defined on a common probability space. Fix an integer
d > 0. Suppose there exists a constant C > 0 such that

supE[|Z,|9] < C.
neN

Then for any 0 < p < d, there exists a constant C}, > 0 such that

supE(|Z,[?] < C,.
neN

A.2 Background of Hawkes Process

Assumption A.4 (Stability and stationary Increment, Proposition 1 in [25]). The process Ny has
asymptotically stationary increments, and intensity \; is asymptotically stationary if the kernel
satisfies the assumption:

t
paw) = |2(1)| = / |®(t)| dt has spectral radium smaller than 1 (A1)
0

Asm. A.4 gives a necessary condition so that the point process has stable, stationary increments
in its intensity. In particular, it means the entire process tends to be stable with an unknown but
fixed expectation of the conditional intensity E[\!] = A’. Restricted by the stationary increment
assumption, the existence of the corresponding process is ensured by Lem. 3. To illustrate those
conditions, we show a simpler version kernel in Example 1.

Lemma 3 (Proposition 6 in [20]). If all conditions and results in Asm. A.4 hold almost everywhere,
there exists only one determined process whose dynamics match observations with regard to \°.
Example 1. Consider a point process whose kernel functions relay causal influence with an exponential
decay to other processes. The generating process thus be accordingly

p t
A=+ Z/O ale=PU=t) gNJ,
j=1

shows the exponential kernel triggers influences that are sustaining but decaying as time proceeds.
Technically, the induced causal influences, although decaying from inside the system dynamics, will
not disappear unless the causal strength o = 0 for all j.



366

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

385
386

388
389

390
391

392
393

394

395

396

397
398
399

401

402

A.2.1 Remarks on the filtration

In probability theory, the filtration F; is defined as the smallest o-algebra that renders the intensity
process \; to be F;-adapted and measurable. This filtration is constructed by the minimal closure
under set operations (e.g., union, intersection) over past events, ensuring that A; evolves consistently
with the observable history [26, 27]. Therefore, for any filtration as its internal history, we have
Fs C Fy,for s < t. Note that the filtration F; may theoretically differ from the intrinsic history
‘H., which introduces additional challenges in the evaluation and modeling of point processes.
For a comprehensive discussion on scenarios where F; and 7, are defined differently, we refer
the interested reader to [27]. We occasionally overload the notation dN/, which represents an
integral element in stochastic calculus, to distinguish it from its deterministic counterpart. Despite
potential similarities in notation, they are fundamentally different: while standard calculus considers
infinitesimal increments over fixed mesh widths (e.g., dg(x) as At — 0), the increment dN} is a
random variable governed by the stochastic process. Specifically, its realization at each infinitesimal
interval is drawn from a Bernoulli process with intensity A{, such that P(dN;} > 0 | 7;) = AL, dt. In
contrast to deterministic differentials, dN; encapsulates the uncertainty of event occurrences within
each interval. The kernel matrix ®, consists of time-decaying kernel functions that transmit the
influence of past events across processes. It captures both time-delayed and causal dependencies, and
plays a central role in modeling self-exciting or mutually-exciting dynamics.

A.3 Cumulants and Tensors

Cumulant tensor notation. The d-th order cumulant tensor of a random vector X € RP is
denoted k4(X) € RP**P and is symmetric in all modes. In ICA and CRL settings, cumulants of
independent components often admit a CP form:

R
ka(X) = Z)‘T ~U§d,
r=1

where v, € RP and A\, € R. This structure enables identifiability of latent sources from cumulant
information.

Tensor notation and operations. We denote an order d tensor as 7 € Rt */2X-xIa The outer
product u® @ - @ ul® e RI**Ia produces a rank-1 tensor with entries:

(D), @

7;17'“77:11 - u’Ll iq "

Given a tensor 7 € RI>X*IN and a matrix U € R7*!»  the mode-n product T x, U €
RIvx<xIn—axIxInpa1 X XIN is defined as:

In

(T X0 Uisecsin 1 ssin sy = Z Tivsovin “ Ujin-

B Proof of Identifiability Theory

B.1 Proof of Thm. 1

B.1.1 Useful Lemmas

To potentially identify any latent components of dynamics, we must introduce tensor algebra beyond
our current setting as we present the following important results.

Corollary B.1 (CP decomposition). Let T € RI1*12XXIN be an order-N tensor. We say that T
admits an exact rank- R Canonical Polyadic (CP) decomposition if there exist component vectors

m(ﬁn) € R foreachr =1,...,R,n=1,...,N, such that:

R
T = Zagl) ®a? @ - ®@a) =AM, 4@ AN,

r=1

Where A = [agn) aén) e ag)] € RIv*E gre the factor matrices.

10
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Corollary B.2. Ler XV, X®?) X & RP pe independent random vectors with nonzero d-th
order cumulants, such that each admits the form

k(XY =\ 0P fori=1,...,n,

withv; € RP and \; € R\ {0}. Let T := kg(XM) 4 ... + X)) € RP*"XP pe the d-th order
cumulant tensor of their sum.

Assume that the matrix V = [v] vy -+ v,] € RPX" satisfies
2 -1
krank(V') > [TH-Si)“ .

Then the CP decomposition
n
T = Z )\z . U?d
i=1

is unique up to scaling and permutation.

