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Abstract

Tokenization serves as a crucial preprocessing step in multi-
lingual language models, affecting performance in both high-
resource and low-resource languages. However, current to-
kenizers seem to adopt language biases due to unbalanced
training datasets, leading to a poorly optimized tokenizer for
underrepresented languages. This research examines the im-
pact of balanced multilingual datasets on the performance of
tokenizers trained with the Byte Pair Encoding, WordPiece,
and Unigram Language Model algorithms. We build balanced
corpora from various sources to study the impact of vocabu-
lary size on 15k, 30k, 50k dataset scales. The trained tok-
enizers are assessed through intrinsic metrics, including Sub-
word Fertility and Normalized Sequence Length, as well as
through extrinsic performance on downstream tasks like Part-
of-Speech tagging, Named Entity Recognition, and Machine
Translation. We build custom data sets along with customized
evaluation pipelines to enable consistent comparisons across
nine languages using models built into standard NLP frame-
works. Our observations reinforce the importance of a bal-
anced dataset when training tokenizers and, in turn, advance
the development of equitable and robust multilingual NLP
systems.

Code —
https://github.com/Aishwarya-Selvamurugan/Tokenizer

Introduction

Tokenization is a fundamental step in natural language pro-
cessing (NLP), serving as the bridge between raw text and
model input. It enables diverse linguistic structures to be
converted into standardized forms that can be effectively
processed by deep learning models [Sennrich, Haddow, and
Birch 2016]. This conversion becomes particularly critical
in multilingual settings, where vocabulary overlap across
languages is often limited [Conneau et al. 2020]. Subword-
based tokenization strategies have emerged as a dominant
solution because they alleviate the out-of-vocabulary (OOV)
problem by segmenting unseen or rare words into smaller
known units [Kudo and Richardson 2018]. Such an approach
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is especially advantageous for morphologically rich and
low-resource languages, where word formation processes
generate a vast number of infrequent word forms.

Different tokenization schemes optimize various trade-
offs between vocabulary compression, sequence length,
and downstream model efficiency. Importantly, tokenization
quality has been shown to directly affect both model effi-
ciency and fairness, with higher subword fertility in low-
resource languages often resulting in longer token sequences
and reduced accuracy [Lindsey et al. 2024].

Multilingual pretrained models such as mBERT [Devlin
etal. 2019] and XLLM-R [Conneau et al. 2020] rely on shared
subword vocabularies across languages. However, this ap-
proach can result in token collisions, inconsistent granular-
ity, and biased performance, particularly disadvantaging un-
derrepresented languages. Recent studies have highlighted
that tokenizer design and vocabulary allocation can encode
systemic bias, resulting in token inflation or inadequate cov-
erage for certain scripts [Xiang Zhang 2024].

Despite their widespread use, existing tokenization strate-
gies disproportionately favor high-resource and Latin-script
languages. This leads to over-segmentation of low-resource
or non-Latin languages, thereby inflating sequence lengths
and reducing efficiency [Petrov et al. 2023]. Empirical ev-
idence shows that metrics such as subword fertility, nor-
malized sequence length (NSL), and parity vary signifi-
cantly across languages and directly impact downstream
tasks [Rust et al. 2021]. Furthermore, tokenizer biases can
impose up to 68% additional training costs when multilin-
gual models are trained on skewed datasets dominated by
European languages [Ali et al. 2023]. Beyond computational
concerns, these disparities introduce broader societal and
economic consequences. Languages that undergo excessive
token fragmentation incur higher API usage costs and slower
processing times, disproportionately affecting communities
that already face digital marginalization [Rust et al. 2021],
[Orevaoghene Ahia 2023]. Such disparities not only under-
mine fairness and representation but also exacerbate social
and linguistic inequalities in multilingual NLP systems.

In this work, we aim to systematically investigate how
balanced multilingual corpora can mitigate such disparities
in tokenizer performance. Specifically, we analyze nine ty-



pologically diverse languages (Yoruba, Arabic, Mandarin
Chinese, Russian, Hindi, Japanese, Swahili, Bengali, and
Turkish) selected to represent different language families,
writing systems, and morphological complexity levels. Our
evaluation combines intrinsic metrics (e.g., subword fertil-
ity, normalized sequence length) with extrinsic performance
on downstream tasks such as part-of-speech (POS) tagging,
named entity recognition (NER), and machine translation.
By adopting balanced datasets derived from Wikipedia and
OSCAR, we seek to assess whether equitable data represen-
tation can yield fairer and more efficient tokenizers across
languages.

