

# INSTANT: COMPRESSING GRADIENTS AND ACTIVATIONS FOR RESOURCE-EFFICIENT TRAINING

## Anonymous authors

Paper under double-blind review

## ABSTRACT

Deep learning has advanced at an unprecedented pace. This progress has led to a significant increase in its complexity. However, despite extensive research on accelerating inference, training deep models directly within a resource-constrained budget remains a considerable challenge due to its high computational and memory requirements. In this paper, we introduce INSTANT (compressing gradients and activations for resource-efficient training), a method designed to address both the computational and the memory bottlenecks when training. INSTANT reduces resource demands during backpropagation by projecting gradients and activations into a low-rank subspace and performing computation within that compressed representation. Experimental results demonstrate that INSTANT achieves a  $15\times$  reduction in computational cost and  $32\times$  reduction in activation memory with negligible impact on model performance. The code will be made publicly available upon the paper’s acceptance.

## 1 INTRODUCTION

Deep learning has become the backbone of many practical applications in diverse fields such as computer vision (CV) (Dosovitskiy et al., 2020; Liu et al., 2021a), natural language processing (NLP) (Devlin et al., 2019; Liu et al., 2019; Radford et al., 2018), signal processing (Gong et al., 2021), and multimodal learning (Radford et al., 2021; Singh et al., 2022). Although these applications offer undeniable benefits, the large-scale design of a deep learning model prevents deploying them on devices with limited resources. To address these shortcomings, research has mainly focused on two main directions. Many works focus on developing architecture modifications to adapt to hardware constraints (Sun et al., 2020; Li et al., 2022). Many others enhance quantization techniques to reduce memory cost and improve inference speed for large models (Liu et al., 2021b), leveraging hardware with support for the fast operation of low-bit datatypes. To summarize, the majority of the work concentrates on model inference, while typically, the **training part** is entirely performed on an independent high-performance infrastructure.

Resource-efficient training faces two main challenges: high memory usage and large computational cost. The memory overhead has been partially addressed in prior works (Nguyen et al., 2024; Yuan et al., 2023; Wang et al., 2025), typically employing singular value decomposition (SVD), to construct a low-rank space for activations and/or weights. However, these SVD-based methods incur substantial computational overhead, ultimately increasing training time (Nguyen et al., 2024). On the other hand, reducing computational cost during training remains an open area of research. (Sakr & Khailany, 2024) reduces the cost of tensor decomposition by constructing a [periodically updated](#) low-rank space for activation throughout the training process. (Yang et al., 2023b) leverages low-frequency characteristics of images to project tensors into predetermined low-rank spaces, which helps to save both activation memory and computational overhead for CV tasks. However, this method has a limited compression rate and is only effectively applicable to low-frequency data components such as images.

Inspired by tensor decomposition strategies, we propose INSTANT (compressInG gradieNtS and acTivAtions for resource-efficieNt Training). INSTANT *reduces the resource demands of backpropagation, both in terms of computation and memory*, and applies to a wide range of data distributions. Our method periodically identifies critical tensor features to generate dynamic low-rank projections, optimizing backpropagation efficiency. Our method is **orthogonal** to non-compressive acceleration

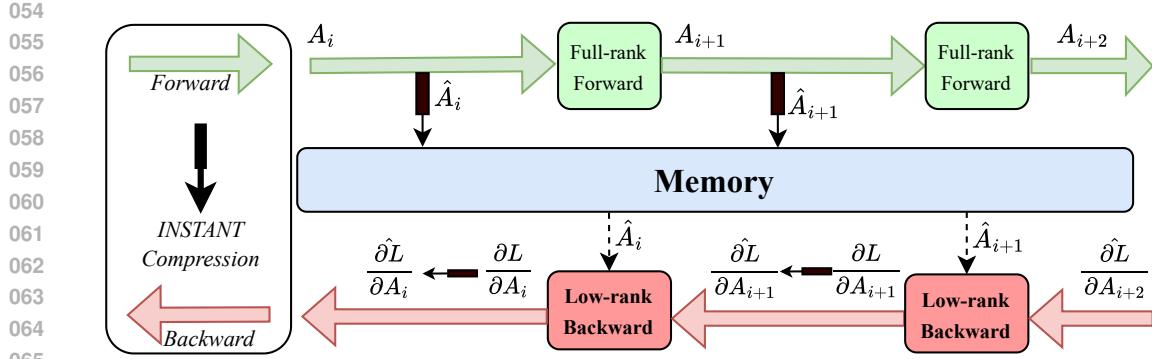


Figure 1: **INSTANT performs compression on activations and gradients:** In the forward pass (Green), activation  $A_i$  normally propagates in full-rank space while its compact version  $\hat{A}_i$  is saved for the backpropagation to reduce memory consumption. In the backward pass (Red), the gradient for the output  $\frac{\partial L}{\partial A_{i+1}}$  is compressed to a low-rank version  $\frac{\partial L}{\partial \hat{A}_{i+1}}$ . Then, low-rank operations are implemented with compressed activation  $\hat{A}_i$  and compressed gradient  $\frac{\partial L}{\partial \hat{A}_{i+1}}$  to save backward computation.

techniques (Yu et al., 2022; Kwon et al., 2023), low-rank adaptation (Hu et al., 2022), low-rank parameter gradient (Zhao et al., 2024), and existing tensor compression techniques such as quantization (Xi et al., 2024). Our key contributions are as follows:

- We introduce a low-cost calibration technique to generate **calibrated** orthonormal bases for tensor projection, enabling significant reductions in memory and computations (Sec. 3.2).
- We project activation tensors and gradients onto these orthonormal bases. To our knowledge, this is the first work to exploit the low-rank structure of activation gradients for all types of data distribution. We provide error analysis for our gradient compression, illustrating that a high compression ratio is possible with limited performance degradation (Sec. 3.3).
- We evaluate INSTANT across multiple datasets and model architectures, consistently demonstrating good performance, achieving up to  $32\times$  memory savings and  $15\times$  computational cost reduction with only a 1% trade-off in accuracy compared to vanilla fine-tuning (Sec. 4).

## 2 RELATED WORK

**Activation compression.** Activation compression is a recently emerging research direction that addresses the memory challenges during training. This approach offers several key advantages based on the following observations: (i) model weights remain uncompressed during training, thereby preserving their expressive capacity; (ii) activations are often large and exhibit significant redundancy, making them suitable for compression (Sakr & Khailany, 2024; Miles et al., 2024). (Nguyen et al., 2024) applies SVD to compress activations to reduce huge memory usage for activations. However, this approach raises substantial computational overhead due to the high cost of performing SVD in each training iteration. (Sakr & Khailany, 2024) (ESPACE) tackles SVD computational expense by using **calibrated** subspaces, which are periodically updated, to compress activations. They enable activation compression in the forward pass to decrease computational overhead in both forward and backward phases. However, ESPACE is prone to error accumulation, as it relies on the universal fixed subspace for varying activations.

**Optimizer state compression.** Weight gradients are inherently low-rank (Yang et al., 2023a). Previous studies (Bernstein et al., 2018; Vogels et al., 2019) have leveraged this characteristic to address communication bottlenecks in distributed learning by reducing inter-device data transmission. GaLore (Zhao et al., 2024) and its variances (Muhammed et al., 2024; Shamshoum et al., 2025) leverage the low-rank property of weight gradients for compressing them to reduce memory usage in the optimizer state significantly. CompAct Shamshoum et al. (2025) further reduces the memory overhead by compressing both optimizer state and activation memory. Nonetheless, in all aforementioned techniques, the activation gradient computations still rely entirely on high-cost backpropagation.

108 **Activation gradient compression.** Gradient filtering (Yang et al., 2023c) was proposed to pool both  
 109 activation and gradient activation into a low-rank space for efficient computing. Since this technique  
 110 helps increase efficiency, the performance drop is significantly large. (Yang et al., 2023b) proposes  
 111 low-rank backpropagation via Walsh Hadamard transformation (LBP-WHT) to compress the gradient  
 112 of output for multiplications in the low-rank space, which reduces the computational complexity.  
 113 However, LBP-WHT is restricted to low-frequency inputs such as images, and achieves only modest  
 114 compression ratios, leading to constrained gains in both memory efficiency and computational reduction.  
 115 INSTANT, on the other hand, overcomes the low-frequency assumption via SVD, compressing  
 116 the gradient into a smaller space compared to LBP-WHT, and as a result, can be applied to a variety  
 117 of input types.

### 3 INSTANT

121 We start with discussing the computational and memory issues of vanilla backpropagation (Sec. 3.1).  
 122 Next, we present our efficient construction of low-rank projectors for both activation and activation  
 123 gradient in Sec. 3.2. Finally, we demonstrate our approach to perform low-rank multiplications in the  
 124 backward by using these projectors, instead of full-rank computations (Sec. 3.3). Our objective here  
 125 is to reduce both memory and computational consumption for the backpropagation.

#### 3.1 PROBLEM STATEMENT

128 In the following, for the sake of simplicity, we focus on linear layers. Extension to convolutional  
 129 layers is presented in Appendix I. Within each layer, the batch dimension and bias are omitted  
 130 without loss of generality. Let  $\mathbf{x} \in \mathbb{R}^{L \times C_x}$  denote the input activation,  $\mathbf{y} \in \mathbb{R}^{L \times C_y}$  denote the output  
 131 activation, and  $\mathbf{w} \in \mathbb{R}^{C_y \times C_x}$  denote the weight matrix, where  $L$  denote the sequence length and  $C_x$   
 132 and  $C_y$  are layer channel dimensions, which are predefined by model architecture.

133 In the forward phase, the input  $\mathbf{x}$  is propagated through the layer to compute the output:  $\mathbf{y} = \mathbf{x} \cdot \mathbf{w}^\top$ .  
 134 In supervised learning, the output of the final layer is compared against the ground truth label to  
 135 calculate a loss value  $\mathcal{L}$ . The backward pass, also known as backpropagation, computes the gradients  
 136 of this loss to input  $\mathbf{x}$  and weight  $\mathbf{w}$ . We denote  $\mathbf{g}_y = \frac{\partial \mathcal{L}}{\partial \mathbf{y}} \in \mathbb{R}^{L \times C_y}$  as gradient of the loss with  
 137 respect to the output  $\mathbf{y}$ . Gradient of the loss with respect to the input  $\mathbf{x}$ , and the weight  $\mathbf{w}$  are denoted  
 138 as  $\mathbf{g}_x = \frac{\partial \mathcal{L}}{\partial \mathbf{x}}$  and  $\mathbf{g}_w = \frac{\partial \mathcal{L}}{\partial \mathbf{w}}$ , respectively, calculated as:

$$\mathbf{g}_x = \mathbf{g}_y \cdot \mathbf{w}, \quad \mathbf{g}_w = \mathbf{g}_y^\top \cdot \mathbf{x}. \quad (1)$$

140 Here,  $\mathbf{g}_w \in \mathbb{R}^{C_y \times C_x}$  is used to update the weight  $\mathbf{w}$ , and  $\mathbf{g}_x \in \mathbb{R}^{L \times C_x}$  is propagated to the preceding  
 141 layer.

