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Abstract

The leakage of benchmark data into the training data has emerged as a significant
challenge for evaluating the capabilities of large language models (LLMs). In this
work, we use experimental evidence and theoretical estimates to challenge the
common assumption that small-scale contamination renders benchmark evaluations
invalid. First, we experimentally quantify the magnitude of benchmark overfitting
based on scaling along three dimensions: The number of model parameters (up
to 1.6B), the number of times an example is seen (up to 144), and the number of
training tokens (up to 40B). We find that if model and data follow the Chinchilla
scaling laws, minor contamination indeed leads to overfitting. At the same time,
even 144 times of contamination can be forgotten if the training data is scaled
beyond five times Chinchilla, a regime characteristic of many modern LLMs. We
then derive a simple theory of example forgetting via cumulative weight decay. It
allows us to bound the number of gradient steps required to forget past data for any
training run where we know the hyperparameters of AdamW. This indicates that
many LLMs, including Llama 3, have forgotten the data seen at the beginning of
training. Experimentally, we demonstrate that forgetting occurs faster than what is
predicted by our bounds. Taken together, our results suggest that moderate amounts
of contamination can be forgotten at the end of realistically scaled training runs.

1 Introduction

A core principle of machine learning is that a model should not be trained on the test set used for
evaluation [19]. For foundation models trained on Internet-scale data, there are increasing concerns
that this principle is violated due to the leakage of benchmark evaluation data into the training data
[61, 48]. Indeed, many LLM developers have found overlap between their training data and the
benchmark questions used for evaluation [9, 20].

While the fact that data contamination can lead to invalid performance evaluations is now well-
established [45, 38, 62, 35], little is known about the precise conditions under which this is the case.
Because modern foundation models are sometimes trained for over a million gradient steps [20], it
is unclear whether a single update on contaminated data at some point during training necessarily
impacts downstream evaluations. And indeed, there is quite some evidence that language models
need to see samples repeatedly to have any impact on the final model. For example, many papers
on memorization have found that it occurs only when a sample is frequently repeated in the training
data [11, 6, 32]. The same is true for research on knowledge acquisition, where a fact needs to be
paraphrased many times before it is finally remembered by the model [2, 10, 14].

In this work, we study the impact of data contamination in a controlled setting. This means we train
language models from scratch on datasets where we explicitly insert contaminated examples [35]. We
begin by quantifying how the overall magnitude of benchmark overfitting (or the cross-entropy loss of
an observed sample) changes as we scale along three critical dimensions: (1) the number of model
parameters, (2) the number of training tokens, and (3) the number of repetitions of an example in the
training data (Section 4.1). Holding the other two dimensions fixed, we find that the effect of scaling
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is monotone in each dimension. First, similar to many other works, we find that the tendency of a
model to overfit increases in the number of parameters [25, 64, 11]. Second, and this is also expected,
we find a clear scaling in the number of repetitions, where more frequently repeated observations
exhibit stronger overfitting [11, 32]. More surprisingly, we find that the effect of contamination can
vanish as we increase the number of training tokens, up to the point where 12 repetitions of an entire
dataset in the training data have no impact on the downstream evaluation on that same dataset.

Our investigation reveals that the natural forgetting dynamics of gradient descent [57, 34] is the
reason why increasing the number of tokens alleviates the impact of contamination. Concretely,
we show that training on five times Chinchilla [30] of clean data can cause a model to forget even
144 times repeated training examples (Section 4.2). Forgetting the bulk of the impact of a training
example can occur rapidly, a point that we demonstrate using OLMo-1B [26] (Section 4.3). What is
the reason for this rapid forgetting? We show that exposure to novel data is important. Interestingly,
models tend to exhibit the strongest overfitting on examples seen repeatedly throughout training, even
compared to those seen during the end (Section 4.2).

Because running pre-training experiments is expensive, we also ask to what degree forgetting can be
explained by the training dynamics of gradient descent. We show that the weight decay parameter
and learning rate schedule of the AdamW optimizer [42] play a key part in forgetting past training
examples. Concretely, we derive a simple theory of forgetting via cumulative weight decay and
show that it provides an upper bound on empirical forgetting, which usually occurs faster. The key
point is that this approach allows us to gauge the degree of forgetting present in any training run for
which the optimization hyperparameters are known. It even allows us to approximate how the final
model parameters balance the gradient updates from different stages of training. Because of space
constraints, this analysis is deferred to Supplement A.

Taken together, our main contribution is to show that the impact of individual examples in the
training data depends on the precise characteristics of the setting. There are settings where the
effect can be significant; Chinchilla training is an important example (Section 4.1). However, there
are equally realistic settings where individual examples dont’t matter - including quite likely the
data-intensive training runs of many recent LLMs [23]. This highlights the connection of our work to
data attribution: We demonstrate that there are cases where the presence or absence of a datapoint
in the training data is irrelevant for the model behavior on that same datapoint, meaning it does not
make sense to attribute model behavior to individual datapoints in this regime.