The scope of this study is deliberately focused on
subword-based tokenizers, excluding character-level and
neural tokenization approaches. Additionally, while we eval-
uate downstream tasks using curated datasets, the experi-
ments do not extend to full-scale pretrained large language
models. Data limitations, particularly for low-resource lan-
guages such as Yoruba in NER tasks, further shape the
boundaries of our investigation. Nonetheless, this work con-
tributes toward a deeper understanding of multilingual to-
kenization fairness and provides empirical evidence for the
importance of balanced data in tokenizer design.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work on multilingual tokenization bias
and fairness. Section 3 presents our methodology, includ-
ing dataset construction, tokenizer training, and evaluation
frameworks across POS tagging, NER, and machine trans-
lation tasks. Section 4 reports experimental results compar-
ing tokenizer performance using both intrinsic metrics and
downstream task evaluations. Finally, Section 5 discusses
our findings, acknowledges limitations, and outlines direc-
tions for future research.

Related Works
Tokenization Algorithms

The three primary subword tokenization algorithms exam-
ined in this study optimize different linguistic properties.
BPE [Sennrich, Haddow, and Birch 2016] uses frequency-
driven merging of character pairs, making it effective for
capturing morphological patterns but potentially inconsis-
tent across diverse languages. WordPiece [Devlin et al.
2019] extends BPE with likelihood-based merging, offering
balanced performance particularly suitable for morphologi-
cally aware tasks. Unigram Language Model [Kudo 2018]
employs a probabilistic framework, starting with compre-
hensive vocabularies and pruning based on likelihood, of-
ten yielding more linguistically motivated segmentations for
morphologically rich languages.

Fairness, Dataset Composition and Evaluation
metrics

Fairness in multilingual NLP has been extensively stud-
ied, with tokenization identified as a fundamental source of
bias [Blodgett et al. 2020]. Conneau et al. (2020) demon-
strated that balanced multilingual training data improves
cross-lingual transfer performance [Conneau et al. 2020] ,
while Ahia et al. (2023) found substantial improvements

in African languages when using balanced corpora [Abhia,
Kreutzer, and Hooker 2023]. However, most studies focus
on model training rather than tokenizer development itself.
Tokenization quality assessment employs both intrinsic met-
rics like Subword Fertility [Lindsey et al. 2024] and Normal-
ized Sequence Length, and extrinsic performance on down-
stream tasks. Rust et al. (2021) expanded evaluation frame-
works to include parity metrics measuring cross-lingual con-
sistency [Rust et al. 2021].

Alternative Approaches

Character-level approaches like CANINE [Clark et al. 2022]
and ByTS5 [Xue et al. 2021] eliminate tokenization bias
by operating directly on Unicode characters, though at in-
creased computational cost [Lindsey et al. 2024]. Recent
adaptive methods such as MAGNET propose learnable seg-
ment boundaries to reduce over-segmentation [Blasi, Anas-
tasopoulos, and Neubig 2024], representing a shift toward
dynamic, context-aware tokenization. This work addresses
existing gaps by systematically evaluating tokenization al-
gorithms across nine typologically diverse languages using
balanced training corpora, providing comprehensive anal-
ysis of both intrinsic metrics and downstream task perfor-
mance to advance equitable multilingual tokenization.

Methodology
Tokenizers

Dataset Generation The dataset for tokenizer training
was assembled as a typologically diverse corpus from two
public sources: language-specific Wikipedia dumps' and the
OSCAR Common Crawl-derived corpus 2. Wikimedia XML
dumps served as the primary encyclopaedic source, while
OSCAR provided complementary broader coverage and do-
main diversity from web-crawl data for all nine target lan-
guages: Yoruba, Arabic, Mandarin Chinese, Russian, Hindi,
Japanese, Swahili, Bengali, and Turkish. We targeted equal
per-language character allocations for all target languages to
reduce high-resource bias during tokenizer training. A delib-
erately balanced sampling strategy was employed, as prior
work shows that tokenizer training data composition and per
language representation materially affect downstream per-
formance [Zhang et al. 2022]. To investigate the impact of
training corpus size on vocabulary learning and downstream
tasks, we created three balanced datasets containing 100 mil-
lion, 200 million, and 400 million characters.

