
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INSTANT: COMPRESSING GRADIENTS AND ACTIVA-
TIONS FOR RESOURCE-EFFICIENT TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning has advanced at an unprecedented pace. This progress has led to
a significant increase in its complexity. However, despite extensive research on
accelerating inference, training deep models directly within a resource-constrained
budget remains a considerable challenge due to its high computational and memory
requirements. In this paper, we introduce INSTANT (compressIng gradieNtS and
acTivAtions for resource-efficieNt Training), a method designed to address both
the computational and the memory bottlenecks when training. INSTANT reduces
resource demands during backpropagation by projecting gradients and activations
into a low-rank subspace and performing computation within that compressed
representation. Experimental results demonstrate that INSTANT achieves a 15×
reduction in computational cost and 32× reduction in activation memory with
negligible impact on model performance. The code will be made publicly available
upon the paper’s acceptance.

1 INTRODUCTION

Deep learning has become the backbone of many practical applications in diverse fields such as
computer vision (CV) (Dosovitskiy et al., 2020; Liu et al., 2021a), natural language processing
(NLP) (Devlin et al., 2019; Liu et al., 2019; Radford et al., 2018), signal processing (Gong et al.,
2021), and multimodal learning (Radford et al., 2021; Singh et al., 2022). Although these applications
offer undeniable benefits, the large-scale design of a deep learning model prevents deploying them
on devices with limited resources. To address these shortcomings, research has mainly focused
on two main directions. Many works focus on developing architecture modifications to adapt to
hardware constraints (Sun et al., 2020; Li et al., 2022). Many others enhance quantization techniques
to reduce memory cost and improve inference speed for large models (Liu et al., 2021b), leveraging
hardware with support for the fast operation of low-bit datatypes. To summarize, the majority of
the work concentrates on model inference, while typically, the training part is entirely performed
on an independent high-performance infrastructure.

Resource-efficient training faces two main challenges: high memory usage and large computational
cost. The memory overhead has been partially addressed in prior works (Nguyen et al., 2024; Yuan
et al., 2023; Wang et al., 2025), typically employing singular value decomposition (SVD), to construct
a low-rank space for activations and/or weights. However, these SVD-based methods incur substantial
computational overhead, ultimately increasing training time (Nguyen et al., 2024). On the other hand,
reducing computational cost during training remains an open area of research. (Sakr & Khailany,
2024) reduces the cost of tensor decomposition by constructing a periodically updated low-rank
space for activation throughout the training process. (Yang et al., 2023b) leverages low-frequency
characteristics of images to project tensors into predetermined low-rank spaces, which helps to save
both activation memory and computational overhead for CV tasks. However, this method has a
limited compression rate and is only effectively applicable to low-frequency data components such as
images.

Inspired by tensor decomposition strategies, we propose INSTANT (compressIng gradieNtS and
acTivAtions for resource-efficieNt Training). INSTANT reduces the resource demands of backpropa-
gation, both in terms of computation and memory, and applies to a wide range of data distributions.
Our method periodically identifies critical tensor features to generate dynamic low-rank projections,
optimizing backpropagation efficiency. Our method is orthogonal to non-compressive acceleration

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Full-rank
Forward

Low-rank
Backward

Full-rank
Forward

Low-rank
Backward

Forward

Backward

INSTANT
Compression

Memory

Figure 1: INSTANT performs compression on activations and gradients: In the forward pass
(Green), activation Ai normally propagates in full-rank space while its compact version Âi is saved for
the backpropagation to reduce memory consumption. In the backward pass (Red), the gradient for the
output ∂L

∂Ai+1
is compressed to a low-rank version ∂̂L

∂Ai+1
. Then, low-rank operations are implemented

with compressed activation Âi and compressed gradient ∂̂L
∂Ai+1

to save backward computation.

techniques (Yu et al., 2022; Kwon et al., 2023), low-rank adaptation (Hu et al., 2022), low-rank param-
eter gradient (Zhao et al., 2024), and existing tensor compression techniques such as quantization (Xi
et al., 2024). Our key contributions are as follows:

• We introduce a low-cost calibration technique to generate calibrated orthonormal bases for tensor
projection, enabling significant reductions in memory and computations (Sec. 3.2).

• We project activation tensors and gradients onto these orthonormal bases. To our knowledge,
this is the first work to exploit the low-rank structure of activation gradients for all types of data
distribution. We provide error analysis for our gradient compression, illustrating that a high
compression ratio is possible with limited performance degradation (Sec. 3.3).

• We evaluate INSTANT across multiple datasets and model architectures, consistently demonstrating
good performance, achieving up to 32× memory savings and 15× computational cost reduction
with only a 1% trade-off in accuracy compared to vanilla fine-tuning (Sec. 4).

2 RELATED WORK

Activation compression. Activation compression is a recently emerging research direction that
addresses the memory challenges during training. This approach offers several key advantages based
on the following observations: (i) model weights remain uncompressed during training, thereby
preserving their expressive capacity; (ii) activations are often large and exhibit significant redundancy,
making them suitable for compression (Sakr & Khailany, 2024; Miles et al., 2024). (Nguyen et al.,
2024) applies SVD to compress activations to reduce huge memory usage for activations. However,
this approach raises substantial computational overhead due to the high cost of performing SVD in
each training iteration. (Sakr & Khailany, 2024) (ESPACE) tackles SVD computational expense by
using calibrated subspaces, which are periodically updated, to compress activations. They enable
activation compression in the forward pass to decrease computational overhead in both forward and
backward phases. However, ESPACE is prone to error accumulation, as it relies on the universal
fixed subspace for varying activations.

Optimizer state compression. Weight gradients are inherently low-rank (Yang et al., 2023a).
Previous studies (Bernstein et al., 2018; Vogels et al., 2019) have leveraged this characteristic to
address communication bottlenecks in distributed learning by reducing inter-device data transmission.
GaLore (Zhao et al., 2024) and its variances (Muhamed et al., 2024; Shamshoum et al., 2025) leverage
the low-rank property of weight gradients for compressing them to reduce memory usage in the
optimizer state significantly. CompAct Shamshoum et al. (2025) further reduces the memory overhead
by compressing both optimizer state and activation memory. Nonetheless, in all aforementioned
techniques, the activation gradient computations still rely entirely on high-cost backpropagation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Activation gradient compression. Gradient filtering (Yang et al., 2023c) was proposed to pool both
activation and gradient activation into a low-rank space for efficient computing. Since this technique
helps increase efficiency, the performance drop is significantly large. (Yang et al., 2023b) proposes
low-rank backpropagation via Walsh Hadamard transformation (LBP-WHT) to compress the gradient
of output for multiplications in the low-rank space, which reduces the computational complexity.
However, LBP-WHT is restricted to low-frequency inputs such as images, and achieves only modest
compression ratios, leading to constrained gains in both memory efficiency and computational reduc-
tion. INSTANT, on the other hand, overcomes the low-frequency assumption via SVD, compressing
the gradient into a smaller space compared to LBP-WHT, and as a result, can be applied to a variety
of input types.

3 INSTANT

We start with discussing the computational and memory issues of vanilla backpropagation (Sec. 3.1).
Next, we present our efficient construction of low-rank projectors for both activation and activation
gradient in Sec. 3.2. Finally, we demonstrate our approach to perform low-rank multiplications in the
backward by using these projectors, instead of full-rank computations (Sec. 3.3). Our objective here
is to reduce both memory and computational consumption for the backpropagation.

3.1 PROBLEM STATEMENT

In the following, for the sake of simplicity, we focus on linear layers. Extension to convolutional
layers is presented in Appendix I. Within each layer, the batch dimension and bias are omitted
without loss of generality. Let x ∈ RL×Cx denote the input activation, y ∈ RL×Cy denote the output
activation, and w ∈ RCy×Cx denote the weight matrix, where L denote the sequence length and Cx

and Cy are layer channel dimensions, which are predefined by model architecture.

In the forward phase, the input x is propagated through the layer to compute the output: y = x ·w⊤.
In supervised learning, the output of the final layer is compared against the ground truth label to
calculate a loss value L. The backward pass, also known as backpropagation, computes the gradients
of this loss to input x and weight w. We denote gy = ∂L

∂y ∈ RL×Cy as gradient of the loss with
respect to the output y. Gradient of the loss with respect to the input x, and the weight w are denoted
as gx = ∂L

∂x and gw = ∂L
∂w , respectively, calculated as:

gx = gy ·w, gw = gy
⊤ · x. (1)

Here, gw ∈ RCy×Cx is used to update the weight w, and gx ∈ RL×Cx is propagated to the preceding
layer.

Training overhead. The backward pass (equation 1) includes two matrix multiplications, each with
the same cost, resulting in a total of 4 · L · Cx · Cy floating point operations (FLOPs). In Transformer-
based models, the values of L, Cx, and Cy are typically large, leading to a computational burden,
especially during the backward stage. Moreover, since the backward pass requires storing the input
activation x for computing gw, memory consumption can significantly increase.

To address the dual problems of high memory and computation, we propose a tensor decomposition
strategy for both input activation x and the output gradient gy. As shown in Fig. 1, we project
the activation x and gradient gy to a smaller space for storage and computing. Unlike previous
works (Yang et al., 2023b) that use universal projections for both of these tensors, we adopt adaptive
projections that better capture the crucial information of each tensor. Next, we discuss our construction
scheme of these low-rank projections for each layer.

3.2 EFFICIENT CONSTRUCTION FOR TENSOR PROJECTION

Low-rank and low-cost projections are required to effectively compress the input activation x and
the output gradient gy. Previous approach (Nguyen et al., 2024) utilizes SVD with operational
cost of O(n3) to compute these subspaces at every training step, which makes them impractical for
large-scale training.

To alleviate this overhead, we adopt a calibrating strategy in which we create periodically updated
compression subspaces for compressing activation x and output gradient gy in substantial Nt training

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

 SVD Truncation
 Process

(a) Constructing compression tensors Q for output gradient gy. Similarly, P is constructed for activation x.

Update

Pre. LayerCurrent Layer

Full-rank
space

Low-rank
 space

Low-rank
 multiplication

(b) Low-rank Backpropagation algorithm with INSTANT. Instead of full-rank multiplication as Vanilla,
INSTANT decomposes x,gy to approximate gw and gx by low-rank multiplications.

Figure 2: INSTANT backpropagation involves calibrated low-rank tensors P,Q, which are updated
in calibration process. These low-rank projections reduce memory consumption of saving activation x
and reduce computations thanks to low-rank multiplications.

steps. For good approximations, each tensor demands its specific compression (Appendix. B.1).
Our approach is inspired by ESPACE’s theoretical foundation (Sakr & Khailany, 2024) for a fixed
subspace to compress the activation. Given activation tensor x ∈ X, by performing SVD on acti-
vation auto-correlation: CX = E[x · x⊤] = UΣU⊤, where U are singular vectors and Σ are their
associated singular values, the projection matrix built from U minimizes mean square error (MSE) of
decomposing activation x (Appendix. B.2). Different from ESPACE, we decompose both activation x
and output gradient gy, and do not stretch their batch dimension for these decompositions.