2 Related Work

Data Contamination. The GPT-3 paper [9] uses an n-gram-based approach to differentiate between
“clean” and “dirty” benchmark questions. This approach has since been used in many LLM reports
[16, 59, 20, 1]. A recent literature aims to detect [48], mitigate [39], and estimate the effect of [62, 8]
data contamination under various assumptions, but crucially without access to the training data.
Research on memorization [12, 13] shows that text sequences from the training data are sometimes
encoded within the model, including machine learning datasets [28, 40, 47, 8].

Forgetting. In machine learning, the term forgetting is frequently associated with “catastrophic”
forgetting [41]. In the context of LLMs, catastrophic forgetting can occur during fine-tuning [44] or
continual learning [31]. In contrast, this paper studies forgetting as a potential “natural” phenomenon
of learning [58]. [57] study forgetting in language modeling and find, similar to [58], that forgetting
can be exponentially slow. In contrast, [34] find that models empirically do forget examples over
time. In concurrent work, [49] propose to add a second momentum term to the AdamW optimizer,
and show that this slows down the forgetting of past gradients.

Data Attribution. Data attribution methods [36, 33, 50] aim to identify data points responsible for
specific model behaviors. We ask how much a model’s benchmark performance is influenced by seeing
the example during training, which broadly falls within this field [27, 15]. Importantly, we directly
measure the influence of contaminated examples through retraining, avoiding the approximation
errors that can occur when using data attribution methods [36, 24] for large-scale models [5, 4]

3 Background and Methods

This Section lays out our experimental setup.
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Research question

How does the presence of a text in the training data influence the final model’s performance
on that same text?

Models and Training Data. We train language models of up to 1.6B parameters using the architecture
and hyperparameters from the GPT-3 paper [9, Table 2.1]. For this, we adopt the llm.c codebase. The
training data is the 100BT split of the FineWeb-Edu dataset [43]. We also train OLMo-1B [26] using
the corresponding code and data [56].

3.1 We consider the regime of n-times Chinchilla

According to the Chinchilla scaling law, for every doubling of model size, the number of training
tokens should also be doubled at approximately 20x the number of model parameters [30, Table
3]. While the Chinchilla paper was highly influential, modern language models are trained on
significantly more tokens [55]. For example, the OLMo-7B model was trained on 2.46T tokens, 17.5x
the amount suggested by Chinchilla [26]. Similarly, the Llama 3 70B model was reportedly trained
on 15T tokens, at over 10x Chinchilla [20, 46]. The same holds for almost all recent LLMs at the 7B
parameter scale [23]. In this paper, we count the number of tokens a model is trained on as a multiple
of its Chinchilla tokens.

3.2 We evaluate on a mix of seven different benchmarks

We evaluate the impact of data contamination using a mix of seven different benchmarks: ARC-Easy
[18], Social-I-QA [54], WinoGrande [53], PiQA [7], BoolQ [17], MMLU [29], and HellaSwag [63].
This means that every evaluation contains questions from all seven benchmarks. To construct the
mixed contamination data, we first concatenate the different benchmarks. We then partition the set
of all benchmark questions into subsets ranging from 10,000 to 2,000 questions so that each subset
contains all benchmarks in equal weight: HellaSwag: 19.58%, SocialIQA: 8.27%, PiQA: 19.7%,
MMLU: 21.82%, BoolQ: 6.48%, ARC-Easy: 5.92%, and WinoGrande: 18.16%. A holdout set
of 10,000 benchmark questions is never added to the training data. The other subsets are added to
the training data, repeated either 4, 12, 36, or 144 times. Models are evaluated zero-shot via the
likelihood assigned to different sentence completions [21]. For more discussion and details about
how contamination is performed, see Supplement B.1 and Supplement B.2.

4 Experimental Results

We begin in Section 4.1 by discussing the scaling in model parameters, training tokens, and repetitions
in the training data. The following Section 4.2 discusses various experiments on forgetting. Section
4.3 complements this with an analysis of OLMo-1B [26].

4.1 Contamination scales with Model, Data, and Repetitions

We conduct three different experiments to understand how the effect of data contamination scales
with the number of model parameters, training tokens, and the number of times a contaminated
example is seen. First, we train increasingly large models on 7B tokens. Second, we train 124M
parameter models on increasingly many tokens. Third, we train increasingly large models according
to the Chinchilla scaling laws [30], meaning that the number of training tokens scales linearly with
the model parameters. In all experiments, we contaminate the training data uniformly at random with
benchmark questions.