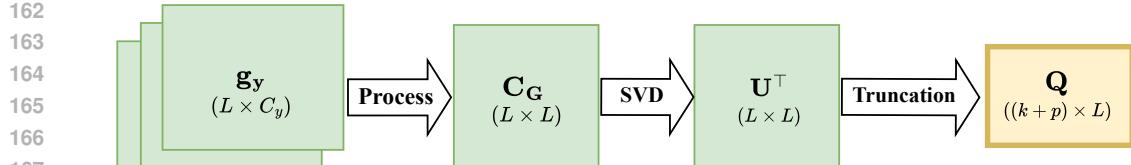
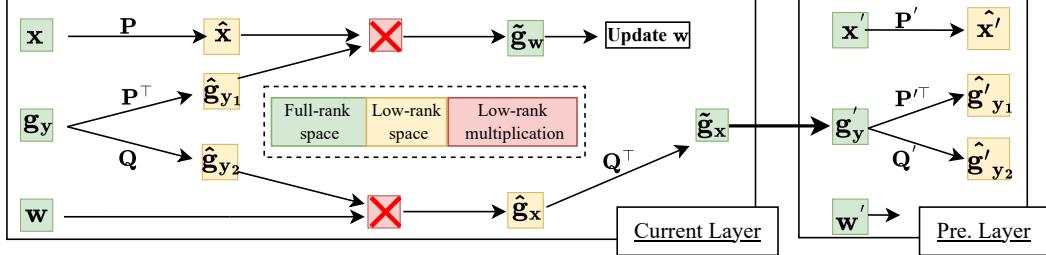
143 **Training overhead.** The backward pass (equation 1) includes two matrix multiplications, each with  
 144 the same cost, resulting in a total of  $4 \cdot L \cdot C_x \cdot C_y$  floating point operations (FLOPs). In Transformer-  
 145 based models, the values of  $L$ ,  $C_x$ , and  $C_y$  are typically large, leading to a computational burden,  
 146 especially during the backward stage. Moreover, since the backward pass requires storing the input  
 147 activation  $\mathbf{x}$  for computing  $\mathbf{g}_w$ , memory consumption can significantly increase.

148 To address the dual problems of high memory and computation, we propose a tensor decomposition  
 149 strategy for both input activation  $\mathbf{x}$  and the output gradient  $\mathbf{g}_y$ . As shown in Fig. 1, we project  
 150 the activation  $\mathbf{x}$  and gradient  $\mathbf{g}_y$  to a smaller space for storage and computing. Unlike previous  
 151 works (Yang et al., 2023b) that use universal projections for both of these tensors, we adopt adaptive  
 152 projections that better capture the crucial information of each tensor. Next, we discuss our construction  
 153 scheme of these low-rank projections for each layer.

#### 3.2 EFFICIENT CONSTRUCTION FOR TENSOR PROJECTION

156 Low-rank and low-cost projections are required to effectively compress the input activation  $\mathbf{x}$  and  
 157 the output gradient  $\mathbf{g}_y$ . Previous approach (Nguyen et al., 2024) utilizes SVD with operational  
 158 cost of  $\mathcal{O}(n^3)$  to compute these subspaces at every training step, which makes them impractical for  
 159 large-scale training.

161 To alleviate this overhead, we adopt a calibrating strategy in which we create **periodically updated**  
 compression subspaces for compressing activation  $\mathbf{x}$  and output gradient  $\mathbf{g}_y$  in substantial  $N_t$  training

(a) Constructing compression tensors  $\mathbf{Q}$  for output gradient  $\mathbf{g}_y$ . Similarly,  $\mathbf{P}$  is constructed for activation  $\mathbf{x}$ .(b) Low-rank Backpropagation algorithm with INSTANT. Instead of **full-rank multiplication** as Vanilla, INSTANT decomposes  $\mathbf{x}, \mathbf{g}_y$  to approximate  $\mathbf{g}_w$  and  $\mathbf{g}_x$  by **low-rank multiplications**.Figure 2: INSTANT backpropagation involves **calibrated** low-rank tensors  $\mathbf{P}, \mathbf{Q}$ , which are updated in calibration process. These low-rank projections reduce memory consumption of saving activation  $\mathbf{x}$  and reduce computations thanks to low-rank multiplications.

steps. For good approximations, each tensor demands its specific compression (Appendix. B.1). Our approach is inspired by ESPACE’s theoretical foundation (Sakr & Khailany, 2024) for a fixed subspace to compress the activation. Given activation tensor  $\mathbf{x} \in \mathbf{X}$ , by performing SVD on activation auto-correlation:  $\mathbf{C}_X = \mathbb{E}[\mathbf{x} \cdot \mathbf{x}^\top] = \mathbf{U}\Sigma\mathbf{U}^\top$ , where  $\mathbf{U}$  are singular vectors and  $\Sigma$  are their associated singular values, the projection matrix built from  $\mathbf{U}$  minimizes mean square error (MSE) of decomposing activation  $\mathbf{x}$  (Appendix. B.2). Different from ESPACE, we decompose both activation  $\mathbf{x}$  and output gradient  $\mathbf{g}_y$ , and do not stretch their batch dimension for these decompositions.

**Data preprocessing.** To approximate auto-correlation tensors, many data batches are required to get sufficient statistics of activation  $\mathbf{x}$  and output gradient  $\mathbf{g}_y$ . In this calibration stage, if we naively save all of this data for post-processing, it will lead to memory accumulation, which breaks the target of reducing memory. Therefore, we implement low-cost data preprocessing to limit its storage demand below that of the training phase, ensuring *low-computational calibration and peak memory usage not increase* (Appendix. B.3). For simplicity, in this section, we present the approach to find the compression subspace  $\mathbf{Q}$  for gradient  $\mathbf{g}_y$  (Fig. 2a). A similar strategy is applied for finding a compression subspace  $\mathbf{P}$  of activation  $\mathbf{x}$ .

**Singular value decomposition.** After getting output gradient auto-correlation  $\mathbf{C}_G = \mathbb{E}(\mathbf{g}_y \cdot \mathbf{g}_y^\top)$  via data preprocessing, we decompose this to get the left singular vectors  $\mathbf{U}$  and their associated singular values  $\Sigma$  in decreasing order. Projection matrix built from  $\mathbf{U}$  is proved to minimize MSE of decomposing  $\mathbf{g}_y$ .

**Truncation with energy threshold.** To reduce dimensionality while preserving information, we define energy threshold  $\epsilon$  ( $\epsilon \leq 1$ ) as the portion of tensor energy remaining after decomposition. We define  $\mathcal{E}$  as the sum of squares of all eigenvalues  $\sigma_i$  in  $\Sigma$ :

$$\mathcal{E} = \sum \sigma_i^2 = \|\mathbf{C}_G\|_F^2, \quad (2)$$

where  $\|\mathbf{C}_G\|_F^2$  is the squared Frobenius norm of  $\mathbf{C}_G$ . Following that, we truncate  $k$  vectors of  $\mathbf{U}$  to form  $\mathbf{U}_k$ , where truncation index  $k$  is the minimal integer satisfying:  $\sum_{i=1}^k \sigma_i^2 \geq \epsilon \cdot \mathcal{E}$ . When  $\epsilon \rightarrow 1$ , this truncation strategy preserves most of tensor energy, hence assigning  $\mathbf{Q} = \mathbf{U}_k^\top$  reduces decomposition MSE between  $\mathbf{g}_y$  and its reconstruction  $\tilde{\mathbf{g}}_y = \mathbf{Q}^\top \cdot \mathbf{Q} \cdot \mathbf{g}_y$ . Compression tensor  $\mathbf{Q}$  is extremely smaller than  $\mathbf{g}_y$  due to its low-rank characteristic (as shown in Sec. 4.2), therefore,  $\mathbf{Q}$  can reduce memory and computational expense when joining backward operations (Fig. 2b).

216 **Truncation with Oversampling.** The energy threshold ensures that a certain amount of information  
 217 is preserved when the calibration happens. However, as training progresses, this projection may no  
 218 longer suffice to maintain that amount of information, since the core bases to project on can vary. To  
 219 address this, we propose oversampling, which increases the number of base projections by a fixed  
 220 value, helping to reduce information loss when the core bases change (Fig. 2a). This truncation  
 221 technique is proven to be effective in Sec. 4.4 and further investigated in Appendix F.

222 Dropping lower singular values leads to accumulated energy loss when backpropagating reconstructed  
 223 tensors. We, therefore, propose an energy offset mechanism to compensate for this loss in each  
 224 truncation. Finally,  $\mathbf{Q}$  is given as:

$$226 \quad \mathbf{Q} = \mathbf{U}_{\mathbf{k}+\mathbf{p}}^\top \cdot \left( \sum_{i=1}^{k+p} \sigma_i^2 \right)^{-\frac{1}{2}}, \quad (3)$$

227 where  $\mathbf{Q} \in \mathbb{R}^{R_y \times L}$ , with  $R_y = k + p$ . Applying the similar strategy, we find compression  
 228 subspace  $\mathbf{P} \in \mathbb{R}^{R_x \times L}$  for low-rank activation  $\mathbf{x}$ .

### 232 3.3 LOW-RANK BACKPROPAGATION WITH INSTANT

234 The activation and gradient can be mapped onto low-rank spaces with two projection tensors con-  
 235 structed in Sec. 3.2. This part will demonstrate the use of these low-rank matrices  $\mathbf{P}$  and  $\mathbf{Q}$  in our  
 236 training process. Our overall training pipeline is depicted in Fig. 1, while the detailed technique for  
 237 handling the low-rank backward is illustrated in Fig. 2b.

238 Since changing the forward pass of the network can cause a significant performance drop, we keep  
 239 the forward pass  $\mathbf{y} = \mathbf{x} \cdot \mathbf{w}^\top$  unchanged. Meanwhile, the activation map  $\mathbf{x}$  is projected into a smaller  
 240 space:  $\hat{\mathbf{x}} = \mathbf{P} \cdot \mathbf{x}$  where  $\mathbf{P} \in \mathbb{R}^{R_x \times L}$ ,  $\hat{\mathbf{x}} \in \mathbb{R}^{R_x \times C_x}$  with  $R_x \ll L$ . This compressed activation  $\hat{\mathbf{x}}$  is  
 241 retained in memory in place of  $\mathbf{x}$  for the backward pass, which saves a large amount of memory.