Data preprocessing. To approximate auto-correlation tensors, many data batches are required to
get sufficient statistics of activation x and output gradient gy. In this calibration stage, if we naively
save all of this data for post-processing, it will lead to memory accumulation, which breaks the
target of reducing memory. Therefore, we implement low-cost data preprocessing to limit its storage
demand below that of the training phase, ensuring low-computational calibration and peak memory
usage not increase (Appendix. B.3). For simplicity, in this section, we present the approach to find
the compression subspace Q for gradient gy (Fig. 2a). A similar strategy is applied for finding a
compression subspace P of activation x.

Singular value decomposition. After getting output gradient auto-correlation CG = E(gy · g⊤
y)

via data preprocessing, we decompose this to get the left singular vectors U and their associated
singular values Σ in decreasing order. Projection matrix built from U is proved to minimize MSE of
decomposing gy.

Truncation with energy threshold. To reduce dimensionality while preserving information, we
define energy threshold ϵ (ϵ ≤ 1) as the portion of tensor energy remaining after decomposition. We
define E as the sum of squares of all eigenvalues σi in Σ:

E =
∑

σ2
i = ∥CG∥2F, (2)

where ∥CG∥2F is the squared Frobenius norm of CG. Following that, we truncate k vectors of U to
form Uk, where truncation index k is the minimal integer satisfying:

∑k
i=1 σ

2
i ≥ ϵ · E . When ϵ −→ 1,

this truncation strategy preserves most of tensor energy, hence assigning Q = U⊤
k reduces decompo-

sition MSE between gy and its reconstruction g̃y = Q⊤ ·Q · gy. Compression tensor Q is extremely
smaller than gy due to its low-rank characteristic (as shown in Sec. 4.2), therefore, Q can reduce
memory and computational expense when joining backward operations (Fig. 2b).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Truncation with Oversampling.The energy threshold ensures that a certain amount of information
is preserved when the calibration happens. However, as training progresses, this projection may no
longer suffice to maintain that amount of information, since the core bases to project on can vary. To
address this, we propose oversampling, which increases the number of base projections by a fixed
value, helping to reduce information loss when the core bases change (Fig. 2a). This truncation
technique is proven to be effective in Sec. 4.4 and further investigated in Appendix. F.

Dropping lower singular values leads to accumulated energy loss when backpropagating reconstructed
tensors. We, therefore, propose an energy offset mechanism to compensate for this loss in each
truncation. Finally, Q is given as:

Q = U⊤
k+p ·

(
k+p∑
i=1

σ2
i

)− 1
2

, (3)

where Q ∈ RRy×L, with Ry = k + p. Applying the similar strategy, we find compression
subspace P ∈ RRx×L for low-rank activation x.

3.3 LOW-RANK BACKPROPAGATION WITH INSTANT

The activation and gradient can be mapped onto low-rank spaces with two projection tensors con-
structed in Sec. 3.2. This part will demonstrate the use of these low-rank matrices P and Q in our
training process. Our overall training pipeline is depicted in Fig. 1, while the detailed technique for
handling the low-rank backward is illustrated in Fig. 2b.

Since changing the forward pass of the network can cause a significant performance drop, we keep
the forward pass y = x ·w⊤ unchanged. Meanwhile, the activation map x is projected into a smaller
space: x̂ = P · x where P ∈ RRx×L, x̂ ∈ RRx×Cx with Rx ≪ L. This compressed activation x̂ is
retained in memory in place of x for the backward pass, which saves a large amount of memory.

The backpropagation process of INSTANT is described in Fig. 2b. By the property of the low-rank
projection tensor P built in Sec. 3.2: x ≈ P⊤ ·P · x, weight gradient is approximated:

gw = g⊤
y · x ≈ g⊤

y · (P⊤ ·P · x) = (g⊤
y ·P⊤) · (P · x) (4)

This reordering results gw ≈ g̃w = ĝy1 · x̂ with 2 low-dimensional spaces ĝy1 ∈ RRx×Cy and
x̂ ∈ RRx×Cx with Rx ≪ min(L,Cx, Cy), as illustrated in Fig. 2b.

Similarly, by the property of low-rank projection tensor Q built in Sec. 3.2: gy ≈ Q⊤ ·Q · gy, input
gradient is approximated with 3 low-rank multiplications:

ĝy2 = Q · gy, ĝx = ĝy2 ·w, g̃x = Q⊤ · ĝx. (5)

where ĝy2 ∈ RRy×Cy , ĝx ∈ RRy×Cx (2 low-rank spaces). Finally, the approximated input
gradient g̃x ∈ RL×Cx , is propagated to the preceding layer.

Equation 4 and equation 5 will cause error compared to traditional backpropagation. This error is
mathematically proved to be negligible with our low-rank projection scheme (Appendix. C).

Training overhead. In total, the computational cost of INSTANT for backpropagating one
layer, which includes low-rank compression, low-rank computation, and reverse projection,
is 2 · (Rx +Ry) · (Cx · Cy + L · Cx + L · Cy) FLOPs as shown in the Appendix. D.1. Given
that Rx +Ry ≪ min (L,Cx, Cy), this number is much smaller than 4 · L · Cx · Cy of vanilla train-
ing. For example, one BERT block has L = 512, Cx = Cy = 768, choosing Rx = Ry = 8 can save
about 27× FLOPs. Remarkably, P, Q, and x̂ = P · x are only used during training, meaning that at
inference time, there is no trade-off in memory or computation compared to traditional inference.
Moreover, INSTANT focuses solely on reducing computational and memory costs during backpropa-
gation, without modifying the optimizer state. INSTANT is orthogonal and can be combined with all
techniques that compress the optimizer state.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 RESULTS

4.1 EXPERIMENTAL SETUP

Computer vision tasks. We conduct experiments for image classification with a similar setup to
LBP-WHT (Yang et al., 2023b). We assess our method on ImageNet (Russakovsky et al., 2015)-
pretrained Vision Transformer models (EfficientFormer-L1 (Li et al., 2022), EfficientFormerV2-S0 (Li
et al., 2023), and SwinV2-Small (Liu et al., 2022)) by fine-tuning them on five different datasets
for 50 epochs. The details about the datasets are discussed in the Appendix. We use a batch size of
64 and use AdamW optimizer with the same learning rate schedules as in (Yang et al., 2023b). To
balance training efficiency with performance, the calibration process is carried out every Nt = 200
iterations, and an energy threshold ϵ = 95% is kept constant throughout all experiments, with only
the oversampling hyperparameter p being varied. In Tab. 1 and Tab. 2, we denote INSTANT-p as
our method with energy threshold of ϵ = 95% and oversampling p vectors. For fine-tuning the last
layer, p is tested with values of 0, 5, and 7, while for fine-tuning the entire model, p is tested with
values of 5, 10, and 15.

Natural language processing tasks. We employ two Transformer-based models (BERT (Devlin
et al., 2019) and DistilBERT (Sanh et al., 2019)), which are pretrained on Wikipedia and BookCorpus.
We utilise the GLUE benchmark (Wang et al., 2018) to evaluate model performance, including 6
datasets: CoLA, QNLI, MRPC, RTE, SST-2, and MNLI. For each dataset, each model is fine-tuned
for 10 epochs with the AdamW optimizer and a batch size of 32. To balance between training
efficiency and performance, the calibration process is carried out after each Nt = 50 iterations, and
we maintain an energy threshold ϵ = 95% across all experiments, adjusting only the oversampling
hyperparameter p. For fine-tuning the last layer, we test p with values of 0, 7, and 15, while for
fine-tuning the entire model, p is tested with values of 7, 15, and 25.

Baseline. Besides vanilla fine-tuning (Vanilla in Tab. 1, 2), we also reproduce and evaluate 2 other
methods: Gradient Filter (Yang et al., 2023c) and LBP-WHT (Yang et al., 2023b). For image
classification tasks, we strictly follow the authors’ setup and configuration, while for language tasks,
we reshape the sequence length of each input into an appropriate two-dimensional tensor to apply their
method. We use the notation LBP-WHT-o like the authors, with o being the order that decides the rank
of the compressing subspace. We compare each method based on average accuracy (mAcc), average
Mega FLOPs (MFLOPs), and average activation memory consumption (Mem). Notably, FLOPs and
memory are only reported for the Linear layers, which are the heaviest computational components in
these architectures. We measure computational cost using FLOPs instead of time, as it’s unaffected by
implementation details. Therefore, this metric allows us to evaluate the efficiency gains from a better
algorithm rather than implementation aspects. All experiments are performed on a NVIDIA TESLA
V100, and the source code uses PyTorch 1.13.1. We use the MMCV library(Contributors, 2018)
for CV tasks and use the Hugging Face library (Wolf et al., 2020) for NLP tasks.

4.2 THE ACTIVATION GRADIENT IS LOW-RANK

We conduct experiments with BERT on the MRPC dataset. In the fine-tuning process, we randomly
select some samples and track their gradients corresponding to the output at each layer. SVD is then
applied to each gradient to extract its eigenvalues. As shown in Fig. 3, the number of ranks required to
keep ϵ = 95% of energy is only 6. Since most of the energy is concentrated in a few top eigenvalues,
it suggests that a small number of ranks can retain a significant portion of the gradient’s information.
We have validated this phenomenon in a wider range of samples and layers. Further details for other
layers in other architectures are provided in the Appendix L.5. This observation supports our idea of
projecting the activation gradient into a smaller subspace, where we perform computations to reduce
computational cost while preserving a large amount of the gradient’s information.

4.3 MAIN RESULTS

Computer vision tasks. Tab. 1 presents the results of INSTANT in comparison with vanilla fine-
tuning and other gradient and activation compression methods on Vision Transformer models. It is
noticeable that INSTANT achieves a significant reduction in both MFLOPs and memory usage com-
pared to Vanilla. In EfficientFormer, INSTANT-0 witnesses drops from 2% to 5% compared to Vanilla,
especially in high variance datasets such as CF100, Flowers, and Foods. This is possibly because the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Number of Eigenvalues

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 E
ne

rg
y

Energy = 0.95
k = 6

BERT encoder.layer.10.output.dense

Figure 3: The percentage of energy retained
depends on the number of eigenvalues in one
layer in BERT.

