
Journal Title Here, 2022, 1–14

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

FlowDock: Geometric Flow Matching for Generative
Protein-Ligand Docking and Affinity Prediction
Alex Morehead 1,∗ and Jianlin Cheng 1

1Department of Electrical Engineering & Computer Science, NextGen Precision Health, University of

Missouri-Columbia, W1024 Lafferre Hall, 65211, Missouri, USA

∗Corresponding author. acmwhb@missouri.edu

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Motivation

Powerful generative AI models of protein-ligand structure have recently been proposed, but few of

these methods support both flexible protein-ligand docking and affinity estimation. Of those that do,

none can directly model multiple binding ligands concurrently or have been rigorously benchmarked on

pharmacologically relevant drug targets, hindering their widespread adoption in drug discovery efforts.

Results

In this work, we propose FlowDock, the first deep geometric generative model based on conditional flow

matching that learns to directly map unbound (apo) structures to their bound (holo) counterparts for an

arbitrary number of binding ligands. Furthermore, FlowDock provides predicted structural confidence

scores and binding affinity values with each of its generated protein-ligand complex structures, enabling fast

virtual screening of new (multi-ligand) drug targets. For the well-known PoseBusters Benchmark dataset,

FlowDock outperforms single-sequence AlphaFold 3 with a 51% blind docking success rate using unbound

(apo) protein input structures and without any information derived from multiple sequence alignments, and

for the challenging new DockGen-E dataset, FlowDock outperforms single-sequence AlphaFold 3 and

matches single-sequence Chai-1 for binding pocket generalization. Additionally, in the ligand category of the

16th community-wide Critical Assessment of Techniques for Structure Prediction (CASP16), FlowDock

ranked among the top-5 methods for pharmacological binding affinity estimation across 140 protein-ligand

complexes, demonstrating the efficacy of its learned representations in virtual screening.

Availability

Source code, data, and pre-trained models are available at https://github.com/

BioinfoMachineLearning/FlowDock.
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1. Introduction

Interactions between proteins and small molecules (ligands) drive

many of life’s fundamental processes and, as such, are of

great interest to biochemists, biologists, and drug discoverers.

Historically, elucidating the structure, and therefore the function,

of such interactions has required that considerable intellectual and

financial resources be dedicated to determining the interactions of

a single biomolecular complex. For example, techniques such as

X-ray diffraction and cryo-electron microscopy have traditionally

been effective in biomolecular structure determination, however,

resolving even a single biomolecule’s crystal structure can be

extremely time and resource-intensive. Recently, new machine

learning (ML) methods such as AlphaFold 3 (AF3) (Abramson

et al., 2024) have been proposed for directly predicting the

structure of an arbitrary biomolecule from its primary sequence,

offering the potential to expand our understanding of life’s

molecules and their implications in disease, energy research, and

beyond.

Although powerful models of general biomolecular structure are

compelling, they currently do not provide one with an estimate

of the binding affinity of a predicted protein-ligand complex,

which may indicate whether a pair of molecules truly bind to

each other in vivo. It is desirable to predict both the structure

of a protein-ligand complex and the binding affinity between

them via one single ML system (Dhakal et al., 2022). Moreover,
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recent generative models of biomolecular structure are primarily

based on noise schedules following Gaussian diffusion model

methodology which, albeit a powerful modeling framework, lacks

interpretability in the context of biological studies of molecular

interactions. In this work, we aim to address these concerns with

a new state-of-the-art hybrid (structure & affinity prediction)

generative model called FlowDock for flow matching-based

protein-ligand structure prediction and binding affinity estimation,

which allows one to interpretably inspect the model’s structure

prediction trajectories to interrogate its common molecular

interactions and to screen drug candidates quickly using its

predicted binding affinities.

2. Related work

Molecular docking with deep learning. Over the last few

years, deep learning (DL) algorithms (in particular geometric

variants) have emerged as a popular methodology for performing

end-to-end differentiable molecular docking. Models such as

EquiBind (Stärk et al., 2022) and TankBind (Lu et al., 2022)

initiated a wave of interest in researching graph-based approaches

to modeling protein-ligand interactions, leading to many follow-

up works. Important to note is that most of such DL-

based docking models were designed to supplement conventional

modeling methods for protein-ligand docking such as AutoDock

Vina (Eberhardt et al., 2021) which are traditionally slow

and computationally expensive to run for many protein-ligand

complexes yet can achieve high accuracy with crystal input

structures and ground-truth binding pocket annotations.

Generative biomolecular modeling. The potential of

generative modeling in capturing intricate molecular details in

structural biology such as protein-ligand interactions during

molecular docking (Corso et al., 2022) has recently become a

research focus of ambitious biomolecular modeling efforts such as

AF3 (Abramson et al., 2024), with several open-source spin-offs of

this algorithm emerging (Discovery et al., 2024; Wohlwend et al.,

2024).

Flow matching. In the machine learning community, generative

modeling with flow matching (Chen and Lipman, 2024; Tong

et al., 2024) has recently become an appealing generalization of

diffusion generative models (Ho et al., 2020; Karras et al., 2022),

enabling one to transport samples between arbitrary distributions

for compelling applications in computer vision (Esser et al., 2024),

computational biology (Klein et al., 2024), and beyond. As a

closely related concurrent work (as our method was developed

for the CASP16 competition starting in May 2024 (CASP16-

Organizers, 2024)), Corso et al. (2024b) recently introduced and

evaluated an unbalanced flow matching procedure for pocket-

based flexible docking. However, the authors’ proposed approach

mixes diffusion and flow matching noise schedules with geometric

product spaces in an unintuitive manner, and neither source code

nor data for this work are publicly available for benchmarking

comparisons. In Section 3.3, we describe flow matching in detail.