242 The backpropagation process of INSTANT is described in Fig. 2b. By the property of the low-rank  
 243 projection tensor  $\mathbf{P}$  built in Sec. 3.2:  $\mathbf{x} \approx \mathbf{P}^\top \cdot \mathbf{P} \cdot \mathbf{x}$ , weight gradient is approximated:

$$246 \quad \mathbf{g}_w = \mathbf{g}_y^\top \cdot \mathbf{x} \approx \mathbf{g}_y^\top \cdot (\mathbf{P}^\top \cdot \mathbf{P} \cdot \mathbf{x}) = (\mathbf{g}_y^\top \cdot \mathbf{P}^\top) \cdot (\mathbf{P} \cdot \mathbf{x}) \quad (4)$$

248 This reordering results  $\mathbf{g}_w \approx \tilde{\mathbf{g}}_w = \hat{\mathbf{g}}_{y_1} \cdot \hat{\mathbf{x}}$  with 2 low-dimensional spaces  $\hat{\mathbf{g}}_{y_1} \in \mathbb{R}^{R_x \times C_y}$  and  
 249  $\hat{\mathbf{x}} \in \mathbb{R}^{R_x \times C_x}$  with  $R_x \ll \min(L, C_x, C_y)$ , as illustrated in Fig. 2b.

251 Similarly, by the property of low-rank projection tensor  $\mathbf{Q}$  built in Sec. 3.2:  $\mathbf{g}_y \approx \mathbf{Q}^\top \cdot \mathbf{Q} \cdot \mathbf{g}_y$ , input  
 252 gradient is approximated with 3 low-rank multiplications:

$$255 \quad \hat{\mathbf{g}}_{y_2} = \mathbf{Q} \cdot \mathbf{g}_y, \quad \hat{\mathbf{g}}_x = \hat{\mathbf{g}}_{y_2} \cdot \mathbf{w}, \quad \tilde{\mathbf{g}}_x = \mathbf{Q}^\top \cdot \hat{\mathbf{g}}_x. \quad (5)$$

256 where  $\hat{\mathbf{g}}_{y_2} \in \mathbb{R}^{R_y \times C_y}$ ,  $\hat{\mathbf{g}}_x \in \mathbb{R}^{R_y \times C_x}$  (2 low-rank spaces). Finally, the approximated input  
 257 gradient  $\tilde{\mathbf{g}}_x \in \mathbb{R}^{L \times C_x}$ , is propagated to the preceding layer.

259 Equation 4 and equation 5 will cause error compared to traditional backpropagation. **This error is**  
 260 **mathematically proved to be negligible with our low-rank projection scheme** (Appendix. C).

261 **Training overhead.** In total, the computational cost of INSTANT for backpropagating one  
 262 layer, which includes low-rank compression, low-rank computation, and reverse projection,  
 263 is  $2 \cdot (R_x + R_y) \cdot (C_x \cdot C_y + L \cdot C_x + L \cdot C_y)$  FLOPs as shown in the Appendix. D.1. Given  
 264 that  $R_x + R_y \ll \min(L, C_x, C_y)$ , this number is much smaller than  $4 \cdot L \cdot C_x \cdot C_y$  of vanilla train-  
 265 ing. For example, one BERT block has  $L = 512, C_x = C_y = 768$ , choosing  $R_x = R_y = 8$  can save  
 266 about  $27 \times$  FLOPs. Remarkably,  $\mathbf{P}$ ,  $\mathbf{Q}$ , and  $\hat{\mathbf{x}} = \mathbf{P} \cdot \mathbf{x}$  are only used during training, meaning that at  
 267 inference time, there is no trade-off in memory or computation compared to traditional inference.  
 268 Moreover, INSTANT focuses solely on reducing computational and memory costs during backpropa-  
 269 gation, without modifying the optimizer state. INSTANT is orthogonal and can be combined with all  
 techniques that compress the optimizer state.

270 4 RESULTS  
271272 4.1 EXPERIMENTAL SETUP  
273

274 **Computer vision tasks.** We conduct experiments for image classification with a similar setup to  
275 LBP-WHT (Yang et al., 2023b). We assess our method on ImageNet (Russakovsky et al., 2015)-  
276 pretrained Vision Transformer models (EfficientFormer-L1 (Li et al., 2022), EfficientFormerV2-S0 (Li  
277 et al., 2023), and SwinV2-Small (Liu et al., 2022)) by fine-tuning them on five different datasets  
278 for 50 epochs. The details about the datasets are discussed in the Appendix. We use a batch size of  
279 64 and use AdamW optimizer with the same learning rate schedules as in (Yang et al., 2023b). To  
280 balance training efficiency with performance, the calibration process is carried out every  $N_t = 200$   
281 iterations, and an energy threshold  $\epsilon = 95\%$  is kept constant throughout all experiments, with only  
282 the oversampling hyperparameter  $p$  being varied. In Tab. 1 and Tab. 2, we denote INSTANT- $p$  as  
283 our method with energy threshold of  $\epsilon = 95\%$  and oversampling  $p$  vectors. For fine-tuning the last  
284 layer,  $p$  is tested with values of 0, 5, and 7, while for fine-tuning the entire model,  $p$  is tested with  
285 values of 5, 10, and 15.

286 **Natural language processing tasks.** We employ two Transformer-based models (BERT (Devlin  
287 et al., 2019) and DistilBERT (Sanh et al., 2019)), which are pretrained on Wikipedia and BookCorpus.  
288 We utilise the GLUE benchmark (Wang et al., 2018) to evaluate model performance, including 6  
289 datasets: CoLA, QNLI, MRPC, RTE, SST-2, and MNLI. For each dataset, each model is fine-tuned  
290 for 10 epochs with the AdamW optimizer and a batch size of 32. To balance between training  
291 efficiency and performance, the calibration process is carried out after each  $N_t = 50$  iterations, and  
292 we maintain an energy threshold  $\epsilon = 95\%$  across all experiments, adjusting only the oversampling  
293 hyperparameter  $p$ . For fine-tuning the last layer, we test  $p$  with values of 0, 7, and 15, while for  
294 fine-tuning the entire model,  $p$  is tested with values of 7, 15, and 25.

295 **Baseline.** Besides vanilla fine-tuning (Vanilla in Tab. 1, 2), we also reproduce and evaluate 2 other  
296 methods: Gradient Filter (Yang et al., 2023c) and LBP-WHT (Yang et al., 2023b). For image  
297 classification tasks, we strictly follow the authors' setup and configuration, while for language tasks,  
298 we reshape the sequence length of each input into an appropriate two-dimensional tensor to apply their  
299 method. We use the notation LBP-WHT- $o$  like the authors, with  $o$  being the order that decides the rank  
300 of the compressing subspace. We compare each method based on average accuracy (mAcc), average  
301 Mega FLOPs (MFLOPs), and average activation memory consumption (Mem). Notably, FLOPs and  
302 memory are only reported for the Linear layers, which are the heaviest computational components in  
303 these architectures. We measure computational cost using FLOPs instead of time, as it's unaffected by  
304 implementation details. Therefore, this metric allows us to evaluate the efficiency gains from a better  
305 algorithm rather than implementation aspects. All experiments are performed on a NVIDIA TESLA  
306 V100, and the source code uses PyTorch 1.13.1. We use the MMCV library (Contributors, 2018)  
307 for CV tasks and use the Hugging Face library (Wolf et al., 2020) for NLP tasks.

308 4.2 THE ACTIVATION GRADIENT IS LOW-RANK  
309

310 We conduct experiments with BERT on the MRPC dataset. In the fine-tuning process, we randomly  
311 select some samples and track their gradients corresponding to the output at each layer. SVD is then  
312 applied to each gradient to extract its eigenvalues. As shown in Fig. 3, the number of ranks required to  
313 keep  $\epsilon = 95\%$  of energy is only 6. Since most of the energy is concentrated in a few top eigenvalues,  
314 it suggests that a small number of ranks can retain a significant portion of the gradient's information.  
315 We have validated this phenomenon in a wider range of samples and layers. Further details for other  
316 layers in other architectures are provided in the Appendix L.5. This observation supports our idea of  
317 projecting the activation gradient into a smaller subspace, where we perform computations to reduce  
318 computational cost while preserving a large amount of the gradient's information.

319 4.3 MAIN RESULTS  
320

321 **Computer vision tasks.** Tab. 1 presents the results of INSTANT in comparison with vanilla fine-  
322 tuning and other gradient and activation compression methods on Vision Transformer models. It is  
323 noticeable that INSTANT achieves a significant reduction in both MFLOPs and memory usage com-  
pared to Vanilla. In EfficientFormer, INSTANT-0 witnesses drops from 2% to 5% compared to Vanilla,  
especially in high variance datasets such as CF100, Flowers, and Foods. This is possibly because the

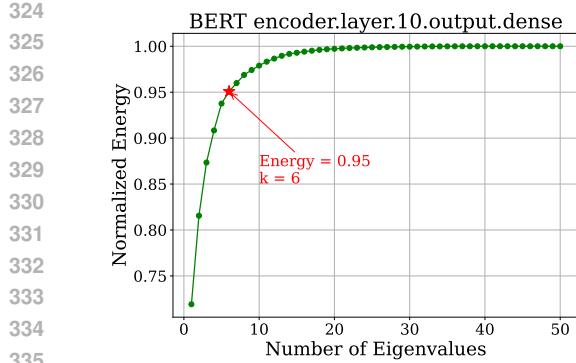


Figure 3: The percentage of energy retained depends on the number of eigenvalues in one layer in BERT.