Data Preprocessing A uniform normalization procedure
was applied across all corpora to ensure consistency between
languages and sources. The preprocessing pipeline consisted
of four sequential steps. First, text repair was performed us-
ing the ftfy library’s fix_text () function to correct
smart quotes, inconsistent punctuation, and other common
encoding anomalies. Second, Unicode normalization was
applied via the Python unicodedata module, converting
all characters to NFKC (Normalization Form Compatibility

"https://dumps.wikimedia.org/
“https://oscar-project.org/



Composition) form to achieve canonical equivalence, com-
patibility decomposition, and recomposition. Third, non-
printable Unicode control characters (e.g., \x00--\x1F,
excluding standard whitespace) were removed to eliminate
formatting artifacts. Finally, whitespace normalization was
conducted by collapsing consecutive spaces, tabs, and new-
line characters into single spaces and trimming leading or
trailing whitespace using regular expressions. Only non-
empty, normalized lines were retained, resulting in a clean
and consistent dataset for tokenizer training.

Tokenizer training We set up the processing pipelines
using Hugging Face tokenizers and transferred the prepro-
cessed data. Three tokenization algorithms were employed:

* Byte Pair Encoding (BPE)
* WordPiece
e Unigram

A total of nine tokenizer models were trained on the nor-
malized, balanced corpus for nine languages, with three vo-
cabulary sizes: 15k, 30k, and 50k. For BPE and WordPiece,
a whitespace-based pre-tokenization strategy was applied,
consistent with their standard implementations, to preserve
word boundaries. In contrast, the Unigram model operated
directly on raw text by design, ensuring full character cover-
age and better handling of scripts without reliable whites-
pace delimiters. The detailed configurations for each tok-
enizer are shown in Table 1 and Table 2, providing a concise
overview of the implementation, vocabulary sizes, and pre-
processing strategies used.

This design allows for a direct comparison of the three
algorithms under different vocabulary sizes, ensuring that
downstream evaluation results can be attributed to model
differences rather than data or preprocessing inconsisten-
cies.

Evaluation metrics To access the quality of the trained to-
kenizer beyond vocabulary coverage, we evaluated them us-
ing 2 metrics: Normalized Sequence Length (NSL) and Sub-
word Fertiltiy, to compare the tokenization behaviour across
languages and vocabulary sizes.

Normalized Sequence Length Normalized Sequence
Length (NSL) measures the average number of tokens per
character in a sequence:

Number of tokens
NSL = 1
Number of characters M

This metric shows the granularity of segmentation, higher
NSL values suggest more fine-grained tokenization.

Subword Fertility Subword Fertility measures the aver-
age number of subword tokens produced per whitespace-
delimited word:

Number of tokens

Subword Fertility = Number of words @

A higher subword fertility value indicates that words are
split into more subword units, which can be beneficial for
handling rare words but may lead to longer sequences.

For evaluation, we curated language balanced dataset
from publicly available TATOEBA corpus * for Yoruba and
Bengali, and the TED2020 corpus 4 for Arabic, Mandarin
Chinese, Russian, Hindi, Japanese, Swahili, and Turkish.
For each language, we randomly sampled 50 sentences from
the respective sources. For every sentence, we computed
NSL and Subword Fertlity, then averaged these scores per
tokenizer. The results are given in Table 3.

Downstream tasks
Parts of speech (POS) Tagging

Data collection For the POS tagging task, we assembled a
diverse language balanced dataset for the same 9 languages
from publicly available sources. Specifically, Arabic, Man-
darin Chinese, Russian, Hindi, Japanese, and Turkish data
were obtained from the Universal Dependencies treebanks,
whereas Yoruba and Swahili were taken from the Masakha-
POS corpus and Bengali was sourced from the NLTK Indian
corpus.