Vanilla INSTANT-0 INSTANT-5 INSTANT-7

93.18

92.16

93.08
93.38

ResNet-50 Performance on CIFAR10

0

1

2

3

4

M
em

or
y

(M
B)

3.16

0.03 0.04 0.05
0

500

1000

1500

2000

2500

3000

3500

4000

M
FL

OP
s

3236

743

1159
1306

Figure 4: Fine-tuning ResNet-50 on CIFAR10

Table 1: Experimental results across 5 different CV datasets, presented for both fine-tuning the last
block and the entire model. We report the MFLOPs and memory (Mem) required for training a single
sample. Detailed measurement methodologies can be found in the Appendix. D.1, D.2, D.3

Fine-tuning the Last Block

Model Method MFLOPs ↓ Mem (MB) ↓ Datasets mAcc ↑CF100 ↑ CF10 ↑ Flowers ↑ Food ↑ Pets ↑

Efficient
Former-L1

Vanilla 1484 1.95 79.28 95.23 95.50 84.04 93.13 89.44
Gradient Filtering 24 0.04 68.29 90.72 90.01 74.61 88.93 82.51
LBP-WHT-2 95 0.12 75.61 93.35 95.07 79.65 92.34 87.20
LBP-WHT-4 335 0.40 78.27 94.6 95.53 82.37 93.16 88.79
LBP-WHT-8 1227 1.43 79.34 95.31 95.58 83.98 92.94 89.43
INSTANT-0 270 0.16 77.64 94.66 92.23 81.97 92.64 87.83
INSTANT-5 475 0.38 78.65 95.07 95.93 82.84 93.21 89.14
INSTANT-7 544 0.45 79.01 95.23 95.92 83.05 93.02 89.25

Efficient
FormerV2-S0

Vanilla 349 1.47 72.37 92.63 92.73 81.44 90.52 85.94
Gradient Filtering 7 0.03 64.17 87.03 87.9 73.67 85.55 79.66
LBP-WHT-2 28 0.09 65.75 88.68 89.51 74.72 87.49 81.23
LBP-WHT-4 99 0.30 69.03 90.88 90.73 79.45 89.29 83.88
LBP-WHT-8 363 1.08 71.90 92.29 92.60 81.07 90.52 85.68
INSTANT-0 119 0.03 64.51 89.62 87.94 76.77 88.12 81.39
INSTANT-5 161 0.15 68.61 90.85 90.86 79.07 88.83 83.64
INSTANT-7 181 0.20 69.42 91.05 90.52 79.52 88.88 83.88

SwinV2
Small

Vanilla 2718 2.25 80.84 96.07 97.61 88.31 95.53 91.67
Gradient Filtering 37 0.04 80.19 95.68 97.4 87.31 94.9 91.10
LBP-WHT-2 141 0.12 80.23 95.65 97.50 88.06 94.47 91.18
LBP-WHT-4 499 0.41 80.39 95.71 97.54 88.32 94.66 91.32
LBP-WHT-8 1830 1.48 80.80 95.80 97.56 88.19 95.07 91.48
INSTANT-0 181 0.05 80.55 95.69 97.43 88.30 95.12 91.42
INSTANT-5 435 0.26 80.85 95.91 97.38 88.42 95.20 91.55
INSTANT-7 530 0.33 80.98 95.96 97.45 88.29 95.23 91.58

Full fine-tuning

Efficient
Former-L1

Vanilla 4528 18.46 84.84 96.99 94.84 85.64 93.16 91.09
Gradient Filtering 90 0.34 41.05 75.22 69.41 41.49 61.00 57.63
LBP-WHT-4 1211 3.36 77.97 94.13 93.38 41.88 92.23 79.92
LBP-WHT-6 2560 7.05 83.00 96.45 94.58 83.77 92.86 90.13
LBP-WHT-8 4400 12.08 83.88 96.78 94.70 85.08 93.32 90.75
INSTANT-5 2107 1.98 82.41 96.29 94.50 83.87 92.78 89.97
INSTANT-10 2491 2.73 83.05 96.48 94.73 84.66 93.13 90.41
INSTANT-15 2884 3.45 83.56 96.85 94.47 84.85 93.1 90.57

strict energy threshold approach in INSTANT-0 is not efficient with varying distributions of these
datasets. INSTANT-5, INSTANT-7 successfully deal with this issue, which supports the statement
that only considering tensor energy is not sufficient. Compared to LBP-WHT, in EfficientFormer-L1
and SwinV2, INSTANT-5 gains comparable performance to LBP-WHT-8 with only 25% computation
and 18% memory consumption. In the full-finetuning, INSTANT-10 outperforms LBP-WHT-6, and
compared to Vanilla, it gains 1.8× computational reduction and 6.3× memory decrease in average,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Experimental results on GLUE benchmark, presented for both fine-tuning the last layer and
the entire model. We report the MFLOPs and memory (Mem) required for training a single sample.
Detailed measurement methodologies can be found in the Appendices D.1, D.2, D.3

Fine-tuning the Last Block

Model Method MFLOPs ↓ Mem (MB) ↓ Datasets mAcc ↑MRPC ↑ CoLA ↑ QNLI ↑ RTE ↑ SST-2 ↑ MNLI ↑

BERT

Vanilla 14495 13.50 83.92 43.55 86.12 59.21 91.63 78.31 73.79
Gradient Filter 226 0.21 82.16 40.97 75.87 58.48 88.30 63.12 68.15
LBP-WHT-2 732 0.63 82.21 41.09 79.32 59.21 89.11 68.17 69.85
LBP-WHT-4 2464 2.11 82.33 42.46 83.82 58.84 90.71 73.62 71.96
INSTANT-0 175 0.03 82.21 41.35 79.33 61.73 90.71 64.39 69.95
INSTANT-7 565 0.21 82.33 41.58 84.13 62.09 90.94 72.92 72.33
INSTANT-15 1018 0.42 83.31 43.02 84.68 61.01 91.63 74.68 73.06

Distil-
BERT

Vanilla 14495 13.50 82.55 35.52 82.85 59.21 88.99 73.60 70.45
Gradient Filter 226 0.21 82.46 32.80 73.99 58.48 85.89 54.31 64.66
LBP-WHT-2 732 0.63 82.58 33.54 76.86 58.12 87.61 60.43 66.52
LBP-WHT-4 2464 2.11 82.46 31.73 80.62 56.68 89.11 67.56 68.03
INSTANT-0 160 0.03 82.14 29.89 74.81 58.84 88.30 62.42 66.07
INSTANT-7 546 0.21 82.41 33.50 80.49 59.57 89.56 68.52 69.01
INSTANT-15 999 0.42 82.41 32.96 80.93 58.12 88.99 69.68 68.85

Full fine-tuning

BERT

Vanilla 173946 162 90.23 58.69 91.43 67.51 93.23 84.46 80.76
Gradient Filter 2716 2.53 84.49 43.02 81.62 64.98 87.96 68.60 71.78
LBP-WHT-2 8784 7.59 86.64 48.60 84.14 63.90 89.11 70.91 73.88
LBP-WHT-4 29579 25.31 87.80 46.12 86.16 65.70 90.94 77.32 75.67
INSTANT-7 9143 2.83 87.93 57.71 89.66 64.62 92.22 81.36 78.92
INSTANT-15 15353 5.43 87.97 58.08 90.63 62.82 92.43 83.06 79.17
INSTANT-25 20753 8.52 89.47 57.29 90.79 63.54 93.35 83.45 79.65

at the expense of 0.8% accuracy drop. It is noticeable that LBP-WHT-8 gains good performance at
the expense of a small compression rate, especially in computation. Meanwhile, although Gradient
Filter can save a large amount of computational resources, the performance drops remarkably. This
shows that this method cannot keep enough information for low-rank projection.

Natural language processing tasks. Tab. 2 illustrates INSTANT’s effectiveness on 6 datasets of the
GLUE benchmark. In fine-tuning the last block, compared to Vanilla, INSTANT-15 can save 14.37×
FLOPs and 32.14× in memory, with a small reduction in accuracy of 1.17%. Notably, the difference
in mAcc mainly comes from the MNLI dataset. This may be due to the large distribution of the
dataset, which causes the method to struggle in finding an appropriate low-rank space. We believe
that performance on this dataset can be further improved by increasing the oversampling amount.
Compared to LBP-WHT, in BERT, INSTANT-7 achieves a 2.48% accuracy boost over LBP-WHT-2,
while it requires only about 75% of the FLOPs and 33% of the memory. In the full fine-tuning, it is
evident that INSTANT experiences a slight performance decline compared to the Vanilla baseline. In
contrast, LBP-WHT shows larger performance degradation across various datasets. This indicates
that the low-frequency transformation assumption may not work well in language tasks. INSTANT,
with its SVD-based projection, can mitigate this issue to some extent, which translates to better
performance compared to LBP-WHT. Note that calibration computational overhead is excluded from
Tab.1, Tab.2. This overhead is proven to be much smaller than training overhead in Appendix B.3.

Extension to convolution. INSTANT is applicable to convolutional layers (as shown in Appendix. I).
We conduct experiments on MobileNetV2 and ResNet-50 architectures on CIFAR10 and CIFAR100.
As indicated in Fig.4, INSTANT can achieve a small accuracy boost with 3× computation savings and
79× memory savings, compared to Vanilla. Extra results are indicated in Fig.9. These results prove
the efficiency of INSTANT on all architectures, including both Transformer-based and Convolutional-
based models.

Edge device latency. We conduct experiments on Raspberry Pi 5 (CPU ARM Cortex-A76). We
report the average training time over 1 epoch on CIFAR10. The experimental setup is the same as the
one indicated as Sec 4.1. By saving computations, INSTANT reduces 2× of backward time, which
decreases the average total training time, compared to Vanilla, as shown in Fig. 5. The time reduction
is up to 12× in another architecture, as indicated in the Appendix. J.1. However, INSTANT may
increase latency on the GPU, as shown in the Appendix. J.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Vanilla INSTANTLBP­WHT­4 GF
0

1

2

3

4

5

6

7

8

2.97

1.60

3.81

0.25

Vanilla INSTANTLBP­WHT­4 GF

3.46

2.21

5.79

0.92

Backward Time Total Time

Ti
m

e
(s

)

Vanilla INSTANT LBP­WHT­4 GF

Figure 5: Training time of EfficientFormer-L1
on CIFAR10 on a Raspberry Pi 5.

500 1000 1500
MFLOPs

80

81

82

83

84

85

Ac
cu

ra
cy

Performance vs FLOPs

 only
 with p

0.0 0.5 1.0 1.5 2.0
Memory (MB)

79

80

81

82

83

84

85

86

Ac
cu

ra
cy

Performance vs Memory

 only
 with p

Figure 6: INSTANT performance with oversampling

4.4 ABLATION STUDY

Compressing both components has practical benefits. We conduct ablation studies of compressing
only gy (INSTANT (compress gy)) and compressing only x (INSTANT (compress x)); presented in
Appendix. K.1. We find that, compressing x may be a good option when considering only memory
savings. On the other hand, using INSTANT with dual-compression leads to reduced FLOPs and
training time, in addition to memory, with practically negligible performance drop.

Energy is not enough. The energy threshold ϵ is a local measure for truncating the compression
tensor, which is based completely on the calibration data. This hyperparameter does not account for
the change of low-rank space during training, leading to a possible performance drop. As shown
in Fig. 6, with a similar budget of FLOPs/memory, ϵ-only truncation achieves a lower accuracy
compared to ϵ truncation with oversampling.

Efficient training-aware subspaces. INSTANT allows for selecting adaptive subspaces customized
for each layer, via truncation strategies (Sec. 3.2). With different datasets, to keep the same amount
of information, there is a large difference in the subspace ranks, which makes FLOPs vary during
the training process (Appendix L.6). This rank adaptiveness controls the loss of tensor information,
leading to a small drop in accuracy while reducing a huge number of FLOPs by eliminating the
projection onto redundant subspaces. In addition, this also helps to achieve more efficient memory
storage. As we observe, with the same energy threshold ϵ, the rank Rx of truncated activation x̂
is typically smaller than the rank Ry of truncated gradients ĝy and much smaller than the natural
rank L of activation x. Therefore, INSTANT requires much lower activation storage than Vanilla.