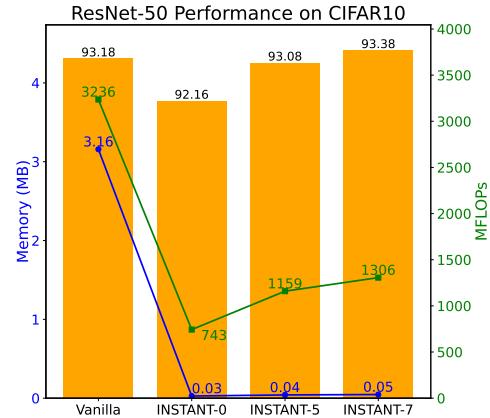


Figure 4: Fine-tuning ResNet-50 on CIFAR10

Table 1: Experimental results across 5 different CV datasets, presented for both fine-tuning the last block and the entire model. We report the MFLOPs and memory (Mem) required for training a single sample. Detailed measurement methodologies can be found in the Appendix. D.1, D.2, D.3

| Fine-tuning the Last Block |                    |          |            |          |        |           |        |        |              |
|----------------------------|--------------------|----------|------------|----------|--------|-----------|--------|--------|--------------|
| Model                      | Method             | MFLOPs ↓ | Mem (MB) ↓ | Datasets |        |           |        |        | mAcc ↑       |
|                            |                    |          |            | CF100 ↑  | CF10 ↑ | Flowers ↑ | Food ↑ | Pets ↑ |              |
| Efficient Former-L1        | Vanilla            | 1484     | 1.95       | 79.28    | 95.23  | 95.50     | 84.04  | 93.13  | 89.44        |
|                            | Gradient Filtering | 24       | 0.04       | 68.29    | 90.72  | 90.01     | 74.61  | 88.93  | 82.51        |
|                            | LBP-WHT-2          | 95       | 0.12       | 75.61    | 93.35  | 95.07     | 79.65  | 92.34  | 87.20        |
|                            | LBP-WHT-4          | 335      | 0.40       | 78.27    | 94.6   | 95.53     | 82.37  | 93.16  | 88.79        |
|                            | LBP-WHT-8          | 1227     | 1.43       | 79.34    | 95.31  | 95.58     | 83.98  | 92.94  | <b>89.43</b> |
|                            | INSTANT-0          | 270      | 0.16       | 77.64    | 94.66  | 92.23     | 81.97  | 92.64  | 87.83        |
|                            | INSTANT-5          | 475      | 0.38       | 78.65    | 95.07  | 95.93     | 82.84  | 93.21  | 89.14        |
| Efficient FormerV2-S0      | INSTANT-7          | 544      | 0.45       | 79.01    | 95.23  | 95.92     | 83.05  | 93.02  | <b>89.25</b> |
|                            | Vanilla            | 349      | 1.47       | 72.37    | 92.63  | 92.73     | 81.44  | 90.52  | 85.94        |
|                            | Gradient Filtering | 7        | 0.03       | 64.17    | 87.03  | 87.9      | 73.67  | 85.55  | 79.66        |
|                            | LBP-WHT-2          | 28       | 0.09       | 65.75    | 88.68  | 89.51     | 74.72  | 87.49  | 81.23        |
|                            | LBP-WHT-4          | 99       | 0.30       | 69.03    | 90.88  | 90.73     | 79.45  | 89.29  | <b>83.88</b> |
|                            | LBP-WHT-8          | 363      | 1.08       | 71.90    | 92.29  | 92.60     | 81.07  | 90.52  | <b>85.68</b> |
|                            | INSTANT-0          | 119      | 0.03       | 64.51    | 89.62  | 87.94     | 76.77  | 88.12  | 81.39        |
| SwinV2 Small               | INSTANT-5          | 161      | 0.15       | 68.61    | 90.85  | 90.86     | 79.07  | 88.83  | 83.64        |
|                            | INSTANT-7          | 181      | 0.20       | 69.42    | 91.05  | 90.52     | 79.52  | 88.88  | <b>83.88</b> |
|                            | Vanilla            | 2718     | 2.25       | 80.84    | 96.07  | 97.61     | 88.31  | 95.53  | 91.67        |
|                            | Gradient Filtering | 37       | 0.04       | 80.19    | 95.68  | 97.4      | 87.31  | 94.9   | 91.10        |
|                            | LBP-WHT-2          | 141      | 0.12       | 80.23    | 95.65  | 97.50     | 88.06  | 94.47  | 91.18        |
|                            | LBP-WHT-4          | 499      | 0.41       | 80.39    | 95.71  | 97.54     | 88.32  | 94.66  | 91.32        |
|                            | LBP-WHT-8          | 1830     | 1.48       | 80.80    | 95.80  | 97.56     | 88.19  | 95.07  | 91.48        |
| Efficient Former-L1        | INSTANT-0          | 181      | 0.05       | 80.55    | 95.69  | 97.43     | 88.30  | 95.12  | 91.42        |
|                            | INSTANT-5          | 435      | 0.26       | 80.85    | 95.91  | 97.38     | 88.42  | 95.20  | <b>91.55</b> |
|                            | INSTANT-7          | 530      | 0.33       | 80.98    | 95.96  | 97.45     | 88.29  | 95.23  | <b>91.58</b> |
| Full fine-tuning           |                    |          |            |          |        |           |        |        |              |
| Efficient Former-L1        | Vanilla            | 4528     | 18.46      | 84.84    | 96.99  | 94.84     | 85.64  | 93.16  | 91.09        |
|                            | Gradient Filtering | 90       | 0.34       | 41.05    | 75.22  | 69.41     | 41.49  | 61.00  | 57.63        |
|                            | LBP-WHT-4          | 1211     | 3.36       | 77.97    | 94.13  | 93.38     | 41.88  | 92.23  | 79.92        |
|                            | LBP-WHT-6          | 2560     | 7.05       | 83.00    | 96.45  | 94.58     | 83.77  | 92.86  | 90.13        |
|                            | LBP-WHT-8          | 4400     | 12.08      | 83.88    | 96.78  | 94.70     | 85.08  | 93.32  | <b>90.75</b> |
|                            | INSTANT-5          | 2107     | 1.98       | 82.41    | 96.29  | 94.50     | 83.87  | 92.78  | 89.97        |
|                            | INSTANT-10         | 2491     | 2.73       | 83.05    | 96.48  | 94.73     | 84.66  | 93.13  | 90.41        |
| Efficient Former-L1        | INSTANT-15         | 2884     | 3.45       | 83.56    | 96.85  | 94.47     | 84.85  | 93.1   | 90.57        |

strict energy threshold approach in INSTANT-0 is not efficient with varying distributions of these datasets. INSTANT-5, INSTANT-7 successfully deal with this issue, which supports the statement that only considering tensor energy is not sufficient. Compared to LBP-WHT, in EfficientFormer-L1 and SwinV2, INSTANT-5 gains comparable performance to LBP-WHT-8 with only 25% computation and 18% memory consumption. In the full-finetuning, INSTANT-10 outperforms LBP-WHT-6, and compared to Vanilla, it gains 1.8 $\times$  computational reduction and 6.3 $\times$  memory decrease in average,

378  
 379 Table 2: Experimental results on GLUE benchmark, presented for both fine-tuning the last layer and  
 380 the entire model. We report the MFLOPs and memory (Mem) required for training a single sample.  
 381 Detailed measurement methodologies can be found in the Appendices D.1, D.2, D.3

| Fine-tuning the Last Block |                 |          |            |          |        |        |       |         |        |              |
|----------------------------|-----------------|----------|------------|----------|--------|--------|-------|---------|--------|--------------|
| Model                      | Method          | MFLOPs ↓ | Mem (MB) ↓ | Datasets |        |        |       |         |        | mAcc ↑       |
|                            |                 |          |            | MRPC ↑   | CoLA ↑ | QNLI ↑ | RTE ↑ | SST-2 ↑ | MNLI ↑ |              |
| BERT                       | Vanilla         | 14495    | 13.50      | 83.92    | 43.55  | 86.12  | 59.21 | 91.63   | 78.31  | 73.79        |
|                            | Gradient Filter | 226      | 0.21       | 82.16    | 40.97  | 75.87  | 58.48 | 88.30   | 63.12  | 68.15        |
|                            | LBP-WHT-2       | 732      | 0.63       | 82.21    | 41.09  | 79.32  | 59.21 | 89.11   | 68.17  | 69.85        |
|                            | LBP-WHT-4       | 2464     | 2.11       | 82.33    | 42.46  | 83.82  | 58.84 | 90.71   | 73.62  | 71.96        |
|                            | INSTANT-0       | 175      | 0.03       | 82.21    | 41.35  | 79.33  | 61.73 | 90.71   | 64.39  | 69.95        |
|                            | INSTANT-7       | 565      | 0.21       | 82.33    | 41.58  | 84.13  | 62.09 | 90.94   | 72.92  | 72.33        |
| Distil-BERT                | INSTANT-15      | 1018     | 0.42       | 83.31    | 43.02  | 84.68  | 61.01 | 91.63   | 74.68  | <b>73.06</b> |
|                            | Vanilla         | 14495    | 13.50      | 82.55    | 35.52  | 82.85  | 59.21 | 88.99   | 73.60  | 70.45        |
|                            | Gradient Filter | 226      | 0.21       | 82.46    | 32.80  | 73.99  | 58.48 | 85.89   | 54.31  | 64.66        |
|                            | LBP-WHT-2       | 732      | 0.63       | 82.58    | 33.54  | 76.86  | 58.12 | 87.61   | 60.43  | 66.52        |
|                            | LBP-WHT-4       | 2464     | 2.11       | 82.46    | 31.73  | 80.62  | 56.68 | 89.11   | 67.56  | 68.03        |
|                            | INSTANT-0       | 160      | 0.03       | 82.14    | 29.89  | 74.81  | 58.84 | 88.30   | 62.42  | 66.07        |
| BERT                       | INSTANT-7       | 546      | 0.21       | 82.41    | 33.50  | 80.49  | 59.57 | 89.56   | 68.52  | <b>69.01</b> |
|                            | INSTANT-15      | 999      | 0.42       | 82.41    | 32.96  | 80.93  | 58.12 | 88.99   | 69.68  | 68.85        |
| Full fine-tuning           |                 |          |            |          |        |        |       |         |        |              |
| Vanilla                    | 173946          | 162      | 90.23      | 58.69    | 91.43  | 67.51  | 93.23 | 84.46   | 80.76  |              |
| Gradient Filter            | 2716            | 2.53     | 84.49      | 43.02    | 81.62  | 64.98  | 87.96 | 68.60   | 71.78  |              |
| LBP-WHT-2                  | 8784            | 7.59     | 86.64      | 48.60    | 84.14  | 63.90  | 89.11 | 70.91   | 73.88  |              |
| LBP-WHT-4                  | 29579           | 25.31    | 87.80      | 46.12    | 86.16  | 65.70  | 90.94 | 77.32   | 75.67  |              |
| INSTANT-7                  | 9143            | 2.83     | 87.93      | 57.71    | 89.66  | 64.62  | 92.22 | 81.36   | 78.92  |              |
| BERT                       | INSTANT-15      | 15353    | 5.43       | 87.97    | 58.08  | 90.63  | 62.82 | 92.43   | 83.06  | 79.17        |
|                            | INSTANT-25      | 20753    | 8.52       | 89.47    | 57.29  | 90.79  | 63.54 | 93.35   | 83.45  | <b>79.65</b> |

401  
 402 at the expense of 0.8% accuracy drop. It is noticeable that LBP-WHT-8 gains good performance at  
 403 the expense of a small compression rate, especially in computation. Meanwhile, although Gradient  
 404 Filter can save a large amount of computational resources, the performance drops remarkably. This  
 405 shows that this method cannot keep enough information for low-rank projection.