Preprocessing The preprocessing phase focused on en-
suring uniformity in format and quality across all nine lan-
guages. For each dataset, only sentences in which the num-
ber of tokens exactly matched the number of POS tags were
retained. All corpora were then standardized into a unified
JSONL structure with three fields: tokens (list of words),
tags (corresponding POS labels), and lang (ISO language
code). Language codes were explicitly added to each sen-
tence to maintain traceability. Following the balancing pro-
cess, the combined dataset was randomly shuffled to miti-
gate any potential ordering effects during training. The fi-
nal multilingual POS dataset was saved in UTF-8 encoding
without altering the original text content, preserving the in-
tegrity of the gold-standard annotations.

Model Training For POS tagging, we fine-tuned a BERT-
based token classification model on the balanced multilin-
gual dataset using the 9 different tokenizers of varying sizes
and segmentation strategies which is trained. Each tokenizer
which was trained separately are loaded into the Hugging
Face AutoTokenizer to ensure consistent tokenization be-
tween training and evaluation. The POS model was im-
plemented using BertForTokenClassification with the base
architecture bert-base-cased, adapting the embedding layer
to match each tokenizer’s vocabulary size. Input sequences
were tokenized in a word-aligned manner, with subword to-
kens inheriting the POS label of their originating word and
non-aligned tokens masked with the -100 label to exclude
them from loss computation. Training was performed with a
batch size of 16, a learning rate of Se-5, and a fixed three-
epoch schedule.

NER

Data collection We constructed a balanced multilingual
NER dataset covering all the nine languages. For Yoruba,

*https://tatoeba.org/
*https://opus.nlpl.en/TED2020.php



Table 1: Tokenizer configurations: Model properties.

Tokenizer Model | Library Algorithm Type Vocab Sizes Used
HF-BPE HF Tokenizers | Byte-Pair Encoding | 15k, 30k, 50k
HF-WordPiece HF Tokenizers | WordPiece 15k, 30k, 50k
SP-Unigram SentencePiece | Unigram LM 15k, 30k, 50k

Table 2: Tokenizer configurations: Pre-tokenization and coverage.

Tokenizer Model Pre-tokenization Special Tokens Character
Coverage
HF-BPE Whitespace [PAD], [UNK], [CLS], [SEP], [MASK] | 100%
HF-WordPiece Whitespace [PAD], [UNK], [CLS], [SEP], [MASK] | 100%
SP-Unigram None (raw text) <pad>, <unk> 100%

we used the MasakhaneNER dataset in CoNLL format, con-
taining manually annotated tokens and entity labels. For the
other eight languages, we used the WikiANN multilingual
NER corpus via the Hugging Face Datasets library.

Preprocessing The Yoruba dataset was first parsed from
CoNLL format into a token-tag JSON structure, handling
any malformed lines by assigning an “O” (non-entity) tag.
To unify label formats across datasets, we extracted the la-
bel set from WikiANN and mapped the Yoruba entity tags to
this schema, discarding any samples containing unsupported
tags. All datasets were standardized to a common feature
schema consisting of tokens, ner_tags, and language
fields, with ner_tags stored as integer indices correspond-
ing to the unified label list. We balanced the dataset by
downsampling each language to an equal number of samples
(double the smallest split size between WikiANN datasets),
shuffled the combined set, and split it into 80% training and
20% test subsets.

Model Training For the Named Entity Recognition
(NER) experiments, a BERT-based token classification ar-
chitecture was employed, trained using all 9 tokenizer con-
figurations. The datasets were tokenized in a manner that
preserved token—tag alignment, with subword units inherit-
ing their corresponding word level labels. To address class
imbalance in the entity label distribution, class weights were
computed from the training corpus and incorporated into the
loss function, improving recognition of less frequent entity
classes. Each configuration was finetuned under the same
hyperparameter settings for a fixed number of epochs, ensur-
ing comparability across runs. Performance was evaluated
using entity-level precision, recall, F1-score, and accuracy,
following the seqeval metric standard for sequence labeling.

Machine Translation

Data Collection For the Machine Translation experi-
ments, parallel corpora were sourced from two large-scale
open datasets: OPUS100 and TED2020. OPUS100 provides
high-quality sentence-aligned translations across 100 lan-
guages, while TED2020 consists of transcribed and trans-
lated TED Talk segments in multiple languages. For lan-
guages with limited high-quality coverage in OPUS100,
such as Swahili, TED2020 served as the primary source. All

datasets were obtained from official repositories, ensuring
consistent formatting and alignment between English and
the respective target languages.