5 CONCLUSION

In this study, we introduced INSTANT, a highly efficient backpropagation method for Transformer
models that targets two key bottlenecks in resource-efficient training: memory consumption and
computational complexity. INSTANT constructs efficient low-rank projectors to compress both
the activation during the forward pass and the gradient of the output during the backward pass
(Sec. 3). We demonstrate the low-rank nature of the activation gradient (Sec. 4.2), and show that
jointly compressing activation and gradient substantially reduces the computational overhead of the
training (Sec. 4.3). This work explores the relatively underexamined area of gradient compression
and low-cost tensor decomposition as a means for scalable and resource-efficient model training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our study is conducted entirely in a reproducible manner. We provide dataset descriptions, imple-
mentation details, and discuss our experimental design in detail, in the main text and the appendices.
Moreover, we provide the code as supplementary material for review, and it will be made publicly
available upon the paper’s acceptance.

REFERENCES

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560–569. PMLR, 2018.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer vision–ECCV 2014: 13th European conference, zurich,
Switzerland, September 6-12, 2014, proceedings, part VI 13, pp. 446–461. Springer, 2014.

Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural networks
for document processing. In Tenth international workshop on frontiers in handwriting recognition.
Suvisoft, 2006.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

MMCV Contributors. MMCV: OpenMMLab computer vision foundation. https://github.
com/open-mmlab/mmcv, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021. URL https://arxiv.org/abs/2010.11929.

Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer. arXiv preprint
arXiv:2104.01778, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. Advances in Neural
Information Processing Systems, 35:12934–12949, 2022.

Yanyu Li, Ju Hu, Yang Wen, Georgios Evangelidis, Kamyar Salahi, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Rethinking vision transformers for mobilenet size and speed. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 16889–16900, 2023.

10

https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmcv
https://arxiv.org/abs/2010.11929

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021a.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12009–12019, 2022.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quantization
for vision transformer. Advances in Neural Information Processing Systems, 34:28092–28103,
2021b.

Roy Miles, Pradyumna Reddy, Ismail Elezi, and Jiankang Deng. Velora: Memory efficient training
using rank-1 sub-token projections. Advances in Neural Information Processing Systems, 37:
42292–42310, 2024.

Aashiq Muhamed, Oscar Li, David Woodruff, Mona Diab, and Virginia Smith. Grass: Compute effi-
cient low-memory llm training with structured sparse gradients. arXiv preprint arXiv:2406.17660,
2024.

Le-Trung Nguyen, Aël Quélennec, Enzo Tartaglione, Samuel Tardieu, and Van-Tam Nguyen.
Activation map compression through tensor decomposition for deep learning. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=S93hrwT8u9.

M-E Nilsback and Andrew Zisserman. A visual vocabulary for flower classification. In 2006 IEEE
computer society conference on computer vision and pattern recognition (CVPR’06), volume 2, pp.
1447–1454. IEEE, 2006.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Charbel Sakr and Brucek Khailany. Espace: Dimensionality reduction of activations for model
compression. arXiv preprint arXiv:2410.05437, 2024.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Yara Shamshoum, Nitzan Hodos, Yuval Sieradzki, and Assaf Schuster. Compact: Compressed
activations for memory-efficient llm training. In Proceedings of the 2025 Conference of the Nations
of the Americas Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 1511–1524, 2025.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 15638–
15650, 2022.

11

https://openreview.net/forum?id=S93hrwT8u9
https://openreview.net/forum?id=S93hrwT8u9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert: a
compact task-agnostic bert for resource-limited devices. arXiv preprint arXiv:2004.02984, 2020.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems, 32,
2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression, 2025. URL https://arxiv.org/
abs/2403.07378.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Haocheng Xi, Han Cai, Ligeng Zhu, Yao Lu, Kurt Keutzer, Jianfei Chen, and Song Han. Coat:
Compressing optimizer states and activation for memory-efficient fp8 training. arXiv preprint
arXiv:2410.19313, 2024.

Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. arXiv
preprint arXiv:2310.17813, 2023a.

Yuedong Yang, Hung-Yueh Chiang, Guihong Li, Diana Marculescu, and Radu Marculescu. Efficient
low-rank backpropagation for vision transformer adaptation. Advances in Neural Information
Processing Systems, 36:14725–14736, 2023b.

Yuedong Yang, Guihong Li, and Radu Marculescu. Efficient on-device training via gradient filtering.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3811–3820, 2023c.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for {Transformer-Based} generative models. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, 2022.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint
arXiv:2312.05821, 2023.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 40(6):1452–1464, 2017.

12

https://arxiv.org/abs/2403.07378
https://arxiv.org/abs/2403.07378

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A MATH NOTATIONS.

We provide the table of all our math notations:

Table 3: Table of symbols

Symbol Space Meaning
L R Sequence length
Cx R Layer input features
Cy R Layer output features
Rx R Rank of activation in low-rank space
Ry R Rank of gradient activation in low-rank space
Nt R The number of training steps for each calibration
σi R The i-th eigenvalue
ϵ R The energy threshold
E R Sum of squares of all eigenvalues
k R The eigenvalue’s index to keep ϵ total energy
p R Oversampling value
L R Loss value used to backpropagate
x RL×Cx Input of a linear layer without batch dimension
y RL×Cy Output of a linear layer without batch dimension
w RCy×Cx Weight of a linear layer
gx RL×Cx Gradient w.r.t input of a linear layer without batch dimension
gy RL×Cy Gradient w.r.t output of a linear layer without batch dimension
P RRx×L Low-rank matrix to project activation into low-rank space
Q RRy×L Low-rank matrix to project gradient activation into low-rank space

B PROJECTION CONSTRUCTION ISSUES

This appendix provides details for Sec. 3.2, including explanation (Sec. B.1), theoretical foundation
(Sec. B.2), and our efficient calibration approach (Sec. B.3).

B.1 WHY ARE TWO COMPRESSION TENSORS REQUIRED FOR ACTIVATION AND GRADIENT
COMPRESSION?

Low-rank approximation method reduces computational complexity by doing multiplications
in the smaller low-rank space. Given A · B with A ∈ Rm×n, B ∈ Rn×p, this multiplica-
tion is of O(m · n · p) complexity. Low-rank approximation introduces low-rank matrix P ∈
Rr×m (r ≪ min(m,n, p)) such that A ≈ P⊤ ·P ·A. The original multiplication becomes:

A ·B ≈ P⊤ ·P ·A ·B = P⊤ · ((P ·A) ·B). (6)
The right expression in equation 6 is of complexity O(r · (n · p+m · n+m · p))≪ O(m · n · p).
The problem of this decomposition is P⊤ ·P ̸= Im×m with Im×m be the identity matrix of
size (m× m), because rank(P⊤ ·P) ≤ rank(P) ≤ r ≪ m = rank(Im×m). Singular Value
Decomposition (SVD) is used to find a good approximation that, given a full-rank matrix A, SVD
decomposes A = U ·Σ ·V⊤ with U ∈ Rm×m being left singular vectors. If we assign P = U for
multiplication in equation 6, A = P⊤ · P · A because P⊤ · P = Im× m, but the complexity of
the approximation in equation 6 is O(m · (n · p+m · n+m · p)) ≥ O(m · n · p).
Therefore, we need to truncate U to Ur (Sec. 3.2) to have r ≪ min(m,n, q) to reduce computations.
Although U⊤

r ·Ur ̸= Im×m, with appropriate truncation strategy, U⊤
r ·Ur ·A ≈ A. This approxi-

mation with complexity of O(r · (n · p+m · n+m · p)) << O(m · n · p) so assigning P = Ur

satisfies 6 and significantly reduces computational cost.

Why do we need both P,Q compression matrices?. Why do we not only involve P for both
activation compression(x P−→ x̂) and gradient compression(gy

P−→ ĝy)? Assuming that we decom-
pose activation x and truncate its singular vectors to get P = Ur. The truncated Ur successfully

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

recovers x but does not work with gy(U
⊤
r ·Ur · gy ̸= gy) and U⊤

r ·Ur ̸= Im×m as well. Therefore,
it is required to decompose gy to get an additional compression matrix Q for a correct approximation
of this output gradient.

B.2 PROOF OF ESPACE THEOREM

Given vector x ∈ X, subspace P and x̃ ∈ X̃ is the recovery of x, the mean squared error (MSE) of
the decomposition is defined as:

MSE(x, x̃) = E∥x− x̃∥2, (7)

where x̃ = P⊤ ·P · x =
∑L

i=1 ⟨pi,x⟩pi.

{pi}Li=1 are transpose of orthonormal row vectors of P, i.e.,
⟨pi,pj⟩ = 1{i=j}, ∀i, j ∈ {1, . . . , L}. (8)

Given x and x̃, we examine the squared error:

∥x− x̃∥2 = ∥x∥2 + ∥x̃∥2 − 2x⊤ · x̃ (9)

= ∥x∥2 + ∥x̃∥2 − 2

L∑
i=1

(p⊤
i · x) · p⊤

i · x (10)

= ∥x∥2 + ∥x̃∥2 − 2

L∑
i=1

(p⊤
i · x)2. (11)

We have L2 − norm of x̃:

∥x̃∥2 = x̃⊤ · x̃ =

(
L∑

i=1

(p⊤
i · x) · pi

)⊤(L∑
i=1

(p⊤
i · x) · pi

)
, (12)

and since Eq. 8, we have:

∥x̃∥2 =

L∑
i=1

(p⊤
i · x)2. (13)

We reconsider the expression for the squared error:

∥x− x̃∥2 = ∥x∥2 +
L∑

i=1

(p⊤
i · x)2 − 2

L∑
i=1

(p⊤
i · x)2 (14)

= ∥x∥2 −
L∑

i=1

(p⊤
i · x)2. (15)

We take expectation on both sides and obtain a formula for the MSE:

E
[
∥x− x̃∥2

]
= E

[
∥x∥2

]
− E

[
L∑

i=1

(p⊤
i · x)2

]
(16)

= E
[
∥x∥2

]
− E

[
L∑

i=1

p⊤
i · (x · x⊤) · pi

]
(p⊤

i · x = x⊤ · pi) (17)

= E
[
∥x∥2

]
−

L∑
i=1

p⊤
i · E

[
x · x⊤] · pi. (18)

In this expression, E
[
∥x∥2

]
does not depend on {pi}Li=1, and therefore, minimizing the MSE is

equivalent to maximizing the following expression:
L∑

i=1

p⊤
i · E

[
x · x⊤] · pi =

L∑
i=1

p⊤
i · Cx · pi. (19)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Because the set {pi}Li=1 forms an orthonormal basis, the expression can be interpreted as sum of
Rayleigh quotients:

∑L
i=1R(Cx,pi) =

∑L
i=1 p

⊤
i · Cx · pi. The Rayleigh quotient is maximized

when {pi}Li=1 are the eigenvectors corresponding to the largest eigenvalues of Cx. Therefore, the
optimal choice is to select {pi}Li=1 as the top L eigenvectors of the auto-correlation Cx.

B.3 LOW-COST CALIBRATION PROOF

Considering our targets of reducing both peak memory and FLOPs, our calibration needs to be
efficient, i.e does not increase peak memory and adds small extra computation cost.