Figure 1 depicts the results of all three experiments. Because we are interested in the performance
difference between the holdout data and the contaminated examples, Figure 1 depicts the accuracy
gap between the holdout and contaminated examples in percentage points. In Figure 1a, we see that
the accuracy gap due to contamination is increasing in the number of model parameters. For a 124M
parameter model trained on 7B tokens, the overfitting due to 4 times contamination is 5 percentage
points. For a 1.6B parameter model train on the same dataset, it is 20. Next, Figure 1b shows that the
accuracy gap is decreasing in the number of training tokens. For a 124M parameter model trained at
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(c) Chinchilla Scaling Law

Holdout 4 times repeated 12 times repeated 32 times repeated 144 times repeated Contamination

Figure 1: Benchmark overfitting due to contamination. (a) We train different models on 7B tokens.
(b) We train 124M parameter models on increasingly many tokens. (c) We train models according to
the Chinchilla scaling laws. The figure depicts the accuracy difference in percentage points between
the holdout (normalized to zero) and the contaminated examples. The results are across a mix of
seven different benchmarks, as outlined in Section 3.2. Different colors indicate different levels of
contamination. Mean and bootstrapped 90% confidence intervals.

2x Chinchilla, the accuracy gap due to 12 times contamination is 18 percentage points. For a 124M
parameter model trained at 15x Chinchilla, the same accuracy gap is within the confidence interval of
the holdout. From Figure 1, we also see that the accuracy gap is increasing in the number of times an
example is repeated. For a 350M parameter model trained on 7B tokens, the accuracy gap is 11, 25,
44, and 51 percentage points for 4, 12, 32, and 144 times repeated contamination, respectively.

Table 1: Accuracy of the Chinchilla models.

Model Holdout 4x 12x 32x 144x

124M 42.22 48.14 56.92 80.70 96.45
350M 44.72 55.69 69.90 89.20 95.50
760M 49.16 64.76 81.30 92.95 96.05
1.6B 52.06 67.61 82.32 91.85 95.40

Because the accuracy gap increases in the
number of model parameters and decreases
in the number of tokens, the interesting
question is how it behaves if model parame-
ters and tokens are scaled jointly. A natural
starting point is to double the number of
training tokens for every doubling of model
parameters, as specified by the Chinchilla
scaling laws [30]. Figure 1c depicts the
accuracy gap due to contamination as we
train increasingly large Chinchilla-optimal models (unfortunately, the 1.6B parameter model did not
finish training before submission). While there is no clear monotone pattern, we see that moderate
amounts of contamination can lead to significant overfitting. For the 774M parameter model, 4 times
repeated contamination leads to an accuracy gap of 15 percentage points, suggesting that under
Chinchilla training, a single time of contamination can lead to overfitting of as much as 3 percentage
points.

4.2 Contamination can be completely Forgotten

In the previous Section 4.1, we saw that the accuracy gap due to contamination decreases in the
number of tokens up to the point where even 12 repetitions of a benchmark question in the training
data can become insignificant. In this Section, we identify the natural forgetting dynamic of neural
network training as the reason for this effect. We discuss how quickly forgetting occurs, whether
examples are completely forgotten, and what kind of repetition makes a model remember.

To study the effect of forgetting, we train a 124M parameter model for 15 epochs. Instead of
contaminating uniformly over the course of training like in the previous Section 4.1, we perform
the contamination between the first and second Chinchilla.1 Figure 2a depicts the development of

1Note that the model is already fairly trained after the first Chinchilla, meaning that the contamination is
not very early during training. This is important because there is evidence that observations are more quickly
forgotten if the model has not yet learned representations [34, 10, 32]. This is not the setting we are studying
here.

4



0 1 2 3 5 7 9 11 13 15
Chinchilla Tokens

−2.00
−1.75
−1.50
−1.25
−1.00
−0.75
−0.50
−0.25

0.00

CE
 L

os
s G

ap

(a) Forgetting on Novel Data
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(b) After 3 Epochs
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(c) After 7 Epochs
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(d) Forgetting on 100M tokens

First 40% Middle 20% Last 40%
Avg. Contamination Position

−1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

Ac
cu

ra
cy

 G
ap

(e) 124M 15x Chinchilla
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(f) 774M 1x Chinchilla
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Figure 2: The natural forgetting dynamic of neural network training. (a) The development of
the cross-entropy loss difference between contaminated and holdout benchmark questions over the
course of training. Contamination occurs between the first and second Chinchilla (1 and 2 on the
x-axis). (b) Accuracy gaps after training for 3 Chinchilla. (c) Accuracy gaps after training for 7
Chinchilla. (d) Same as (a). (e)+(f) The accuracy gap depends on the average position of an example
in the training data. Mean and bootstrapped 90% confidence intervals.

the difference in cross-entropy loss between contaminated and clean benchmark questions over the
course of training. We see a strong peak after 2 Chinchilla, which is expected and shows the effect
of contamination. What is interesting to us is the rate at which the cross-entropy loss difference
decays as we continue training. After training for 1 additional Chinchilla (2.5B tokens for the
124M parameter model), it has already decayed significantly. However, the difference is still visible
in Figure 2a. Figure 2b depicts the corresponding accuracy gaps at this point, and we see that all
contamination levels still lead to overfitting. As we continue training, the cross-entropy loss difference
between contaminated and holdout questions further narrows. From Figure 2c, which depicts the
accuracy gaps after forgetting for a total of 5 Chinchilla, we see that the effect of contamination is
eventually completely forgotten in the sense that there is no longer any accuracy difference between
contamination and holdout benchmark questions.