B.1.2 Proof of Thm. 1

We prove Thm. | by showing that the tuple (f, ®, U) is identifiable up to a component-wise trans-
formation and permutation. Our proof is based on the dimension of the associated variety defining
special hypersurfaces in a polynomial ring K. We study the nonlinear propagation of the cumulant
structure to find the identifiability conditions for INAR processes. Given a generic nonlinear f, its
exact cumulant x4(O;) follows an order d expansion of with Bell polynomial coefficients. For a
smooth map f : Z; — f(Z;), we can construct O. = f(Z;1a¢) using Taylor expansion:

F(Zornd) = F(Z0) + 2 52002+ 2012822 + o(AZD)

2

07, 2072 /
At this time, the expansion has rather abnormal behavior, as the order can be extremely large.
However, the truncated expansion at order 1 has intriguing theoretical attractions. Let higher-order

components be R(1), and recall Z, = H * ¢, , we obtain the truncated differential process A f(Z;),
denoted as:

t
Af(Z) =R() = Jp > Hyses (A1)
k=1

We treat all quantities appearing in Eq. (A1) as indeterminates in a polynomial ring

R = k[{Af(Zt)}ta R(1), Jg, {Hi—s}s, {Es}S]a
where k is a base field such as R or C. For each time index ¢, the defining polynomial is g; :=
Af(Zy) — R(Q) — Jy ZZ:I H,_se; € R. This polynomial generates the principal ideal Z,
(9:) C R, and considering all time indices ¢ = 1,2,...,T, we obtain the global ideal Z
(91,92, ---,97) C R . The corresponding affine variety is then

V() = {(Zt,Af(Zt), Jp Hys, 65, R(1) € kN ‘ g: = 0 for all t}.

It is evident that V' (Z) is positive-dimensional, since the defining relations do not specify finitely
many points. To obtain more structure, we consider higher-order statistics. In particular, the d-th
order cumulant tensor of the transformed increments takes the form

tp
- . o\ ®d
Kd (Af(Zt)) = ZZ ROE (Jth(ljs)> :
s=1j=1
This expression shows that the cumulant naturally defines a point in the projective tensor space
PV'"QV'"®---@V"),

where the number of tensor factors equals d. Hence, while the affine variety V'(Z) is too large to
give identifiability, the cumulant tensors lift the problem into a projective geometric setting, where
connections to secant varieties of the Veronese embedding provide a natural framework for studying
uniqueness and decomposition. So far, the generic mixing f is preserved by its Jacobian matrix Jy;
hence, identifying J; is equivalent to the recovery of f up to a constant. Now, we are ready to prove
our main theorem. Without loss of generality, we write .JJ¢ as I since they behave the same way in an
algebraically closed field.

11
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Step 1: Uniqueness of mixing kernel (I, —®)~! We prove this supporting result via an extension

of Proposition 3.1 in [21]. In the classical linear source decomposition (LSD) setting, the d-th order
cumulant of X admits the following tensor decomposition: r4(X) = 37| ka(e;) - (B;)®? under
the assumption that the components of € are non-Gaussian with non—vamshlng d-order cumulants,
and that multiple interventions are available. The sufficient order d cumulant of each Z; for a fixed
t= ti is

ka(Zi) = kal(I — ®) ' xe] = ZHt o€
for each s, the linear transformation H;_; results in a multl—hnear transformation of their cumulants
d
ﬂd(Htstk) (Ht s ®dcd Zﬁd Ht s ®

The full order d cumulant of the mixed manifold O; is
ka(Ot) = ka(FZy, FZy, ..., FZy)
d times
= F® ka(Ze, %, .., Zy) (A2)
———

d times

t t t
=FQF® - QF ky Z Hy €5, Z Hi s €5py..., Z Hy g es,

d times s1=1 sa=1 sa=1
d times
t t
:F@F@--@F-Z.--an Hy g€, Hi sy€sy,.... Hi_g€s,)
d times s1=1 sqa=1
t t P
—FoFo---oF- Y -3 Yk (Ht(:?egﬂ'),Hf:?egf),...,H,ﬁ;’?egﬂ)
d times s1=1 s=1j=1

t P
=FoFo--oF |3« -H D 0B 0 0 HY)
—_—

d times s=1j=1

d times

I
]~
1=
=
L3
-
N—
/N
o
=
s
N———
®

(A3)

Unlike in a time-free process, the joint cumulant of a time process is of order d that is coupled with
the number of time lags:

min(t1,...,tq)—1 p d
Hd(Otla ey Otd) = Z Z KE;) ® (FH£Z7J1'>
=1
p min t17 td) 1 4 d
=X X w0 (Ad)
J=1 s=1 =1

We denote the Fourier transform of z(¢) with respect to time ¢ as F[x](w). Using the convolution
theorem and linearity of the Fourier transform, we have:

Fira00e) = 7 | w0 - (PHED)

s>0j5=1

12
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d

J 5 ?
/OZ/@() (FH(t—s)( )) ds

zp:n 9 [(FH( J>) wU(t— s)}

j=1

an ) [(FH“”) }(w)-(wé(wwi) (AS)

Since 0(w) vanishes everywhere except at w = 0, multiplying it by w gives zero, Eq. (A5) yields

Q). F [(FHc,j))@d] () - <7r5(w) + L)
_ zp:nff)(E) F {(FH( J))®d_ (W) - iw - <7r§(w) + zi})

!
o~
5

7=
=

&

iwF[kq(O)](w)

which reads

ingﬁ(e).f{(pmm)@d} (w),iw(m(w”;) _ éﬁ;j)(e)_F[(FH(:)j))m} "
(A6)

By assuming non-Gaussianity in e, for each j, Eq. (A6), hence iwF|[k4(O:)](w) has a unique de-
composition of the summation of rank-1 tensor. Therefore, each column of the sub-linear mixing
transferring matrix F [(FH )] is theoretically recovered up to a scaling and permutation r if all
assumptions made are satisfied in ®. This indicates that even if one needs to calculate the tensor de-
composition unnecessarily, such uniqueness guarantees the possibility of further disentanglement. In
the sequel, F [(FH9)] DP is available; we thus obtain the unique indeterminacy as an immediate
result of Lemma. B.3.

Lemma B.3. Consider I is an algebraically closed field, the unknown indeterminacy D P is preserved
inIF, that is the following relation

FHS) = FAS) D; P,
with (Pj-, Djr) € {(P;, Dy) | FIFHO)] D; Py = FIFACD]}.