Preprocessing We applied a systematic preprocessing
pipeline to ensure corpus integrity and comparability. Qual-
ity filtering removed sentence pairs with identical source/tar-
get text, segments under three English tokens or two target
tokens, sentences exceeding 200 characters, and text domi-
nated by numbers or punctuation. Technical strings (HTM-
L/XML tags, encoding markers) were excluded to elim-
inate non-linguistic noise. To mitigate high-resource lan-
guage bias, we downsampled all datasets to match the small-
est corpus size post-filtering, ensuring uniform per-language
representation. The dataset was randomized with a fixed
seed and split 90-10 for training/testing. Records were stan-
dardized with English sentences, translations, and language
codes, producing a clean, balanced multilingual dataset for
rigorous cross-linguistic evaluation.

Model Training We conducted machine translation exper-
iments using BART-large with custom tokenizers across dif-
ferent vocabulary sizes and algorithms. Models were trained
using Seq2SeqTrainer for 5 epochs with batch size 8, gra-
dient accumulation steps 8 (effective batch size 64), learn-
ing rate le-4, 10% warmup, weight decay 0.01, and FP16
precision. We trained a single multilingual model on nine
languages simultaneously, with inputs truncated/padded to
256 tokens and language-specific formatting. Training sta-
bility was ensured through label smoothing (0.1) and gradi-
ent clipping (max norm 1.0). Generation used beam search
(2 beams, max length 128). Models were evaluated every
500 steps using BLEU scores and exact match accuracy on
the complete balanced multilingual dataset, enabling direct
comparison across tokenization strategies.

Experimental Results
Intrinsic Tokenizer Evaluation

The intrinsic evaluation compares BPE, WordPiece, and
SentencePiece-Unigram tokenizers for the vocabulary sizes
15k, 30k, and 50k using Normalized Sequence Length
(NSL) and Subword Fertility as evaluation metrics [Rust
et al. 2021, Acs, Grad-Gyenge, and Vadasz 2023]. NSL



captures the relative tokenization length with respect to the
original text, while Subword Fertility quantifies the aver-
age number of subword units generated per original token
[Mielke et al. 2021]. Lower values for both metrics gener-
ally indicate more compact and efficient tokenization [Kudo
and Richardson 2018, Salesky et al. 2020].

As shown in Table 3, increasing vocabulary size consis-
tently reduces both metrics, yielding more compact token se-
quences, with the effect most pronounced in Mandarin Chi-
nese and Japanese due to their logographic writing systems
[Kudo and Richardson 2018, Conneau et al. 2020]. Among
tokenizers, BPE achieves the lowest NSL and fertility across
most languages, while WordPiece generally produces the
highest values, particularly at smaller vocabularies, and Sen-
tencePiece Unigram performs in between [Sennrich, Had-
dow, and Birch 2016, Wu et al. 2016, Kudo and Richardson
2018]. Language typology strongly influences outcomes, as
morphologically complex languages show larger efficiency
gains with larger vocabularies, whereas morphologically
simpler languages like Yoruba and Swahili remain rela-
tively stable [Bostrom and Durrett 2020, Wang, Cho, and Gu
2020]. Overall, the results highlight that larger vocabularies
provide more efficient tokenization across all algorithms, re-
ducing sequence length and subword fragmentation, which
can lower computational overhead in downstream tasks [Qiu
et al. 2020].

