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Abstract

Many explainable artificial intelligence (XAI) methods investigate the embedding
space of a given neural network. Uncertainty quantification in these spaces can
lead to a better understanding of the mechanisms learned by the given network.
When concerned with the uncertainty of functions in latent spaces we can invoke
ensembles of trained models. Such ensembles can be confounded by reparame-
terization, i.e., lack of identifiability. We consider two mechanisms for reducing
reparametrization "noise", one based on relative representations and one based
on interpolation in weight space. By sampling embedding spaces along a curve
connecting two fully converged networks without an increase in loss, we show
that the latent uncertainty becomes overestimated when comparing embedding
spaces without considering the reparametrization issue. By changing the absolute
embedding space to a space of relative proximity, we show that the spaces become
aligned, and the measured uncertainty decreases. Using this method, we show that
the most non-trivial changes to the latent space occur around the midpoint of the
curve connecting the independently trained networks.

1 Introduction

A neural network (NN) trained to perform a certain downstream task, e.g., regression or classi-
fication, learns a mapping f : xi → yi given a set of observations D = {(xi,yi)}Ni , where
xi = [x1, x2, ..., xD] and N is the number of available observations and D is the latent space
dimension. The learned function f is hierarchical, i.e. f(x) = hL(hL−1(...h1(x))) where the
intermediate representation of the observation xi after layer l is denoted as zi. We note the mapping
of the observation xi to its latent representation zi as hl : xi → zi. The latent space is assumed to be
semantically meaningful for relevant downstream tasks. Therefore, many XAI methods investigate
the properties of the latent space of a NN, for example, its geometry [9] or the semantic structure [5].
XAI has many dimensions [11], one of which is referred to as local vs. global. Local explainability
concerns predictions of individual samples, whereas global explainability considers the network as a
whole. Most local methods give attributions to the input features [x1, x2, ..., xD], which are important
to the output ŷ. Recently, Wickstrøm et al. [10] proposed a method that maps attributions to input
features based on the importance of its latent vector z. In contrast, global explainability methods such
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as Concept Activation Vectors (TCAV) [5] aim to explain the entire latent space based on semantics.
One persistent challenge in assessing geometry and semantic structure of the latent space is the
reparametrization issue, driven by the fact that there is no “set of optimal parameters and that we can
always parametrize the manifold in a different, but equally good, way” ([2]). In other words, while
the end-to-end function f remains the same, different parametrizations lead to different but equally
performing embedding functions h.
Moschella et al. [7] introduced Relative Representations, which define an alternative representation
of the latent space. They empirically show that the latent spaces of two identical models trained
on the same data but different initializations are identical up to angle-preserving transformations.
Their proposed method uses a set of latent vectors A = {zi}Ai , called anchors, and redefines the
position of each latent vector to be relative to the set of anchors, according to a similarity function
sim : RD × RD → R. Depending on the choice of the similarity function, the latent space becomes
invariant to certain transformations.
The reparametrization issue is also related to the loss landscape in NNs. Several works have ex-
ploited the reparametrization issue to efficiently train ensembles of models, which outperform their
single-model counterparts [4]. Garipov et al. [1] investigated the geometrical properties of loss
landscapes and showed that two identical NNs trained on different seeds can be connected by a
simple curve in weight space, such that the loss under the curve is constant. This curve ϕ parameter-
ized by θ connects two points ŵ1 and ŵ2 in parameter space and is found by minimizing the loss
l(θ) =

∫ 1

0
L(ϕ(t)), dt = Et∼U(0,1)[L(ϕθ(t))]], where L is the loss function used to find ŵ1 and ŵ2.

We refer to section B for details on the curve-finding procedure. Once θ is fitted, one can sample
from ϕθ(t)) for 0 ≤ t ≤ 1 and build an ensemble of models from living on the curve ϕθ(t).
Ensembling methods reduce both the bias and variance of ŷ. The uncertainty over K samples of the
end-to-end function f in the prediction of ŷi is given by

