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ABSTRACT
Benchmarking the performance of information retrieval (IR) is

mostly conducted with a fixed set of documents (static corpora).

However, in realistic scenarios, this is rarely the case and the doc-

uments to be retrieved are constantly updated and added. In this

paper, we focus on Generative Retrievals (GR), which apply au-

toregressive language models to IR problems, and explore their

adaptability and robustness in dynamic scenarios. We also conduct

an extensive evaluation of computational and memory efficiency,

crucial factors for real-world deployment of IR systems handling

vast and ever-changing document collections. Our results on the

StreamingQA benchmark demonstrate that GR is more adaptable to

evolving knowledge (+ 4 – 11%), robust in learning knowledge with

temporal information, and efficient in terms of inference FLOPs

(×2), indexing time (×6), and storage footprint (×4) compared to

Dual Encoders (DE), which are commonly used in retrieval systems.

Our paper highlights the potential of GR for future use in practical

IR systems within dynamic environments.

KEYWORDS
Generative Information Retrieval, Corpora Adaptation, Dynamic

Corpora, Continual Pretraining

1 INTRODUCTION
Transformer-based information retrieval (IR) models play a vi-

tal role in advancing the field of semantic document search for

information-seeking queries. Notably, Generative Retrieval (GR) [3,
7, 23, 24, 27, 38, 42–44, 50] has recently gained a significant amount

of recognition from the research community for its simplicity and

high performance. However, Dual Encoder (DE) [11, 13, 15, 19, 35,
40] continues to hold sway in practical IR systems. This contrast
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underscores the need for an investigation into their practical ap-

plicability. There is a lack of comprehensive comparison between

GR and DE in real-world scenarios where knowledge is continually

evolving and efficiency is crucial.

To this end, we establish Dynamic Information Retrieval (Dy-

namicIR), a setup designed to simulate realistic scenarios for corpus

updates in IR. This DynamicIR setup includes two distinct update

strategies, (1) indexing-based updates: updating only the index with-

out any further pretraining or finetuning and (2) training-based

updates: continually pretraining the parameters on new corpora in

addition to updating the index (See Figure 1). Within this experi-

mental setup, we evaluate the adaptability of recent state-of-the-art

retrieval models: Seal [3] andMinder [27] for GR, and Spider [40],

Contriever [15], and DPR [19] for DE. Furthermore, we perform

extensive comparison for the efficiency of each method, consider-

ing factors such as floating-point operations (FLOPs) [18] required

for the inference, indexing time, inference latency, and storage

footprint.

The findings of our study underscore the strength of GR com-

pared to DE across three key aspects: adaptability, robustness, and

efficiency. (1) GR exhibits superior adaptability to evolving corpora
(Section 5.1). GR outperforms DE, showcasing 4 – 11% greater adapt-

ability in both indexing-based and training-based updates. Notably,

GR not only acquires new knowledgemore effectively but also show

no sign of forgetting; rather, training with new corpora appears

to enhance its existing knowledge. (2) GR is more robust without
inducing undesired bias from data characteristics (Section 5.2). DE

reveals a bias towards lexical overlap of timestamps inserted into

queries and documents, showing significant degradation (52.23%

→ 17.40%) when the timestamps are removed. Whereas, GR shows

robust retrieval performance over temporal data. (3) GR requires
lower indexing costs, inference flops, and storage footprint (Section 6).

0
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Figure 1: Structure of DynamicIR. This figure shows the training and inference processes for three setups in DynamicIR. We
differentiate each model by color. First, in StaticIR, (A) retrieval models are pretrained on 𝐶initial and finetuned on the query-
document pairs 𝑅initial. (B) During inference, they perform retrieval only with the indexed 𝐶initial. Second, in Indexing-based
Update, (C) we use the same retriever developed from StaticIR and conduct an inference with the indexed 𝐶initial and 𝐶new.
Lastly, in Training-based Update, (D) we take the pretrained model on 𝐶initial in StaticIR and continually pretrain it on 𝐶new.
Subsequently, it is finetuned on the combination of 𝑅initial and 𝑅′

new. (E) Using the updated retrieval model, we conduct an
inference with the indexed 𝐶initial and 𝐶new.

For inference flops, GR has O(1) complexity with respect to the

corpus size, requiring 2 times less computation per query compared

to DE which has O(𝑁 ) complexity, where 𝑁 represents the corpus

size. Regarding indexing, DE necessitates re-indexing each time

whenever the model is updated. Tomakematter worse, the indexing

time itself is 6 times longer than GR. In terms of storage footprint,

GR requires 4 times less storage by effectively compressing the

knowledge in its internal parameters.

2 RELATEDWORK
Temporal Information Retrieval. Temporal information re-

trieval (IR) [17] has long been a subject of interest in the field of

IR. While recent advancements have focused on the temporal up-

dating of language models [10], the attention on temporal IR has

diminished somewhat with the rise of transformer-based models

such as BERT [9]. These models are renowned for their robust con-

textualized embeddings, which likely shifts the focus away from

knowledge updates. However, temporal considerations in IR remain

crucial, especially with the widespread use of Retrieval-Augmented

Generation (RAG) in many chat models. It is also worthwhile to

examine whether emerging IR approaches are effective in adapt-

ing to evolving knowledge. Unlike previous works on document

updates [4, 34], which pose disjoint questions from existing ones

when retrieving updated documents and require parameter updates,

our approach conducts experiments on the retrieval of distinct doc-

uments for the same query across varying timestamps. Similar to

the text box in Figure 1, users often want to search for information

based on a specific time period (e.g., laws, national curriculum,

etc.). We also consider two realistic update scenarios, both with

and without parameter updates and use a large-scale corpus of 50

million passages.

Generative Retrieval (GR). GR initially emerged with the work

of GENRE [7], in which an encoder-decoder model retrieves a doc-

ument by generating the title of the document from a given query.

[43] introduces DSI that produces a document ID as the output

sequence. NCI [44] and DSI-QG [51] apply query generation, sig-

nificantly improving DSI’s performance. Recent methods that uses

document ID, such as RIPOR [48] and PAG [49], also demonstrate

superior performance. Instead of mapping to IDs for document

identifiers, other works explore generating content directly from

documents as identifiers. For instance, SEAL utilizes spans [3], and

MINDER [27] and LTRGR [26] leverage a combination of titles,

pseudo-queries, and spans. Other works focus on the broader appli-

cation of GR, such as multi-hop reasoning [24], contextualization

of token embeddings of retriever [23], auto-encoder approach for

better generalization [42], and giving ranking signals [26]. Our

work employs GR that utilizes document content as identifiers for

temporal information retrieval, as it can directly access the contents

and update the pieces of knowledge.