406  
 407 **Natural language processing tasks.** Tab. 2 illustrates INSTANT’s effectiveness on 6 datasets of the  
 408 GLUE benchmark. In fine-tuning the last block, compared to Vanilla, INSTANT-15 can save  $14.37 \times$   
 409 FLOPs and  $32.14 \times$  in memory, with a small reduction in accuracy of 1.17%. Notably, the difference  
 410 in mAcc mainly comes from the MNLI dataset. This may be due to the large distribution of the  
 411 dataset, which causes the method to struggle in finding an appropriate low-rank space. We believe  
 412 that performance on this dataset can be further improved by increasing the oversampling amount.  
 413 Compared to LBP-WHT, in BERT, INSTANT-7 achieves a 2.48% accuracy boost over LBP-WHT-2,  
 414 while it requires only about 75% of the FLOPs and 33% of the memory. In the full fine-tuning, it is  
 415 evident that INSTANT experiences a slight performance decline compared to the Vanilla baseline. In  
 416 contrast, LBP-WHT shows larger performance degradation across various datasets. This indicates  
 417 that the low-frequency transformation assumption may not work well in language tasks. INSTANT,  
 418 with its SVD-based projection, can mitigate this issue to some extent, which translates to better  
 419 performance compared to LBP-WHT. **Note that calibration computational overhead is excluded from**  
 420 **Tab.1, Tab.2. This overhead is proven to be much smaller than training overhead in Appendix B.3.**

421  
 422 **Extension to convolution.** INSTANT is applicable to convolutional layers (as shown in Appendix. I).  
 423 We conduct experiments on MobileNetV2 and ResNet-50 architectures on CIFAR10 and CIFAR100.  
 424 As indicated in Fig.4, INSTANT can achieve a small accuracy boost with  $3 \times$  computation savings and  
 425  $79 \times$  memory savings, compared to Vanilla. Extra results are indicated in Fig.9. These results prove  
 426 the efficiency of INSTANT on all architectures, including both Transformer-based and Convolutional-  
 427 based models.

428  
 429 **Edge device latency.** We conduct experiments on Raspberry Pi 5 (CPU ARM Cortex-A76). We  
 430 report the average training time over 1 epoch on CIFAR10. The experimental setup is the same as the  
 431 one indicated as Sec 4.1. By saving computations, INSTANT reduces  $2 \times$  of backward time, which  
 432 decreases the average total training time, compared to Vanilla, as shown in Fig. 5. The time reduction  
 433 is up to  $12 \times$  in another architecture, as indicated in the Appendix. J.1. However, INSTANT may  
 434 increase latency on the GPU, as shown in the Appendix. J.2.

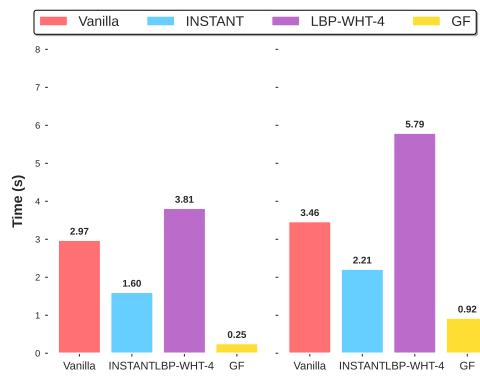


Figure 5: Training time of EfficientFormer-L1 on CIFAR10 on a Raspberry Pi 5.

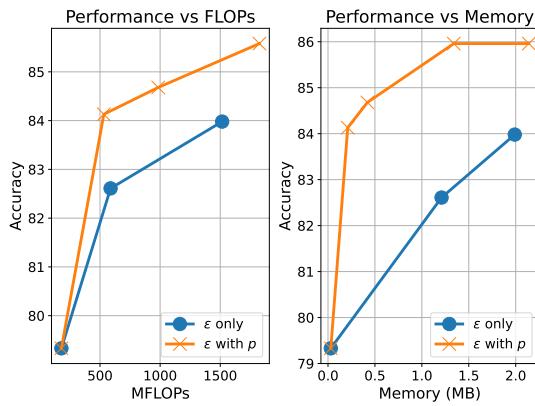


Figure 6: INSTANT performance with oversampling

#### 4.4 ABLATION STUDY

**Compressing both components has practical benefits.** We conduct ablation studies of *compressing only  $g_y$*  (INSTANT (compress  $g_y$ )) and *compressing only  $x$*  (INSTANT (compress  $x$ )); presented in Appendix K.1. We find that, compressing  $x$  may be a good option when considering only memory savings. On the other hand, using INSTANT with *dual-compression* leads to reduced FLOPs and training time, in addition to memory, with practically negligible performance drop.

**Energy is not enough.** The energy threshold  $\epsilon$  is a local measure for truncating the compression tensor, which is based completely on the calibration data. This hyperparameter does not account for the change of low-rank space during training, leading to a possible performance drop. As shown in Fig. 6, with a similar budget of FLOPs/memory,  $\epsilon$ -only truncation achieves a lower accuracy compared to  $\epsilon$  truncation with oversampling.

**Efficient training-aware subspaces.** INSTANT allows for selecting adaptive subspaces customized for each layer, via truncation strategies (Sec. 3.2). With different datasets, to keep the same amount of information, there is a large difference in the subspace ranks, which makes FLOPs vary during the training process (Appendix L.6). This rank adaptiveness controls the loss of tensor information, leading to a small drop in accuracy while reducing a huge number of FLOPs by eliminating the projection onto redundant subspaces. In addition, this also helps to achieve more efficient memory storage. As we observe, with the same energy threshold  $\epsilon$ , the rank  $R_x$  of truncated activation  $\hat{x}$  is typically smaller than the rank  $R_y$  of truncated gradients  $\hat{g}_y$  and much smaller than the natural rank  $L$  of activation  $x$ . Therefore, INSTANT requires much lower activation storage than Vanilla.

## 5 CONCLUSION

In this study, we introduced INSTANT, a highly efficient backpropagation method for Transformer models that targets two key bottlenecks in resource-efficient training: memory consumption and computational complexity. INSTANT constructs efficient low-rank projectors to compress both the activation during the forward pass and the gradient of the output during the backward pass (Sec. 3). We demonstrate the low-rank nature of the activation gradient (Sec. 4.2), and show that jointly compressing activation and gradient substantially reduces the computational overhead of the training (Sec. 4.3). This work explores the relatively underexamined area of gradient compression and low-cost tensor decomposition as a means for scalable and resource-efficient model training.

486 REPRODUCIBILITY STATEMENT  
487488 Our study is conducted entirely in a reproducible manner. We provide dataset descriptions, imple-  
489 mentation details, and discuss our experimental design in detail, in the main text and the appendices.  
490 Moreover, we provide the code as supplementary material for review, and it will be made publicly  
491 available upon the paper’s acceptance.  
492493 REFERENCES  
494495 Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:  
496 Compressed optimisation for non-convex problems. In *International Conference on Machine*  
497 *Learning*, pp. 560–569. PMLR, 2018.498 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101—mining discriminative compo-  
499 nents with random forests. In *Computer vision—ECCV 2014: 13th European conference, zurich,*  
500 *Switzerland, September 6–12, 2014, proceedings, part VI 13*, pp. 446–461. Springer, 2014.501 Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural networks  
502 for document processing. In *Tenth international workshop on frontiers in handwriting recognition*.  
503 Suvisoft, 2006.504 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina  
505 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint*  
506 *arXiv:1905.10044*, 2019.507 MMCV Contributors. MMCV: OpenMMLab computer vision foundation. <https://github.com/open-mmlab/mmcv>, 2018.508 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep  
509 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*  
510 *the North American chapter of the association for computational linguistics: human language*  
511 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.512 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
513 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An  
514 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*  
515 *arXiv:2010.11929*, 2020.516 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
517 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,  
518 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,  
519 2021. URL <https://arxiv.org/abs/2010.11929>.520 Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer. *arXiv preprint*  
521 *arXiv:2104.01778*, 2021.522 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
523 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

524 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

525 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph  
526 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model  
527 serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems*  
528 *Principles*, pp. 611–626, 2023.529 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,  
530 and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. *Advances in Neural*  
531 *Information Processing Systems*, 35:12934–12949, 2022.532 Yanyu Li, Ju Hu, Yang Wen, Georgios Evangelidis, Kamyar Salahi, Yanzhi Wang, Sergey Tulyakov,  
533 and Jian Ren. Rethinking vision transformers for mobilenet size and speed. In *Proceedings of the*  
534 *IEEE/CVF International Conference on Computer Vision*, pp. 16889–16900, 2023.

540 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike  
 541 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining  
 542 approach. *arXiv preprint arXiv:1907.11692*, 2019.

543

544 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.  
 545 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*  
 546 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021a.

547

548 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng  
 549 Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In *Proceedings of*  
 550 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12009–12019, 2022.

551

552 Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quantization  
 553 for vision transformer. *Advances in Neural Information Processing Systems*, 34:28092–28103,  
 2021b.

554

555 Roy Miles, Pradyumna Reddy, Ismail Elezi, and Jiankang Deng. Velora: Memory efficient training  
 556 using rank-1 sub-token projections. *Advances in Neural Information Processing Systems*, 37:  
 557 42292–42310, 2024.

558

559 Aashiq Muhamed, Oscar Li, David Woodruff, Mona Diab, and Virginia Smith. Grass: Compute effi-  
 560 cient low-memory llm training with structured sparse gradients. *arXiv preprint arXiv:2406.17660*,  
 2024.

561

562 Le-Trung Nguyen, Aël Quénellec, Enzo Tartaglione, Samuel Tardieu, and Van-Tam Nguyen.  
 563 Activation map compression through tensor decomposition for deep learning. In *The Thirty-  
 564 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=S93hrwT8u9>.

565

566 M-E Nilsback and Andrew Zisserman. A visual vocabulary for flower classification. In *2006 IEEE*  
 567 *computer society conference on computer vision and pattern recognition (CVPR'06)*, volume 2, pp.  
 568 1447–1454. IEEE, 2006.

569

570 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012*  
 571 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

572

573 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language  
 574 understanding by generative pre-training, 2018.

575

576 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 577 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 578 models from natural language supervision. In *International conference on machine learning*, pp.  
 579 8748–8763. PMLR, 2021.

580

581 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,  
 582 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition  
 583 challenge. *International journal of computer vision*, 115:211–252, 2015.

584

585 Charbel Sakr and Brucek Khailany. Espace: Dimensionality reduction of activations for model  
 586 compression. *arXiv preprint arXiv:2410.05437*, 2024.

587

588 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of  
 589 bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.