INSTANT calibration does not increase peak memory. To reduce peak memory consumption in
the calibration step, we propose 2 strategies:

• On-policy processing. Instead of saving multiple x and gy for post-processing, after each
calibrating iteration, the data batch is processed to store key elements and deleted afterwards.
This approach does not increase the processing time.

• Smaller batch. In each training step, B samples are put into the system. In calibration, we
set a batch to B

ns
samples, where ns is the number of mini-batches inside one batch.

Algorithm 1 Efficient Calibration Without Memory Accumulation

Require: ModelM, number of calibration iterations Nc, calibration batch samples Bc =
B
ns

, initial
parameters θ0.

1: Data processing Calibration dataloader Dc containing Nc ·Bc calibration samples.

2: Initializing Set 2 dictionaries A and G

3: for each calibration batch bc ∈ Dc do
4: Freeze model parameters and optimizer states.

5: for each layer l do
6: y, x, gy ←M(bc)

7: CX ← x · x⊤ CG ← gy · g⊤
y

8: sX ←
∑Bc

i=1 CX [i] sG ←
∑Bc

i=1 CG[i]

9: A[l]← A[l] + sX G[l]← G[l] + sG
10: end for
11: end for
12: for each layer l do
13: UX ,ΣX ← SVD(A[l]) UG,ΣG ← SVD(G[l])

14: P ← OVERSAMPLE(U⊤
X) Q← OVERSAMPLE(U⊤

G)

15: end for

Instead of storing x,gy with 4 ·NL ·B · L · Cx and 4 ·NL ·B · L · Cy bytes, respectively, we just
store 2 dictionaries A, G. These dictionaries have the same size of 4 ·NL · L2 bytes (Step 9 in
Algorithm 1) with NL as the number of layers that we implement INSTANT. In application, we
adaptively calibrate to get each dictionary of size 4 ·NL ·min(L,C)2 and NL < B to preserve
memory.

In summary, the calibration step does not increase peak memory due to on-policy processing of x,gy,
smaller batch, and freezing optimizer states strategies (Alg. 1). Moreover, we propose a dynamic
data processing in which the number of mini-batches ns can be adaptively increased to reduce peak
memory of the calibration step.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

INSTANT calibration adding small extra computation. thanks to long-term subspaces utiliza-
tion, which is proved via the following analysis of the ratio between calibration FLOP (flopc) and
training FLOP (flopt).

• Experiment setup: 5 calibration iterations for each Nt = 200 training iteration (as
in our experiments). For the sake of simplicity, our linear layer: y = x · wT with x ∈
RB×L×Cx , w ∈ RCy×Cx , y ∈ RB×L×Cy .

• FLOP training: flopt = 200 · (6 ·B · L · cx · Cy) (forward and backward pass)

• FLOP calibration (Alg.1): fc = 5 · (6 ·B ·L ·Cx ·Cy) (step 6) +5 · (2 ·B ·L2 · (Cx+Cy))
(step 7) +[4/3 · L3 + 4/3 · L3] (SVD cost, step 13).

• Ratio: fc/ft =
30·B·L·Cx·Cy+10·B·L2·(Cx+Cy)+8/3·L3)

1200·B·L·Cx·Cy

1
40 (L < min(Cx, Cy))

Therefore, FLOP of calibration is small compared to FLOP of training. Taking Tab.1 as an example,
INSTANT-5 with reported 475 MFLOPs for finetuning EfficientFormerL1 requires extra 37 MFLOPs
for calibration. Therefore, only reporting training flop still reflects a fair comparison with other
methods.

C PROPAGATED ERROR ANALYSIS

Similar to Sec. 3.2, we denote E
[
gy · gy

⊤] = CG =
∑L

i=1 σi · ui · u⊤
i , where ui is the ith

column of left singular vectors Q when decomposing CG. Let M = I− Q⊤·Q
ϵ , notably

that Q⊤ ·Q =
∑Ry

i=1 ui · u⊤
i . The signal-to-noise ratio is calculated as:

SNR =

E
[∥∥∥Q⊤·Q

ϵ · gy ·w
∥∥∥2
2

]
E
[∥∥∥(I− Q⊤·Q

ϵ

)
· gy ·w

∥∥∥2
2

] . (20)

We have: M = I− Q⊤·Q
ϵ =

∑Ry

i=1
ϵ−1
ϵ · ui · u⊤

i +
∑L

i=Ry+1 ui · u⊤
i ,

and: ∥M · gy ·w∥22 =
∑Cx

j=1 ∥M · gy ·wj∥22, where:

M · gy ·wj =

Ry∑
i=1

ϵ− 1

ϵ

(
ui ·

(
u⊤
i · gy ·wj

))
+

L∑
i=Ry+1

(
ui ·

(
u⊤
i · gy ·wj

))
(21)

=

Ry∑
i=1

ϵ− 1

ϵ

(
u⊤
i · gy ·wj · ui

)
+

L∑
i=Ry+1

(
u⊤
i · gy ·wj · ui

)
. (22)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

As a result:

∥M · gy ·wj∥22 =

Ry∑
i=1

(
ϵ− 1

ϵ

)2 (
u⊤
i · gy ·wj · ui

)⊤ · (u⊤
i · gy ·wj · ui

)
+

L∑
i=Ry+1

(
u⊤
i · gy ·wj · ui

)⊤ · (u⊤
i · gy ·wj · ui

)
(23)

=

Ry∑
i=1

(
ϵ− 1

ϵ

)2 (
u⊤
i · gy ·wj

)
· u⊤

i ·
(
u⊤
i · gy ·wj

)
· ui

+

L∑
i=Ry+1

(
u⊤
i · gy ·wj · ui

)⊤ · (u⊤
i · gy ·wj · ui

)
(24)

=

Ry∑
i=1

(
ϵ− 1

ϵ

)2 (
w⊤

j · gy · ui

)
·
(
u⊤
i · gy ·wj

)
· u⊤

i · ui

+

L∑
i=Ry+1

(
w⊤

j · gy · ui

)
·
(
u⊤
i · gy ·wj

)
· u⊤

i · ui (25)

=

Ry∑
i=1

(
ϵ− 1

ϵ

)2 (
w⊤

j · gy · ui

)
·
(
u⊤
i · gy ·wj

)
+

L∑
i=Ry+1

(
w⊤

j · gy · ui

)
·
(
u⊤
i · gy ·wj

)
. (26)

Therefore, the expectation is calculated as:

E
[
∥M · gy ·w∥22

]
=

Cx∑
j=1

 Ry∑
i=1

(
ϵ− 1

ϵ

)2

w⊤
j · E

[
gy

⊤ · ui · u⊤
i · gy

]
· wj


+

Cx∑
j=1

 L∑
i=Ry+1

w⊤
j · E

[
gy

⊤ · ui · u⊤
i · gy

]
· wj

 (27)

=

Cx∑
j=1

 Ry∑
i=1

(
ϵ− 1

ϵ

)2

σi · w⊤
j ·wj +

L∑
i=Ry+1

σi ·w⊤
j · wj

 (28)

=

 (1− ϵ)2

ϵ2

Ry∑
i=1

σi +

L∑
i=Ry+1

σi

 · ∥W∥2
2
. (29)

Similarly, we have:

E
[∥∥∥Q⊤·Q

ϵ · gy ·w
∥∥∥2
2

]
=

1

ϵ2
·

Ry∑
i=1

σi · ∥W∥
2

2
. (30)

Therefore, the signal-to-noise ratio is computed as:

SNR =

E
[∥∥∥Q⊤·Q

ϵ · gy ·w
∥∥∥2
2

]
E
[
∥M · gy ·w∥22

] =

1
ϵ2

Ry∑
i=1

σi

(1−ϵ)2

ϵ2

Ry∑
i=1

σi +

L∑
i=Ry+1

σi

. (31)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Energy threshold ()

1

2

3

4

5

6

7

8

SN
R

SNR depends on energy threshold

Figure 7: Signal-to-noise ratio analysis of one layer. When the energy threshold goes to 1, the SNR
ratio will increase enormously. With a large enough value of energy threshold and oversampling,
INSTANT can guarantee a high SNR ratio of training.

When ϵ→ 1, Ry → L, therefore, SNR→∞, and error will become 0 as shown in Fig. 7. Here, it
is noticeable that the plot has some segments with breaks. This is because with some near ϵ, the same
rank Ry is selected.

D FLOPS AND MEMORY ANALYSIS

In this section, the FLOPs and memory analysis for our INSTANT (Sec. D.1) and LBP-WHT
(Sec. D.3) are described.

D.1 FLOPS AND MEMORY ANALYSIS FOR INSTANT

By compressing activation at the forward pass, we are able to reduce the matrix storage
from RL×Cx → RRx×Cx by only storing two additional tensors P ∈ RRx×L and Q ∈ RRy×L. As-
suming that the activation is stored in fp32, which is 4 bytes for each value, the total memory for
storing an activation sample at one layer reduces from 4 · L · Cx to 4 ·Rx · Cx. It is noticeable that P
and Q remain constant across batches, meaning that even when training in a mini-batch setup, as
typically do, P and Q are still two-dimensional tensors. This ensures that the memory cost for storing
them is negligible.

In terms of computation, our training involves three main computational cost components: low-rank
projection, low-rank matrix multiplication, and reverse projection. Since there are three low-rank
projections, the total FLOPs of these projections FLOPp is:

FLOPp = 2 · Rx · L · Cx + 2 ·Ry · L · Cy + 2 ·Rx · L · Cy. (32)

Eq. 4 and Eq. 5 illustrate two low-rank matrix multiplications of INSTANT. Since both of them are
computed in low-rank spaces, the computational complexity FLOPm is:

FLOPm = 2 ·Ry · Cy · Cx + 2 ·Rx · Cx · Cy. (33)
The cost for reverse projection of g̃x is FLOPr = 2 ·Ry · L · Cx. Ultimately, the total computational
complexity of our backpropagation process FLOPt is:

FLOPt = FLOPp + FLOPm + FLOPr = 2(Rx +Ry)(Cx · Cy + L · Cx + L · Cy) (34)
Note that this is the computational cost of one sample at one layer; for training one batch of B
samples, the total computational cost is B · FLOPt.

D.2 FLOPS AND MEMORY ANALYSIS FOR GRADIENT FILTER

The Gradient Filter splits the gradient and activations into small patches, then applies pooling to each
patch to reduce the number of unique elements. By storing only these unique elements in the memory,
the Gradient Filter can save 64× memory compared to vanilla training with a patch size 8× 8. Let:

ph = ⌈h/8⌉, pw = ⌈w/8⌉. (35)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Gradient Filter compresses the activation x ∈ RL×Cx , with L = h × w into x̂ ∈ RL′×Cx , with
L′ = ph × pw. The activation storage is calculated as 4 · Cx · ph · pw. Similarly, the gradient
gy ∈ RL×Cy is compressed into ĝy ∈ RL′×Cy . The total compression cost for activation and
gradient is:

FLOPc = (Cx + Cy)× ph × pw × 82 (36)

After compressing, by doing both 2 matrix multiplications in the low-rank space, the total computa-
tional cost in backpropagation of Gradient Filter is:

FLOPb = 4× Cx × Cy × L′ = 4× Cx × Cy × ph × pw (37)

Finally, the total computational cost of backpropagation with Gradient Filter is:

FLOP = FLOPb + FLOPc = 4× Cx × Cy × ph × pw + (Cx + Cy)× ph × pw × 82 (38)

D.3 FLOPS AND MEMORY ANALYSIS FOR LBP-WHT

LBP-WHT is originally designed for computer vision tasks. Considering a linear layer,
let x ∈ RL×Cx as the input. LBP-WHT first splits the sequence length into H and W , such
that L = H.W , then reshapes to x ∈ RCx×H×W . Afterward, at each channel, the matrix
shape [H,W] is split into (ph · pw) patches (8× 8) with:

ph = ⌈h/8⌉, pw = ⌈w/8⌉. (39)

At each patch, the Walsh-Hadamard transformation is applied with only R out of the total 64 bases of
the WHT, where R is the hyperparameter. The FLOPs of this projection WFLOPpx is :

WFLOPpx = 2 ·R · Cx · ph · pw · 82, (40)

where 82 is because of the patch size 8× 8. This compressed version is stored in memory instead of
the original x, therefore, the activation storage is: 4 ·R · Cx · ph · pw.