Dual Encoder (DE). DE [20, 25] refers to a set of model archi-

tectures where we project the query and document individually

into a fixed sized embedding. Through contrastive learning, the

projected embeddings of positive documents are learned to be close

to the query and negative documents to be far away. Some works

try to train the model in an unsupervised fashion with contrastive

learning [15, 25, 41]. Although external modules such as FAISS [16],

and ANCE [47] can help the efficiency of those models in inference
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Type Split Count

Query-Doc pairs 𝑅initial (2007 – 2019) 99,402

𝑅′
new (2020) 90,000

Evaluation 𝑄initial (2007 – 2019) 2,000

𝑄new (2020) 3,000

𝑄total (2007 – 2020) 5,000

Corpus 𝐶initial (2007 – 2019) 43,832,416

𝐶new (2020) 6,136,419

𝐶total (2007 – 2020) 49,968,835

# Tokens Initial (2007 – 2019) 7.33B

New (2020) 1.04B

Total (2007 – 2020) 8.37B

# Tokens per passage Initial (2007 – 2019) 169.7

New (2020) 167.1

Total (2007 – 2020) 167.5

Table 1: Statistics of the StreamingQA dataset modified for
our setup. # Tokens is the total number of words separated
by space in each passage.

time, these types of models still fall into the limitation that model-

dependent embedding dumps need to be made in an asynchronous

fashion.

3 DYNAMIC INFORMATION RETRIEVAL
3.1 DynamicIR Task Setup
Adapting the retrieval models to evolving corpora over time is

crucial to better align with real-world scenarios. In order to evaluate

the adaptability of retrievers, we create a setup called Dynamic
Information Retrieval (DynamicIR). As depicted in Figure 1, our

experimental setup includes three approaches: (1) StaticIR, where
the retriever is trained on the initial corpus, (2) Indexing-based
updates, incorporating the index of newly arrived documents into

the existing index without further training on the new corpus;

and (3) Training-based updates, where the retriever is continually
pretrained on the new corpus, along with updating the index.

To conduct these experiments, we assume that we have an initial

corpus 𝐶initial and a newly introduced corpus 𝐶new, and datasets

of query-document pairs 𝑅initial and 𝑅′
new from 𝐶initial and 𝐶new,

respectively. Unlike 𝑅initial, 𝑅
′
new consists of pseudo-queries, which

are generated from 𝐶new using docT5qeury (detailed explanation

is in Section 3.2). These query-document pairs are used for super-

vised learning. Moreover, we assess the retrieval performance with

two types of evaluation sets, 𝑄initial and 𝑄new, where the answers

to the questions are within 𝐶initial and 𝐶new, respectively. Some

questions between 𝑄initial and 𝑄new are identical, except for the

timestamps, necessitating the retrieval of different passages. Each

set is employed to assess the forgetting of initial knowledge and

the acquisition of new knowledge.

StaticIR. In this part, we focus on retrieving documents only

from𝐶initial. The training process begins with pretraining themodel

on 𝐶initial using self-supervised learning, followed by finetuning

it with 𝑅initial using supervised learning. We evaluate it only on

𝑄initial with pre-indexed 𝐶initial.

Indexing-based Update. In this update setup, we incorporate

the new corpus to the retrieval models by updating only the index

without any parameter updates. Since we utilize a retrieval model

trained in StaticIR, this updating approach is quick and straight-

forward. We evaluate the retriever on 𝑄initial and 𝑄new with pre-

indexed 𝐶initial and 𝐶new.

Training-based Update. In this advanced setup for update, we

take the model pretrained on 𝐶initial and continually pretrain it on

𝐶new. Subsequently, we finetune it using a combination of datasets,

𝑅initial and 𝑅
′
new. Like indexing-based updates, we evaluate the up-

dated retrieval model on 𝑄initial and 𝑄new with pre-indexed 𝐶initial
and 𝐶new.

In DynamicIR, we highlight the importance of striking a balance

between retaining existing knowledge [21, 32] and incorporating

new information. We also highly focus on computational and mem-

ory efficiency, since the practical applications like search engines

handle vast and ever-changing collections of web documents, which

is directly related with the practicality.

3.2 Benchmark
To evaluate the performance of retrieval models in a dynamic sce-

nario, we employ StreamingQA [29] designed for temporal knowl-

edge updates. Unlike other benchmarks on temporal retrieval [8],

StreamingQA is the only benchmark that includes both the times-

tamps of question asked time and document publication dates,

which is critical for considering the temporal dynamics. The tem-

poral information is prepended to the text in the format of ‘Today
is Wednesday, May 6, 2020. [question]’ for question, and ‘Thursday,
February 7, 2019. [document text]’ for documents [29]. The dataset

spans 14 years and includes over 50 million passages, surpassing

the content size of Wikipedia used in DPR [20], which comprises

21 million passages, by over 2 times.

Temporal Information. StreamingQA includes a corpus span-

ning from 2007 to 2020, along with a supervised dataset of question-

document pairs covering the years 2007 to 2019. In our work,𝐶initial
comprises articles from 2007 to 2019 and 𝐶new consists of articles

from 2020. Regarding the supervised dataset, the questions in𝑅initial
are asked in the time range of 2007 to 2019 to query articles from

this period, and the questions in 𝑅′
new are asked in 2020 to query

articles from 2020. Notably, all questions in the evaluation dataset

𝑄initial and 𝑄new are asked in 2020, beginning with the prefix ‘To-

day is [Day], [Month Date] , 2020’, although they query articles

from 2007 to 2019 (𝐶initial) and 2020 (𝐶new), respectively.

Pseudo-Queries for 𝑅′
new. The original StreamingQA dataset

lacks query-document pairs from 𝐶new, making it challenging to
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Layer Projection Avg num of DPs

FFN

FC1 1.1M

FC2 77K

Total 1.87M

ATTN

Query 41K

Key 35K

Total 76K

Table 2: Average number of Dynamic Parameters (DPs), the
parameters that have large impact on acquiring new knowl-
edge per block. DPs are significantly more prevalent in the
fully connected layer, exceeding those in the attention layer.

explore training-based updates. To address this, we generate addi-

tional 90,000 queries from𝐶new. To make this, we employ a trained

model similar to the one used in docT5query
1
[36] for query gener-

ation. The size of this additional dataset 𝑅′
new is similar to that of

𝑅initial. Details of the query construction are explained in Appendix

A.5.

4 EXPERIMENTAL SETUP
4.1 Retrieval Models

Generative Retrieval (GR). We select SEAL [3] that employs the

substrings in a passage as document identifiers and MINDER [27]

that uses a combination of the titles, substrings, and pseudo-queries

as identifiers. We choose the two as baselines since unlike other

GR models using document IDs as identifiers [43, 44], SEAL and

MINDER can be more effective on updates of individual pieces of

knowledge by autoregressively generating the context using FM-

index. FM-index for constrained decoding provides information on

all documents in the corpus containing a specific n-gram for every

decoding step, thus allowing to retrieve them [3]. Implementation

details of GR are in Appendix A.2.2.

Dual-Encoder (DE). We select Spider [40] and Contriever [15]

as representative models for DE. Since our experiments include

a pretraining phase to store the corpus itself, we use Spider and

Contriever as baselines that focus on the self-supervised methods.
Since these models do not include a supervised method, we use

DPR [19] during a finetuning phase, and adhere to its original

training scheme such as utilizing in-batch negative training. Thus,

our DE baselines, Spider(+DPR) and Contriever(+DPR), include both

pretraining and finetuning phases. Implementation details of DE

are in Appendix A.2.1.