Proof. LetF be a field and n > 1 an integer. The general linear group of degree n over I is
GL,(F) := {A e M,(F) | det(4) #0}.
Equivalently, if V' is a n-dimensional vector space over F,
GL(V) := Autp(V) = {T:V — V linear isomorphisms },

and any choice of basis identifies GL(V') with GL,,(F). It is obvious that F[[F] is exactly a subgroup
of GL(IF) as the group GL,, (F) satisfies: i) It is precisely the set of all invertible linear transformations
(invertible matrices). ii) If F = R or C, then GL,,(IF) is an open subset of M,,(F) since GL,,(F) =
det ' (F \ {0}), and it is a Lie group. By the definition of kernel matrix, one notes i) trivially holds
due to the maximal spectrum being less than 1. For ii), det ™" denotes the preimage of the open set
F\ {0} under det. Cutting the one-dimensional line at O produces two open intervals (for F = R) or
a punctured plane (for F = C), hence the preimage is open in M, (F). Therefore, the permutation
and scaling must be preserved in M € RP*P, O

So far, the original kernel mixing matrix F'H . is recovered up to the same permutation and scaling
for any 7. In the sequel, what needs to be proved is the recovery of the causal structure as well
as its full parameter space. Our proof focuses on the polynomial system and its associated ideal 7
generated by the multi-linear constrained polynomial system.

13
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Step 2: Uniqueness of causal kernel ¢
Example 2. Consider a kernel matrix ® € R2*?2 with internal arrows allowed:

_ [0 4o _[é11 ¢12 _ |0 s,
vo=[o "¢ w0 Galw=1o "
where U7, Uy, encodes the internal arrows of the sub-graph Gy and Gy ; ® encodes time-delayed
kernel effects from s to t.

The corresponding expanded kernel matrix M € R**% is

0 Y2 ¢11 P12

_ |0 0 @21 P2
M=10 0 0 v
0 O 0 0

Proof. Let Mg, € R?"*?P be the kernel matrix associated with the bipartite graph, where the
variables are partitioned into two subsets U and V. Consider a topological ordering where all nodes
in U precede those in V.

Since edges from V to U are forbidden by the bipartite structure, no element in the lower-left block
of M can be nonzero. Moreover, edges within U are not allowed, so the diagonal and upper-left
block corresponding to U have zeros on the diagonal. The edges within V' form a DAG, and under a
topological ordering of V, the corresponding block in M is strictly upper-triangular. Therefore, M
as a whole is strictly upper-triangular, which implies that it represents a DAG.

Because Mg, is strictly upper-triangular, it is nilpotent. Let k¥ denote the length of the longest
directed path in the DAG. Then M’éj{l = 0, and the inverse of I — Mg, can be expressed as a finite
sum of powers of M:

k
(H_ MQK)71 = ZM&K
=0

Each term MéK corresponds to contributions from paths of length 7 in the DAG. This shows that the
inverse is fully determined by path products up to the longest path length &, completing the proof. [

By Lem. 2, identifying the space of all parameters in F' and ® is equivalent to solving the following
ideal Z : (Fy — Fig(Ip), — ./\/ng)_l(ng - Mg, ).

In latent causal models, Fiy, Mg, are filled as indeterminates that need to be recovered, where Fiy
is the expanded linear mixing obtained by filling /' € R™*? in a larger block-diagonal matrix of size
2n x 2p, denoted by Fiy. Remember, we have F'(I — ®(7))~! to be unique due to decomposition up
to a scaling and permutation. We write Hy = (Io, — Mg, )", then

F 0} {Hg(U) H%((I)):| _ [FH%(U) FH(®) | _ pe.

-1 _
Fallyy - Ma) ™ = o p] "% HAW) 0 FHe(V)

Under INAR, the diagonal blocks of K¢ are O matrix. Therefore, we have the ideal:Z : (Fy —
Ky (Izp — My, )) where Ky is known because F'H is known, so not considered as indeterminate
and thus does not contribute any degrees in the dimension of Z. Clearly, under passively observational
settings, recovery of full models is never possible as the current Z must be positive dimensional,
leading to no fixed points defined in the associated variety V. This leads to a central goal to find
the number of contexts that indicate sufficient variability or interventional settings, to recover the
parameter space. To this end, we need to first discuss important properties of Fig.

Lemma B4. F € R"*? is a generic full-rank matrix. Then Fy is full rank with rank(Fg) =
2 - rank(F) = 2min(n,p), and it is not generic in an open dense subset of R*"*?P due to the
additional linear constraints imposed by the block-diagonal structure. Consequently, Fg belongs to
a proper linear subvariety of R"*?P defined by

/
Vi, = {B cR¥™%? . B = <FO FO,> VF e R”Xp}.

Therefore, for any square matrix A? with rank(A) < r, rank(FgA) <7

14
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Proof. This proof is trivial by linear algebra. O

Note we have p processes; we generally assume we obtain different contextual information from at
least K environments (i.e., ' = p), which is a mild condition in causal representation learning. Each
sub-ideal 7, : (Fy — Ky (I3, — Mgy, )) constitutes a polynomial system, denoted by SI’P? such that:

Fy + K MG = K. (A7)

There are 2n x 2p indeterminates for Fy and 2|e(G)| for M since each environment k introduces a
new My, ;. Considering all K ideals (Zy,Z, - - - ,Zx ), we obtain the union of all K varieties:

V(Z) = { (Fg, MG ..., MYD ’ Fy — K3 (I, — MJ)) =0, Vk € K}. (A8)

G
Adding polynomial constraints by subtractmg Eq.(A7) for O from that for k obtains:
V(T ={v@) | KPMG) - KPP MG — (K~ K) =0, vke K} (49)
that induces a coordinate ring R/Z in a polynomial ring R = k(Fy, ;, Mf]) The order of the

coordinate ring is the dimension of the original variety. We use (+> to represent the blocked

system so as not to confuse with the matrix bracket. For each m € [n], j € [p], and i € chg(j), we

have |chg(j)| columns for Mg. F,, M) write entries fij» ME, ; as vectors, which describe the
polynomial constraints as a linear system:

F,

(k)
e ) (M7 ] = (— ). (A10)
M Kg =Ry
In INAR (00), each M _, preserves all paths {((5) — ¢ (i )|ZAJ) 1 = 2oy 00 M # 0} from

®,_ through an isomorphism . Therefore, entry (Iz, — is the product of M,, ,,, for path
j — m — n — i. We drop the time index and graph label Wflenever the context is clear. Such
(Iop — ./\/l)l, ; admits the representation

(Izp — M)_l =1+ M.
Results from [21] are applied to get rank(Ily, — M*))~1 — (I, — M)~! < 1. Using Lem. B.4,
we obtain rank(F Iy, — M*)) =1 — Fy (I, — M°)~1) < 1. Therefore, the left part of Eq.(A10)
has columns that are multiples of each other:
(K~ Ky = (K bis, A= (=M = (I= M) (Al
We examine the non-zero sub-blocks of the lower-right block x in Eq.(A 10), which has size |de(j) \
ch(j)| x |ch(j)|. Following the convention, we represent the sunblocks as M|[j] and choose the
smaller blocks [Kg(;) - Kg(; )] corresponding to the size of M [j] and write it as b[j]. The dimension
of variety V'(Z*) is the dimension of the points (M3 ;), i € ch(j) that satisfy:
M[5)(M3;) = blj] (A12)
The variety is a null set when the above constraints lead to no solutions. Therefore, we require
rank(M[j]) = rank(M|[j]|b[5]). [M][j] | b[j]] is the common augmented matrix to check the

stability of a polynomial equation system. We conclude our proof by making a formal statement
about the dimension of V(Z*) in the next lemma.

Lemma B.5. For generic F' and F H arising from the cumulant decomposition, the full generating
model is identifiable if and only if the variety V(Z*) has dimension zero, that is,

dim(V Zch —rank(M[j]) = 0.
Proof. Recall the kernel-delayed DAG structure. For the left subset Us, each node j has outgoing
edges only to nodes ¢ in the right subset V, all of which are direct children of 5. By construction,

no edges exist within Uy or within V;. Consequently, for each j, we have M [j] = 0, since de(j) =
ch(j).
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Step 3: Independent conditions for each ® under the generic ' When M, _ is fully recovered,
the full matrix F« can be obtained as

Fq = Kg(ﬂgp — ./\/ng).

If F, is injective, identification of F;, (and hence F¢ and F') is equivalent to identifying each M
individually, due to the direct multiplication of F~! (or the pseudo-inverse F'") with K. However,
identification of the full generating model is hindered by the genericity of F'. Even if Ky is
unique up to the usual indeterminacies, recovering other kernel matrices M;_ requires analogous
identifiability conditions for each individual kernel matrix.

Under k € 1,2, ..., K distinct contexts—each introducing sufficient variability in the distribution, or
ensuring that each lag k receives at least one intervention that shifts the downstream mechanism—the
full latent structure is identifiable up to the same indeterminacy.

Recovery of baseline U  Once the full causal structure is recovered up to a scaling and permutation
matrix, lower level moments of E[F(I, — ®)~! x (U + ¢;)] are can be directly computed to find U
up to the same indeterminacy.

B.1.3 Identifiability under Gaussian Noise

Now we focus on the case where non-Gaussianity does not hold for the entire time process. When the
noise is Gaussian, £4(0;) = 0 forall d > 3, which leadstoa 0 € R? X (the d-th order zero tensor).
The solution of decomposition is infinite, thus F'H cannot be recovered up to a column scaling and
permutation, nor can the latent transition graph G. We argue that preserving only d- order cumulant of
order d < 2 is a minimal building block for identification. %2 (O;) is an order 2 variance-covariance
matrix. Let My, Mo, ..., My € RP*P be a collection of order-2 tensors. We define the order-3
tensor X € RT*P>P via concatenation along the first mode (tensor slices):

K¢ =con (My, Ms,...,Mr), whereX,.. = M,. (A13)

By standard tensor algebra, an order-3 tensor X € RT*P*P can be reshaped or flattened into a
higher-order tensor, under a specific indexing scheme. More generally, given a desired tensor order d,
and assuming T = pd_Q, we define a transformation:

p >< ... >< p
—_——
T RTPP 5 RPY gi(s;) €R . dvme

0pxp
011 012 “'° Olp 0
021 022 -+ O2 oxp pXp PXpXp
I{Q(Et) = . . . . eR ,H3(Xt) = . eR
Opl Op2 " Opp
0pxp

that re-indexes the tensor slices M, to fill the missing indices of an order d cumulant tensor. The
replacing and re-indexing rule is illustrated in an order 3 tensor as a real plane, assuming d — 1 is the
maximal order such that k5 = 0.

Under this transformation, each slice M; is interpreted as contributing to a specific mode configuration
of the higher-order tensor. That is, the tensor X is “lifted” into a d-way tensor by embedding each
p X p matrix slice as filling in the cumulant entries with fixed positions in the first d — 2 indices
corresponding to t € {1,..., T}, and varying the remaining two indices over p x p. This leads to
the same form as Eq. (A4) where all x4(¢;) # 0. Under Corollary B.1 and B.2, the new tensor has
a unique decomposition of rank-1 tensor summation. To be specific, we assume v; has no pair of
columns to be collinear. This ensures the identification of F'(I — ®)~! and restricts F to be injective
to only span(H;) .