Contributions. In light of such prior works, our contributions in

this manuscript are as follows:

• We introduce the first simple yet state-of-the-art hybrid

generative flow matching model capable of quickly and

accurately predicting protein-ligand complex structures and

their binding affinities, with source code and model weights

freely available.

• We rigorously validate our proposed methodology using

standardized benchmarking data for protein-ligand complexes,

with our method ranking as a more accurate and generalizable

structure predictor than (single-sequence) AF3.

• Our method ranked as a top-5 binding affinity predictor for

the 140 pharmaceutically relevant drug targets available in the

2024 community-wide CASP16 ligand prediction competition.

• We release one of the largest ML-ready datasets of apo-to-holo

protein structure mappings based on high-accuracy predicted

protein structures, which enables training new models on

comprehensive biological data for distributional biomolecular

structure modeling.

3. Methods and materials

The goal of this work is to jointly predict protein-ligand complex

structures and their binding affinities with minimal computational

overhead to facilitate drug discovery. In Sections 3.1 and 3.2,

we briefly outline how FlowDock achieves this and how its key

notation is defined. We then describe FlowDock’s training and

sampling procedures in Sections 3.3-3.6.

3.1. Overview

Figure 1 illustrates how FlowDock uses geometric flow matching

to predict flexible protein-ligand structures and binding affinities.

At a high level, FlowDock accepts both (multi-chain) protein

sequences and (multi-fragment) ligand SMILES strings as its

primary inputs, which it uses to predict an unbound (apo)

state of the protein sequences using ESMFold (Lin et al., 2023)

and to sample from a harmonic ligand prior distribution (Jing

et al., 2024) to initialize the ligand structures using biophysical

constraints based on their specified bond graphs. Notably, users

can also specify the initial protein structure using one produced

by another bespoke method (e.g., AF3 which we use in certain

experiments). With these initial structures representing the

complex’s state at time t = 0, FlowDock employs conditional

flow matching to produce fast structure generation trajectories.

After running a small number of integration timesteps (e.g., 40 in

our experiments), the complex’s state arrives at time t = 1, i.e.,

the model’s estimate of the bound (holo) protein-ligand heavy-

atom structure. At this point, FlowDock runs confidence and

binding affinity heads to predict structural confidence scores (i.e.,

plDDT) and binding affinities of the predicted complex structure,

to rank-order the model’s generated samples.

3.2. Notation

Let x0 denote the unbound (apo) state of a protein-ligand complex

structure, representing the heavy atoms of the protein and ligand

structures as xP
0 ∈ RNP×3 and xL

0 ∈ RNL×3, respectively, where

NP and NL are the numbers of protein and ligand heavy atoms.

Similarly, we denote the corresponding bound (holo) state of the

complex as x1. Further, let sP ∈ {1, . . . , 20}SP

denote the type

of each amino acid residue in the protein structure, where SP

represents the protein’s sequence length. To generate bound (holo)

structures, we define a flow model vθ that integrates the ordinary

differential equation (ODE) it defines from time t = 0 to t = 1.

3.3. Riemannian manifolds and conditional flow matching

In manifold theory, an n-dimensional manifold M represents a

topological space equivalent to Rn. In the context of Riemannian
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Fig. 1: An overview of biomolecular distribution modeling with FlowDock. Central module illustrations adapted from Qiao et al. (2024).

manifold theory, each point x ∈ M on a Riemannian manifold is

associated with a tangent space Tx. Conveniently, a Riemannian

manifold is equipped with a metric gx : TxM× TxM → R that

permits the definition of geometric quantities on the manifold

such as distances and geodesics (i.e., shortest paths between two

points on the manifold). Subsequently, Riemannian manifolds

allow one to define on them probability densities
∫
M ρ(x)dx = 1

where ρ :M→ R+ are continuous, non-negative functions. Such

probability densities give rise to interpolative probability paths ρt :

[0, 1] → P(M) between probability distributions ρ0, ρ1 ∈ P(M),

where P(M) is defined as the space of probability distributions on

M and the interpolation in probability space between distributions

is indexed by the continuous parameter t.

Here, we refer to ψt : M → M as a flow on M. Such

a flow serves as a solution to the ODE: d
dt
ψt(x) = ut(ψt(x))

(Mathieu and Nickel, 2020) which allows one to push forward the

probability trajectory ρ0 → ρ1 to ρt using ψt as ρt = [ψt]#(ρ0),

with ψ0(x) = x for u : [0, 1] × M → M (i.e., a smooth time-

dependent vector field (Bose et al., 2024)). This insight allows

one to perform flow matching (FM) (Chen and Lipman, 2024)

between ρ0 and ρ1 by learning a continuous normalizing flow

(Papamakarios et al., 2021) to approximate the vector field ut

with the parametric vθ. With ρ0 = ρprior and ρ1 = ρdata,

we have that ρt advantageously permits simulation-free training.