590

591 Yara Shamshoum, Nitzan Hodos, Yuval Sieradzki, and Assaf Schuster. Compact: Compressed  
 592 activations for memory-efficient llm training. In *Proceedings of the 2025 Conference of the Nations*  
 593 *of the Americas Chapter of the Association for Computational Linguistics: Human Language*  
*Technologies (Volume 1: Long Papers)*, pp. 1511–1524, 2025.

594

595 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus  
 596 Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model. In  
 597 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15638–  
 598 15650, 2022.

594 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert: a  
 595 compact task-agnostic bert for resource-limited devices. *arXiv preprint arXiv:2004.02984*, 2020.  
 596

597 Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient  
 598 compression for distributed optimization. *Advances in Neural Information Processing Systems*, 32,  
 599 2019.

600 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:  
 601 A multi-task benchmark and analysis platform for natural language understanding. *arXiv preprint  
 602 arXiv:1804.07461*, 2018.

603

604 Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value  
 605 decomposition for large language model compression, 2025. URL <https://arxiv.org/abs/2403.07378>.

606

607 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,  
 608 Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art  
 609 natural language processing. In *Proceedings of the 2020 conference on empirical methods in  
 610 natural language processing: system demonstrations*, pp. 38–45, 2020.

611

612 Haocheng Xi, Han Cai, Ligeng Zhu, Yao Lu, Kurt Keutzer, Jianfei Chen, and Song Han. Coat:  
 613 Compressing optimizer states and activation for memory-efficient fp8 training. *arXiv preprint  
 614 arXiv:2410.19313*, 2024.

615

616 Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. *arXiv  
 617 preprint arXiv:2310.17813*, 2023a.

618

619 Yuedong Yang, Hung-Yueh Chiang, Guihong Li, Diana Marculescu, and Radu Marculescu. Efficient  
 620 low-rank backpropagation for vision transformer adaptation. *Advances in Neural Information  
 621 Processing Systems*, 36:14725–14736, 2023b.

622

623 Yuedong Yang, Guihong Li, and Radu Marculescu. Efficient on-device training via gradient filtering.  
 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 3811–3820, 2023c.

624

625 Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:  
 626 A distributed serving system for {Transformer-Based} generative models. In *16th USENIX  
 627 Symposium on Operating Systems Design and Implementation (OSDI 22)*, pp. 521–538, 2022.

628

629 Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-  
 aware singular value decomposition for compressing large language models. *arXiv preprint  
 630 arXiv:2312.05821*, 2023.

631

632 Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small  
 language model. *arXiv preprint arXiv:2401.02385*, 2024.

633

634 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong  
 635 Tian. Galore: Memory-efficient llm training by gradient low-rank projection. *arXiv preprint  
 636 arXiv:2403.03507*, 2024.

637

638 Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10  
 639 million image database for scene recognition. *IEEE transactions on pattern analysis and machine  
 intelligence*, 40(6):1452–1464, 2017.

640

641

642

643

644

645

646

647

648 A MATH NOTATIONS.  
649650 We provide the table of all our math notations:  
651652 Table 3: Table of symbols  
653

| 654 Symbol     | 655 Space                     | 656 Meaning                                                        |
|----------------|-------------------------------|--------------------------------------------------------------------|
| $L$            | $\mathbb{R}$                  | Sequence length                                                    |
| $C_x$          | $\mathbb{R}$                  | Layer input features                                               |
| $C_y$          | $\mathbb{R}$                  | Layer output features                                              |
| $R_x$          | $\mathbb{R}$                  | Rank of activation in low-rank space                               |
| $R_y$          | $\mathbb{R}$                  | Rank of gradient activation in low-rank space                      |
| $N_t$          | $\mathbb{R}$                  | The number of training steps for each calibration                  |
| $\sigma_i$     | $\mathbb{R}$                  | The $i$ -th eigenvalue                                             |
| $\epsilon$     | $\mathbb{R}$                  | The energy threshold                                               |
| $\mathcal{E}$  | $\mathbb{R}$                  | Sum of squares of all eigenvalues                                  |
| $k$            | $\mathbb{R}$                  | The eigenvalue's index to keep $\epsilon$ total energy             |
| $p$            | $\mathbb{R}$                  | Oversampling value                                                 |
| $\mathcal{L}$  | $\mathbb{R}$                  | Loss value used to backpropagate                                   |
| $\mathbf{x}$   | $\mathbb{R}^{L \times C_x}$   | Input of a linear layer without batch dimension                    |
| $\mathbf{y}$   | $\mathbb{R}^{L \times C_y}$   | Output of a linear layer without batch dimension                   |
| $\mathbf{w}$   | $\mathbb{R}^{C_y \times C_x}$ | Weight of a linear layer                                           |
| $\mathbf{g}_x$ | $\mathbb{R}^{L \times C_x}$   | Gradient w.r.t input of a linear layer without batch dimension     |
| $\mathbf{g}_y$ | $\mathbb{R}^{L \times C_y}$   | Gradient w.r.t output of a linear layer without batch dimension    |
| $\mathbf{P}$   | $\mathbb{R}^{R_x \times L}$   | Low-rank matrix to project activation into low-rank space          |
| $\mathbf{Q}$   | $\mathbb{R}^{R_y \times L}$   | Low-rank matrix to project gradient activation into low-rank space |

675 B PROJECTION CONSTRUCTION ISSUES  
676677 This appendix provides details for Sec. 3.2, including explanation (Sec. B.1), theoretical foundation  
678 (Sec. B.2), and our efficient calibration approach (Sec. B.3).  
679680 B.1 WHY ARE TWO COMPRESSION TENSORS REQUIRED FOR ACTIVATION AND GRADIENT  
681 COMPRESSION?  
682683 Low-rank approximation method reduces computational complexity by doing multiplications  
684 in the smaller low-rank space. Given  $\mathbf{A} \cdot \mathbf{B}$  with  $\mathbf{A} \in \mathbb{R}^{m \times n}$ ,  $\mathbf{B} \in \mathbb{R}^{n \times p}$ , this multiplication  
685 is of  $\mathcal{O}(m \cdot n \cdot p)$  complexity. Low-rank approximation introduces low-rank matrix  $\mathbf{P} \in \mathbb{R}^{r \times m}$  ( $r \ll \min(m, n, p)$ ) such that  $\mathbf{A} \approx \mathbf{P}^\top \cdot \mathbf{P} \cdot \mathbf{A}$ . The original multiplication becomes:

686 
$$\mathbf{A} \cdot \mathbf{B} \approx \mathbf{P}^\top \cdot \mathbf{P} \cdot \mathbf{A} \cdot \mathbf{B} = \mathbf{P}^\top \cdot ((\mathbf{P} \cdot \mathbf{A}) \cdot \mathbf{B}). \quad (6)$$

688 The right expression in equation 6 is of complexity  $\mathcal{O}(r \cdot (n \cdot p + m \cdot n + m \cdot p)) \ll \mathcal{O}(m \cdot n \cdot p)$ .  
689690 The problem of this decomposition is  $\mathbf{P}^\top \cdot \mathbf{P} \neq \mathbb{I}_{m \times m}$  with  $\mathbb{I}_{m \times m}$  be the identity matrix of  
691 size  $(m \times m)$ , because  $\text{rank}(\mathbf{P}^\top \cdot \mathbf{P}) \leq \text{rank}(\mathbf{P}) \leq r \ll m = \text{rank}(\mathbb{I}_{m \times m})$ . Singular Value  
692 Decomposition (SVD) is used to find a good approximation that, given a full-rank matrix  $\mathbf{A}$ , SVD  
693 decomposes  $\mathbf{A} = \mathbf{U} \cdot \Sigma \cdot \mathbf{V}^\top$  with  $\mathbf{U} \in \mathbb{R}^{m \times m}$  being left singular vectors. If we assign  $\mathbf{P} = \mathbf{U}$  for  
694 multiplication in equation 6,  $\mathbf{A} = \mathbf{P}^\top \cdot \mathbf{P} \cdot \mathbf{A}$  because  $\mathbf{P}^\top \cdot \mathbf{P} = \mathbb{I}_{m \times m}$ , but the complexity of  
695 the approximation in equation 6 is  $\mathcal{O}(m \cdot (n \cdot p + m \cdot n + m \cdot p)) \geq \mathcal{O}(m \cdot n \cdot p)$ .696 Therefore, we need to truncate  $\mathbf{U}$  to  $\mathbf{U}_r$  (Sec. 3.2) to have  $r \ll \min(m, n, p)$  to reduce computations.  
697 Although  $\mathbf{U}_r^\top \cdot \mathbf{U}_r \neq \mathbb{I}_{m \times m}$ , with appropriate truncation strategy,  $\mathbf{U}_r^\top \cdot \mathbf{U}_r \cdot \mathbf{A} \approx \mathbf{A}$ . This approximation  
698 with complexity of  $\mathcal{O}(r \cdot (n \cdot p + m \cdot n + m \cdot p)) \ll \mathcal{O}(m \cdot n \cdot p)$  so assigning  $\mathbf{P} = \mathbf{U}_r$   
699 satisfies 6 and significantly reduces computational cost.700 **Why do we need both  $\mathbf{P}, \mathbf{Q}$  compression matrices?**. Why do we not only involve  $\mathbf{P}$  for both  
701 activation compression( $\mathbf{x} \xrightarrow{\mathbf{P}} \hat{\mathbf{x}}$ ) and gradient compression( $\mathbf{g}_y \xrightarrow{\mathbf{P}} \hat{\mathbf{g}}_y$ )? Assuming that we decompose  
activation  $\mathbf{x}$  and truncate its singular vectors to get  $\mathbf{P} = \mathbf{U}_r$ . The truncated  $\mathbf{U}_r$  successfully

702 recovers  $\mathbf{x}$  but does not work with  $\mathbf{g}_y(\mathbf{U}_r^\top \cdot \mathbf{U}_r \cdot \mathbf{g}_y \neq \mathbf{g}_y)$  and  $\mathbf{U}_r^\top \cdot \mathbf{U}_r \neq \mathbb{I}_{m \times m}$  as well. Therefore,  
 703 it is required to decompose  $\mathbf{g}_y$  to get an additional compression matrix  $\mathbf{Q}$  for a correct approximation  
 704 of this output gradient.

705

## 706 B.2 PROOF OF ESPACE THEOREM

707

708 Given vector  $\mathbf{x} \in \mathbf{X}$ , subspace  $\mathbf{P}$  and  $\tilde{\mathbf{x}} \in \tilde{\mathbf{X}}$  is the recovery of  $\mathbf{x}$ , the mean squared error (MSE) of  
 709 the decomposition is defined as:

710 
$$\text{MSE}(\mathbf{x}, \tilde{\mathbf{x}}) = \mathbb{E}\|\mathbf{x} - \tilde{\mathbf{x}}\|^2, \quad (7)$$

711

712 where  $\tilde{\mathbf{x}} = \mathbf{P}^\top \cdot \mathbf{P} \cdot \mathbf{x} = \sum_{i=1}^L \langle \mathbf{p}_i, \mathbf{x} \rangle \mathbf{p}_i$ .