POS Tagging Results

We further compare tokenizers on POS tagging across vo-
cabulary sizes using accuracy and F1 metrics. From Table 4,
it can be inferred that wordPiece achieves the highest overall
performance, with a test accuracy of 0.7830 and weighted F1
of 0.7722 at 15k, consistently outperforming BPE and Sen-
tencePiece Unigram. This can be attributed to WordPiece’s
ability to preserve morphologically meaningful units, which
benefits POS tagging where syntactic boundaries are cru-
cial [Straka, Hajic, and Strakova 2016]. In contrast, BPE
prioritizes frequency-based merges, often splitting or merg-
ing across morpheme boundaries, which reduces efficiency
for this task despite shorter sequences [Sennrich, Haddow,
and Birch 2016, Kudo 2018]. SentencePiece Unigram shows
intermediate behavior, offering slightly higher macro-F1
than BPE but lacking the stability of WordPiece [Kudo and
Richardson 2018]. Notably, increasing vocabulary size does
not improve results and in some cases reduces accuracy, as
larger vocabularies can overspecialize subword units and
lose the generalization capacity needed for POS tagging
[Nivre et al. 2016, Kann and Schiitze 2016, Mielke et al.
2021].

NER Results

Table 5 presents the NER performance across tokeniz-
ers, vocabulary sizes, and evaluation metrics. With 15k
vocabulary size, WordPiece significantly outperforms BPE
and SentencePiece Unigram, achieving the highest Test
F1 (0.5844) and Test Accuracy (0.7644). This suggests
that WordPiece is particularly effective in low-vocabulary
regimes, where its ability to balance word-level and
subword-level information aids entity boundary recognition

[Devlin et al. 2019, Wu et al. 2016, Li et al. 2019]. As vocab-
ulary size increases to 30k and 50k, BPE shows competitive
performance, especially in Test Accuracy (0.7032 at 50k),
while SentencePiece occasionally surpasses BPE in terms
of F1 score. However, WordPiece maintains overall superi-
ority, albeit with diminishing margins, likely due to reduced
fragmentation and more stable subword segmentation as vo-
cabulary size grows [Klein et al. 2017].

Overall, these results indicate that WordPiece offers the
best generalization for NER at smaller vocabulary sizes,
while BPE and SentencePiece Unigram become more com-
petitive at larger vocabularies, reflecting the trade-off be-
tween segmentation granularity and contextual representa-
tion in sequence labeling tasks [Peters et al. 2018, Akbik,
Blythe, and Vollgraf 2018, Mielke et al. 2021].

Machine Translation Results

Table 6 presents the performance of different tokeniza-
tion methods on multilingual BART-large across vocabu-
lary sizes of 15k, 30k, and 50k. BPE with 15k vocabulary
achieved the best BLEU score (0.1226) due to its efficient
segmentation of rare words into frequent subword units, bal-
ancing vocabulary compactness with representational power
[Sennrich, Haddow, and Birch 2016]. WordPiece performed
poorly (BLEU = 0.0103) because its tendency to favor
longer subwords led to insufficient coverage of morpholog-
ically rich words in multilingual data [Wu et al. 2016]. Sen-
tencePiece Unigram produced shorter prediction lengths,
suggesting under-segmentation effects. At 30k vocabulary,
WordPiece achieved BLEU of 0.1136, nearly matching BPE
(0.1135). SentencePiece Unigram showed the highest Ex-
act Match (0.086) despite lower BLEU, indicating that its
probabilistic subword sampling captured more precise to-
ken boundaries, though its aggressive segmentation may
reduce fluency in longer sequences [Mielke et al. 2021].
For 50k vocabulary, SentencePiece Unigram achieved the
highest Exact Match (0.096) while WordPiece obtained the
strongest BLEU score (0.1218). This suggests WordPiece
benefits from larger vocabularies by covering more lexical
items directly, improving overall fluency [Wu et al. 2016,
Devlin et al. 2019], whereas Unigram maintains precision
in token alignment but at the cost of sequence length im-
balance [Kudo and Richardson 2018]. BPE underperformed
as vocabulary grew, likely due to oversplitting that reduced
sequence-to-sequence alignment efficiency. These results
suggest BPE is effective for smaller vocabularies, Word-
Piece scales better with larger vocabularies, and Senten-
cePiece Unigram excels in exact matching but generates
shorter sequences. The performance differences stem from
how each tokenizer balances subword granularity, vocabu-
lary coverage, and sequence length, which directly impact
BLEU and Exact Match metrics [Post 2018].

Discussion and Conclusion

This study systematically investigated the impact of bal-
anced multilingual datasets on tokenizer performance across
nine typologically diverse languages, revealing significant
insights into how dataset composition affects both tok-
enization efficiency and downstream task performance. Our



Table 3: NSL and Subword Fertility across tokenizers, languages, and vocabulary sizes.