Although it is not possible to derive a closed form for ut (which

generates ρt) with the traditional flow matching (FM) training

objective, a conditional flow matching (CFM) training objective

remains tractable by marginalizing conditional vector fields as

ut(x) :=
∫
M ut(x|z)ρt(xt|z)q(z)

ρt(x)
dz, where q(z) represents one’s

chosen coupling distribution (by default the independent coupling

q(z) = q(x0)q(x1)) between x0 and x1 via the conditioning

variable z. For Riemannian CFM (RCFM) (Chen and Lipman,

2024), the corresponding training objective, with t ∼ U(0, 1), is:

LRCFM (θ) = Et,q(z),ρt(xt|z)∥vθ(xt, t)− ut(xt|z)∥2g, (1)

where Tong et al. (2024) have fortuitously shown that the gradients

of FM and CFM are identical. As such, to transport samples of the

prior distribution ρ0 to the target (data) distribution ρ1, one can

sample from ρ0 and use vθ to run the corresponding ODE forward

in time. In the remainder of this work, we will focus specifically

on the 3-manifold R3.

3.4. Prior distributions

With flow matching defined, in this section, we describe how we

use a bespoke mixture of prior distributions (ρP0 and ρL0 ) to sample

initial (unbound) protein and ligand structures for binding (holo)

structure generation targeting our data distribution of crystal

protein-ligand complex structures ρ1. In Section 4.1, we ablate

this mixture to understand its empirical strengths.

ESMFold protein prior. To our best knowledge, FlowDock

is among the first methods-concurrently with Corso et al. (2024b)-

to explore using structure prediction models with flow matching to

represent the unbound state of an arbitrary protein sequence. In

contrast to Corso et al. (2024b), we formally define a distribution

of unbound (apo) protein structures using the single-sequence

ESMFold model as ρP0 (xP
0 ) ∝ ESMFold(sP ) + ϵ, ϵ ∼ N (0, σ),

which encourages our model to learn more than a strict mapping

between protein apo and holo point masses. Based on previous

works developing protein generative models (Dauparas et al.,

2022), during training we apply ϵ ∼ N (0, σ = 1e−4) to both xP
0

and xP
1 to discourage our model from overfitting to computational

or experimental noise in its training data. It is important to

note that this additive noise for protein structures is not a

general substitute for generating a full conformational ensemble

of each protein, but to avoid the excessively high computational

resource requirements of running protein dynamics methods such

as AlphaFlow (Jing et al., 2024) for each protein, we empirically

find noised ESMFold structures to be a suitable surrogate.

Harmonic ligand prior. Inspired by the FlowSite model for

multi-ligand binding site design (Stark et al., 2024), FlowDock

samples initial ligand conformations using a harmonic prior

distribution constrained by the bond graph defined by one’s

specified ligand SMILES strings. This prior can be sampled as

a modified Gaussian distribution via ρL0 (xL
0 ) ∝ exp(− 1

2
xLT

0 LxL
0 )
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where L denotes a ligand bond graph’s Laplacian matrix defined

as L = D−A, with A being the graph’s adjacency matrix and D

being its degree matrix. Similarly to our ESMFold protein prior,

we subsequently apply ϵ ∼ N (0, σ = 1e−4) to xL
1 during training.

3.5. Training

We describe FlowDock’s structure parametrization, optimization

procedure, and the curation and composition of its new training

dataset in the following sections. Further, we provide training

and inference pseudocode in Appendix A of our Supplementary

Materials.

Parametrizing protein-ligand complexes with geometric

flows. Based on our experimental observations of the difficulty of

scaling up intrinsic generative models (Corso, 2023) that operate

on geometric product spaces, FlowDock instead parametrizes

3D protein-ligand complex structures as attributed geometric

graphs (Joshi et al., 2023) representing the heavy atoms of each

complex’s protein and ligand structures. The main benefit of a

heavy atom parametrization is that it can considerably simplify

the optimization of a flow model vθ by allowing one to define its

primary loss function as simply as a CondOT path (Pooladian

et al., 2023; Jing et al., 2024):

LR3 (θ) = Et,q(z),ρt(xt|z)∥vθ(xt, t)− x1)∥2, (2)

with the conditional probability path ρt chosen as

ρt(x|z) = ρt(x|x0,x1) = (1− t) · x0 + t · x1, x0 ∼ ρ0(x0) (3)

The challenge introduced by this atomic parametrization is that

it necessitates the development of an efficient neural architecture

that can scalably process all-atom input structures without the

exhaustive computational overhead of generative models such as

AF3. Fortunately, one such architecture satisfies this requirement,

namely, one recently introduced by Qiao et al. (2024) with

the NeuralPLexer model which encodes protein language model

(PLM) sequence embeddings and ligand SMILES strings to

iteratively decode block diagonal contact maps to condition a

flow ODE for equivariant coordinates and auxiliary predictions.

As such, inspired by how the AlphaFlow model was fine-tuned

from the base AlphaFold 2 (AF2) architecture using flow matching,

to train FlowDock we explored fine-tuning the NeuralPLexer

architecture to represent our vector field estimate vθ as illustrated

in Figure 1. Uniquely, we empirically found this idea to work best

by fine-tuning the architecture’s score head, which was originally

trained with a denoising score matching objective for diffusion-

based structure sampling, instead using Eqs. 2 and 3. Moreover, we

fine-tune all of NeuralPLexer’s remaining intermediate weights and

prediction heads including a dedicated confidence head redesigned

to predict binding affinities, with the exception of its original

confidence head which remains frozen at all points during training.