In the backward pass, the gradient is projected by the same transformation as the activation. Therefore,
the computational cost WFLOPpg is:

WFLOPpg = 2 ·R · Cy · ph · pw · 82. (41)

LBP-WHT does two matrix multiplications in the low-rank space to calculate the weight gradient
and compressed input gradient. The total cost of these multiplications is:

WFLOPm = 2 ·R · Cy · ph · pw · Cx + 2 ·R · Cy · Cx · ph · pw +R · Cx · Cy. (42)

Finally, the compressed input gradient is mapped to the original space to propagate to the previous
layer with cost:

WFLOPr = 2 ·R · Cx · ph · pw · 82. (43)

In conclusion, the total FLOPs of LBP-WHT is computed as:

WFLOP = WFLOPpx +WFLOPpg +WFLOPm +WFLOPr (44)
= 4 ·R · Cx · Cy · ph · pw +R · Cx · Cy + 256 ·R · Cx · ph · pw + 128 ·R · Cy · ph · pw

(45)

We recommend that the readers be familiar with LBP-WHT (Yang et al., 2023b) paper and the source
code for a better understanding of the calculation in each step.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E DATASET DESCRIPTION

Computer vision tasks.

• CIFAR10 (CF10) (Krizhevsky et al., 2009) is a widely used image classification dataset
consisting of 60,000 32× 32 color images across 10 classes, such as airplane, cat, and truck.
It includes 50,000 training images and 10,000 test images, evenly distributed across classes.

• CIFAR100 (CF100) (Krizhevsky et al., 2009) is an image classification dataset similar
to CIFAR-10 but with 100 classes. It contains 60,000 color images of size 32 × 32 pix-
els—50,000 for training and 10,000 for testing. CIFAR-100 is more challenging than
CIFAR-10 due to the larger number of categories and finer-grained distinctions between
them, making it a popular benchmark for evaluating model performance on more complex
classification tasks.

• Flowers (Nilsback & Zisserman, 2006) contains 8,189 images of 102 flower categories
found in the UK. Each class has between 40 and 258 images. The images have high
variability in scale, pose, and lighting, making the dataset a useful benchmark for testing the
robustness of computer vision models in fine-grained classification.

• Food-101 (Bossard et al., 2014) is a popular benchmark for food image classification,
containing 101,000 images across 101 food categories such as pizza, sushi, and apple
pie. Each class has 1,000 images—750 for training and 250 for testing—with real-world
variability in presentation, lighting, and background.

• The Oxford-IIIT Pet (Parkhi et al., 2012) is a popular image dataset for pet classification
and segmentation tasks. It contains 7,349 images of 37 different breeds of cats and dogs, with
roughly 200 images per breed. The dataset features high variability in poses, lighting, and
background, making it ideal for training and evaluating models in fine-grained classification.

Natural language processing tasks.

• QNLI (Question Natural Language Inference) has around 110k samples derived from the
SQuAD dataset and reframed as a binary classification task, where the model determines if
a given sentence contains the answer to a question (entailment or not).

• SST-2 (Stanford Sentiment Treebank) is a sentiment analysis dataset with about 70k movie
review sentences. Each sample is labeled as either positive or negative, making it a simple
and clean binary classification task for sentiment understanding.

• MNLI (Multi-Genre Natural Language Inference) contains 433k sentence pairs from various
text genres. The task is to determine whether a hypothesis is entailed, neutral, or contradicted
by a given premise, making it a 3-class classification problem and a robust test of a model’s
reasoning ability.

• CoLA (Corpus of Linguistic Acceptability) comprises over 10k English sentences labeled
as grammatically acceptable or unacceptable. It evaluates a model’s ability to judge gram-
matical correctness, testing syntactic understanding.

• MRPC (Microsoft Research Paraphrase Corpus) includes around 5.8k sentence pairs from
news sources, with binary labels indicating whether the two sentences are paraphrases. It’s a
common benchmark for paraphrase detection.

• RTE (Recognizing Textual Entailment) is a binary classification task with around 2.8k
samples, where the goal is to decide whether a premise sentence entails a given hypothesis.
It’s a small dataset, but it’s useful for testing generalization.

F THE REASON BEHIND OVERSAMPLING

In this section, we will prove our argument that oversampling is helpful since the energy threshold
can only guarantee the amount of information when the calibration happens. More concretely, we
will show that if we calibrate more, the oversampling is unnecessary. Conversely, we also show that
oversampling can help even without calibration.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

25 50 75 100 125 150 175 200

Number of Steps after Calibration

75

76

77

78

79

80

81

82

Ac
cu

ra
cy

 (%
)

Accuracy vs Calibration frequency
With Calibration
No Calibration

0 10 20 30 40 50

Over-sampling Value
74

76

78

80

82

84

86

Ac
cu

ra
cy

 (%
)

Accuracy vs Oversampling Value
Over-sampling

Figure 8: The effectiveness of oversampling. This experiment is conducted with BERT on the QNLI
dataset.

Table 4: INSTANT can combine with LoRA to achieve a low-rank space of weight, activation, and
gradient.

Model Method MFLOPs ↓ Mem ↓ CF10 ↑ CF100 ↑

Efficient
Former-L1

LoRA 896 1.95 94.48 77.27
LoRA + INSTANT-0 335 0.06 93.91 75.79
LoRA + INSTANT-5 413 0.26 94.35 76.73
LoRA + INSTANT-7 449 0.34 94.38 76,80

As shown in Fig. 8, without oversampling, increasing the calibration frequency (or reducing the
number of steps after each calibration) results in a remarkable increase in accuracy. This shows that
when the calibration happens more, the energy threshold is enough for capturing the information.
However, since the cost for calibration is larger compared to training with INSTANT, oversampling
can help in reducing the frequency of this phase. In addition, we experiment with only one calibration
before training starts. Fig 8 (right) strengthens our argument by showing that without oversampling,
the performance degrades significantly. Meanwhile, with a few values of oversampling, the accuracy
increases approximately 10%.

G INSTANT IS ORTHOGONAL TO LORA

LoRA (Hu et al., 2022), and its variances, are popular for low-rank adaptation. However, this research
focuses on the low-rank characteristic of weights, while INSTANT is applied to the low-rank space
of the activation and gradients. We, therefore, provide an additional ablation study to show that these
2 methods are orthogonal and can be combined.

While LoRA successfully reduces the number of trainable parameters, it still requires storing the
original activations in memory to compute gradients, thus failing to reduce memory usage. Further-
more, LoRA necessitates the multiplication of two large matrices to compute the activation gradient,
which is then backpropagated to the previous layer. As a result, the computational cost and memory
of applying INSTANT are much smaller compared to LoRA only, as shown in Tab. 4.

H COMPARISON OF INSTANT WITH OPTIMIZER STATE COMPRESSION
TECHNIQUES

In this appendix, we will provide additional results to compare INSTANT with two optimizer
compression techniques, which are GaLore (Zhao et al., 2024) and CompAct (Shamshoum et al.,
2025). Table 5 shows that GaLore consistently achieves better performance than CompAct under

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 5: Comparison of INSTANT with GaLore and CompAct, presented for both fine-tuning the last
layer and the entire model. We report the MFLOPs and memory (Mem) required for training a single
sample on QNLI and SST2.

Fine-tuning the Last Block

Model Method MFLOPs ↓ Mem (MB) ↓ Datasets
QNLI ↑ SST-2 ↑

BERT

Vanilla 14495 13.50 86.12 91.63
GaLore-8 14495 13.50 82.45 90.47
GaLore-32 14495 13.50 84.37 91.28
CompAct-8 7978 0.11 80.65 88.30
CompAct-32 8355 0.44 84.37 91.28
INSTANT-0 175 0.03 79.33 90.71
INSTANT-7 565 0.21 84.13 90.94
INSTANT-15 1018 0.42 84.68 91.63

Full fine-tuning

BERT

Vanilla 173946 162 91.43 93.23
GaLore-8 173946 162 90.44 91.74
GaLore-32 173946 162 91.31 92.09
CompAct-8 95736 1.32 89.09 91.28
CompAct-32 100260 5.28 90.30 92.09
INSTANT-0 9143 2.83 89.66 92.22
INSTANT-15 15353 5.43 90.63 92.43
INSTANT-25 20753 8.52 90.79 93.35

the same low-rank constraint. However, because GaLore primarily targets the optimizer states, its
activation memory consumption and computational cost remain similar to Vanilla training. In contrast,
CompAct substantially reduces activation memory by compressing activations during the forward
pass. Compared to CompAct, under the same activation memory budget, INSTANT is able to save a
large portion of the backward computational cost while achieving better performance.

However, because CompAct also compresses the optimizer states, it explores a complementary
dimension to INSTANT. In principle, the two approaches can be combined to simultaneously reduce
activation memory, optimizer-state memory, and computational cost. We further believe that our
calibration-based projection can, at least theoretically, be extended to compress optimizer states as
well.

I EXTENSION TO CONVOLUTION

I.1 CONVERT CONVOLUTIONAL OPERATION TO LINEAR OPERATION

Many convolutional architectures (ResNet, VGGNet,...) utilize image-to-column transforma-
tion (Chellapilla et al., 2006) when working on convolutional operations. By stretching matrices,
this transformation turns a convolutional operation into a linear operation to utilize matrix multi-
plication optimization of deep learning libraries. We apply this idea to transform the convolutional
operation into a linear operation, before applying tensor decomposition and low-rank backprop-
agation (Sec. 3.2, 3.3) to save memory and computation. Due to the low-cost transformation of
image-to-column, we achieve up to 3x computation reduction.