Sparse Retrieval. Although our main focus are on transformer-

based semantic search models to explore corpora adaptation, we

also evaluate BM25 (Lucene)2, a traditional retrieval model utilizing

lexical matching.

1
https://github.com/castorini/docTTTTTquery

2
https://github.com/castorini/pyserini

Figure 2: Analysis on key parameters in acquiring new knowl-
edge. Through this analysis, we identify the locations of the
top 10% most activated parameters.

4.2 Effective Continual Pretraining with LoRA
When continually pretraining GR on 𝐶new, we employ LoRA [14]

widely recognized for its training efficiency. To better target key

parameters for incorporating new knowledge, we analyze which

parameters undergo the most significant change during the acquisi-

tion of new knowledge. This analysis is inspired by works on model

merging [1, 46]. We refer these crucial parameters in learning new

knowledge as Dynamic Parameters (DPs).
To identify DPs, as illustrated in Figure 2, we follow these steps:

(1) Pretrain the model on 𝐶initial as𝑀init, and continually pretrain

the model on 𝐶new with full parameters as 𝑀new. (2) Calculate

the absolute differences in parameters between𝑀init and𝑀new. (3)

Identify parameters that exceed the 90th percentile of these absolute

differences.

DPs are 2 times more prevalent in the feed-forward networks

(FFN), exceeding those in the attention layer over 2 times, as shown

in Table 2. This result aligns well with previous studies on the

memorization of factual knowledge [6, 12]. Consequently, based on

this analysis, we apply LoRA on FFN in addition to the attention

layer during the continual pretraining phase. The performance is

noticeably improved compared to full-parameters and conventional

LoRA. In contrast to GR, DE experiences significant degradation

when this approach is applied (See Appendix A.6); thus, we con-

tinually pretrain DE with full parameters. Details of the results are

provided in Section 5.6.

4.3 Evaluation
We assess retrieval performance with three evaluation dataset,

𝑄initial, 𝑄new, and 𝑄total. First, we evaluate the retention of initial

knowledge by 2,000 questions that should be answered from the

𝐶initial. Second, we assess the acquisition of new knowledge by 3,000

questions that should be answered from 𝐶new. Both sets of 5,000

questions are randomly extracted from the entire evaluation data

of StreamingQA, maintaining the ratio (16.60%) of each question

type for initial knowledge and new knowledge. Finally, we assess

total performance by calculating the unweighted average of the

https://github.com/castorini/docTTTTTquery
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Performance (ℎ𝑖𝑡@5) Efficiency

Evaluation 𝑄total 𝑄initial 𝑄new 𝑄w/o bias

new Inference Flops Indexing Time Inference Latency Storage Footprint

(𝑇online / 𝑇offline)

StaticIR

Spider
DE

- 19.65% - - 9.0e+10 18.9h 24.48ms / 26m 173.8G

Contriever DE - 16.10% - - 9.0e+10 18.9h 212.4ms
†
/ 9.8m 88.8G

SEAL GR - 34.95% - - 4.3e+10 2.7h 545.9ms / 1m 5s 34.5G
MINDER GR - 37.90% - - 4.3e+10 2.7h 424.6ms / 1m 5s 34.5G
LTRGR GR - 37.85% - - 4.3e+10 2.7h 424.6ms / 1m 5s 34.5G

Indexing-based Update

Spider
DE

24.82% (16.5%) 15.60% 34.03% 17.40% 1.0e+11 20.4h 24.84ms / 28m 196.8G

Contriever DE 19.66% (11.01%) 13.75% 28.53% 8.27% 1.0e+11 20.4h 228.8ms
†
/ 10.5m 99.8G

SEAL GR 33.05% (35.13%) 32.75% 33.50% 37.50% 4.3e+10 3.1h 612.2ms / 1m 26s 37.5G
MINDER GR 38.63% (38.56%) 37.65% 39.70% 39.47% 4.3e+10 3.1h 485.4ms / 1m 26s 37.5G
LTRGR GR 38.30% (37.47%) 37.30% 39.30% 37.63% 4.3e+10 3.1h 485.4ms / 1m 26s 37.5G

Training-based Update

Spider
DE

36.99% (19.58%) 21.75% 52.23% 17.40% 1.0e+11 20.4h 24.84ms / 28m 196.8G

Contriever DE 23.85% (9.82%) 8.20% 39.50% 11.43% 1.0e+11 20.4h 228.8m
†
/ 10.5m 99.8G

SEAL GR 41.01% (38.89%) 38.25% 43.77% 39.53% 4.3e+10 3.1h 612.2ms / 1m 26s 37.5G
MINDER GR 41.54% (39.31%) 38.85% 44.23% 39.77% 4.3e+10 3.1h 485.4ms / 1m 26s 37.5G
LTRGR GR 41.02% (39.14%) 38.50% 43.53% 39.77% 4.3e+10 3.1h 485.4ms / 1m 26s 37.5G

†
For Contriever, 𝑇online is measured using faiss-cpu.

Spider and Contriever are further supervised using DPR.

Table 3: Results of DynamicIR. Our experiments are divided into 3 setups, (1) StaticIR, (2) Indexing-based updates, and (3)
Training-based updates. For each setups, we assess the performance on 𝑄total, 𝑄w/o bias

total , 𝑄initial, 𝑄new, and 𝑄w/o bias
new where

the bias-inducing timestamps are removed. 𝑄w/o bias
new is the average of 𝑄initial and 𝑄w/o bias

new . Efficiency is evaluated using 4
metrics on the right side. For Inference Latency,𝑇online indicates the time required for query embedding and search, and𝑇offline
represents the time for loading the indexed corpus. We highlight the best scores in bold for each setup. Additionally, the
zero-shot performance for all models is provided in Appendix 7.

above two performance. Furthermore, we measure computational

and memory efficiency to comprehensively assess the practicality

of retrieval models in Section 6.

4.4 Metric
To assess the practicality of retrieval models, we measure the re-

trieval performance along with the efficiency of each models. For

retrieval performance, we report 𝐻𝑖𝑡𝑠@5 metric, which measures

whether the gold-standard passages is included in the top 5 retrieved

passages. Most document search systems do not limit results to

one or provide too many; we consider 5 to be a reasonable number

for assessment. Additionally, we report full results of 𝐻𝑖𝑡𝑠@𝑘 and

𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 (𝑘 ∈ {5, 10, 50, 100}) in Appendix A.8.Answer

Recall measures whether the retrieved passage contains an exact

lexical match for the gold-standard answer. For retrieval efficiency,

we report inference FLOPs (Floating Point Operations), indexing

time, inference latency, and storage footprint (Details are in Section

6).

5 RESULTS AND ANALYSIS
In this section, we showcase the adaptability and robustness of GR

and DE, and provide an analysis on utilizing 𝑅′
new and enhanced

continual pretraining approach during the training-based update.