The result that contamination can be completely forgotten is in contrast to some previous work on
forgetting which have found that forgetting approaches a stable baseline [57, Figure 10], or that
certain examples are never forgotten [58]. To understand this difference, observe that many previous
works on forgetting have not trained on a continuous stream of data. Instead, they have trained on
the same training set for multiple epochs. Consequently, we modify our forgetting experiment to
repeatedly train on the same 100M tokens after the second epoch. The result of this experiment is
depicted in Figure 2d and should be compared to Figure 2a. Interestingly, this simple modification
causes the effect of forgetting to stabilize at a level strictly larger than zero. We conclude that exposure
to novel data is important for forgetting, an observation similar to [34].

To further understand the impact of forgetting, we now ask whether examples seen late during training
influence model behavior more strongly than examples seen early during training. To study this
question, we average all the different uniform contamination levels from the models in the previous
Section 4.1 (to gain statistical power) and consider the amount of overfitting depending on whether a
question is seen, on average, in the beginning, middle, or end of training. The result of this experiment
is depicted in Figure 2e and Figure 2f. As expected under forgetting, we see that benchmark questions
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Figure 3: Contamination and forgetting in OLMo-1B. We contaminate the OLMo-1B checkpoint at
gradient step 369,000 four times with different benchmarks. This causes an average accuracy increase
of 15 percentage points. We then continue pre-training for 1% of the remaining training time, leading
to a reduction of 96% of the accuracy increase due to contamination. In this Figure, different colors
simply correspond to different benchmarks, and the grey line depicts the clean accuracy without
contamination. Mean and bootstrapped 90% confidence intervals.

seen early during training exhibit the smallest amount of overfitting. Interestingly and somewhat
unexpectedly, questions that are neither clustered towards the beginning nor the end but as uniformly
distributed throughout training as possible exhibit the strongest overfitting, suggesting that this spaced
form of repetition helps the model remember (the middle peak is the most pronounced both in Figure
2e and Figure 2f).

4.3 Contamination and Rapid Forgetting in OLMo-1B

In the previous sections, we trained small GPT-3 models from scratch. In this Section, we complement
this analysis by pre-training from an intermediate OLMo-1B checkpoint [26]. Similar to the analysis
in Section 4.2, we insert the benchmark data at a specific point into the training data and then measure
the subsequent forgetting. Unlike in the previous Section, we now insert the entire benchmark
data – we already have a “clean” baseline from the original OLMo-1B training run. We insert each
benchmark question four times and contaminate with four different benchmarks: HellaSwag [63],
WinoGrande 53, ARC-Easy [18], and PiQA [7].

Figure 3 depicts the result of the experiment. The effect of contamination is visible from the five
leftmost points of every plot. The leftmost point corresponds to the uncontaminated model, and the
next four points each depict the effect of one time contamination. Again, we see that the immediate
effect of contamination is significant, leading to an average accuracy increase of 15 percentage points
across the different benchmarks. At the same time, we also see that the effect of contamination decays
considerably as we continue training. To contextualize this result, note that Figure 3 depicts less than
2000 gradient steps. The pre-training stage of OLMo-1B model consists of 739,328 gradient steps.
This means that Figure 3 depicts less than 1% of the total forgetting until pre-training is done.

5 Discussion

We have seen that the impact of contamination can vanish as the size of the training data increases
– an aspect that has largely been overlooked in the literature [62, 48, 35]. We have also shown that
the hyperparameters of AdamW play an important part in forgetting (see Supplement A for our
investigation of this interesting phenomenon)– an insight that might inform the parametrization of
future training runs.

We have studied data contamination with a focus on the leakage of benchmark questions into the
training data. This means that our work might be more informative about the topic than other
works that study contamination in different contexts. At the same time, one has to be careful when
extrapolating our results, especially to a privacy setup [12, 34]. This is because empirical forgetting
might behave differently for random strings or otherwise uniquely identifiable information [13].
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Figure 4: Theoretical estimates of forgetting and approximate model weight composition at the
end of training. Top Row: The cumulative weight decay wt2

t1 as defined in equation (3) for different
training runs. The figures depict the decay of the gradient updates for every decile of the training run,
indicated in different colors. Bottom Row: The approximate composition of the final model weights
in terms of the gradient updates from different deciles of the training run. The deciles are indicated in
colors depicted in the legend below the plot.

A What is the role of weight decay in forgetting?