The sequential steps are the same for non-Gaussian noise since the construction of the ideal Z*
associated with its variety is not influenced by € once F'H is fixed up to a permutation and scaling.
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Discussion of noise. =~ Consequently, when Gaussianity is assumed, the distribution of O, is fully
characterized by the first two cumulants. This property implies that the entire cumulant expansion,
and hence any higher-order dependency, collapses at second order. In this sense, the Gaussian
distribution is the unique fixed point of the cumulant hierarchy at order two. In temporal parametric
transition [28], a widely known condition to ensure the component-wise identifiability of the latent
process Z; is to require that the driving noise € is not a fully isotropic Gaussian. That is, the Gaussian
noise distribution must shift under either intervention [13] or exhibit heterogeneity in its variance.
This is because all cumulants of order p > 2, which encode the exact causal dependencies, vanish for
Gaussian noise. As a result, sufficient variability can only arise from changes in the second-order
cumulant. Our results reflect that non-isotropic Gaussian noise is a necessary but not a sufficient
condition for full identifiability of the time-delayed generative model and parameters.

B.1.4 Identifying causal structure

Our proof is constructive: with the minimal hierarchy HC by soft interventions such that no fixed
value of entry (¢ — j) in ®(w) induces a dependence removal, the transitive closure G of the ground
truth process with its causal structure can be recovered up to the trivial transformation aforementioned.
If a time process has no instantaneous influence it must have T'C'(G) = G, we can recover the original
process and its causal structure up to a scaling and permutation 7.

C Proof of Supportive Results

C.1 Proof of Lem. 1

This lemma significantly constitutes the reasoning chains that lead to our identifiability results. We
restate the original statement to cover more details and background in point process and theory of
weak topology and convergence.

Lemma C.1 (Bounding Point Process in intensity, constructive). For a measurable mapping N> :
(Q,F) = (Mp, M) such that w — N (w) is a point process at scale A. Let A be the control operator
for any subsequence of its point process. Consider A € B generated by the topology M,, := B(M,,).
X and € is defined on this metric space. If X satisfies the stationary increment condition, then we can
establish the weak convergence of the constructed equivalent class:

[AN2|F]

(&) | (8) » A_ b lim E
Z Ayt = N(A) for Ay _AILHO glir(l) 5
k:kAEA

Proof. We start the proof with a trivial case. If § = A; = 1, the condition always trivially holds. In
this case, we only need to show Nt(Al) = )\gAl) + R; by simply using the tower rule. Therefore, our

proof gives more attention to the non-trivial case for § # 1.
Case2: 6 € (0,Aq)

The reasoning of this case becomes more complicated if the time step operator used for generating sub-
sequences proportionally shrinks to a sufficiently small unit in (0, A;). We rewrite the approximating
sequence NNV to leverage the metricizability of the space. Since we work in a Polish space, the Borel
d-algebra is countably generated and the space is separable and metrizable. Given a measurable set
A € B, and a metric p, define the open d-neighborhood as:

A=A%:={z cR?: p(z,A) < 5}

By outer regularity of Borel probability measures on Polish spaces, for every € > 0, there exists a
countable collection of open sets { A; };en such that | J; A; D Aand ), u(A; \ A) < e. This allows
us to approximate any compact subset from outside using open sets with arbitrarily small excess
mass and ensures the approximating sequence is defined on a non-decreasing base. We paraphrase
the convergence as
E[NA(A)|F W

hmi—%JLhé@éNM)MA%O (A1)
kkAeA |4s]

The equation above is adapted from the continuous-time intensity for point processes. However,
it requires us to work with two limit conditions for A; with the 1/k closed ball shrinking to zero
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measure and for the subsequence operator A approaching to 0. A common method is to ensure
dominated and uniform convergence of the limit. To harness information regarding the intensity in
our convergence to a more generalized process, we work with only A to induce the same time scale
of intensity function. Therefore, we have the equivalent condition

E[Y Zg = Y Zi 4| F]
k=1 k=1
| A

D

k:kAcA

E[Z2(A W
—I-EI(CA) = Z 7[ (A )I7] +e](€A) = N(4) forA =0
k:kACA
(A2)

We remove the limit condition as it is clear that | A;| is of measure zero when A = 0, which ensures
the alignment between our topological property and plausibility to analyze only subsequences in
the sequel. According to Lemma.2 by [20], for any compact interval [a, b](®) with the number of

bins [b — a] /8, EIN©)([a,b])] < (b —a + 2)(I — G (a,b)) "' A where G(a,b) = f,f ®(s)dsis a
solution of the stochastic differential equation systems

E[A([a, b])] = Efu + G(a, b)A], for E[A(a,b)] = A
Note that, by reapplying tower rule, Eq. (A1) implies:

E[N
lim E[N D)) = lim E[i[ A W]
6—0 §—0 )

Next, we show the necessity of tightness of the corresponding probability measure P> for the left-
hand of Eq. (A2) to achieve the desired convergence. Without loss of generality, we consider a
nonparametric intensity function A, = 1 (u + [ ¢(t — 5)Z2(s) ds). Consequently, E[\;] = A and
E\] =E[¢(u+ [ ¢(t — s)Z2(s) ds)]. Assume that ¢ is a-Lipschitz and «||¢||; < 1[29], so the
mapping F(A) = ¢ (u + ||¢||1A) is a contraction on R . By Banach’s fixed-point theorem, there
exists a unique solution A* to the equation:

A" =9(u+[[oll1A7)
Formally, this can be rearranged as:
_ . 1y -1
pTHA) gl A =u = A =(d =gl v ()
provided that id — ||¢||; - 1/~ is invertible on the image of ).
To control the tail probability, we apply Markov’s inequality:

P( 5 E[zA(AA)m S Mg) . E[ZJ\ZAA] S (b—aj\—zé) A

k:kA€A
Here, we define:

*
M. = % where A* = ¥ (u + |||l A*)
This choice ensures the upper bound remains within the prescribed e-level for all A € (0, Ay). Since
the only thing we need is the precompactness, we will not establish any tighter bound. Tightness
of measure indicates we can always find a subsequence Ay + e in Af® + € converges weakly
to a sequence \* + ¢*. This weak convergence of subsequences, however, cannot control the limit
uniqueness for each sequence. Therefore, we also should further control the limiting behavior of
each sequence by uniform convergence of the characteristic functional defined by the approximating
process and the target process. O

D Detailed MUTATE Configuration

D.1 Simulation Regime

We simulate multivariate point processes and their converging equivalent class Z; extensively studied
in our identifiability theory. We sample all point processes using the Poisson Superposition method
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655 (rejection sampling from the upper bound of conditional intensity [30, 31]) in order to mimic highly
656 dynamic changes in conditional intensity, to capture denser information contained in stochastic
657 processes. Then we create corresponding converging classes as a proof-of-concept validation: A total
658 of 20,000 latent trajectories are sampled for each of the five kernel functions—exponential, power-law,
659 rectangular, simple nonlinear, and flexible mixing—under two noise regimes: heterogeneous noise
es0 and Gaussian mixture noise. To illustrate the latent events underlying the unstructured data, we also
661 simulate stochastic dynamics for biological data using SERGIO [32], a GRN-guided gene expression
e62 simulator used in Lorch et al.’s [15] causal modeling as well. All observation O, is obtained from
663 latents Z; through MLP and LeakyReLU nonlinearity mixing.

664 We demonstrate the generative process for INAR equivalent classes. For a fair comparison to
665 those baselines mainly addressing step-wise conditional independence, we generate for both time-
666 step dynamics and denser dynamics by changing the setup to very short kernel effects with 7 €
e67 (0.001,0.01) = ¢t — t'. We generate stochastic point processes from three basic kernel response
668 functions:

Gexponential (t) = aeiﬁt/, a ~ uniform(0.1,0.5) and S ~ uniform[0.5, 2)

Ppowerlaw (1) = ﬁ -1, o ~ uniform(0.5, 1.2), 8 ~ uniform[0.1, 0.8) and vy € uniform(1, 3,1.8)
1
¢rectangular(t) - W . 1{t’§T}

eeo The baseline intensity wg is sampled from uniform(0, 1,0.2). All parameters of the basic kernel
670 are uniformly sampled by ensuring @ < (3 in exponential responses, o < 7 in power-law response,
671 respectively, to satisfy the stationary increment condition such that |¢| < 1. In the simulation, we also
672 consider two extreme cases for simple nonlinear intensity and nonparametric intensity. We construct
673 the conditional intensity function by mixing latent features through a linear transformation followed
674 by a non-linear activation. Specifically, we first compute a log-linear intensity using the expression

A¢ = log(1 +exp(ze — 7e[:, A, 1))

675 that ensures positivity and controls the scale of the output through a smoothed ReLU (i.e., softplus).In
676 an alternative setting (kernel == "np"), we learn the intensity function using a small neural network
677 (MLP): a two-layer perceptron with ReLU activation, ending in a Softplus to maintain positive outputs.
678 This setup enables flexible, data-driven modeling of intensity dynamics beyond purely additive or
679 linear forms. We define the mixing intensity function using a two-layer feedforward neural network
680 with ReLU and Softplus activations. Formally, the architecture is given by:

At = o (Wa - ReLUW A (1) + b1) + ba), (A1)
681 where
682 * M\(1) € R? is the input linear basic intensity at time ¢,
683 o W, € R64xd p, c RY* are the weights and bias of the first layer,
684 o Wy € R¥*64 p, € R? are the weights and bias of the second layer,
685 * oy (x) :=log(1 + %) denotes the Soft-plus activation.

686 This design ensures the output \; remains strictly positive and can model complex dependencies in
687 the latent dynamics while maintaining numerical stability.

688 We model the transformation from the latent variable Z, € R¢ to the observational space via a
689 multi-layer mixing network. Specifically, for each layer [ = 1,..., L — 1, the transformation is
690 given by Zt(l) =A0. oleaky(Zt(l*l)), where A) € R%*? j5 an orthogonal mixing matrix and Oleaky
691 denotes the leaky ReLLU activation with slope o = 0.2. The initial input is Zt(o) = Z;, and the final

)

692 output Zt(L_1 represents the observation-space signal.

693 D.2 Prior decomposition of time-adaptive module

694 Without loss of generality, we consider non-finite steps for a latent stochastic generative process,
695 as discussed in Lem. 1, where At — 0. This induces an equivalence that the intrinsic history—the

s06 filtration Fy := 0 (g7 0(Z))—ensures that the process Zt(A) is F;-adaptive and measurable.
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697 We decompose the ELBO objective as follows:
ELBO = log p(O) — Dk1(44(Z]0)|p(2))

71O
= Ez~q(2t|ot)[logp(0t|zt)] + EZNq(Zt|Ot) |:10g q( t‘ t):|
p(Z)

=K. qz,j00)[l0gp(O¢|Z;)] — E.q(z,10.) log a(Z:|O;) — log p(Z;)]
=E.q(z.0,) logp(Os] Z) —1og q(Z4|O¢)] + E. gz, 10,) log p(Z1)]

Fr
= E.nqzi/00) 108 p(O4] Z4) — 108 4(Z1|00)] + Eng(zion | Y logp(Zy>) | F)
Fi

698 The reason we can segment the increasing filtration in the last term is due to the nice property of
ses Jy-measurable sequence. We can show that filtration of Z;|Z;, R; and Z;|R; is equal because it is
700 well known that any p-order INAR sequence with stationary increments admits a moving average
701 (MA) representation. Further construction of their filtration F; (resp.Rs<t) and F;(resp.Zs<t, R:)
702 can show