We also discuss the performance of BM25 in dynamic environments.

5.1 GR has greater adaptability in both update
scenarios.

We define adaptability as the ability of retrieval models to maintain

the performance after the updates, compared to the performance

before the updates. To evaluate the adaptability, we examine the

performance on𝑄𝑡𝑜𝑡𝑎𝑙 in each update scenario and compare it with

that on 𝑄𝑖𝑛𝑖𝑡𝑖𝑎𝑙 in StaticIR (See Table 3).

First, in indexing-based updates, GR exhibits 4% greater adaptabil-
ity to new corpora compared to DE. Specifically, when we look from

𝑄𝑖𝑛𝑖𝑡𝑖𝑎𝑙 of StaticIR to 𝑄𝑡𝑜𝑡𝑎𝑙 , GR maintains average performance,

while DE demonstrates a 4% degradation on average. Second, in
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Figure 3: Visualization of total performance inDynamicIR. The
star marks highlight the change in the gap between 𝑄initial
and 𝑄new of DE before and after the elimination of the bias-
inducing factor.

training-based updates, GR shows 11% greater adaptability to new
corpora compared to DE. Notably, GR shows a 5% average gain in

performance. On the other hand, DE demonstrates a 6% degradation

on average.

For DE, we extract the update score from 𝑄w/o bias

total instead of

𝑄total. Because DE exhibits a significant inherent bias towards the

lexical overlap of timestamps when evaluating 𝑄new. We delve

deeper into this phenomenon below.

5.2 DE shows significant bias towards temporal
data.

We observe a bias in DE towards the lexical overlap of timestamps
from the unusually high performance on𝑄new not only in training-

based updates (31% higher than 𝑄initial) but also in indexing-based
updates (19% higher than𝑄initial) where the models never encounter

new corpora during training. This phenomenon stems from the

temporal information, where all timestamps in the queries and in

the documents of the evaluation dataset to be retrieved are set to

the year 2020, introducing bias towards lexical overlap. In Table

3, 𝑄w/o bias

new shows that removing bias-inducing timestamps signif-

icantly reduces DE’s performance on 𝑄new, bringing it to a level

similar to 𝑄initial. See the change in the gap between 𝑄initial and

𝑄new before and after removing timestamps in Figure 3. Whereas,

GR shows robust retrieval performance on temporal information.

For more detailed explanations, refer to Appendix A.4.

5.3 GR better acquires new corpora even
without parameter updates.

We assess the ability to acquire new knowledge through 𝑄new in

both update scenarios. For DE, we consider the performance of

𝑄w/o bias

new instead of 𝑄new, reflecting the impact of bias as described

above. In indexing-based updates, Table 3 demonstrates that GR

Model 𝑅′
new 𝑄total 𝑄initial 𝑄new

Spider
DE

with 36.99% 21.75% 52.23%

w/o 35.77% 29.90% 41.63%

Contriever DE

with 23.85% 8.20% 39.50%

w/o 19.12% 13.90% 24.33%

SEAL GR

with 41.01% 38.25% 43.77%

w/o 37.91% 37.25% 38.90%

MINDER GR

with 41.54% 38.85% 44.23%

w/o 37.80% 38.15% 40.03%

Table 4: Analysis the effectiveness of 𝑅′
new with pseudo-

queries in training-based updates. In this table, w/o refers
only using 𝑅initial during finetuning. The results in hit@5
show that it is effective to include the 𝑅′

new.

excels in retrieving new knowledge even without parameter updates.
GR achieves a 2% higher score in 𝑄new compared to 𝑄initial of Stati-

cIR. Conversely, DE shows a 2% average degradation in 𝑄w/o bias

new .

Similarly, for training-based updates, while DE decreases by 2 – 5%

in 𝑄w/o bias

new , GR gains 6 – 9% in 𝑄new and 2 – 5% in 𝑄w/o bias

new .

5.4 GR better preserves initial knowledge.
To assess the ability to retain initial knowledge, we analyze the

performance on 𝑄initial in both update setups, comparing it with

𝑄initial in StaticIR.

For GR, Table 3 does not show notable signs of forgetting; instead,

training on new corpora helps improve 𝑄initial in training-based

updates. We hypothesize that the GR models may be influenced by

the use of language model attributes for learning language distribu-

tions. Through additional training on in-domain data, GR can gain

advantages in preserving initial knowledge.

On the other hand, DE shows a 3 – 4% degradation in indexing-

based updates and a 0 – 8% decrease in training-based updates. This

observation indicates that DE tends to forget initial knowledge more
during updates compared to GR.

5.5 𝑅′
new enhances the overall performance of

GR.
We analyze the effectiveness of utilizing 𝑅′

new, query-document

pairs where the queries are pseudo-queries generated from 𝐶new
using docT5query. In addition to the results of related works [28,

31, 33, 36, 39, 44, 52], our findings on dynamic corpora demonstrate

that employing 𝑅′
new generated from new corpora is beneficial for

retrieving not only new knowledge but also initial knowledge for

GR (See Table 4).

We believe experiencing benefits on𝑄initial despite training with

𝑅′
𝑛𝑒𝑤 is also attributed to the utilization of language models at-

tributes for learning language distributions. Conversely, in the case
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Model Continual Pretraining 𝑄total 𝑄initial 𝑄new

SEAL GR

ours (attn+ffn) 38.08% 37.25% 38.90%
convent. LoRA (attn) 31.69% 32.00% 31.37%

full params 29.92% 28.50% 31.33%

MINDER GR

ours (attn+ffn) 39.04% 38.15% 39.93%

convent. LoRA (attn) 38.35% 37.50% 39.20%

full params 38.83% 35.30% 42.37%

Table 5: Analysis of the effectiveness of our continual pre-
training approach targeting the key parameters. The results
indicate hit@5 scores for training-based updates on activat-
ing full parameters (557M params), convent. LoRA (2.4M
params), and our approach (3.1M params).

of DE, we observe a 5 – 8% degradation in 𝑄initial, indicating for-

getting. Moreover, since DE has a bias towards timestamps, if we

explore 𝑄w/o bias
new instead of 𝑄new, 𝑅

′
new would not help DE at all.

5.6 Applying LoRA to FFN benefits GR in both
preservation and acquisition of knowledge.

Based on the analysis described in Section 4.2, our continual pre-

training approach significantly improves the adaptability of GR. As

shown in Table 5, activating FFN modules, which include many key

parameters for adapting to new knowledge, helps not only𝑄new but

also𝑄initial, compared to using conventional LoRA (convent. LoRA)

and full parameters (full params). Specifically, targeting the key

parameters helps mitigate the forgetting issue by updating sparsely,

which surprisingly is more effective than the conventional approach

of updating fewer parameters in LoRA. Additionally, it maximizes

the acquisition of new knowledge even more than training with

full parameters, where all parameters are updated, in SEAL.