Here, we show that the weight decay parameter and learning rate schedule of the AdamW optimizer
play a key part in forgetting past training examples. This offers a novel perspective on the interplay
between these two parameters, usually seen in terms of generalization and training stability [60, 65,
37, 3].

A.1 Weight Decay as a Mechanism for Forgetting Training Examples

Consider the parameter update of AdamW at gradient step t ≥ 1. It consists of two decoupled updates
[51, 52]: A weight decay update given by

θ̂t = θt−1 − γλtθt−1, (1)

and a gradient update given by

θt = θ̂t − λi m̂t/(
√
v̂t + ϵ). (2)

Here, θt are the model parameters, λt is the learning rate, γ is the weight decay parameter, and m̂t

and v̂t are first- and second-order moment estimates of the gradient. Denoting the model weights at
initialization by θ0, and the adaptive gradient by ĝt = m̂t/(

√
v̂t + ϵ), we can iterate (1) and (2) to

obtain

θT = wT
0 θ0 +

T∑
t=1

wT
t λt ĝt where wt2

t1 =

t2∏
i=t1

(1− λiγ). (3)

Here, the weights wt2
t1 account for the cumulative weight decay between gradient step t1 and t2.

Intuitively, the model weights after t gradient steps are a weighted average of the initial model weights
and all the adaptive gradient updates up to time step t. This is not specific to the AdamW optimizer
and applies to every optimizer with weight decay. Analyzing equation (3) reveals a critical factor
influencing forgetting: The exponential decay of the wt2

t1 with respect to increasing gap t2 − t1 in the
optimization steps. In other words, the longer an update occurs in the past (i.e., the larger t2 − t1), the
more the contribution of the update ĝt1 is being scaled down due to the exponential decay of weights
wt2

t1 . We can describe the evolution of these weights as the function of the time T = t2 − t1.
Proposition 1. (The Decay of Past Gradients) The number of optimization steps T = t2 − t1 that
are required to make the contribution of a model update at time t1 small, that is wt2

t1 ≤ ϵ for some
small ϵ ∈ R+, scales as T ≳ log(1/ϵ)

γλavg
, where λavg = 1

T

∑t2
t=t1

λt is the average learning rate of the
optimizer between t1 and t2.
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(d) Empirical & Theory

Figure 5: The theoretical estimates provide an upper bound on empirical forgetting, which can
occur much faster. (a) Empirical forgetting for three different weight decay parameters. (b) The
corresponding cumulative weight decay. (c) Empirical forgetting and theoretical estimate for the
default weight decay of 0.1. The y-axis of the cumulative weight decay wt2

t1 is calibrated to start at
the peak of the empirically observed overfitting. (d) Empirical forgetting and theoretical estimate for
OLMo-1B (HellaSwag).

We present a proof in the Supplement B.5. If wt1
t2 ≤ ϵ for some sufficiently small ϵ, the term

wt1
t2λt1 ĝt1 vanishes from the sum in (3). Intuitively, this is the same as saying that the gradient update

at time step t1 has been forgotten.

We now analyze the weight-decay mechanism of forgetting in different LLM training runs. Of
course, the decay of past gradients described in Proposition 1 is only one effect that contributes to
forgetting. Indeed, there is also the potential for different gradient updates in the sum (3) to cancel
each other. However, because a term decayed to zero is definitively forgotten, we can consider
the cumulative weight decay as an upper bound on forgetting. Figure 4 depicts the evolution of
the forgetting term wt2

t1 for the 124M parameter model from Section 4.2, OLMo 7B, and Llama
3 405B (where we assume the model trained with a weight decay of 0.1). For the training data
at each decline of the training run, Figure 4 depicts forgetting curves that indicate how much the
corresponding gradients decay as we continue training. For the 124M model depicted in Figure 4a,
even the initialization is not completely decayed towards the end (the blue curve is still strictly larger
than zero). In contrast, for OLMo-7B, the gradients of the first 40% of the training data decay to
zero until the end of training, meaning that this data is forgotten (Figure 4b). Llama 3 405B also
experiences significant decay of the early gradients (Figure 4c).

The interplay between the weight decay parameter and learning rate schedule of AdamW
creates an interesting dynamic. Lower learning rates towards the end of training (1) slow down the
forgetting of past training examples and (2) decrease the impact of later training examples on the
final model weights. To better understand this dynamic, we plot the sum of the terms λt1w

t2
t1 for

each decile of the training run, normalized by the same sum over the entire training run. This is
depicted in the bottom row of Figure 4 and can be thought of as a simple approximation of how the
final model weights are composed by the gradients of different training deciles. Interestingly, this
approximation suggests that the Llama 3 405B training run, where supposedly a lot of expertise has
gone into the choice of the hyperparameters, results in a model where the approximate influence of
different training steps is symmetrically distributed around the middle of training (Figure 4c). In
contrast, the OLMo-7B training could seemingly benefit from further decaying the learning rate to
give more weight to early versus late gradients.