PDBBind-E Data Curation. To train FlowDock with

resolved protein-ligand structures and binding affinities, we

prepared PDBBind-E, an enhanced version of the PDBBind

2020-based training dataset proposed by Corso et al. (2024a)

for training recent DL docking methods such as DiffDock-L. To

curate PDBBind-E, we collected 17,743 crystal complex structures

contained in the PDBBind 2020 dataset and 47,183 structures of

the Binding MOAD (Hu et al., 2005) dataset splits introduced

by Corso et al. (2024a) (n.b., which maintain the validity of

our benchmarking results in Section 4 according to time and

ligand-based similarity cutoffs) and predicted the structure of

these (multi-chain) protein sequences in each dataset split using

ESMFold. To optimally align each predicted protein structure

with its corresponding crystal structure, we performed a weighted

structural alignment optimizing for the distances of the predicted

protein residues’ Cα atoms to the crystal heavy atom positions

of the complex’s binding ligand, similar to (Corso et al., 2024a).

After dropping complexes for which the crystal structure contained

protein sequence gaps caused by unresolved residues, the total

number of PDBBind and Binding MOAD predicted complex

structures remaining was 17,743 and 46,567, respectively.

Generalized unbalanced flow matching. We empirically

observed the challenges of naively training flexible docking models

like FlowDock without any adjustments to the sampling of

their training data. Accordingly, we concurrently developed a

generalized version of unbalanced flow matching (Corso et al.,

2024b) by defining our coupling distribution q(z) as

q(x0,x1) ∝ q0(x0)q1(x1)Ic(x0,x1)∈cA , (4)

where cA is defined as a set of apo-to-holo assessment filters

measuring the structural similarity of the unbound (apo) and

bound (holo) protein structures (n.b., not simply their binding

pockets) in terms of their root mean square deviation (RMSD) and

TM-score (Zhang and Skolnick, 2004) following optimal structural

alignment (as used in constructing PDBBind-E). Effectively, we

sample independent examples from q0 and q1 and reject these

paired examples if c(x0,x1) < cATM
or c(x0,x1) ≥ cARMSD

(n.b.,

we use cATM
= 0.7 and cARMSD

= 5Å as well as other length-based

criteria in our experiments, please see our code for full details).

3.6. Sampling

By default, we apply i = 40 timesteps of an Euler solver to

integrate FlowDock’s learned ODE vθ forward in time for binding

(holo) structure generation. Specifically, to generate structures, we

propose to integrate a Variance Diminishing ODE (VD-ODE) that

uses vθ as

xn+1 = clamp(
1− s
1− t ·η)·xn+clamp((1− 1− s

1− t )·η)·vθ(xn, t), (5)

where n represents the current integer timestep, allowing us to

define t = n
i
and s = n+1

i
; η = 1.0 in our experiments; and clamp

ensures both the LHS and RHS of Eq. 5 are lower and upper

bounded by 1e−6 and 1 − 1e−6, respectively. We experimented

with different values of η yet ultimately settled on 1.0 since this

yielded FlowDock’s best performance for structure and affinity

prediction. Intuitively, this VD-ODE solver limits the high levels

of variance present in the model’s predictions vθ during early

timesteps by sharply interpolating towards vθ in later timesteps.

4. Results

4.1. PoseBench protein-ligand docking

PoseBusters Benchmark set. In Figures 2 and 3, we

illustrate the performance of each baseline method for protein-

ligand docking and protein conformational modification with the

commonly-used PoseBusters Benchmark set (Buttenschoen et al.,

2024), provided by version 0.6.0 of the PoseBench protein-ligand

benchmarking suite (Morehead et al., 2024), which consists of

308 distinct protein-ligand complexes released after 2020. It is
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Fig. 2: Protein-ligand docking success rates of each baseline method on the PoseBusters Benchmark set (n=308). Error bars: 3 runs.

DynamicBind

(Binding Pocket Conformation RMSDs)

NeuralPLexer

(Binding Pocket Conformation RMSDs)

FlowDock

(Binding Pocket Conformation RMSDs)

Fig. 3: Comparison of each flexible docking method’s protein conformational changes made for the PoseBusters Benchmark set (n=308).

important to note that this benchmarking set can be considered

a moderately difficult challenge for methods trained on recent

collections of data derived from the Protein Data Bank (PDB)

(Bank, 1971) such as PDBBind 2020 (Liu et al., 2015), as all

of these 308 protein-ligand complexes are not contained in the

most common training splits of such PDB-based data collections

(Buttenschoen et al., 2024) (with the exception of AF3 which uses

a cutoff date of September 30, 2021). Moreover, as described by

Buttenschoen et al. (2024), a subset of these complexes also have

very low protein sequence similarity to such training splits.

Figure 2 shows that FlowDock consistently improves over

the original NeuralPLexer model’s docking success rate in terms

of its structural and chemical accuracy (as measured by the

RMSD ≤ 2Å & PB-Valid metric (Buttenschoen et al., 2024))

and inter-run stability (as measured by the error bars listed).

Notably, FlowDock achieves a 10% higher docking success rate

than NeuralPLexer without any structural energy minimization

driven by molecular dynamics software (Eastman et al., 2017),

and with energy minimization its docking success rate increases to

51%, outperforming single-sequence AF3 and achieving second-

best performance on this dataset compared to single-sequence

Chai-1 (Discovery et al., 2024). Important to note is that Chai-

1, like AF3, is a 10x larger model trained for one month

using 128 NVIDIA A100 80GB GPUs on more than twice

as much data in the PDB deposited up to 2021, whereas

FlowDock is trained using only 4 80GB H100 GPUs for one

week, representing a 32x reduction in GPU hours required for

training. Additionally, FlowDock outperforms the hybrid flexible

docking method DynamicBind (Lu et al., 2024) by more than

16%, which is a comparable model in terms of its size, training,

and downstream capabilities for drug discovery. Our results with

ablated versions of FlowDock trained instead with a protein

harmonic prior (FlowDock-HP) or with affinity prediction frozen

until a fine-tuning phase (FlowDock-AFT) highlight that the

protein ESMFold prior the base FlowDock model employs has

imbued it with meaningful structural representations for accurate

Fig. 2: Protein-ligand docking success rates of each baseline method on the PoseBusters Benchmark set (n=308). Error bars: 3 runs.
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important to note that this benchmarking set can be considered

a moderately difficult challenge for methods trained on recent

collections of data derived from the Protein Data Bank (PDB)