Language Tokenizer 15k voc size 30k voc size 50Kk voc size
NSL Subword Fertility NSL Subword Fertility NSL Subword Fertility

BPE 04584
Yoruba WordPiece 0.8137
SemtencePicce Unigram (05471 [BSU08| 0418l WSO (0593 Ose
BPE 04908 2.1427
Arabic WordPiece 0.8353
SentencePiece Unigram -
BPE 0.8479 8.7353 0.7438 0.6985 72173
Mandarin Chinese  WordPiece 0.8391 8.4954 0.7628 0.6786 16,9250
SentencePiece Unigram  0.9393 9.6524 0.8556 8.7974 0.8166 8.4003
, BPE 04621 03367 24322 2.1634.
Russian WordPiece 0.8701
SentencePiece Unigram -
- BPE 04727 25893 03566 19619 03258 18028
Hindi WordPiece 0.7793
SentencePiece Unigram -
BPE 0.7739 11.0098 10.5978 8.4776 10.5290 7.4856
Japanese WordPiece 0.9168 13.1019 0.7082 10.0753 0.5775 18.1898
SentencePiece Unigram  0.8368 11.8092 0.6681 9.3931 10.5973 8.3685
- BPE 04008 26293 02953 19350 02620 17163
Swahili WordPiece 0.8573 12,4664
SentencePiece Unigram - -
BPE 04270
Bengali WordPiece 0.8569
SentencePiece Unigram - -
BPE 04295
Turkish WordPiece 0.8805
SentencePiece Unigram _ [OM482) 34741 03262 25227 02826 21694

Table 4: POS Performance comparison across tokenizers, vocabulary sizes, and metrics. Best values per block are highlighted
in bold.

Tokenizer Vocsize Epoch Train Acc Train F1 Macro Train F1 Weighted Test Acc Test F1 Macro Test F1 Weighted
BPE 3 0.7847 0.2957 0.7722 0.7207 0.2973 0.7057
WordPiece 15k 3 0.8413 0.3889 0.8325 0.7830 0.3952 0.7722
SentencePiece Unigram 3 0.8067 0.3209 0.7947 0.7484 0.3299 0.7340
BPE 3 0.7526 0.2686 0.7366 0.6932 0.2724 0.6735
WordPiece 30k 3 0.7964 0.2877 0.7839 0.7325 0.2915 0.7174
SentencePiece Unigram 3 0.7752 0.3141 0.7625 0.7211 0.3218 0.7061
BPE 3 0.7643 0.2719 0.7484 0.7015 0.2775 0.6812
WordPiece 50k 3 0.8001 0.2848 0.7880 0.7335 0.2883 0.7187
SentencePiece Unigram 3 0.7662 0.3085 0.7528 0.7107 0.3141 0.6944




Table 5: NER Performance comparison across tokenizers, vocabulary sizes, and metrics

Tokenizer Vocsize Epoch Train Precision Train Recall Train F1 Train Accuracy Test Precision Test Recall Test F1 Test Accuracy
BPE 15k 3 0.3113 0.6453 0.4200 0.6878 0.2452 0.5088 0.3309 0.6324
WordPiece 3 0.5990 0.8601 0.7062 0.8374 0.4937 0.7157 0.5844 0.7644
SentencePiece Unigram 3 0.4949 0.8398 0.6228 0.7856 0.3769 0.6441 0.4756 0.7102
BPE 30k 3 0.3730 0.7452 0.4971 0.7604 0.2640 0.5393 0.3545 0.6828
WordPiece 3 0.4432 0.8106 0.5731 0.7898 0.3251 0.6063 0.4233 0.7014
SentencePiece Unigram 3 0.4120 0.7810 0.5394 0.7449 0.2920 0.5690 0.3860 0.6532
BPE 50k 3 0.3951 0.7533 0.5183 0.7902 0.2650 0.5290 0.3531 0.7032
WordPiece 3 0.4266 0.7842 0.5525 0.7927 0.3034 0.5767 0.3976 0.7153
SentencePiece Unigram 3 0.4258 0.7885 0.5530 0.7599 0.2914 0.5515 0.3813 0.6694

Table 6: Performance comparison of different tokenization methods on multilingual BART-large. Best scores per vocabulary
size are in bold.