5.7 BM25 shows temporal bias and limited
adaptability.

We investigate how BM25 performs in dynamic corpora with tem-

poral information. Notably, BM25 surpasses transformer-based

retrieval models on the StreamingQA benchmark, in contrast to

its performance [3, 5, 26, 27, 45, 48] on other benchmarks such

as KILT [37], MSMARCO [2] and NaturalQuestions [22] (See Ta-

ble 6). However, BM25 exhibits limitations in handling temporal

data, with a 4.7% degradation observed when timestamps are re-

moved (𝑄new → 𝑄w/o bias
new in [Update]), indicating a bias towards

lexical matching of data from 2020. Furthermore, it struggles to

maintain its initial performance, experiencing a 2.16% degrada-

tion when integrated with a new 6M corpus (𝑄initial in [Static] →
𝑄w/o bias
total in [Update]). These findings underscore the need for re-

trieval models to move beyond textual matching, focusing not only

on semantic searching [30] but also on adapting to evolving corpora

and maintaining robustness across diverse data characteristics.

Performance (hit@5)

Evaluation 𝑄total 𝑄w/o bias

total 𝑄initial 𝑄new 𝑄w/o bias

new

[Static] BM25 - - 43.35% - -

[Update] BM25 43.54% 41.19% 37.25% 49.83% 45.13%

Table 6: Performance of BM25 in StaticIR and Indexing-based
Update. Through these results, we see the bias of tempo-
ral information via difference between 𝑄new and 𝑄w/o bias

new
and adaptability through a comparison between [Static]
𝑄initial and [Update] 𝑄w/o bias

total which is unweighted average
of 𝑄initial and 𝑄w/o bias

new .

Figure 4: Inference FLOPs according to the number of instances.
The flops for GR on both the static and updated corpus are
identical, as it maintains consistent flops regardless of the
corpus size unlike DE.

6 COMPUTATION & MEMORY EFFICIENCY
In this section, we provide the results of computational and memory

efficiency. To measure indexing time and inference latency, we use

an 80G A100 GPU, keeping the server empty except for our process

throughout the measurement.

Inference FLOPs. We analyze the inference FLOPs
‡
of DE and

GR to assess their computational efficiency. We approximately mea-

sure FLOPs per instance using 𝐷𝐸flops for DE and 𝐺𝑅flops for GR

defined as below. We use the notation 𝐼𝑃 for inner product, 𝐹𝑊 for

‡
FLOPs (Floating Point Operations) is the number of floating-point arithmetic

calculations.
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forward pass, and 𝐵𝑒𝑎𝑚 for beam search.

𝐷𝐸flops = 𝐹𝑊 enc
flops +𝐶 ÷𝐶𝑙𝑢𝑠𝑡𝑒𝑟 × 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 × 𝐼𝑃flops

𝐺𝑅flops = 𝐹𝑊 enc
flops + 𝐿 × 𝐵𝑒𝑎𝑚flops

𝐼𝑃flops = 𝑑
model

+ (𝑑
model

− 1)
𝐹𝑊flops = 2𝑁 + 2𝑛

layer
𝑛ctx𝑑attn

𝐵𝑒𝑎𝑚flops = (𝐹𝑊 dec
flops + 𝐼𝑃flops × |𝑉 | log |𝑉 |) × 𝐵

where 𝐶 is the corpus size, 𝐿 is the sequence length of output,

𝑑model is dimension of hidden vector, 𝑁 is the model size, 𝑛𝑙𝑎𝑦𝑒𝑟 is

the number of layers, 𝑛𝑐𝑡𝑥 is the length of input context, 𝑑𝑎𝑡𝑡𝑛 is

the dimension of attention, 𝑉 is the vocab size, and 𝐵 is the beam

size. 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 is the total number of centeroids (clusters), 𝑁𝑒𝑎𝑟𝑒𝑠𝑡

is the number of clusters to search, |𝑉 | log |𝑉 | is the complexity of

obtaining possible token successors with FM-index [3].We calculate

𝐹𝑊flops for the transformer based on Table 1 in [18] and apply it to

the encoder and decoder.

As shown in Table 3, our results reveal that GR requires 2 times
fewer computations per instance over DE, exhibiting 4.3e+10 for

the all three setups. In contrast, DE has 9.0e+10 for StaticIR and

1.0e+11 for indexing-based and training-based updates. Detailed

calculations are in Appendix A.7. Figure 4 illustrates that GR offers

superior efficiency as the number of instances increases. Moreover,

unlike DE, which exhibits O(𝑁 ) complexity, where 𝑁 represents

the corpus size, GR maintains a constant O(1) complexity.

Indexing Time. There is a difference in the concept of indexing

between DE and GR. For DE, this involves embedding, which con-

verts the corpus into representations using an encoder. In GR, index-

ing refers the data processing of document identifiers to constrain

beam search decoding, ensuring the generation of valid identifiers.

Note that we process data without applying sharding.

As shown in Table 3, our results exhibit that GR (3.1h) requires 6×
less time than DE (20.4h) for indexing 𝐶initial and 𝐶new. The crucial

aspect of indexing is that DE necessitates re-indexing the entire

corpus each time whenever the model is updated, irrespective of

the corpus update. In contrast, GR has a significant advantage in

that they do not require re-indexing when the model is changed.

This issue becomes even more prominent when the corpus size is

substantial.

Inference Latency. Inference process can be divided into two

stages: (1) loading a pre-indexed corpus and (2) retrieving, which

includes query embedding and search. We classify the former as

offline latency (𝑇offline) and the latter as online latency (𝑇online), mea-

suring both. 𝑇online in Table 3 is reported for a single instance.

Table 3 shows GR is 10 times faster than DE when retrieving from
updated corpora for 𝑇offline. Unlike DE, which stores each passage

representation in vector form, GR does not need much time to load

the index since it stores knowledge within its parameters.

For𝑇online, however, GR is 20 times slower than DE using faiss-gpu.
Although DE requires 2 times more inference flops, it seems that

the FAISS [16] module contributes significantly to the inference

speed of DE.

While online latency remains a challenge in GR, we anticipate

that this can be addressed through the development of powerful

computing resources or external modules like FAISS for GR in the

future.

Storage Footprint. We measure the storage footprint of the

retrieval model and the pre-indexed corpus, which are required for

performing retrieval.

Table 3 indicates that GR has 4 less storage requirements over DE
for updated corpora. Notably, the memory requirements for DE are

directly affected by the corpus size, as they store representations

of all documents in vector form outside the retrieval model. In

contrast, GR has minimal dependence on the corpus size by storing

knowledge in its internal parameters.

GR also stores information approximately 4 times more effi-

ciently per passage from the perspective of information theory.

Specifically, we incorporate 6M 𝐶new to the retrieval model using

only 3.1M parameters (with LoRA) and an extra 3GB FM-index in

training-based updates. That is, when updating using FP16, GR

requires approximately 501 bytes to store one passage, which is

the sum of 1 byte and 500 bytes for the parameters and FM-index,

respectively. In contrast, DE demands 2,048 bytes for storing a pas-

sage in index with a dimension of 1,024. However, we note that the

index of DE is often quantized to FP8 or higher.