(Bank, 1971) such as PDBBind 2020 (Liu et al., 2015), as all

of these 308 protein-ligand complexes are not contained in the

most common training splits of such PDB-based data collections

(Buttenschoen et al., 2024) (with the exception of AF3 which uses

a cutoff date of September 30, 2021). Moreover, as described by

Buttenschoen et al. (2024), a subset of these complexes also have

very low protein sequence similarity to such training splits.

Figure 2 shows that FlowDock consistently improves over

the original NeuralPLexer model’s docking success rate in terms

of its structural and chemical accuracy (as measured by the

RMSD ≤ 2Å & PB-Valid metric (Buttenschoen et al., 2024))

and inter-run stability (as measured by the error bars listed).

Notably, FlowDock achieves a 10% higher docking success rate

than NeuralPLexer without any structural energy minimization

driven by molecular dynamics software (Eastman et al., 2017),

and with energy minimization its docking success rate increases to

51%, outperforming single-sequence AF3 and achieving second-

best performance on this dataset compared to single-sequence

Chai-1 (Discovery et al., 2024). Important to note is that Chai-

1, like AF3, is a 10x larger model trained for one month

using 128 NVIDIA A100 80GB GPUs on more than twice

as much data in the PDB deposited up to 2021, whereas

FlowDock is trained using only 4 80GB H100 GPUs for one

week, representing a 32x reduction in GPU hours required for

training. Additionally, FlowDock outperforms the hybrid flexible

docking method DynamicBind (Lu et al., 2024) by more than

16%, which is a comparable model in terms of its size, training,

and downstream capabilities for drug discovery. Our results with

ablated versions of FlowDock trained instead with a protein

harmonic prior (FlowDock-HP) or with affinity prediction frozen

until a fine-tuning phase (FlowDock-AFT) highlight that the

protein ESMFold prior the base FlowDock model employs has

imbued it with meaningful structural representations for accurate
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Fig. 4: Protein-ligand docking success rates of each baseline method on the DockGen-E set (n=14). Error bars: 3 runs.
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Fig. 5: Comparison of each flexible docking method’s protein conformational changes made for the DockGen-E set (n=122).

ligand binding structure prediction that are robust to changes

in the source method of FlowDock’s predicted protein input

structures (e.g., FlowDock-ESMFold vs. FlowDock-Chai-1

vs. FlowDock-AF3), providing users with multiple structure

prediction options (e.g., ESMFold for faster and commercially

available prediction inputs).

A surprising finding illustrated in Figure 3 is that no method

can consistently improve the binding pocket RMSD of AF3’s

initial protein structural conformations, which contrasts with the

results originally reported for flexible docking methods such as

DynamicBind which used structures predicted by AF2 (Jumper

et al., 2021) in its experiments. From this figure, we observe

that DynamicBind and NeuralPLexer both infrequently modify

AF3’s initial binding pocket structure, whereas FlowDock often

modifies the pocket structure during ligand binding. The former

two methods occasionally improve largely-correct initial pocket

conformations by ∼1Å, whereas FlowDock primarily does so for

mostly-incorrect initial pockets.

DockGen-E set. To assess the generalization capabilities of

each baseline method, in Figures 4 and 5, we report each method’s

protein-ligand docking and protein conformational modification

performance for the novel (i.e., naturally rare) protein binding

pockets found in the new DockGen-E dataset from PoseBench.

Each of DockGen-E’s protein-ligand complexes represents a

distinct binding pocket that facilitates a unique biological function

described by its associated ECOD domain identifier (Corso et al.,

2024a). As our results for the DockGen-E dataset show in Figure

4, most DL-based docking or structure prediction methods have

likely not been trained or overfitted to these binding pockets, as

this dataset’s best docking success rate achieved by any method is

approximately 33%, much lower than the 68% best docking success

rate achieved for the PoseBusters Benchmark set. We find further

support for this phenomenon in Figure 5, where we see that all

DL-based flexible docking methods find it challenging to avoid

degrading the initial binding pocket state predicted by AF3 yet

all methods can restore a handful of AF3 binding pockets to their

Fig. 4: Protein-ligand docking success rates of each baseline method on the DockGen-E set (n=14). Error bars: 3 runs.
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Fig. 6: Comparison of DynamicBind and FlowDock’s predicted structures (w/o hydrogens) and crystal PDBBind test example 6I67.

Table 1. Computational resource requirements. The average structure

prediction runtime (in seconds) and peak memory usage (in GB) of baseline

methods on a 25% subset of the Astex Diverse dataset (Hartshorn et al.,

2007) using an NVIDIA 80GB A100 GPU for benchmarking (with baselines

taken from (Morehead et al., 2024)). The symbol - denotes a result that

could not be estimated.