While our analysis in this Section considers the mechanistic effect of individually decaying gradient
updates, it does not model any interactions between different gradient updates. For example, if the
weight updates at a later time step t2 were aligned with past updates at t1, then the model might not
forget the information even if the effect of past updates vanishes from the sum. However, such complex
interactions are avoided if the model updates from contaminated samples are orthogonal. Formalizing
this observation leads to a more rigorous version of Proposition 1, presented in Supplement B.5. The
argument is that under suitable gradient orthogonality conditions, the decay of past gradients can
guarantee forgetting.
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A.2 Practical forgetting occurs faster than what the theory predicts

In Section A.1, we have derived a simple theory of forgetting via cumulative weight decay. We now
investigate how the theoretical estimates relate to the empirically observed forgetting.

The main parameter that controls the theoretical forgetting curves is the weight decay parameter.
Therefore, we ask how forgetting changes empirically when we change the weight decay. Figure
5a depicts the result of repeating the forgetting experiment from Section 4.2 with three different
choices for the weight decay parameter. From Figure 5a, we see that the weight decay parameter
controls the impact of contamination at all time steps, where a larger weight decay parameter leads to
more forgetting and a smaller weight decay parameter to less forgetting. This is consistent with the
theoretical predictions depicted in Figure 5b, meaning there is a qualitative alignment between the
empirical results and our theoretical predictions.

To better understand the quantitative relation between empirical forgetting and the theoretical esti-
mates, we ask how the empirically forgotten fraction (of cross-entropy loss or accuracy) relates to the
cumulative weight decay. Figure 5c depicts the empirical decay and corresponding theoretical predic-
tion for the model from Section 4.2. We see that the theoretical estimate is somewhat pessimistic and
that forgetting occurs faster than what is predicted by the theory. Figure 5d is similar to Figure 5c,
except that we consider the OLMo-1B forgetting experiment from Section 4.3. Figure 5d depicts a
case where forgetting occurs much faster than what is predicted by the theory. Interestingly, we also
see that the empirical rate of forgetting, at least in this experiment, is not smaller for the larger model.

B Proofs and Additional Details

B.1 Additional Discussion of Data Contamination Assumptions and Setting

Here, we discuss our data contamination approach in a bit more detail.

In this paper, we consider only exact contamination. This means we contaminate the training data
exactly with the text the model is later evaluated on. In the literature, it has been shown that non-exact
contamination (re-worded questions, translation into a different language) can affect benchmark
performance, too. For example, (author?) [62] have shown that a 13B parameter Llama 2 Model [59]
can achieve an accuracy increase of over 20 percentage points after training on re-phrased benchmark
questions. We decided against considering non-exact contamination for this paper because the models
we train from scratch are much smaller than those for which non-exact contamination results have
been shown. This means these models are less capable of making sense of related information,
potentially leading us to underestimate the effect of non-exact contamination for realistic training
runs.

In addition, we consider contamination with individual benchmark questions, inserted into the
training data at random positions. We consider this setup because we are interested in contamination
from the perspective of leakage, where individual benchmark questions may enter the training data
via different documents (for example, as quotes in Wikipedia articles, a case described in (author?)
[9]). This contrasts with the setup where a dataset is present in the training data as a long contiguous
string, which we conjecture might have a similar impact but be easier detectable [48]. The fact
that we contaminate with benchmark questions also sets us apart from related works that study data
contamination and memorization for random strings and uniquely identified objects [12, 13]. It is
worth highlighting that the results between these two setups might differ, especially considering the
time it takes to forget an example.

We only consider pre-training.

B.2 Additional Details on Evaluation and How Contamination was Performed

Benchmark Questions and Evaluation. We use code from OLMo [26] to format the different
benchmark questions. This code is again based in part on the EleutherAI Evaluation Harness [22].
The benchmark questions are multiple-choice, and the different options are presented to the model
zero-shot as possible sentence continuations. The prediction is the sentence continuation with the
largest likelihood. For the small GPT-3 models, we normalize by the number of tokens [21]. For
OLMo, we rely on the evaluation framework that is part of the code repository.
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MMLU: Question: A wave transfers​

                Answer: energy 

HellaSwag:  A man is standing outside holding a violin.

                     He begins to play the violin. he stops and 

                     sets the violin to his side.

HellaSwag: A woman stands holding a violin against

                    herself. The woman  plays the violin. The

                     woman stops playing the violin.

ARC-Easy: Question: A student is playing with a small 

                     toy boat […] The boat moves toward the shore 

                     because the waves transfer Answer: energy.

Figure 6: Language modeling benchmarks frequently contain near-duplicate questions. We perform
extensive filtering for duplicates using fuzzy string matching. The figure depicts a near-duplicate
from HellaSwag and a cross-benchmark duplicate from ARC-Easy/MMLU.