σ2(ŷi) = trace
(
Ek∈K [(fk (xi)− ȳi) (fk (xi)− ȳi)

T
]
)

(1)

where ȳi = Ek∈K [fk(xi)]. Following the above reasoning, the embedding function’s uncertainty h
could be obtained by replacing fk with hk and yi with zi. Due to reparametrization however, the
latent uncertainty σ2(zi) will be overestimated (see Appx. A). We argue that there are two factors
contributing to the overall observed uncertainty σ2

O(zi),

σ2
O(zi) = σ2

R(zi) + σ2
M(zi) , (2)

where σ2
R refers to the uncertainty caused by reparametrization and σ2

M to the uncertainty of the
model. In equation 2 we assume independence of the model and reparametrization uncertainty. Such
independence could arise as a consequence of initialization being independent of the data. In order to
isolate the model uncertainty σ2

M(zi), the reparametrization uncertainty σ2
R(zi) → 0. In Appx. A

we show that, for rotation and scaling transformations, the Relative Representation framework, using
a cosine similarity function, can eliminate σ2

R(zi). In this work, we

• Define an alignment score ρ, which estimates the signal-to-noise ratio for a given ensemble
of latent observations. The alignment score ρ is a measure of separability between N
latent points given K samples each, similar to Fisher’s Linear Discriminant objective for N
classes.

• Show empirically that when sampling models along the curve ϕ, transforming the embed-
dings into a space of relative proximity increases alignment between latent observations.

• Show that the latent observations for the curve ϕ(t) have high alignment around the endpoints
and little alignment at the bending point, suggesting limited information gain when sampling
around the endpoints and high information gain when sampling across the midpoint.

2 Methods

The intuition behind our alignment metric is the following: Given K samples of a latent vector zi,
where each sample is an embedding of a given observation xi obtained from a unique function hk,
the alignment score ρi should be high if all samples form a compact region in the latent space and are
well separated from all other points (see Figure 1). The alignment score ρ of the entire embedding
space can be estimated as the average of individual scores. This formulation is similar to Fisher’s
Linear Discriminant (FLD) objective, which measures the separability of two or more classes of
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Figure 1: Left: Conceptual visualization of the alignment measure. Given the two observations xi=1

and xi=2 and K realizations of their embeddings zi=1 and zi=2 obtained from a unique embedding
function hk, we seek small within-observation variance SW relative to the between-observation
variance SB . Right: Visualization of uncertainties in latent space using the ratio of within vs. between
sample variance. The plots show two identical t-SNE projections of the VGG-16 model and 10
classes of CIFAR100. The dot size represents uncertainty measured in absolute space (left) and
relative space (right) using a cosine similarity projection.

objects. The FLD objective is given by the ratio of between-class vs. within-class covariance. Given
K realizations of latent vector zi, the objective can be applied on the scale of a single observation, i.e.
the ratio of between-observation vs. within-observation covariance. Due to the high dimensionality
of z and the few number of available samples, it is not feasible to calculate the full covariance matrix.
We therefore use the variance estimator and express the ratio as a signal-to-noise ratio, such that
the alignment metric ρ is bounded 0 ≤ ρ ≤ 1. We define the within-observation variance σ2

W and
between-observation variance σ2

B of k realizations of the latent space and their alignment ρ as

σ2
W =

1

N

N∑
i=1

K∑
k=1

(zik − z̄i)
2 (3)

σ2
B =

1

N

N∑
i=1

(z̄i − E(z̄i))2 (4)

ρ =
σ2
B

σ2
B + σ2

W

(5)

We conduct the following experiment independently using a VGG-16 [8] and a Preactivation-ResNet
[3] on CIFAR-100 [6]. First, fully train on three different seeds until convergence, resulting in
three unique models ŵ1, ŵ2, and ŵ3. For each pairwise combination of seeds, we fit a Bezier
curve with fixed endpoints and a single bend following the procedure described in [1]. Once a
curve ϕij(t) between two modes ŵi, ŵj is found, we sample K models at steps t = k ∗∆t, where
k ∈ [0, ..., K − 1] and ∆t = 1