I.2 RESULTS

Fig. 9 shows the efficiency of INSTANT on 2 popular convolutional architectures: ResNet-50 and
MobileNetV2, on 2 datasets CIFAR10 and CIFAR100. In all experiments, our method can save
significant memory and FLOPs while maintaining high accuracy, compared to Vanilla. Specifically,
INSTANT-5 and INSTANT-7 consistently outperform Vanilla in all three reported metrics. In ResNet-
50, INSTANT-5 gains better performance with 3× in FLOPs and 79× in memory. These results
indicate the efficiency of INSTANT on all architectures, including both Transformer-based and
Convolutional-based models.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Vanilla INSTANT-0 INSTANT-5 INSTANT-7

88

90

92

94

96

Ac
cu

ra
cy

 (%
) 93.18

92.16

93.08 93.38

ResNet-50 - CIFAR10 - Accuracy (%)
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Vanilla INSTANT-0 INSTANT-5 INSTANT-7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

(M
B)

3.16

0.03 0.04 0.05

ResNet-50 - CIFAR10 - Memory (MB)
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Vanilla INSTANT-0 INSTANT-5 INSTANT-7
0

500

1000

1500

2000

2500

3000

3500

M
FL

OP
s

3236

743

1159
1306

ResNet-50 - CIFAR10 - MFLOPs
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Vanilla INSTANT-0 INSTANT-5 INSTANT-7
70

71

72

73

74

75

76

77

78

Ac
cu

ra
cy

 (%
)

73.48 73.22
73.86 73.92

ResNet-50 - CIFAR100 - Accuracy (%)
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Vanilla INSTANT-0 INSTANT-5 INSTANT-7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

(M
B)

3.16

0.02 0.04 0.04

ResNet-50 - CIFAR100 - Memory (MB)
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Vanilla INSTANT-0 INSTANT-5 INSTANT-7
0

500

1000

1500

2000

2500

3000

3500

M
FL

OP
s

3236

731

1184
1344

ResNet-50 - CIFAR100 - MFLOPs
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Vanilla INSTANT-0 INSTANT-5 INSTANT-7

88

90

92

94

96

Ac
cu

ra
cy

 (%
)

93.06

92.16

93.08 93.38

MobileNetV2 - CIFAR10 - Accuracy (%)
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Vanilla INSTANT-0 INSTANT-5 INSTANT-7
0.0

0.2

0.4

0.6

0.8

M
em

or
y

(M
B)

0.87

0.04 0.06 0.06

MobileNetV2 - CIFAR10 - Memory (MB)
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Vanilla INSTANT-0 INSTANT-5 INSTANT-7
0

100

200

300

400

500

M
FL

OP
s

358

64

114
134

MobileNetV2 - CIFAR10 - MFLOPs
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Vanilla INSTANT-0 INSTANT-5 INSTANT-7
60

62

64

66

68

70

72

Ac
cu

ra
cy

 (%
) 68.36

67.02

68.42 68.48

MobileNetV2 - CIFAR100 - Accuracy (%)
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Vanilla INSTANT-0 INSTANT-5 INSTANT-7
0.0

0.2

0.4

0.6

0.8

M
em

or
y

(M
B)

0.87

0.05 0.06 0.06

MobileNetV2 - CIFAR100 - Memory (MB)
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Vanilla INSTANT-0 INSTANT-5 INSTANT-7
0

100

200

300

400

500

M
FL

OP
s

358

68

114
133

MobileNetV2 - CIFAR100 - MFLOPs
Vanilla
INSTANT-0
INSTANT-5
INSTANT-7

Figure 9: Performance of INSTANT on convolutional architectures.

J TRAINING LATENCY ANALYSIS

J.1 EDGE DEVICES TRAINING LATENCY

Table 6: Iteration and backward time when finetuning 9 last layers of ViT-B/32 on CIFAR10. We
also report backward speedup compared to Vanilla.

Raspberry Pi 5 Intel E5-2267
Method Total time (s) Backward time (s) Speedup Total time (s) Backward time (s) Speedup

Vanilla 6.47 5.52 1× 2.69 1.80 1×
Gradient Filtering 1.85 0.84 2.17× 1.66 0.76 2.37×
LBP-WHT-4 20.67 14.23 0.39× 14.83 9.76 0.18×
INSTANT-0 1.43 0.44 12.55× 1.19 0.22 8.18×

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Vanilla INSTANTLBP­WHT­4 GF
0

1

2

3

4

5

6

7

8

1.96

0.86

4.49

0.50

Vanilla INSTANTLBP­WHT­4 GF

3.00

1.95

7.56

1.59

Backward Time Total Time

Ti
m

e
(s

)

Vanilla INSTANT LBP­WHT­4 GF

Figure 10: Training time over 1 epoch on
CIFAR10 using a Intel E5-2667.

We provide extra results of INSTANT on
EfficientFormer-L1 on CPU Intel E5-2667 in
Fig. 10. We conduct experiments with the same
setup as in Sec. 4.1, using the PyTorch framework.
Considering the larger architecture ViT-B/32, in which
INSTANT-0 can save 17× computation compared to
Vanilla.

We provide additional results of INSTANT on ViT-
B/32 using a Raspberry Pi 5 and an Intel E5-2267 CPU,
as presented in Tab.6. Noticeably, we can save 8×
backward time on Intel E5-2267 and 12× backward
time on Raspberry Pi 5. The (12×) time reduction is not
comparable to (17×) FLOP reduction (Tab.11). This
reduction gap is reduced when implementing in other
frameworks, such as CUDNN, as shown in Gradient
Filter (Yang et al., 2023c). We also observe that the
time reduction is strongly affected by the use of the device. However, these engineering-level
optimizations fall outside the paper’s scope. Generally, computation reduction is converted into
time reduction, which proves the efficiency and applicability of INSTANT.

J.2 GPU TRAINING LATENCY

We conducted experiments on the framework of MMCV, model EfficientFormerL1, with datasets
CIFAR10, and with all methods (LBP-WHT, Gradient Filtering, INSTANT (ours), Vanilla) as
provided in Tab. 1. We observed similar results on CIFAR100. As shown in Tab. 7, on V100 GPU,

Table 7: Time reported for training 1 epoch with V100 GPU when partially and fully finetuning
EfficientFormerL1 on CIFAR10. These reported numbers are averaged over 10 training epochs.

Partially Finetuning Last Layer Full Finetuning
Method / Time(s) Calibration* Backward** Total epoch*** Calibration* Backward** Total epoch***

Vanilla 0 6.11 73.6 0 12.66 110.8
Gradient Filtering 0 7.77 74.0 0 15.07 94.2
LBP-WHT-2 0 7.99 79.8 0 19.6 146.4
LBP-WHT-4 0 9.02 123.8 0 18.55 246.0
LBP-WHT-8 0 10.45 291.4 0 20.5 625.0
INSTANT-0 2.16 8.8 74.2 4.99 17.55 116.6
INSTANT-5 2.2 9.01 74.0 4.98 17.68 120.0
INSTANT-7 2.22 8.73 74.2 4.98 17.17 120.2

(*) Calibration time is total time used for creating periodically updated subspaces during 1 training epoch
(**) Backward time is total time of loss.backward() during 1 training epoch.
(***) Epoch time is the total running time of training 1 epoch, including calibration time, forward pass, activation
savings, loss calculation, backward pass, optimizer update,. . .

INSTANT’s backward time is 1.4× compared to Vanilla backwards time. The total training time
(epoch time) of INSTANT is slightly higher than Vanilla. In short, INSTANT’s FLOP reductions are
not converted into time reduction like training on CPU.

K ABLATION STUDY

K.1 GRADIENT AND ACTIVATION COMPRESSION

We conduct an ablation study to show the effectiveness of each compression approach (Tab. 8). First,
we only apply gradient compression to INSTANT (INSTANT compress gy). This method achieves
good performance, even surpassing Vanilla training. However, due to saving full-rank activation,
INSTANT (compress gy) requires the same memory as Vanilla. Second, we apply activation

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 8: Experimental results across 5 different CV datasets when fine-tuning the last block of
EfficientFormer-L1. We report the MFLOPs and memory (Mem) required for training a single
sample.

Fine-tuning the Last Block of EfficientFormer-L1

Method p MFLOPs ↓ Mem (MB) ↓ Datasets mAcc ↑CF100 ↑ CF10 ↑ Flowers ↑ Food ↑ Pets ↑
Vanilla – 1484 1.95 79.28 95.23 95.5 84.04 93.13 89.44

INSTANT
(compress gy)

0 973 1.95 78.45 95.02 95.74 82.91 93.08 89.04
5 1069 1.95 79.00 95.26 96.16 83.49 93.02 89.39
7 1104 1.95 79.18 95.39 95.95 83.73 93.08 89.47

INSTANT
(compress x)

0 796 0.12 78.80 95.07 94.99 82.63 92.83 88.86
5 885 0.33 78.99 95.35 95.37 83.01 92.75 89.09
7 921 0.41 78.93 95.40 95.43 83.19 92.80 89.15

INSTANT
0 270 0.16 77.64 94.66 92.23 81.97 92.64 87.83
5 475 0.38 78.65 95.07 95.93 82.84 93.21 89.14
7 544 0.45 79.01 95.23 95.92 83.05 93.02 89.25

Table 9: Partially finetuning last layer of EfficientFormer-L1 on CIFAR10, CIFAR100 with INSTANT-
random (Appendix. K.2) and ESPACE (Appendix. L.1) methods.

Method CIFAR10 CIFAR100 Forward MFLOPs Backward MFLOPs Activation Mem (MB)
ESPACE – N/2 95.23 78.41 414 827 0.96
ESPACE – N/4 94.21 76.26 212 414 0.48
Random – N/2 86.52 73.13 742 827 0.96
Random –N/4 64.97 46.02 742 414 0.48
INSTANT-0 94.66 77.64 742 270 0.16
INSTANT-5 95.07 78.65 742 475 0.38
INSTANT-7 95.23 79.01 742 544 0.45

Vanilla 95.23 79.28 742 1484 1.95

compression to INSTANT (INSTANT compress x). This approach achieves good performance with
a high compression rate, which makes it save a large amount of memory. However, this method
gains a low compression rate in computation, due to still involving one full-rank multiplication in the
backward pass. INSTANT (compressing both x, gy) achieves the highest computation compression
rate and high memory compression rate with a negligible performance drop compared to Vanilla. In
short, INSTANT (only compress x) is a good choice if tasks only require a small memory budget.
INSTANT (compressing both x, gy) is good at tasks requiring a small memory budget and small
training time, making it efficient for resource-efficient training.

K.2 INSTANT WITHOUT CALIBRATION

To highlight the necessity and efficiency of our calibration scheme, we also provide extra baseline:
Random - which is INSTANT using random subspaces P,Q for compressing activation x and
activation gradient gy. The difference is that in this Random scheme, we periodically update P,Q
by random Gaussian matrices each Nt = 200 training iterations.

The experimental results (Tab. 9, Tab. 10) demonstrate that INSTANT significantly outperforms the
Random projection method, where the compression rank is set to N

2 or N
4 , with N representing the

input dimension. This highlights that INSTANT effectively requires a compact yet precise low-rank
space to retain gradient information for accurate backpropagation through the network. Notably, in
the case of full fine-tuning, the Random projection method fails to converge, as the gradients struggle
to propagate through multiple layers, resulting in significant error accumulation due to the lack of a
well-defined low-rank space.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: Full finetuning EfficientFormer-L1 on CIFAR10, CIFAR100 with INSTANT-random (Ap-
pendix. K.2) and ESPACE (Appendix. L.1) methods.