Inserting benchmark questions into the training data. A batch of LLM training data consists of B
sequences of S tokens, resulting in a batch size of B × S. For example, OLMo-1B is trained with
B = 2048 and S = 2048; the batch for a single gradient step contains ∼4M tokens [26]. Individual
sequences in a batch usually contain multiple texts separated by a special end-of-text token. We insert
benchmark questions at random positions into the pre-training data, separated at the beginning and
end with the end-of-text token.

B.3 Filtering Near-Duplicate Benchmark Questions

Our method requires that there are no side effects from contaminating the training data with one
question on the evaluation of another question. However, upon closer inspection, it turns out that all
the commonly used benchmarks from the literature contain questions that are either near-duplicates
or where the context of one question contains the answer to another question (for example, because
the same text document was used to create multiple questions). This is illustrated in Figure 6, which
depicts two near-duplicate questions on HellaSwag and questions from ARC-Easy and MMLU that
are cross-benchmark duplicates. To tackle this problem, we perform fuzzy string matching between
the ground-truth options (that is, the potential contamination data) of all benchmark questions,
randomly removing one question for every detected duplicate. We use the Python package rapidfuzz.

Summary Statistics. Table 2 depicts summary statistics about the different benchmarks, including
the number of questions that were filtered during the duplicate-detection stage. We see that the
number of filtered questions is significant. On some datasets, especially Social-i-QA, we had to
apply very aggressive filtering to avoid any side-effects during contamination. Hence, the number of
removed questions per dataset does not necessarily reflect the actual number of duplicates, but the
level of filtering that had to be applied to remove all duplicate questions.

Experimental verification that filtering worked. We verify that our filtering procedure worked by
training two models: One that is heavily contaminated (obtaining an accuracy of over 97%), and
another model that did not see any contamination. We then evaluate both models on a set of 10,000
benchmark questions that are holdout even for the contaminated model. The contaminated model
obtains an accuracy of 42.2%, (95%-CI: 41.2% - 43.2%) on the holdout, while the clean model
obtains an accuracy of 41.9% (95%-CI: 41.0% -42.9%). Because the observed accuracy difference
is small in absolute terms and lies within the confidence interval, we conclude that there are no
significant side-effects in our evaluation procedure.

B.4 Proof of Proposition 1

Proposition 2. (The Decay of Past Gradients) The number of optimization steps T = t2 − t1 that
are required to make the contribution of a model update at time t1 small, that is wt2

t1 ≤ ϵ for some
small ϵ ∈ R+, scales as T ≳ log(1/ϵ)

γλavg
, where λavg = 1

T

∑t2
t=t1

λt is the average learning rate of the
optimizer between t1 and t2.

Proof. Without loss of generality, mapping t1 = 1 and T = t2, we have from equation 3:

wT
1 =

T∏
i=1

(1− λiγ)
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Table 2: Overview of benchmarks used in the paper. This table documents the experiments with
GPT-3 models. The first two rows provide the dataset split and corresponding number of benchmark
questions. The third row provides the number of questions that were removed from the dataset
after filtering each dataset for near-duplicate questions. The fourth row provides the number of
questions that were removed after additionally filtering for near-duplicate questions across all the
different datasets combined. The fifth row provides the dataset’s weight in the dataset splits used in
the experiments.
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Split Validation Train Train Validation Test XL, Train All
Size 10,042 16,113 33,410 3,269 14,042 40,398 5,197
Filtered 1,416 7,386 29,756 409 4,423 21,944 2,568
Cross-Filtered 3 6 10 2 15 0 13
Weight 19.58% 19.77% 8.27% 6.48% 21.82% 18.16% 5.92%

Assigning the forgetting ratio to be less than ϵ according to our criteria, we have:

T∏
i=1

(1− λiγ) ≤ ϵ

T∑
i=1

log(1− λiγ) ≤ log ϵ

T∑
i=1

(−λiγ) ≲ log ϵ (log(1− x) ≈ −x for small x)

T ×

(
1

T

T∑
i=1

λi

)
× γ ≳ log

1

ϵ

Re-arranging this equation gives us the desired result, where λavg = ( 1
T

∑
i λi).

B.5 Extended Analysis of Forgetting & Gradient Alignment

To understand the effect of weight decay on forgetting, we analyze two different stages of optimization:
(1) the contamination stage, where the training set consists of only the contaminated samples, and (2)
the forgetting stage, where the training set consists only of clean samples. Here, we consider the SGD
learning algorithm, but the resulting analysis also applies to SGD with momentum. In particular, to
illustrate the effect of weight decay, we assume the usage of SGD for the contamination stage and
SGD with weight decay for the forgetting stage.