7 CONCLUSION
In this work, we conduct an extensive comparison of DE and GR,

focusing on their practicality. By establishing a DynamicIR setup,

we showcase how retrieval models perform in real-world scenarios

where knowledge evolves over time. Although DE is more com-

monly utilized in practical IR systems, our findings highlight GR’s

superior performance in terms of adaptability, robustness, and effi-

ciency. While online inference latency of GR remains the challenge,

it has potential as a practical IR system in the future. This potential

stems from GR’s high adaptability to evolving knowledge, robust-

ness in handling temporal data without introducing bias, lower

memory requirements, fewer inference flops, and reduced indexing

time. In this paper, we shed light on the practical advantages of GR

on dynamic corpora.

8 LIMITATIONS
Our study has certain limitations. First, the evaluation dataset in

the StreamingQA benchmark lacks diversity. All timestamps in the

queries and in the documents to be retrieved from 𝑄new are set to

the year 2020. This matching may introduce bias towards lexical

overlap of temporal information when evaluating the acquisition

of new knowledge. For a more dynamic evaluation, it is better to

consider diverse query timestamps. Second, due to the scarcity of

datasets that reflect temporal updates, we rely only on StreamingQA.

While this dataset comprises 50 million articles spanning 14 years, a

more comprehensive assessment across various datasets is needed

to generalize our findings. Third, our findings cover large-scale

corpus updates, yet they raise the question of how these results

apply across multiple update frequencies. Lastly, while our results

highlight the numerous advantages of GR in terms of adaptability

to new corpora, inference flops, and memory, our evaluation of

online inference latency demonstrates that DE has a faster speed

compared to GR, primarily due to the FAISS module.
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A APPENDIX
A.1 Zero-shot performance of DE and GR
We conduct zero-shot experiments to assess the base performance

of retrieval models on StreamingQA, utilizing Spider trained on NQ,

Contriever trained on CCNet andWikipedia, SEAL trained on KILT,

and MINDER trained NQ. The results of the zero-shot experiments

are presented in in Table 7.

A.2 Implementation Details
A.2.1 Dual Encoder.

Spider. Spider experiments are conducted using 8× A100 80GB

GPUs, and our implementation setup is primarily based on Spider.

SPIDER [40]
§
code. We employ the bert-large-uncased pretrained

model (336M) from HuggingFace, with fp16 enabled and weight

sharing, configuring a batch size of 512 and a maximum sequence

length of 240. For the pretraining stage, we run a full epoch with a

learning rate of 2e-05 and a warm-up of 2,000 steps. The pretraining

data is created by running the spider code on the provided docu-

ments from StreamingQA, through which we generate synthetic

queries using recurring spans. This yields 95,199,412 pretraining

data from base corpus and 21,698,933 from new corpus, which are

used for StaticIR and DynamicIR, respectively. It takes about 5

§
https://github.com/oriram/spider

Model 𝑄total 𝑄initial 𝑄new

SPIDER DE 13.28% 8.95% 17.60%

Contriever DE 18.74% 7.15% 30.33%

SEAL GR 20.60% 19.80% 21.40%

MINDER GR 25.87% 25.00% 26.73%

Table 7: Zero-shot performance on updated corpora. It
demonstrates the zero-shot performance in hit@5 achieved
without further training from released checkpoints. Overall,
it exhibits a similar trend to our models trained on Stream-
ingQA dataset.

days for pretraining the base model and 25 hours for continual

pretraining the updated model. For the finetuning stage, we run

for maximum 10 epochs with learning rate of 1e-05 and warm-up

of 1,000 steps with batch size of 512. We select the best checkpoint

with lowest validation loss.

Contriever. Contriever experiments are done on 4× A100 40GB

GPUs. We employ bert-large-uncased pretrained model (336M) and

follow the paper [15] and their official codebase
¶
for the implemen-

tation and hyperparameter setup. We adjust the per_gpu batch size

from 256 to 64 to fit in our gpu resource. Total step size is 110,000

for base (warmup 4,000 steps) and 16,000 (warmup 1,000 steps) for

continual pretraining on 𝐶𝑛𝑒𝑤 , which is equivalent to one epoch.

Learning rate is set to 1e-04. For the finetuning stage, we run con-

triever for maximum 10 epochs (about 8000 steps, warmup for 100

steps) with eval frequency of 200 steps and select the checkpoint

with lowest eval loss. The per_gpu batch size is set to 32. All the

hyperparemeters are the same with the pretraining setup, except

the ones mentioned above.

A.2.2 Generative Retrieval.

SEAL. We employ the bart-large pre-trained model (400M) for

GR and train the model in Fairseq framework for using SEAL.[3]
∥
.

Due to this context, when we utilize LoRA method, we implement

the method within the Fairseq framework. For the pretraining stage

of the base retrieval model in StaticIR, we generate 2 random spans

and 1 full passage with the publication timestamp as input for

each instance using the past corpus, resulting in 130,897,221 (130M)

unsupervised data. We train the initial model on 16× A100 40GB

GPUs with a batch size of 7,400 tokens and a learning rate of 6e-5.

Subsequently, for the finetuning stage in StaticIR using 𝑅initial, we

use 10 random spans as document identifiers per question, resulting

in 994,020 (994K). We train this model using 4× A100 80GB GPUs

with batch size of 11,000tokens and a learning rate of 6e-5. In the

continual pretraining stage for the updated model in training-based

updates of DynamicIR, we use 3 random spans and 1 full passage

with the publication timestamp as input for each instance, utilizing

¶
https://github.com/facebookresearch/contriever

∥
https://github.com/facebookresearch/SEAL
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MINDER GR 𝑄total 𝑄initial 𝑄new

w/o title 41.54% 38.85% 44.23%

with pseudo-title 40.86% 38.15% 43.57%

Table 8: MINDER with and without Titles as Identifiers. The
results in hit@5 indicate that there is little difference be-
tween the use of identifiers with and without the title.

Spider
DE

𝑄total 𝑄initial 𝑄new

Full parameters 36.99% 21.75% 52.23%

LoRA 26.44% 10.05% 42.83%

Table 9: Spider with and without LoRA when pretraining
on 𝐶new. The results in hit@5 show that DE achieves higher
performance when pretraining with full parameters not to
apply LoRA.

the updated corpus, which results in 24,471,541 (24M) unsupervised

data. We train this updated model using 4×A100 80GB GPUs with a

batch size of 11,000 tokens and a learning rate of 1e-4. Subsequently

for finetuning stage in training-based update of DynimicIR using

𝑅initial and𝑅
′
new, we generate 10 random spans as passage identifiers

per question, respectively, resulting in 1,894,020(1.8M) data. During

inference, we set the beam size to 10.

LTRGR. We use 4× A100 80GB GPUs for the learning-to-rank

phase. We employ MINDER to create base models and then follow

the configuration of LTRGR when learning to rank, except for

setting the number of epochs and hits to 5 and 150, respectively,

and omitting the title. During inference, we set the beam size to 10.