Method CIFAR10 CIFAR100 Forward MFLOPs Backward MFLOPs Activation Mem (MB)
ESPACE – N/2 93.16 74.56 2347 4694 4.29
ESPACE – N/4 51.18 35.62 1173 2347 2.14
Random – N/2 13.47 3.66 2264 4694 4.29
Random – N/4 10.00 9.26 2264 2347 2.14
INSTANT-5 96.29 82.41 2264 2107 1.98

INSTANT-10 96.48 83.05 2264 2491 2.73
INSTANT-15 96.85 83.56 2264 2884 3.45

Vanilla 96.99 84.84 2264 4528 18.46

Table 11: Experimental results on CIFAR10 when fine-tuning 9 last layers of ViT-B/32. We report
the MFLOPs and memory (Mem) required for training a single sample.

Model Method MFLOPs ↓ Mem ↓ CF10 ↑

ViT-B/32

Vanilla 2831 2.20 96.56
Gradient Filtering 63 0.07 30.38
LBP-WHT-4 863 0.70 92.1
INSTANT-0 161 0.11 96.36
INSTANT-5 445 0.31 96.36
INSTANT-7 567 0.40 96.6

L ADDITIONAL RESULTS

L.1 COMPARISON OF INSTANT WITH ESPACE

ESPACE primarily focuses on compressing activations only, whereas our main objective is to jointly
compress both activations and activation gradients. In trade-off to save forward computations,
ESPACE performance is degraded compared to INSTANT due to error accumulations, even in the
forward pass. Noticeably, using quite high dimension compressions r = N

2 or r = N
4 , ESPACE

observes limited overhead reductions compared to INSTANT. More experimental results are shown
in Tab. 9 and Tab. 10.

L.2 RESULTS ON LARGE ARCHITECTURE FOR VISION TASKS

Vision Transformer achieves extraordinary performance on image classification. We conduct exper-
iments with ViT-B/32, a variant of Vision Transformer (Dosovitskiy et al., 2021) with 88 million
parameters, which is 7× EfficientFormer-L1 with 12 million parameters. In terms of accuracy, Gradi-
ent Filtering fails, while LBP-WHT-4 performs worse than EfficientFormer-L1, which suggests that
their strategies are inappropriate for ViT-based architectures. Conversely, INSTANT with SVD-based
compression can preserve significant information while achieving a good compression rate with
negligible performance drop. Noticeably, INSTANT-7 outperforms Vanilla in all reported metrics,
including accuracy.

L.3 RESULTS ON COMPLEX PLACES-365 DATASET

We finetuned EfficientFormer-L1 on Places-365 (Zhou et al., 2017) dataset, which contains 1.8M
images and is more challenging than ImageNet, i.e, models often perform worse on Places-365 than
on the ImageNet dataset. The table above demonstrates that INSTANT remains highly effective
even with large datasets such as Places-365. All three versions of INSTANT show only a minor
reduction in performance compared to vanilla training, despite achieving a threefold reduction in
both computational cost and memory usage. When compared to LBP-WHT, INSTANT offers slightly

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 12: We finetuned the last layer of EfficientFormer-L1 on Places-365 dataset.

Method Accuracy Backward MFLOPs* Activation Memory (MB)
Vanilla 55.30 1484 1.95

Gradient Filtering 9.2 24 0.04
LBP-WHT-2 50.92 95 0.12
LBP-WHT-4 53.27 335 0.40
LBP-WHT-8 54.67 1227 1.43
INSTANT-0 54.32 388 0.37
INSTANT-5 54.57 567 0.60
INSTANT-7 54.55 606 0.66

(*) The reported Backward MFLOPs includes forward compression in cases of INSTANT, Gradient Filtering,
and LBP-WHT

Table 13: TinyLlama results on BoolQ dataset

Fine-tuning the Last Block
Model Method MFLOPs ↓ Mem ↓ BoolQ ↑

TinyLLama

Vanilla 90194 35 67.71
LBP-WHT-4 15083 5.47 63.94
INSTANT-0 5517 0.07 63.88
INSTANT-5 7298 0.41 64.77
INSTANT-7 7465 0.55 64.89

better performance while maintaining the same memory and computational budget. In contrast,
Gradient Filtering fails to converge, yielding poor results.

L.4 RESULTS ON LARGE LANGUAGE MODEL (TINYLLAMA)

We conduct some additional experiments on TinyLlama (Zhang et al., 2024) on the BoolQ (Clark
et al., 2019) dataset with a similar setup to NLP tasks. The results are reported in Tab. 13. It is
noticeable that, with a bigger model, INSTANT only requires a small rank to keep a large amount of
energy, thus reducing a large amount of computational and memory consumption. However, in this
experiment, although INSTANT witnesses a 3% drop in performance compared to vanilla training,
INSTANT can save about 13× computational cost and 64× memory consumption. This makes
training a large model with more than a billion parameters on resource-constrained devices possible.

L.5 MORE SAMPLES ON LOW-RANK CHARACTERISTIC

Fig. 11 describes the low-rank characteristic of various samples through various layers of different
architectures. In many layers, a large amount of information can be kept on only a few eigenvalues,
proving that the compression tensor of INSTANT can work effectively on many blocks of the model.

L.6 EFFICIENT TRAINING-AWARE SUBSPACES

Fig. 12 and Fig. 13 illustrate the variation of FLOPs and peak memory between different datasets
when we fine-tune with INSTANT. In CV tasks (Fig. 12), INSTANT with ϵ = 0.95 and p = 5 has
a comparable overhead to LBP-WHT-4, but our performance is better (Tab.1). Compared to LBP-
WHT-8, our overhead is extremely smaller in every dataset with a trade-off of negligible accuracy.
The higher overhead of Flowers is possibly due to its high variance samples, which require larger
subspaces P, Q to capture sufficient meaningful information of tensors. In language tasks (Fig. 12),
INSTANT with ϵ = 0.95 and p = 7 or p = 15 outperform LBP-WHT-2 in every dataset. It is
noticeable that activation storage in every dataset is similar. This is possibly due to the strongly
low-rank characteristic of activation, especially in language tasks.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50

Eigenvalue Index

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

network.3.2.mlp.fc1

Sample 0
Sample 1
Sample 2
Sample 3
Sample 4

0 10 20 30 40 50

Eigenvalue Index

0.88

0.90

0.92

0.94

0.96

0.98

1.00

N
or

m
al

iz
ed

 E
ne

rg
y

network.3.3.mlp.fc2

Sample 0
Sample 1
Sample 2
Sample 3
Sample 4

0 10 20 30 40 50

Eigenvalue Index

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 E
ne

rg
y

network.3.5.token_mixer.proj

Sample 0
Sample 1
Sample 2
Sample 3
Sample 4

0 10 20 30 40 50

Eigenvalue Index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

layer.6.attention.output.dense

Sample 0
Sample 1
Sample 2
Sample 3
Sample 4

0 10 20 30 40 50

Eigenvalue Index

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

layer.10.attention.self.key

Sample 0
Sample 1
Sample 2
Sample 3
Sample 4

0 10 20 30 40 50

Eigenvalue Index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

layer.11.attention.self.value

Sample 0
Sample 1
Sample 2
Sample 3
Sample 4

Figure 11: The normalized energy of eigenvalues of the gradient of many different layers in
EfficientFormer-L1 and BERT.

0

250

500

750

1000

1250

1500

1750

2000

M
FL

OP
s

CF100 CF100CF10 CF10Foods FoodsFlowers FlowersPets Pets
EfficientFormer-L1 SwinV2-Small

LBP-WHT-8

LBP-WHT-4

LBP-WHT-8

LBP-WHT-4

INSTANT FLOPs on different CV datasets

(a) MFLOPs for different datasets

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pe
ak

 M
em

or
y

(M
B)

CF100 CF100CF10 CF10Foods FoodsFlowers FlowersPets Pets
EfficientFormer-L1 SwinV2-Small

LBP-WHT-8

LBP-WHT-4

LBP-WHT-8

LBP-WHT-4

INSTANT Peak Memory on different CV datasets

(b) Peak Memory for different datasets

Figure 12: (a) MFLOPs of INSTANT when fine-tuning on 5 datasets with oversampling p = 5.
There are differences in MFLOPs of each dataset, however, in all datasets, INSTANT has a lower
MFLOPs compared to LBP-WHT-8. (b) Peak memory of INSTANT when fine-tuning on 5 datasets
with oversampling p = 5. The peak memory on different datasets slightly vary, and in all datasets,
INSTANT has lower peak activation memory than LBP-WHT-8.

M LARGE LANGUAGE MODELS (LLMS) USAGE

We utilized an LLM as a support tool in preparing this paper. Its role was limited to:

• polishing the clarity and flow of writing (but we do not use it to generate new text)
• assisting with retrieval and discovery, such as identifying relevant prior work and commonly

used methods

All scientific design choices, methodological decisions, implementation, data analysis, and interpreta-
tion of results were made solely by the authors.

The LLM did not contribute novel ideas or conduct experiments; it was used only as an assistant for
writing and literature awareness.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

400

450

500

550

600

650

700

750

800

M
FL

OP
s

MNLI MNLIMRPC MRPCRTE RTEQNLI QNLISST-2 SST-2CoLA CoLA
BERT DistilBERT

LBP-WHT-2 LBP-WHT-2

INSTANT FLOPs on different NLP datasets

(a) MFLOPs for different datasets

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Pe
ak

 M
em

or
y

(M
B)

MNLI MNLIMRPC MRPCRTE RTEQNLI QNLISST-2 SST-2CoLA CoLA

BERT DistilBERT

LBP-WHT-2 LBP-WHT-2

INSTANT Peak Memory on different NLP datasets

(b) Peak Memory for different datasets

Figure 13: (a) MFLOPs of INSTANT when fine-tuning on 6 datasets with oversampling p = 7.
There are differences in MFLOPs of each dataset, however, in all datasets, INSTANT has a lower
MFLOPs compared to LBP-WHT-2. (b) Peak memory of INSTANT when fine-tuning on 6 datasets
with oversampling p = 15. The peak memory on different datasets is quite similar, and in all datasets,
INSTANT has lower peak activation memory than LBP-WHT-2.

29

	Introduction
	Related Work
	INSTANT
	Problem statement
	Efficient construction for tensor projection
	Low-rank backpropagation with INSTANT

	Results
	Experimental setup
	The activation gradient is low-rank
	Main results
	Ablation study

	Conclusion
	Math notations.
	Projection Construction Issues
	Why are two compression tensors required for activation and gradient compression?
	Proof of ESPACE theorem
	Low-cost Calibration Proof

	Propagated Error Analysis
	FLOPs and Memory Analysis
	FLOPs and memory analysis for INSTANT
	FLOPs and memory analysis for Gradient Filter
	FLOPs and memory analysis for LBP-WHT

	Dataset description
	The reason behind oversampling
	INSTANT is orthogonal to LoRA
	Comparison of INSTANT with optimizer state compression techniques
	Extension to convolution
	Convert convolutional operation to linear operation
	Results

	Training Latency Analysis
	Edge devices training Latency
	GPU Training Latency

	Ablation study
	Gradient and activation compression
	INSTANT without calibration

	Additional Results
	Comparison of INSTANT with ESPACE
	Results on large architecture for Vision tasks
	Results on complex Places-365 dataset
	Results on Large Language Model (TinyLlama)
	More samples on low-rank characteristic
	Efficient training-aware subspaces

	Large Language Models (LLMs) Usage