We now introduce some notation. Let θ ∈ RD be the weights of the model, and let Xcont =
{xcont

1 ,xcont
2 , ...xcont

Ncont
} be the contamination set and Xclean = {xclean

1 ,xclean
2 , ...xclean

Nclean
} be the clean

pre-training set. The training data used for the contamination stage is thus Xcont, and the training
data for the forgetting stage is Xclean. Let ℓ(xi) ∈ R be the loss associated with sample xi. Let the
model be initialized at the contamination stage with θ = θinit. The learning algorithm is (single batch
size) SGD, which is run for a total of Ncont steps for the contamination stage and Nclean steps for the
forgetting stage. First, we observe that the weights at the end of the contamination stage are:

θ′ = θinit −
Ncont∑
i=1

λi∇θiℓ(x
cont
i )︸ ︷︷ ︸

θcont

15



We thus denote the weights at the end of the contamination stage as θ′ = θinit + θcont. For the
subsequent fine-tuning stage to forget information regarding samples Xcont, we first define a criterion
to identify forgetting based on the angle between a weight vector and the contaminated part identified
above.

Forgetting Criteria. A model with weights θ is said to have "forgetten" information contained in
θcont if |θ⊤θcont|

∥θcont∥2
2
≤ ϵ, which we call the "forgetting ratio". Here, ϵ ∈ R+ is a small constant.

We now proceed with an analysis of the forgetting stage. To enable this, we make the following
important assumption that the gradients of clean and contaminated samples are orthogonal for all
clean and contaminated samples across all optimization steps. This is a relatively strong assumption,
and it quantifies the intuition that model updates required by SGD to memorize clean samples and
contaminated samples are distinct.

Assumption 1. (Gradient Orthogonality) ∇θt1ℓ(x
clean
i )⊤∇θt2ℓ(x

cont
j ) = 0, ∀i ∈ [1, Nclean],∀j ∈

[1, Ncont] and ∀ steps t1, t2.

We also make another minor simplifying assumption that the weight initialization is orthogonal to
both these quantities.

Assumption 2. (Gradient-Initialization Orthogonality) ∇θtℓ(xi)
⊤θinit = 0, ∀i and ∀ steps t.

Given these assumptions, we are ready to state our result.
Proposition 3. (Forgetting Time) The number of optimization steps Tforget in the forgetting stage,
such that the weights θTforget satisfy the ϵ-forgetting criteria is given by: Tforget ≳

log(1/ϵ)
λavgγ

, where

λavg = 1
T

∑T
i=1 λi is the average learning rate of the optimizer.

Proof. We first compute the forgetting ratio at θ = θ′, and as a consequence of Assumption 2, verify
that the forgetting ratio is equal to one.

Let us now denote these weights as θ′0 = θ′, used as initialization for the forgetting stage. Analyzing
the first optimization step, and the subsequent forgetting ratio, we have:

(Optimization Step) θ′1 = θ′0 − λ0∇θ0ℓ(x
clean
0 )− λ0γθ

′
0

(Forgetting ratio)
|θ′1

⊤
θcont|

∥θcont∥22
=

|(θ′0 − λ0∇θ0ℓ(x
clean
0 )− λ0γθ

′
0)

⊤θcont|
∥θcont∥22

=
|((θinit + θcont)− λ0∇θ0ℓ(x

clean
0 )− λ0γ((θ

init + θcont)))⊤θcont|
∥θcont∥22

= (1− λ0γ) (From Assumptions 1 & 2)

We can similarly analyze the subsequent optimization steps to compute the forgetting ratio, which for
some step t+ 1 is:

|θ′t+1
⊤
θcont|

∥θcont∥22︸ ︷︷ ︸
Forgetting ratio at t + 1

=
|(θ′t − λt∇θtℓ(x

clean
t )− λtγθ

′
t)

⊤θcont|
∥θcont∥22

=
|θ′t

⊤
θcont|

∥θcont∥22︸ ︷︷ ︸
Forgetting ratio at t

(1− λtγ)

Unrolling the recurrence till step T , we have that:

|θ′T
⊤
θcont|

∥θcont∥22
=

|θ′0
⊤
θcont|

∥θcont∥22︸ ︷︷ ︸
= 1

×
T∏

i=1

(1− λiγ)
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Assigning the forgetting ratio to be less than ϵ according to our criteria, we have:

T∏
i=1

(1− λiγ) ≤ ϵ

T∑
i=1

log(1− λiγ) ≤ log ϵ

T∑
i=1

(−λiγ) ≲ log ϵ (log(1− x) ≈ −x for small x)

T ×

(
1

T

T∑
i=1

λi

)
× γ ≳ log

1

ϵ

Re-arranging this equation gives us the desired result, where λavg = ( 1
T

∑
i λi).

B.6 Reproducibility Statement

The results in this paper were obtained using the OLMo codebase, available at https://github.
com/allenai/OLMo, and the llm.c codebase, available at https://github.com/karpathy/llm.
c. Our code is fully reproducible, including the random positions at which benchmark questions were
inserted into the training data. Our code is available at https://github.com/tml-tuebingen/
forgetting-contamination/. We trained on the 100BT split of the FineWeb-Edu dataset, avail-
able at https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.
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