Fi=Fi

703 We prove the result in the sequel. For F;, Z; is a measurable function for s < ¢. By causality of the
704 convolution kernel ¥ = (I —®)~! satisfying ¥, = 0 for 7 < 0, which indicates Z; € o(R; : s < t).
705 Then, we construct another filtration Fy : 0(R,, : u < s). By adaptivity Fs : 0(R, : u < s) C F :
706 o(R, : u < t). Therefore, Z; is also o (R, : u < t)-measurable. Since the minimal o-algebra of the
707 original F;-measurable function must be contained in its o-algebra, we have 0(Z;) C o(R,, : u < t)
708 and o(|J 0(Zs)) Co(Ry :u<t). For Fy, Ry = Zy — VU % Zy so Ry is 0(Zs = s < t)-measurable.

s<t

700 Therefore, by a similar construction, it is evident that o(|J o(Rs)) C o(Zs : s < t). Therefore,
s<t

710 because .7:",5 C Fiand F; C ]:"t, there must be .7:",5 = F;.
711 Following this set-up, the prior becomes:

uq (t)
uz(t)

Zy | Fo ~ N YU-o) LY (1-o) ' (1 -) "

wt) | V<t <t

712 The latents are generated by Z; = (I — ®) x R;, where R; is modeled as isotropic Gaussian noise

713 with mean U and variance . Note that the variance matrix ¥z, is zero for any ¢t — ¢ # 0. By
N-1

714 the Wiener-Khinchin Theorem, we have the covariance matrix Cz, (0) = & Y. S.(wy), we drop
k=0

715 the sub-index Z; whenever no confusion is caused. Now we can derive the decomposition of the
716 convolution prior as

Fr
A
E.vqziond . logp(Z(™|F)

Fo oz
- 5(8) < ' 5(8)
=E.qz:00) Z log p [(I —®) xR, } =E.q(z:100) Z log p [/ (I —®i_p)R; " dt
Fo 2 F&z 0

Fr
= Ezwq(Zt\Ot) Z lng
FoZe

N(UR,ZHtlzéthT)]
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Fr
=E.wqzij0n{ D logp |N(Ur,» H; '(PSDy, SpHy T(PSDy,))
F&.z,
L Cp(24)(0)
Fr [ ~ 1 N-1
= EZNQ(Zt\Ot) Z lng N(U Z (I - (I)(t - t/))_l ) N SZt (U)k))
Fo 2 L -y () B0 (wi) T =Sz (w) PO
(A2)
Fr R
=E.ogzion§ D logp [N(U > (I—-o(r) e "7, Zb’zt wy,))
-FJ7Z1, 7>0,w=0
L the inverse Fourier at w=0
Fr
= EZN(I(Zf,‘Ot) Z logp N(UPSDZt Z SZt wk (A3)

Fif,Z:,NE(No,T)

D.3 Explicit control for convolution prior

Figure A2: Visually Time-adaptive PSD Computation

Encoder-PSD flow  As shown in Eq. (A3), a key component of our module is to efficiently
compute the decomposition of PSD matrix. However, under milder regularity conditions, the PSD
decomposition is not unique, thus only be recovered up to the minimal-phase. By the Theorem, the
energy of the time domain and frequency domain is equivalent. Therefore, the encoded distribution is
not sufficient to decompose the PSD matrix for which a reparameterization is needed. An encoder
receives a T-length sequence O; and returns the latent variable vector. Fast Fourier Transformation
converts the latent sequence to a vector of equal length up to ¢:

[ZFWZ.F“"' aZT] = {[Z[fOLZ[fk]f" vZ[K]HK: 0,1,2,--- ’T}

And the flow method is enforced by solving the following Wilson Factorization optimization problem
for each [Z[fo], Z[fx], - , Z[K]] , finding the transfer matrix

H' =arg min PSD(Z,)— H'x,H'H
Yi=021

That is then sent to evaluate the true prior distribution, supporting the joint optimization of all loss
components.

The summation of kernel products and integrated noise variables is guaranteed to converge to the
true time-adaptive process under F;, provided that the time discretization is sufficiently dense. The
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latent variable Z7* is sampled from the encoder distribution g4 and passed to the PSD decomposition
module to compute the frequency-domain representation of the full kernel matrix F,,[1 — ®;] and
the power spectral density S #,- We further remark that the key step, spectrum decomposition, is

completed for the entire encoded trajectory Z;,.7 , and the prior structure is ensured by segmenting
filtration. This features the major difference in prior work that recursively constructs an equal-length
sliding window for each latent. Filtration segmentation can work with causal masks that a more
expressive encoder leverages. Note that transformer modules are not a required component for
shorter sequences, i.e. T' < 100. However, when the sequence is extremely long, as simulated in the
conventional class of stochastic point processes, a transformer can be used in place of a common
MLP encoder to learn much more expressive latent embeddings by utilizing the filtration attention
from arbitrarily long past events.

Overall training loss. To encourage sparsity in transferring kernels, we follow the widely used
penalty to jointly optimize:
£Total = ERecon - /BEKLD - ’Y|‘I)| - WEPSD (A4)

This training objective ensures the learned latent process is driven by a family of generalized white
processes, as, in the Encoder-PSD flow, the decomposition is enforced by the prescribed isotropic
noise, which omits any discriminator module as used in [28]. The coefficients in sparsity loss and
PSD accuracy are registered as tunable hyperparameters.