K . For all experiments, we set K = 21. We proceed by evaluating
the performance at each step t, as well as the ensemble performance over all models up to step t

using a hold-out test set Dtest = (xi, yi)
N
i . We investigate the alignment of the embedding spaces

along the curve, i.e. the last layer before the classification layer. We define the absolute embedding
space Zk as the ensemble of all latent vectors {zi} in Dtest and the space of relative proximity Qk

as the ensemble of all transformed vectors {qi} given a set of anchors A and a similarity function
sim : RD × RD → R. The number of anchors is chosen to match the number of dimensions D of
the absolute embeddings. For the VGG16, D = 512, and for the ResNet110, D = 256. Anchors are
sampled randomly from Dtest, following the procedure of [7]. Table 1 provides an overview of the
proposed similarity functions. For the cosine and basis transformations, we center the embedding
space Zk before calculating similarities using an estimate of the mean based on Dtrain. For the
Euclidean transformation, the space is additionally scaled to unit variance. Finally, using the proposed
metric, we measure the cumulative alignment for increasing k of both the absolute and relative
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embedding spaces. We compare the observed alignment with the alignment of eleven independently
trained networks. Code is available here1

3 Results

Figure 2: Top: Curve fitting results (solid) for VGG (red) and PreResNet (blue), pairwise connecting
three modes with individual (left) and cumulative ensemble error rates (right). The individual error
rate is the classification error rate for CIFAR100 for a given set of parameters t on the curve. The
cumulative error rate is determined by the arg max of the sum of probabilities across all sampled
parameters on the curve in [0, t]. Bottom: Alignment of embedding spaces along the curve for the
absolute (green) and relative (purple) space. Dashed lines represent reference values, given as the
average error and alignment of eleven independently trained networks.

In Figure 2 we show the individual and cumulative ensemble error rates for each model type and
curve. For all models and curves, the test accuracy increases when approaching the midpoint. The
cumulative ensemble error decreases with increasing ensemble size. Notably, there is little variation
across the pairwise curves. The embeddings of relative representations show higher alignment than
the embeddings of absolute representations. This shows that the embedding spaces are confounded
by reparametrization. However, the results vary across projection methods. For the VGG, the cosine
similarity performs best, whereas for the ResNet it is Euclidean distance. Alignment measured in
absolute space decreases almost linearly. The alignment measured in relative space, however, seems
to converge. Compared to the baseline experiment, where alignment is measured across eleven
independently trained networks, the measured alignments in relative space are closer than those
measured in absolute space. Furthermore, the figure shows that the highest negative slope occurs
around t = 0.5, whereas the slope has limited variation around the endpoints. This finding suggests
that ensembles used for uncertainty quantification should be samples far from the endpoints of a
connecting curve.

1https://github.com/fmager/it-s-all-relative
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4 Discussion

In this work, we investigate the alignment of latent observations when sampling along a curve
connecting two modes. Our results show that transforming the spaces into a space of relative proximity
reduces uncertainty significantly. This suggests that the uncertainty of ensembles is indeed confounded
by reparametrization. The measured uncertainty varies across different relative projections within
each modality. This is a limitation, as no general recommendation for a projection method can be
made. Each projection will make the latent space invariant to some transformation, and the optimal
choice of projection is model-dependent. Certain projections might bias uncertainty estimates. For
example, the unit-norm scaling of the cosine similarity measure will increase uncertainties close to
the zero vector. In this work, we used a random set of anchors, which eases the workflow of sampling
from the curve. However the choice of anchors, e.g. archetypes or centroids, will likely influence
the projection quality. The influence of projection function and anchor choice should be further
investigated.
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A Reparametrization issue and uncertainty in latent space

Consider the linear function f : x → y defined as

y = W2W1x, (6)

where W1 ∈ R .×D and W2 ∈ RD×. are the learned parameters θ of the linear map using a loss
function L(θ). The intermediate representation z takes the form

z = h(x) = W1x .