Method Runtime (s) CPU Memory Usage (GB) GPU Memory Usage (GB)

P2Rank-Vina 1,283.70 9.62 0.00

DiffDock-L 88.33 8.99 70.42

DynamicBind 146.99 5.26 18.91

RoseTTAFold-All-Atom 3,443.63 55.75 72.79

AF3 3,049.41 - -

AF3-Single-Seq 58.72 - -

Chai-1-Single-Seq 114.86 58.49 56.21

NeuralPLexer 29.10 11.19 31.00

FlowDock 39.34 11.98 25.61

bound (holo) form. This suggests that all DL methods (some more

so than others) struggle to generalize to novel binding pockets, yet

FlowDock achieves top performance in this regard by tying with

single-sequence Chai-1. Further, to address this generalization

issue, our preliminary results fine-tuning FlowDock for 48 hours

using the new, diverse PLINDER (Durairaj et al., 2024) dataset

(i.e., FlowDock-PFT), where we use the dataset’s crystal apo-to-

holo mapped protein-ligand complex structures contained within

its default PL50 training split and deposited in the PDB before

2018, suggest that comprehensively training new DL methods on

diverse protein-ligand binding structures is a promising direction

towards generalizable docking.

Computational resources. To formally measure the

computational resources required to run each baseline method,

in Table 1 we list the average runtime (in seconds) and peak

CPU (GPU) memory usage (in GB) consumed by each method

when running them on a 25% subset of the Astex Diverse dataset

(Hartshorn et al., 2007) (baseline results taken from Morehead

et al. (2024)). Here, we notably find that FlowDock provides

the second lowest computational runtime and GPU memory usage

compared to all other DL methods, enabling one to use commodity

computing hardware to quickly screen new drug candidates using

combinations of FlowDock’s predicted heavy-atom structures,

confidence scores, and binding affinities.

4.2. PDBBind binding affinity estimation

In this section, we explore binding affinity estimation with

FlowDock using the PDBBind 2020 test dataset (n=363)

originally curated by (Stärk et al., 2022), with benchmarking

results shown in Table 2. Popular affinity prediction baselines

listed in Table 2 such as TankBind (Lu et al., 2022) and

DynamicBind (Lu et al., 2024) demonstrate that accurate affinity

Table 2. Binding affinity estimation using PDBBind test set. For all

methods, binding affinities were predicted in one shot using the commonly-

used 363 PDBBind (ligand and time-split) test complexes (with splits and

baselines from Lu et al. (2024)). Results for FlowDock are reported as

the mean and standard error of measurement (n = 3) of each metric

over three independent runs. Note that, for historical reasons, the results

for each version of FlowDock were obtained using ESMFold predicted

protein input structures.

Method Pearson (↑) Spearman (↑) RMSE (↓) MAE (↓)
GIGN 0.286 0.318 1.736 1.330

TransformerCPI 0.470 0.480 1.643 1.317

MONN 0.545 0.535 1.371 1.103

TankBind 0.597 0.610 1.436 1.119

DynamicBind (One-Shot) 0.665 0.634 1.301 1.060

FlowDock-HP 0.577± 0.001 0.560± 0.001 1.516± 0.001 1.196± 0.002

FlowDock-AFT 0.663± 0.003 0.624± 0.003 1.392± 0.005 1.113± 0.003

FlowDock 0.705± 0.001 0.674± 0.002 1.363±0.003 1.067±0.003

estimations are possible using hybrid DL models of protein-ligand

structures and affinities. Here, we find that, as a hybrid deep

generative model, FlowDock provides the best Pearson and

Spearman’s correlations compared to all other baselines including

FlowDock-HP (a fully harmonic variant of FlowDock) and

FlowDock-AFT (an ESMFold prior variant trained first for

structure prediction and then with affinity fine-tuning) and

produces compelling root mean squared error (RMSE) and

mean absolute error (MAE) rates compared to the previous

state-of-the-art method DynamicBind. Referencing Table 1, we

further note that FlowDock’s average computational runtime

per protein-ligand complex is more than 3 times lower than that

of DynamicBind, demonstrating that FlowDock, to our best

knowledge, is currently the fastest binding affinity estimation

method to match or exceed DynamicBind’s level of accuracy for

predicting binding affinities using the PDBBind 2020 dataset.

In Figure 6, we provide an illustrative example of a protein-

ligand complex in the PDBBind test set (6I67) for which

FlowDock predicts notably more accurate complex structural

motions and binding affinity values than the hybrid DL method

DynamicBind, importantly recognizing that the right-most protein

loop domain should be moved further to the right to facilitate

ligand binding (see Appendix B of our Supplementary Materials

for an example of one of FlowDock’s interpretable structure

generation trajectories). One should note that, for historical

reasons, our experiments with this PDBBind-based test set

employed protein structures predicted by ESMFold (not AF3). In

the next section, we explore an even more practical application

of FlowDock’s fast and accurate structure and binding affinity

predictions in the CASP16 ligand prediction competition.

Fig. 6: Comparison of DynamicBind and FlowDock’s predicted structures (w/o hydrogens) and crystal PDBBind test example 6I67.
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of DynamicBind, demonstrating that FlowDock, to our best
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method to match or exceed DynamicBind’s level of accuracy for

predicting binding affinities using the PDBBind 2020 dataset.

In Figure 6, we provide an illustrative example of a protein-

ligand complex in the PDBBind test set (6I67) for which

FlowDock predicts notably more accurate complex structural

motions and binding affinity values than the hybrid DL method

DynamicBind, importantly recognizing that the right-most protein

loop domain should be moved further to the right to facilitate

ligand binding (see Appendix B of our Supplementary Materials

for an example of one of FlowDock’s interpretable structure

generation trajectories). One should note that, for historical

reasons, our experiments with this PDBBind-based test set

employed protein structures predicted by ESMFold (not AF3). In

the next section, we explore an even more practical application

of FlowDock’s fast and accurate structure and binding affinity

predictions in the CASP16 ligand prediction competition.
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Fig. 7: Protein-ligand binding affinity prediction rankings for the CASP16 ligand prediction category (n=140).