Voc Size Tokenizer Type BLEU Exact Match Avg. Pred Len Avg. Label Len
BPE 0.1226 0.069 27.41 23.05
15k WordPiece 0.0103 0 20 35.11
SentencePiece Unigram  0.0526 0.031 9.14 7.37
BPE 0.1135 0.006 17.99 18.55
30k WordPiece 0.1136 0.067 23.30 21.65
SentencePiece Unigram  0.0966 0.086 7.58 7.37
BPE 0.1039 0.055 22.35 16.97
50k WordPiece 0.1218 0.078 19.94 17.96
SentencePiece Unigram  0.1039 0.096 7.13 7.37
BLEU vs Vocabulary Size Exact Match vs Vocabulary Size
= BPE Rl [Je—
0.12 4 mm WordPiece B WordPiece

m sentencePiece m  SentencePiece

0.10 -

0.08 o

0.06 -

BLEU Score
Exact Match

0.04

0.00 -

15k 30k 50k 15k 30k 50k

Figure 1: BLEU and Exact Match performance of tokenization methods across vocabulary sizes on multilingual machine
translation, showing vocabulary-dependent performance patterns for each algorithm.



findings demonstrate that balanced training data substan-
tially improves tokenization fairness, with BPE consistently
achieving the lowest Normalized Sequence Length and Sub-
word Fertility values across most languages, indicating more
compact tokenization through its frequency-based merg-
ing strategy. Notably, logographic languages like Mandarin
Chinese and Japanese showed dramatic improvements with
larger vocabularies, with NSL values decreasing from 0.85
to 0.70 for Chinese when moving from 15k to 50k vocab-
ulary sizes. In downstream tasks, tokenizer choice proved
highly task-dependent: WordPiece excelled in POS tagging
(accuracy: 0.7830) and NER (F1: 0.5844) due to its ability
to preserve morphologically meaningful boundaries, while
BPE performed best in machine translation at smaller vo-
cabularies (BLEU: 0.1226 at 15k). These results provide em-
pirical evidence that balanced datasets enable tokenizers to
learn more representative subword units across diverse writ-
ing systems, reducing the over-segmentation typically ob-
served in low-resource languages and addressing computa-
tional inequities where underrepresented languages can in-
cur up to 68% additional processing costs.

While our results are promising, several limitations must
be acknowledged. Future research should address these limi-
tations by expanding evaluation to character-level and neural
tokenization methods and exploring intermediate balancing
strategies tailored to specific language families. We plan to
extend our framework to generative tasks where tokenizer
choice may have different implications for output quality
and fairness, and develop dynamic balancing strategies that
adapt to evolving multilingual corpora. Multi-tokenizer ap-
proaches within single models represent a promising avenue
for leveraging different tokenization strategies simultane-
ously across languages or tasks.

This study establishes the critical importance of balanced
training data in achieving fair and efficient multilingual to-
kenization. While optimal tokenizer choice remains task-
dependent, balanced datasets consistently improve perfor-
mance across all evaluated conditions. By bridging tokenizer
efficiency and linguistic fairness, this work contributes to in-
clusive language technologies that serve diverse global com-
munities with computational equity, moving beyond one-
size-fits-all paradigms toward more equitable multilingual
NLP systems.
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Computational Resources

All experiments in this study were conducted using two dis-
tinct computational environments. Tokenizer training for all
nine languages across three vocabulary sizes (15k, 30k, 50k)
and three algorithms (BPE, WordPiece, Unigram), along
with Part-of-Speech tagging and Named Entity Recogni-
tion model training, were performed using Google Colab
with Tesla T4 GPU (16GB VRAM) and Python 3.10 with
CUDA 11.8. Machine Translation experiments using mul-
tilingual BART-large required enhanced computational ca-
pacity and were conducted on a local workstation equipped
with NVIDIA GeForce RTX 4090 (24GB VRAM) and
CUDA 11.8. The choice of computational environments was
determined by the memory requirements of each task, with
the larger BART-large models for machine translation neces-
sitating the higher VRAM capacity of the RTX 4090 GPU.