713  $\{\mathbf{p}_i\}_{i=1}^L$  are transpose of orthonormal row vectors of  $\mathbf{P}$ , i.e.,

714 
$$\langle \mathbf{p}_i, \mathbf{p}_j \rangle = \mathbf{1}_{\{i=j\}}, \quad \forall i, j \in \{1, \dots, L\}. \quad (8)$$

715

716 Given  $\mathbf{x}$  and  $\tilde{\mathbf{x}}$ , we examine the squared error:

717

718 
$$\|\mathbf{x} - \tilde{\mathbf{x}}\|^2 = \|\mathbf{x}\|^2 + \|\tilde{\mathbf{x}}\|^2 - 2\mathbf{x}^\top \cdot \tilde{\mathbf{x}} \quad (9)$$

719

720 
$$= \|\mathbf{x}\|^2 + \|\tilde{\mathbf{x}}\|^2 - 2 \sum_{i=1}^L (\mathbf{p}_i^\top \cdot \mathbf{x}) \cdot \mathbf{p}_i^\top \cdot \mathbf{x} \quad (10)$$

721

722 
$$= \|\mathbf{x}\|^2 + \|\tilde{\mathbf{x}}\|^2 - 2 \sum_{i=1}^L (\mathbf{p}_i^\top \cdot \mathbf{x})^2. \quad (11)$$

723

724 We have  $L_2$  – norm of  $\tilde{\mathbf{x}}$ :

725

726

727 
$$\|\tilde{\mathbf{x}}\|^2 = \tilde{\mathbf{x}}^\top \cdot \tilde{\mathbf{x}} = \left( \sum_{i=1}^L (\mathbf{p}_i^\top \cdot \mathbf{x}) \cdot \mathbf{p}_i \right)^\top \left( \sum_{i=1}^L (\mathbf{p}_i^\top \cdot \mathbf{x}) \cdot \mathbf{p}_i \right), \quad (12)$$

728

729 and since Eq. 8, we have:

730

731 
$$\|\tilde{\mathbf{x}}\|^2 = \sum_{i=1}^L (\mathbf{p}_i^\top \cdot \mathbf{x})^2. \quad (13)$$

732

733 We reconsider the expression for the squared error:

734

735 
$$\|\mathbf{x} - \tilde{\mathbf{x}}\|^2 = \|\mathbf{x}\|^2 + \sum_{i=1}^L (\mathbf{p}_i^\top \cdot \mathbf{x})^2 - 2 \sum_{i=1}^L (\mathbf{p}_i^\top \cdot \mathbf{x})^2 \quad (14)$$

736

737 
$$= \|\mathbf{x}\|^2 - \sum_{i=1}^L (\mathbf{p}_i^\top \cdot \mathbf{x})^2. \quad (15)$$

738

739 We take expectation on both sides and obtain a formula for the MSE:

740

741 
$$\mathbb{E}[\|\mathbf{x} - \tilde{\mathbf{x}}\|^2] = \mathbb{E}[\|\mathbf{x}\|^2] - \mathbb{E}\left[\sum_{i=1}^L (\mathbf{p}_i^\top \cdot \mathbf{x})^2\right] \quad (16)$$

742

743 
$$= \mathbb{E}[\|\mathbf{x}\|^2] - \mathbb{E}\left[\sum_{i=1}^L \mathbf{p}_i^\top \cdot (\mathbf{x} \cdot \mathbf{x}^\top) \cdot \mathbf{p}_i\right] \quad (\mathbf{p}_i^\top \cdot \mathbf{x} = \mathbf{x}^\top \cdot \mathbf{p}_i) \quad (17)$$

744

745 
$$= \mathbb{E}[\|\mathbf{x}\|^2] - \sum_{i=1}^L \mathbf{p}_i^\top \cdot \mathbb{E}[\mathbf{x} \cdot \mathbf{x}^\top] \cdot \mathbf{p}_i. \quad (18)$$

746

747 In this expression,  $\mathbb{E}[\|\mathbf{x}\|^2]$  does not depend on  $\{\mathbf{p}_i\}_{i=1}^L$ , and therefore, minimizing the MSE is  
 748 equivalent to **maximizing** the following expression:

749

750 
$$\sum_{i=1}^L \mathbf{p}_i^\top \cdot \mathbb{E}[\mathbf{x} \cdot \mathbf{x}^\top] \cdot \mathbf{p}_i = \sum_{i=1}^L \mathbf{p}_i^\top \cdot \mathbf{C}_x \cdot \mathbf{p}_i. \quad (19)$$

751

756 Because the set  $\{\mathbf{p}_i\}_{i=1}^L$  forms an orthonormal basis, the expression can be interpreted as sum of  
 757 Rayleigh quotients:  $\sum_{i=1}^L \mathcal{R}(\mathbf{C}_x, \mathbf{p}_i) = \sum_{i=1}^L \mathbf{p}_i^\top \cdot \mathbf{C}_x \cdot \mathbf{p}_i$ . The Rayleigh quotient is maximized  
 758 when  $\{\mathbf{p}_i\}_{i=1}^L$  are the eigenvectors corresponding to the largest eigenvalues of  $\mathbf{C}_x$ . Therefore, the  
 759 optimal choice is to select  $\{\mathbf{p}_i\}_{i=1}^L$  as the top  $L$  eigenvectors of the auto-correlation  $\mathbf{C}_x$ .  
 760

761

## 762 B.3 LOW-COST CALIBRATION PROOF

763

764 Considering our targets of reducing both peak memory and FLOPs, our calibration needs to be  
 765 efficient, i.e. does not increase peak memory and adds small extra computation cost.

766

767 **INSTANT calibration does not increase peak memory.** To reduce peak memory consumption in  
 768 the calibration step, we propose 2 strategies:

769

- **On-policy processing.** Instead of saving multiple  $\mathbf{x}$  and  $\mathbf{g}_y$  for post-processing, after each  
 770 calibrating iteration, the data batch is processed to store key elements and deleted afterwards.  
 771 This approach does not increase the processing time.
- **Smaller batch.** In each training step,  $B$  samples are put into the system. In calibration, we  
 772 set a batch to  $\frac{B}{n_s}$  samples, where  $n_s$  is the number of mini-batches inside one batch.  
 773

774

775

**Algorithm 1** Efficient Calibration Without Memory Accumulation

776

777 **Require:** Model  $\mathcal{M}$ , number of calibration iterations  $N_c$ , calibration batch samples  $B_c = \frac{B}{n_s}$ , initial  
 778 parameters  $\theta_0$ .

779

```

1: Data processing Calibration dataloader  $D_c$  containing  $N_c \cdot B_c$  calibration samples.
2: Initializing Set 2 dictionaries  $A$  and  $G$ 
3: for each calibration batch  $b_c \in D_c$  do
4:   Freeze model parameters and optimizer states.
5:   for each layer  $l$  do
6:      $\mathbf{y}, \mathbf{x}, \mathbf{g}_y \leftarrow \mathcal{M}(b_c)$ 
7:      $\mathbf{C}_X \leftarrow \mathbf{x} \cdot \mathbf{x}^\top$   $\mathbf{C}_G \leftarrow \mathbf{g}_y \cdot \mathbf{g}_y^\top$ 
8:      $s_X \leftarrow \sum_{i=1}^{B_c} \mathbf{C}_X[i]$   $s_G \leftarrow \sum_{i=1}^{B_c} \mathbf{C}_G[i]$ 
9:      $A[l] \leftarrow A[l] + s_X$   $G[l] \leftarrow G[l] + s_G$ 
10:    end for
11:  end for
12:  for each layer  $l$  do
13:     $U_X, \Sigma_X \leftarrow \text{SVD}(A[l])$   $U_G, \Sigma_G \leftarrow \text{SVD}(G[l])$ 
14:     $P \leftarrow \text{OVERSAMPLE}(U_X^\top)$   $Q \leftarrow \text{OVERSAMPLE}(U_G^\top)$ 
15:  end for

```

800

801

802 Instead of storing  $\mathbf{x}, \mathbf{g}_y$  with  $4 \cdot N_L \cdot B \cdot L \cdot C_x$  and  $4 \cdot N_L \cdot B \cdot L \cdot C_y$  bytes, respectively, we just  
 803 store 2 dictionaries  $A, G$ . These dictionaries have the same size of  $4 \cdot N_L \cdot L^2$  bytes (Step 9 in  
 804 Algorithm 1) with  $N_L$  as the number of layers that we implement INSTANT. In application, we  
 805 adaptively calibrate to get each dictionary of size  $4 \cdot N_L \cdot \min(L, C)^2$  and  $N_L < B$  to preserve  
 806 memory.

807

808

809

810 In summary, the calibration step does not increase peak memory due to on-policy processing of  $\mathbf{x}, \mathbf{g}_y$ ,  
 811 smaller batch, and freezing optimizer states strategies (Alg. 1). Moreover, we propose a dynamic  
 812 data processing in which the number of mini-batches  $n_s$  can be adaptively increased to reduce peak  
 813 memory of the calibration step.