4.3. CASP16 protein-ligand binding affinity prediction

In Figure 7, we illustrate the performance of each predictor

group for blind protein-ligand binding affinity prediction in the

ligand category of the CASP16 competition held in summer

2024, in which pharmaceutically relevant binding ligands were the

primary focus of this competition. Notably, FlowDock is the only

hybrid (structure & affinity prediction) ML method represented

among the top-5 predictors, demonstrating the robustness of its

knowledge of protein-ligand interactions. Namely, all other top

prediction methods were trained specifically for binding affinity

estimation assuming a predicted or crystal complex structure is

provided. In contrast, in CASP16, we demonstrated the potential

of using FlowDock to predict both protein-ligand structures

and binding affinities and using its top-5 predicted structures’

structural confidence scores to rank-order its top-5 binding affinity

predictions (see Appendices C and D of our Supplementary

Materials for FlowDock’s e.g., CASP16 structure prediction

results). Ranked 5th for binding affinity estimation, these results

of the CASP16 competition demonstrate that this dual approach

of predicting protein-ligand structures and binding affinities with

a single DL model (FlowDock) yields compelling performance

for virtual screening of pharmaceutically interesting molecular

compounds.

5. Conclusion

In this work, we have presented FlowDock, a novel, state-

of-the-art deep generative flow model for fast and accurate

(hybrid) protein-ligand binding structure and affinity prediction.

Benchmarking results suggest that FlowDock achieves structure

prediction results better than single-sequence AF3 and comparable

to single-sequence Chai-1 and outperforms existing hybrid models

like DynamicBind across a range of binding ligands. Lastly, we

have demonstrated the pharmaceutical virtual screening potential

of FlowDock in the CASP16 ligand prediction competition,

where it achieved top-5 performance. Future work could include

retraining the model on larger and more diverse clusters of protein-

ligand complexes, experimenting with new ODE solvers, or scaling

up its parameter count to see if it displays any scaling law behavior

for structure or affinity prediction. As a deep generative model for

structural biology made available under an MIT license, we believe

FlowDock takes a notable step forward towards fast, accurate,

and broadly applicable modeling of protein-ligand interactions.
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ligand complexes, experimenting with new ODE solvers, or scaling

up its parameter count to see if it displays any scaling law behavior

for structure or affinity prediction. As a deep generative model for

structural biology made available under an MIT license, we believe

FlowDock takes a notable step forward towards fast, accurate,

and broadly applicable modeling of protein-ligand interactions.
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A. Geometric flow matching training and inference

We characterize FlowDock’s training and sampling procedures

in Sections 3.5 (Training) and 3.6 (Sampling) of the main

text, respectively. To further illustrate how training and

inference with FlowDock work, in Algorithms 1 and 2 we

provide the corresponding pseudocode. For more details, please

see our accompanying source code at https://github.com/

BioinfoMachineLearning/FlowDock.

Algorithm 1 Training

Require: Training examples of binding site-aligned apo (holo)

protein (ligand) structures, protein sequences, ligand SMILES

strings, and binding affinities {(XP
ai
, XP

hi
, XL

hi
, Si,Mi, Bi)}

1: for all (XP
ai
, XP

hi
, XL

hi
, Si,Mi, Bi) do

2: Extract xP1 , x
L
1 ← HeavyAtoms(XP

hi
, XL

hi
)

3: Sample xP0 ← ESMFold(Si) + ϵ, ϵ ∼ N (0, σ = 1e−4)

4: Sample xL0 ← HarmonicPrior(Mifrag
), ∀frag ∈Mi

5: Sample t ∼ U(0, 1)
6: Concatenate x0 = Concat(xP0 , x

L
0 )

7: Concatenate x1 = Concat(xP1 , x
L
1 )

8: Interpolate xt ← t · x1 + (1− t) · x0
9: Predict X̂hi

← NeuralPLexer(Si,Mi, xt, t)

10: Predict B̂i ← ESDMaff (Si,Mi, StopGrad(X̂hi
))

11: Optimize losses LX := λX ·FAPE(Xhi
, X̂hi

)+LB := λB ·
MSE(B̂i, Bi), λX = 0.2, λB = 0.1

12: end for

Algorithm 2 Inference

Require: Protein sequences and ligand SMILES strings (S,M)

Ensure: Sampled top-5 heavy-atom structures X̂ with confidence

scores Ĉ and binding affinities B̂

1: Sample xP0 ← ESMFold(S) + ϵ, ϵ ∼ N (0, σ = 1e−4)

2: Sample xL0 ← HarmonicPrior(Mfrag), ∀frag ∈M
3: Concatenate x0 = Concat(xP0 , x

L
0 )

4: for n← 0 to i do

5: Let t← n
i
and s← n+1

i

6: Predict X̂ ← NeuralPLexer(S,M, xn, t)

7: if n = i− 1 then

8: Predict Ĉ ← ESDMconf (S,M, X̂) # Pre-trained

9: Predict B̂ ← ESDMaff (S,M, X̂)

10: Rank top-5 X̂ and B̂ using Ĉ

11: return X̂, Ĉ, B̂

12: end if

13: Extract x̂1 ← HeavyAtoms(X̂)

14: Align xn ← RMSDAlign(xn, x̂1)

15: Interpolate xn+1 = clamp( 1−s
1−t
·η) ·xn+clamp((1− 1−s

1−t
) ·

η) · x̂1, η = 1

16: end for

https://github.com/BioinfoMachineLearning/FlowDock
https://github.com/BioinfoMachineLearning/FlowDock
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Fig. 1: Comparison of FlowDock’s predicted structure states (w/o hydrogens) for CASP16 superligand pose pharma target L3008.