When generating the training dataset for learning to rank, due to

computational memory issues in processing 150 hits of our large

finetuning dataset, we randomly sample 25% from 𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 when

training initial models used for StaticIR and Indexing-based update

setups. For updated models, we randomly sample 25% from the

combination of 𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝑅
′
𝑛𝑒𝑤 , maintaining a 1:1 ratio between

them.

MINDER. We use 2× A100 80GB GPUs for MINDER experi-

ments. We use the pretrained model which is used for SEAL experi-

ments, since MINDER has identical pretraining process to that of

SEAL. For retrieval model of StaticIR, we create MINDER-specific

data comprising of 10 spans and 5 pseudo-queries as passage identi-

fiers per question, resulting in 1,491,030 (1.4M). For retrieval model

of training-based updates in DynamicIR, we generate 10 spans and

5 pseudo-queries, resulting in 2,841,030 (2.8M) data. We run all

MINDER models for maximum 10 epochs using with max token

of 18,000 and a learning rate of 6e-5. During inference, we set the

beam size to 10.

A.3 Difference in the presence of Titles as
Identifiers for MINDER

The original MINDER model employs three components, titles,

substrings, and pseudo-queries, as its identifiers. However, as the

StreamingQA dataset lacks title information, we exclude document

titles when constructing the MINDER model. To investigate the

impact of this omission on performance, we conduct an analysis

within training-based updates by fine-tuning utilizing pseudo-titles

generated by GPT-3.5. Our results demonstrate that the omission

of titles, in comparison to the utilization of pseudo-titles, has a

negligible impact on performance as shown in Table 8.

A.4 Exploration of DE’s bias towards lexical
overlap of timestamps

All timestamps in the queries and in the documents to be retrieved

are set to the year 2020. In this context, to clarify the bias of DE

towards temporal information, we finetune the models using a

dataset where query dates are removed. Subsequently, we evalu-

ate the models using an evaluation dataset where query dates are

eliminated. This experiment is viable because, out of a total of 5,000

evaluation instances, only 7 cases require different documents for

the same question but with different query timestamps. Through

the results 𝑄w/o bias

new in Table 10 compared to 𝑄new in Table 3, we

identify that the unexpectedly high performance of DE models

stems from the lexical overlap with the timestamp. On the other

hand, GR conducts retrievals more stably with fewer constraints

on the lexical characteristics.

A.5 Constructing the query-document pairs
from new corpus

Reflecting the original evaluation dataset’s distribution which bal-

anced similar proportions of new (2020) and base (2007 – 2019)

data, we replicate this distribution in our query generation based

on new corpus. We randomly selected 90,000 passages from the 6

million 2020 passages. Subsequently, we finetuned a T5-base model

on the query-document pairs from StreamingQA’s base corpus,

applying a hyperparameter configuration similar to docT5 query

generation, feeding date-prefixed passages as input and producing

date-prefixed queries as output. The training process comprises

three epochs, with each taking roughly 45 minutes on an NVIDIA

A6000 GPU. We then use the trained T5 model to generate one

pseudo-query for each of the 90,000 selected passages, a process

lasting approximately 90 minutes. Ensuring alignment with our

study’s temporal focus, we verify that the date information in the

generated queries corresponded to 2020. Following a manual ad-

justment to ensure the queries are asked in 2020, we assemble the

queries and corresponding documents into an additional finetuning

dataset for the retrieval models, a process that takes about four

hours in total. Examples of the finetuning dataset are in Table 11.

A.6 Application of enhanced continual
pretraining approach on DE

Unlike GR, LoRA on feed-forward network and attention layers

does not improve the retrieval performance of DE. As shown in

Table 9, it is evident that DE achieves higher performance when
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Indexing-based updates Training-based updates

w/o timestamp 𝑄w/o bias

initial 𝑄w/o bias

new 𝑄w/o bias

initial 𝑄w/o bias

new

Spider
DE

18.90% 17.40% 18.90% 17.40%
Contriever DE 6.25% 8.27% 9.85% 11.43%

SEAL GR 35.35% 37.50% 35.30% 39.53%

MINDER GR 36.85% 39.47% 38.45% 43.57%

Table 10: Ablation Study on the bias towards temporal information. DE shows a lexical bias toward timestamps on 𝑄new where
all queries are asked in 2020 and the gold documents are published also in 2020. When removing the timestamp of query, the
performance drastically drops, while GR does not exhibit noticeable changes.

pretraining on 𝐶new with the full parameters rather than using

LoRA. The degradation in hit@5 is noticeable not only in 𝑄new
but also in 𝑄initial, indicating that the application of LoRA is not

beneficial for both retaining initial knowledge and acquiring new

knowledge.

A.7 Calculation Details of Inference FLOPs
We provide an approximate calculation of inference flops for DE and

GR on updated corpora. For DE using the bert-large-uncased, its

configurations are 𝑁=336M, 𝑑model=1,024, 𝑛layer=24, 𝑛ctx=512, and

𝐶=50M. For query embedding, 𝐹𝑊flops is 697M, and for searching,

𝐶 × 𝐼𝑃flops is 102B. The total inference flops (𝐷𝐸flops) amount to

approximately 102B + 697M ≈ 102.7B. For GR using the bart-large,

its configurations are 𝑁=400M, 𝑑model=1,024, 𝑛layer=12, 𝑛ctx=1,024,

V=50,265, L=10, and B=10. For the encoding process, 𝐹𝑊flops is 425M,

and for the decoding process, 𝐹𝑊flops is 42.5B. The total inference

flops (𝐺𝑅flops) amount to approximately 425M + 42.5B ≈ 43B.

Note that for DE, we employ the exhaustive (brute-force) search

method adopted by our baselines. Some models can employ approx-

imate search techniques, such as clustering, introducing a trade-off

between speed and accuracy as they conduct exhaustive searches

within nearby clusters.

A.8 Full performance on Hit and Answer Recall
We present the full results of evaluating the performance of DE and

GR in both StaticIR and DynamicIR (indexing-based updates and

training-based updates). We employ Hit@N and Answer Recall@N

metrics, where N is set to 5, 10, 50, and 100, to assess retrieval

performance. The results are in Table 12 and Table 13 for Hit and

Answer Recall, respectively.
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Pseudo-Query Gold Passage

Today is Sunday, October 25, 2020. When did

the pay gap between Pakistani employees and

white employees decrease to 2%?

Monday, October 12, 2020. In 2019 median hourly earnings for white Irish employees

were 40. 5% higher than those for other white employees at 17.55, while Chinese

workers earned 23.1% more at 15.38 an hour and Indian workers earned 14.43 an hour

- a negative pay gap of 15.5%. Annual pay gap Breaking down the data by gender, the

ONS said ethnic minority men earned 6.1% less than white men while ethnic minority

women earned 2.1% more than white women. The ONS added that ethnicity pay gaps

differed by age group. Ämong those aged 30 years and over, those in ethnic minority

tend to earn less than those of white ethnicities,ït said. In contrast, those in the ethnic

minority group aged 16 to 29 years tend to earn more than those of white ethnicities

of the same age. Gender pay gap The ONS found that the pay gap of 16% for Pakistani

employees aged more than 30 shrank to 2% for those aged 16-29.