It is evident that there exist infinitely many optimal solutions of W1 and W2 for the same function
f . While f remains unchanged, the reparametrization might have a influence on h. Consider the
following example, where we define W′

1 = QW1 and W′
2 = Q−1W2. From Eq. 6 it is easy to see

that f does not change, however, the embedding function becomes h′(x) = QW1x = Qz.

Given two samples of a latent vector zn as z1n = h(xn) and z2n = h′(xn), the variance estimate
according to Eq. 1 becomes

σ2(zn) =
1

2
[(z1n − z̄n)

2 + (z2n − z̄n)
2] (7)

=

(
I+Q

2
z1n

)2

(8)

where (z1n − z̄n)
2 = (z2n − z̄n)

2 and z̄n = I+Q
2 z1n. Consider now the transformation T : z → q

proposed by [7]. The transformed latent vector q is expressed relative to a set of anchors A = {zj}Aj .
Usually one chooses the number of anchors to match the dimensionality of z, in which case one can
write A as a square matrix A ∈ RD×D, where the d’th row vector ad is the j’th latent vector zj in A.
Using a similarity function sim : RD × RD → R, [7] defines the transformed latent vector qi as

qi = [sim(zi,a1), sim(zi,a2), ..., sim(zi,aD)] . (9)

If we use the cosine similarity as a similarity function and pose the same reparametrization problem
to the transformed latent vector qi, the d’th element of the transformed latent vector q′

i ∈ RD is
calculated as

q′id =
(Qzi)

TQad
||Qzi|| ||Qad||

=
zTi Q

TQad
||Qzi|| ||Qad||

(10)

Equation 10 shows that Relative Representation with a cosine similarity makes the latent space
invariant if q′id = qid. This holds true for rotation and scaling transformations, i.e Q̄ = αU, where
UTU = I.

B Latent space sampling

The following is a reformulation of the curve finding experiments by [1]. Consider two fully converged
models f1 and f2 with parameters ŵ1 and ŵ2. A Bezier curve ϕ12(t) with the endpoints fixed at ŵ1

and ŵ2 and a single bend is defined as

ϕ12(t) = (1− t)2ŵ1 + 2t(1− t)θ + t2ŵ2, 0 < t < 1 . (11)

Here, θ are the parameters of the curve and t is the interpolation variable along the curve, where
ϕ12(t = 0) = ŵ1 and ϕ12(t = 0) = ŵ2.

Note that the number of parameters of θ is equivalent to the number of parameters in ŵ1 or ŵ2 times
the number of bends along the curve. The optimal curve is found by minimizing the loss L below the
entire curve, which is defined as

l(θ) =

∫ 1

0

L(ϕ(t)), dt = Et∼U(0,1)[L(ϕθ(t))]] ,

where L is the loss function used to find ŵ1 and ŵ2.
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C Transformations

Table 1 shows transformations of a latent obersvation zn into a latent observation of relative proximity
qn based on a set of anchors A = {zi}Ai .

Transformation Description

Rel. Cosine Basis Transformation, such that the new basis is qn = znA
T

||zn|| ||Ai||
the cosine distance of each anchor to each point

Rel. Euclidean Basis transformation, such that the new basis is qn = [q1, q2, ..., qD] ,

the euclidean distance of each anchor to each point where qi = ||zn − ai||2
for i ∈ [1, ..., D]

Rel. Basis Change of basis based on anchor points qn = znA
T

||Ai||2

Table 1: Summary of transformations for a latent vector zi ∈ RD and a matrix of anchors A ∈ RD×D,
where each row vector ai in A corresponds to an element in the set of anchors A = {zi}Ai

.

8


	Introduction
	Methods
	Results
	Discussion
	Reparametrization issue and uncertainty in latent space
	Latent space sampling
	Transformations