B. Structure generation example trajectory

To illustrate one of FlowDock’s interpretable structure

generation trajectories using conditional flow matching, in Figure

1, we report FlowDock’s predicted structural states for CASP16

superligand pose pharma target L3008, notably a multi-ligand

pose target, in evenly spaced increments throughout FlowDock’s

generation trajectory. In short, we see that FlowDock enables

multi-ligand protein complexes to be predicted through concise

flow trajectories, yielding early protein and ligand conformational

changes following the model’s initial binding pocket prediction.

C. CASP16 structure prediction results

In Figure 2, we compare the protein-ligand structure prediction

RMSDs of FlowDock and MULTICOM ligand [Morehead et al.,

2025], a top-5 multi-model deep learning prediction method in

the CASP16 ligand prediction category, for the 231 superligand

pose pharma targets made available during the 16th Critical

Assessment of Techniques for Structure Prediction (CASP16).

As these results demonstrate, FlowDock, as a standalone deep

learning method, achieves competitive structure predictions for

many of the new CASP16 ligand targets. Similarly, Figure

3 illustrates that FlowDock and MULTICOM ligand are

approximately tied in terms of their ability to structurally model

CASP16’s 56 multi-ligand protein complexes, further highlighting

the broad applicability of FlowDock’s structure predictions in

diverse drug discovery settings.

Fig. 8: Comparison of FlowDock’s predicted structure states (w/o hydrogens) for CASP16 superligand pose pharma target L3008.

B. Structure generation example trajectory

To illustrate one of FlowDock’s interpretable structure

generation trajectories using conditional flow matching, in Figure

8, we report FlowDock’s predicted structural states for CASP16

superligand pose pharma target L3008, notably a multi-ligand

pose target, in evenly spaced increments throughout FlowDock’s

generation trajectory. In short, we see that FlowDock enables

multi-ligand protein complexes to be predicted through concise

flow trajectories, yielding early protein and ligand conformational

changes following the model’s initial binding pocket prediction.

C. CASP16 structure prediction results

In Figure 9, we compare the protein-ligand structure prediction

RMSDs of FlowDock and MULTICOM ligand (Morehead et al.,

2025), a top-5 multi-model deep learning prediction method in

the CASP16 ligand prediction category, for the 231 superligand

pose pharma targets made available during the 16th Critical

Assessment of Techniques for Structure Prediction (CASP16).

As these results demonstrate, FlowDock, as a standalone deep

learning method, achieves competitive structure predictions for

many of the new CASP16 ligand targets. Similarly, Figure

10 illustrates that FlowDock and MULTICOM ligand are

approximately tied in terms of their ability to structurally model

CASP16’s 56 multi-ligand protein complexes, further highlighting

the broad applicability of FlowDock’s structure predictions in

diverse drug discovery settings.
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Supplementary Materials for: ”FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction” 3

Fig. 2: Comparison of the protein-ligand structure prediction results of FlowDock and the deep learning ensembling method

MULTICOM ligand in terms of their binding pocket-aligned ligand RMSDs for the CASP16 superligand pose pharma targets (n=301).

Fig. 9: Comparison of the protein-ligand structure prediction results of FlowDock and the deep learning ensembling method

MULTICOM ligand in terms of their binding pocket-aligned ligand RMSDs for the CASP16 superligand pose pharma targets (n=301).
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Fig. 3: Comparison of the protein-(multi-)ligand structure prediction results of FlowDock and the deep learning ensembling method

MULTICOM ligand in terms of their binding pocket-aligned ligand RMSDs for the CASP16 superligand pose pharma targets (n=126).

Fig. 10: Comparison of the protein-(multi-)ligand structure prediction results of FlowDock and the deep learning ensembling method

MULTICOM ligand in terms of their binding pocket-aligned ligand RMSDs for the CASP16 superligand pose pharma targets (n=126).
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D. PoseBusters Benchmark ligand dissimilarity
structure prediction results

To investigate FlowDock’s chemical generalization capabilities,

in Figure 11, we illustrate the structure prediction performance of

FlowDock for chemically dissimilar (Tanimoto similarity < 0.6)

ligands associated with the same protein target in the PoseBusters

Benchmark dataset. Figure 11 shows that FlowDock’s average

ligand RMSD of each of these (multi-)ligand protein targets

is approximately 2 Å, with a standard deviation around 1 Å,

highlighting that its predictions for chemically dissimilar intra-

protein ligands are of high average accuracy and demonstrate

generalizability with the consistency of FlowDock’s average

inter-ligand RMSD differences.



FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction 156 Morehead et al.

Fig. 4: Analysis of the protein-ligand structure prediction results of FlowDock in terms of its binding pocket-aligned ligand RMSDs for

the chemically dissimilar (multi-)ligand PoseBusters Benchmark targets (n=18).
Fig. 11: Analysis of the protein-ligand structure prediction results of FlowDock in terms of its binding pocket-aligned ligand RMSDs

for the chemically dissimilar (multi-)ligand PoseBusters Benchmark targets (n=18).
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