Today is Sunday, May 2, 2020. What was the

top level of the FTSE 100?

Tuesday, April 28, 2020. But the big weekly shop has made a comeback, with the

amount families spend on an average shopping trip hitting a record high. The new

tracking data comes after Tesco boss Dave Lewis said the pandemic had changed

people’s shopping habits, which he said have r̈everted to how they were 10 or 15

years ago.M̈eanwhile, is this the end of loo roll wars? Spaghetti hoops have overtaken

lavatory paper as the most out-of-stock item in Britain’s stores. Follow our guide to

minimising your risk of catching Covid-19 while shopping. The oil giant said there

would continue to be an ëxceptional level of uncertaintyïn the sector. Meanwhile, the

FTSE 100 soared to a seven-week high. Follow live updates in our markets blog.

Today is Tuesday, March 24, 2020. Why did

President Trump sign an executive order

banning hoarding?

Tuesday, March 24, 2020. President Donald Trump signs executive order banning

hoarding March 23 (UPI) – President Donald Trump on Monday signed an executive

order to prevent hoarding and price gouging for supplies needed to combat the

COVID-19 pandemic. During a briefing by the White House Coronavirus Task Force,

Trump and Attorney GeneralWilliam Barr outlined the order which bans the hoarding

of vital medical equipment and supplies including hand sanitizer, face masks and

personal protection equipment. Ẅe want to prevent price gouging and critical health

and medical resources are going to be protected in every form,T̈rump said. The

order will allow Health and Human Services Secretary Alex Azar to designate certain

essential supplies a s scarce, which will make it a crime to stockpile those items in

excessive quantities. Barr said the limits prohibit stockpiling in amounts greater than

r̈easonable personal or business needsör for the purpose of selling them in ëxcess of

prevailing market pricesädding that the order is not aimed at consumers or businesses

stockpiling supplies for their own operation. Ẅe’re talking about people hoarding

these goods and materials on an industrial scale for the purpose of manipulating the

market and ultimately deriving windfall profits,
¨
he said.

Today is Tuesday, November 27, 2020. What is

the name of the radio channel Joe Biden was

on?

Monday, November 16, 2020. ’Heal the damage’: Activists urge Joe Biden to move

beyond
¨
border securityÄs Joe Biden prepares to take office, activists say the president-

elect must not only take meaningful action to stabilize the US-Mexico border, but also

reckon with his own history of militarizing the border landscape and communities.

Biden has promised to endmany of the Trump administration’s border policies, but has

yet to unveil the kind of bold immigration plan that would suggest a true departure

from Obama-era priorities. Cecilia Muoz, Obama’s top immigration adviser who

memorably defended the administration’s decision to deport hundreds of thousands

of immigrants, was recently added to Biden’s transition team. Biden has stated that he

will cease construction of the border wall, telling National Public Radio in August that

there will be n̈ot another foot of wall,änd that his administration will close lawsuits

aimed at confiscating land to make way for construction. His immigration plan will

also rescind Trump’s declaration of a n̈ational emergencyön the southern border,

which the Trump administration has used to siphon funds from the Department

of Defense to finance construction, circumventing Congress in an action recently

declared illegal by an appeals court. Some lawmakers along the border find these

developments heartening, after Trump’s border wall construction has devastated

sensitive ecosystems, tribal spaces, and communities, and has been continuously

challenged in court.

Table 11: Examples of Finetuning dataset 𝑅′
𝑛𝑒𝑤 created by docT5.
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hit@5 hit@10 hit@50 hit@100

Model Method Total initial New Total initial New Total initial New Total initial New

Spider

StaticIR 19.65 19.65 – 25.40 25.40 – 38.20 38.20 – 44.50 44.50 –

Index-based Update 24.82 15.60 34.03 30.67 20.20 41.13 44.92 32.80 57.03 51.28 38.45 64.10

Train-based Update 36.99 21.75 52.23 43.74 26.95 60.53 58.75 40.40 77.10 64.84 46.95 82.73

Contriever

StaticIR 16.10 16.10 – 20.25 20.25 – 33.80 33.80 – 40.90 40.90 –

Index-based Update 21.14 13.75 28.53 25.17 17.35 36.90 39.44 29.45 54.43 46.26 35.65 62.17

Train-based Update 23.85 8.20 39.50 29.26 10.55 47.97 43.66 20.35 66.97 49.64 25.35 73.93

SEAL

StaticIR 34.95 34.95 – 41.80 41.80 – 57.25 57.25 – 63.10 63.10 –

Index-based Update 33.13 32.75 33.50 39.64 38.90 40.37 54.14 54.50 53.77 59.71 60.55 58.87

Train-based Update 41.01 38.25 43.77 47.99 45.30 50.67 62.90 60.20 65.60 67.79 65.00 70.57

MINDER

StaticIR 37.90 37.90 – 45.00 45.00 – 59.60 59.60 – 64.00 64.00 –

Index-based Update 38.68 37.65 39.70 45.27 44.40 46.13 60.87 60.60 61.13 66.13 66.35 65.90

Train-based Update 41.54 38.85 44.23 48.29 45.60 50.97 63.12 60.80 65.43 68.43 66.25 70.60

Table 12: Full results on the Hit of DE and GR.

answer recall @5 answer recall @10 answer recall @50 answer recall @100

Model Method Total initial New Total initial New Total initial New Total initial New

Spider

StaticIR 37.55 37.55 – 47.45 47.45 – 67.65 67.65 – 74.80 74.80 –

Index-based Update 44.24 33.45 55.03 52.93 41.50 64.37 70.77 61.70 79.83 76.68 69.20 84.17

Train-based Update 55.79 41.05 70.53 64.32 49.90 78.73 79.25 68.90 89.60 83.63 75.50 91.77

Contriever

StaticIR 28.90 28.90 – 37.60 37.60 – 60.20 60.20 – 68.25 68.25 –

Index-based Update 31.34 25.15 40.63 41.84 34.80 52.40 63.05 55.15 74.90 70.98 64.30 81.00

Train-based Update 37.14 20.15 54.13 46.54 28.15 64.93 66.21 48.65 83.77 72.33 56.85 87.80

SEAL

StaticIR 58.25 58.25 – 66.30 66.30 – 80.45 80.45 – 83.60 83.60 –

Index-based Update 55.85 56.80 54.90 63.68 64.45 62.90 77.58 78.95 76.20 81.49 82.75 80.23

Train-based Update 62.44 59.95 64.93 70.25 68.10 72.40 81.65 80.30 83.00 85.02 84.10 85.93

MINDER

StaticIR 59.50 59.50 – 68.10 68.10 – 80.35 80.35 – 83.75 83.75 –

Index-based Update 54.23 54.45 54.00 62.96 63.75 62.17 76.54 78.00 75.07 79.79 81.20 78.37

Train-based Update 56.74 55.35 58.13 64.45 63.70 65.20 77.19 77.40 76.97 80.34 80.50 80.17

Table 13: Full results on the Answer Recall of DE and GR.
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