D.4 Extended Results

Table A2: Reporting the best performance for each baseline

Method Metric Kernel Ave. Exp Power. Rect. Nonlin. Nonpar.
TDRL MCC 0.657 0.629 0.653 0.773 0.584 0.644
Lyge 0.449 0.308 0.302 0.302 0.871 0.461
BetaVAE MCC 0.419 0.395 0414 0.420 0.433 0.433
Loyae 9.480 8.538 7.533 8.424 11.683 11.220
SlowVAE MCC 0.410 0.384 0.405 0.420 0.425 0.412
Lyge 362.890 395.107 448.105 452472 238.520 280.247
PCL MCC 0.440 0.469 0.379 0.430 0.474 0.449
Ly qe(train) 0.693 0.693 0.694 0.693 0.693 0.693
MUTATE MCC 0.811 0.922 0.784 0.964 0.885 0.501
Loyge 0.670 0.448 0.508 0.253 0.942 1.201

E Related Work

Causal disentanglement and learning time series. Although estimating and predicting time series
is a classical problem in both traditional statistics and modern machine learning, representation
learning has opened new avenues for leveraging latent information to better characterize time series
data [33, 34]. Recently, learning causal representations in time series has become a foundational
approach for enabling new scientific discoveries. This line of research primarily focuses on estab-
lishing identifiability of causal latent variables by exploiting nonstationary data [28, 4] and modular
distribution shifts [5, 35] with sparsity constraints [36, 37] on the latent transition. Those works solve
the identifiability problem of latent causal models by leveraging sufficient variability that can come
from proper interventions or passive distribution shifts. Another line of research focuses on learning
the underlying causal graph among latent variables

Learning Causality in Stochastic Processes. While learning causality remains a considerably
more challenging task than causal discovery or representation learning, several efforts have been made
to bridge these areas. Here we review existing approaches that link causal learning with stochastic
modeling. Our scope is not limited to causal representation learning with stochastic processes, but
extends to a broader set of problems that are closely related to either domain.
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One representative direction in causal learning for dynamical systems is the study of Granger
causality—a broader and looser notion compared to strictly structured causal models [38]. It is widely
acknowledged that full causal recovery in such systems is impossible. Consequently, even the most
recent work on stochastic processes can only determine whether a point process a is Granger-causal or
non-causal with respect to another process b, typically formalized through local independence and the
d-separation rule [39]. Another active line of work concerns identifiability in dynamical systems [40].
However, to the best of our knowledge, none of these models provides provable guarantees for highly
dynamical systems such as self-exciting or more general stochastic processes.

Connections between causal representation and dynamical systems have also been explored through
ordinary differential equations (ODEs) [41]. Technically, these approaches recover only a set of
parameters that are difficult to interpret as causal in the latent space, or at best allow stochastic
dynamics in the observed variables. More recently, causal diffusion models have been proposed [42,
15], yet they largely treat diffusion as a standard denoising process and thus do not permit a well-
structured stochastic latent causal representation.

Another important line of research investigates interventions on stochastic processes and the corre-
sponding post-intervention distributions, which serve as the basis for causal inference [43, 44, 45, 46,
15]. The first attempt to introduce a causal interpretation into stochastic differential equations (SDEs)
was made by the authors of [47], where interventions are defined as the removal of single variables
in SDEs. They showed that causal principles in SDEs can be formalized as interventions, with the
resulting post-interventional distribution identifiable via the infinitesimal generator. However, such
interventions are too restrictive to capture more complex dynamical scenarios. Following this initial
line of work, [44] further develops methods for estimating stationary causal models by minimizing
the deviation of stationarity of diffusion.

Stochastic representation in biological science. Prior work on the dynamics of cancer genomics
has investigated modeling the underlying stochastic processes, typically under the assumption that
all mutations can be identified through observable changes in protein binding and synthesis. A
seminal line of studies focuses on methods and conditions under which mutation rates are treated as
fixed for each driver mutation during tumor progression. Under these assumptions, the evolutionary
dynamics can be effectively modeled using a linear Moran process with fixed population size [48,
49]. One branch of this literature aims to identify driver mutations that are directly manifested in
observations. However, given the limited prior knowledge, mutation interactions are unlikely to
be strictly linear or fixed. As a result, due to the inherent stochasticity and dynamical nature of
cancer development, most driver mutations remain latent and their patterns are not readily discernible
in protein sequences [50, 51, 52]. More recently, [52] reformulated this problem by introducing a
framework to distinguish between weak and strong driver mutations to better characterize cancer
progression. For example, in several cell cycles, a normal cell must accumulate multiple mutations in
tumor-susceptibility genes to trigger oncogenesis. This process is inherently stochastic, and many
mutational events may be dependent, self-exciting, or regulated by other processes. Identifying latent
processes underlying disease-specific mutations and recovering their causal relationships is therefore
crucial for computational biology and the planning of sequential cancer treatment regimens.

F Conclusion and Limitation

Our paper makes extensions of causal representation learning framework to stochastic causal dynamics
(i.e., multivariate Hawkes Processes), a topic not yet covered in current CRL literature. We propose a
new perspective that a branch of stochastic processes can be viewed as the corresponding equivalent
class through INAR representation and weak convergence. Under those conditions, we show that
the latent stochastic process can be identified up to a component-wise transformation and a scaling
permutation matrix. Our theoretical result bridges the gap between stochastic modeling and causal
representation. We also propose a novel framework to learn the time-adaptive transition dynamics
to accurately estimate the latent processes. However, our work avoids the most complicated case
for a fully nonparametric kernel, which, most of the time, can be replaced with a simpler kernel.
Future direction may include solving this condition and causal representation learning for stochastic
differential processes that manifest in rich scientific questions.

23



	Introduction
	Causal disentanglement in stochastic process
	Generative model for stochastic process
	A graph isomorphism to causal kernels

	Recovery from algebraic signature of mixed manifolds 
	Algebraic structure for stochastic causal representation 
	Generic identification from algebraic structure 

	Recovery from MUTATAE
	Architecture of MUTATE
	Simulation Study

	Useful Lemmata
	Preliminary lemmas
	Background of Hawkes Process
	Cumulants and Tensors

	Proof of Identifiability Theory
	Proof of Thm. 1

	Proof of Supportive Results
	Proof of Lem. 1

	Detailed MUTATE Configuration
	Simulation Regime
	Prior decomposition of time-adaptive module
	Explicit control for convolution prior
	Extended Results

	Related Work
	Conclusion and Limitation