810     **INSTANT calibration adding small extra computation.** thanks to long-term subspaces utilization, which is proved via the following analysis of the ratio between calibration FLOP ( $flop_c$ ) and  
 811     training FLOP ( $flop_t$ ).  
 812  
 813  
 814  
 815

816     • **Experiment setup:** 5 calibration iterations for each  $N_t = 200$  training iteration (as  
 817     in our experiments). For the sake of simplicity, our linear layer:  $y = x \cdot w^T$  with  $x \in$   
 818      $\mathbb{R}^{B \times L \times C_x}$ ,  $w \in \mathbb{R}^{C_y \times C_x}$ ,  $y \in \mathbb{R}^{B \times L \times C_y}$ .  
 819  
 820

821     • **FLOP training:**  $flop_t = 200 \cdot (6 \cdot B \cdot L \cdot C_x \cdot C_y)$  (forward and backward pass)  
 822  
 823

824     • **FLOP calibration (Alg.1):**  $f_c = 5 \cdot (6 \cdot B \cdot L \cdot C_x \cdot C_y)$  (step 6) +  $5 \cdot (2 \cdot B \cdot L^2 \cdot (C_x + C_y))$   
 825     (step 7) +  $[4/3 \cdot L^3 + 4/3 \cdot L^3]$  (SVD cost, step 13).  
 826  
 827

828     • **Ratio:**  $f_c/f_t = \frac{30 \cdot B \cdot L \cdot C_x \cdot C_y + 10 \cdot B \cdot L^2 \cdot (C_x + C_y) + 8/3 \cdot L^3}{1200 \cdot B \cdot L \cdot C_x \cdot C_y} - \frac{1}{40} (L < \min(C_x, C_y))$   
 829  
 830

831     Therefore, FLOP of calibration is small compared to FLOP of training. Taking Tab.1 as an example,  
 832     INSTANT-5 with reported **475** MFLOPs for finetuning EfficientFormerL1 requires extra **37** MFLOPs  
 833     for calibration. Therefore, only reporting training flop still reflects a fair comparison with other  
 834     methods.  
 835  
 836

## 837     C PROPAGATED ERROR ANALYSIS

840     Similar to Sec. 3.2, we denote  $\mathbb{E}[\mathbf{g}_y \cdot \mathbf{g}_y^\top] = \mathbf{C}_G = \sum_{i=1}^L \sigma_i \cdot \mathbf{u}_i \cdot \mathbf{u}_i^\top$ , where  $\mathbf{u}_i$  is the  $i^{th}$   
 841     column of left singular vectors  $\mathbf{Q}$  when decomposing  $\mathbf{C}_G$ . Let  $\mathbf{M} = \mathbf{I} - \frac{\mathbf{Q}^\top \cdot \mathbf{Q}}{\epsilon}$ , notably  
 842     that  $\mathbf{Q}^\top \cdot \mathbf{Q} = \sum_{i=1}^{R_y} \mathbf{u}_i \cdot \mathbf{u}_i^\top$ . The signal-to-noise ratio is calculated as:  
 843  
 844

845  
 846     
$$SNR = \frac{\mathbb{E} \left[ \left\| \frac{\mathbf{Q}^\top \cdot \mathbf{Q}}{\epsilon} \cdot \mathbf{g}_y \cdot \mathbf{w} \right\|_2^2 \right]}{\mathbb{E} \left[ \left\| \left( \mathbf{I} - \frac{\mathbf{Q}^\top \cdot \mathbf{Q}}{\epsilon} \right) \cdot \mathbf{g}_y \cdot \mathbf{w} \right\|_2^2 \right]}. \quad (20)$$
  
 847  
 848  
 849  
 850

851     We have:  $\mathbf{M} = \mathbf{I} - \frac{\mathbf{Q}^\top \cdot \mathbf{Q}}{\epsilon} = \sum_{i=1}^{R_y} \frac{\epsilon-1}{\epsilon} \cdot \mathbf{u}_i \cdot \mathbf{u}_i^\top + \sum_{i=R_y+1}^L \mathbf{u}_i \cdot \mathbf{u}_i^\top$ ,  
 852  
 853

854     and:  $\|\mathbf{M} \cdot \mathbf{g}_y \cdot \mathbf{w}\|_2^2 = \sum_{j=1}^{C_x} \|\mathbf{M} \cdot \mathbf{g}_y \cdot \mathbf{w}_j\|_2^2$ , where:  
 855  
 856

857  
 858     
$$\mathbf{M} \cdot \mathbf{g}_y \cdot \mathbf{w}_j = \sum_{i=1}^{R_y} \frac{\epsilon-1}{\epsilon} (\mathbf{u}_i \cdot (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j)) + \sum_{i=R_y+1}^L (\mathbf{u}_i \cdot (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j)) \quad (21)$$
  
 859  
 860  
 861

862     
$$= \sum_{i=1}^{R_y} \frac{\epsilon-1}{\epsilon} (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j \cdot \mathbf{u}_i) + \sum_{i=R_y+1}^L (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j \cdot \mathbf{u}_i). \quad (22)$$
  
 863

864 As a result:

865

$$\| \mathbf{M} \cdot \mathbf{g}_y \cdot \mathbf{w}_j \|_2^2 = \sum_{i=1}^{R_y} \left( \frac{\epsilon - 1}{\epsilon} \right)^2 (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j \cdot \mathbf{u}_i)^\top \cdot (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j \cdot \mathbf{u}_i) \\ + \sum_{i=R_y+1}^L (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j \cdot \mathbf{u}_i)^\top \cdot (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j \cdot \mathbf{u}_i) \quad (23)$$

866

$$= \sum_{i=1}^{R_y} \left( \frac{\epsilon - 1}{\epsilon} \right)^2 (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j) \cdot \mathbf{u}_i^\top \cdot (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j) \cdot \mathbf{u}_i \\ + \sum_{i=R_y+1}^L (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j \cdot \mathbf{u}_i)^\top \cdot (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j \cdot \mathbf{u}_i) \quad (24)$$

867

$$= \sum_{i=1}^{R_y} \left( \frac{\epsilon - 1}{\epsilon} \right)^2 (\mathbf{w}_j^\top \cdot \mathbf{g}_y \cdot \mathbf{u}_i) \cdot (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j) \cdot \mathbf{u}_i^\top \cdot \mathbf{u}_i \\ + \sum_{i=R_y+1}^L (\mathbf{w}_j^\top \cdot \mathbf{g}_y \cdot \mathbf{u}_i) \cdot (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j) \cdot \mathbf{u}_i^\top \cdot \mathbf{u}_i \quad (25)$$

868

$$= \sum_{i=1}^{R_y} \left( \frac{\epsilon - 1}{\epsilon} \right)^2 (\mathbf{w}_j^\top \cdot \mathbf{g}_y \cdot \mathbf{u}_i) \cdot (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j) \\ + \sum_{i=R_y+1}^L (\mathbf{w}_j^\top \cdot \mathbf{g}_y \cdot \mathbf{u}_i) \cdot (\mathbf{u}_i^\top \cdot \mathbf{g}_y \cdot \mathbf{w}_j) \quad (26)$$

869 Therefore, the expectation is calculated as:

870

$$\mathbb{E} \left[ \| \mathbf{M} \cdot \mathbf{g}_y \cdot \mathbf{w} \|_2^2 \right] = \sum_{j=1}^{C_x} \left[ \sum_{i=1}^{R_y} \left( \frac{\epsilon - 1}{\epsilon} \right)^2 \mathbf{w}_j^\top \cdot \mathbb{E} [\mathbf{g}_y^\top \cdot \mathbf{u}_i \cdot \mathbf{u}_i^\top \cdot \mathbf{g}_y] \cdot \mathbf{w}_j \right] \\ + \sum_{j=1}^{C_x} \left[ \sum_{i=R_y+1}^L \mathbf{w}_j^\top \cdot \mathbb{E} [\mathbf{g}_y^\top \cdot \mathbf{u}_i \cdot \mathbf{u}_i^\top \cdot \mathbf{g}_y] \cdot \mathbf{w}_j \right] \quad (27)$$

871

$$= \sum_{j=1}^{C_x} \left[ \sum_{i=1}^{R_y} \left( \frac{\epsilon - 1}{\epsilon} \right)^2 \sigma_i \cdot \mathbf{w}_j^\top \cdot \mathbf{w}_j + \sum_{i=R_y+1}^L \sigma_i \cdot \mathbf{w}_j^\top \cdot \mathbf{w}_j \right] \quad (28)$$

872

$$= \left[ \frac{(1-\epsilon)^2}{\epsilon^2} \sum_{i=1}^{R_y} \sigma_i + \sum_{i=R_y+1}^L \sigma_i \right] \cdot \| \mathbf{w} \|_2^2. \quad (29)$$

873

874 Similarly, we have:

875

$$\mathbb{E} \left[ \left\| \frac{\mathbf{Q}^\top \cdot \mathbf{Q}}{\epsilon} \cdot \mathbf{g}_y \cdot \mathbf{w} \right\|_2^2 \right] = \frac{1}{\epsilon^2} \cdot \sum_{i=1}^{R_y} \sigma_i \cdot \| \mathbf{w} \|_2^2. \quad (30)$$

876

877 Therefore, the signal-to-noise ratio is computed as:

878

$$SNR = \frac{\mathbb{E} \left[ \left\| \frac{\mathbf{Q}^\top \cdot \mathbf{Q}}{\epsilon} \cdot \mathbf{g}_y \cdot \mathbf{w} \right\|_2^2 \right]}{\mathbb{E} \left[ \| \mathbf{M} \cdot \mathbf{g}_y \cdot \mathbf{w} \|_2^2 \right]} = \frac{\frac{1}{\epsilon^2} \sum_{i=1}^{R_y} \sigma_i}{\frac{(1-\epsilon)^2}{\epsilon^2} \sum_{i=1}^{R_y} \sigma_i + \sum_{i=R_y+1}^L \sigma_i}. \quad (31)$$

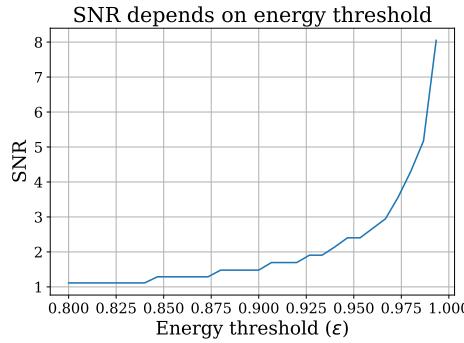


Figure 7: Signal-to-noise ratio analysis of one layer. When the energy threshold goes to 1, the SNR ratio will increase enormously. With a large enough value of energy threshold and oversampling, INSTANT can guarantee a high SNR ratio of training.

When  $\epsilon \rightarrow 1$ ,  $R_y \rightarrow L$ , therefore,  $SNR \rightarrow \infty$ , and error will become 0 as shown in Fig. 7. Here, it is noticeable that the plot has some segments with breaks. This is because with some near  $\epsilon$ , the same rank  $R_y$  is selected.

## D FLOPS AND MEMORY ANALYSIS

In this section, the FLOPs and memory analysis for our INSTANT (Sec. D.1) and LBP-WHT (Sec. D.3) are described.

### D.1 FLOPS AND MEMORY ANALYSIS FOR INSTANT

By compressing activation at the forward pass, we are able to reduce the matrix storage from  $\mathbb{R}^{L \times C_x} \rightarrow \mathbb{R}^{R_x \times C_x}$  by only storing two additional tensors  $\mathbf{P} \in \mathbb{R}^{R_x \times L}$  and  $\mathbf{Q} \in \mathbb{R}^{R_y \times L}$ . Assuming that the activation is stored in fp32, which is 4 bytes for each value, the total memory for storing an activation sample at one layer reduces from  $4 \cdot L \cdot C_x$  to  $4 \cdot R_x \cdot C_x$ . It is noticeable that  $\mathbf{P}$  and  $\mathbf{Q}$  remain constant across batches, meaning that even when training in a mini-batch setup, as typically do,  $\mathbf{P}$  and  $\mathbf{Q}$  are still two-dimensional tensors. This ensures that the memory cost for storing them is negligible.

In terms of computation, our training involves three main computational cost components: low-rank projection, low-rank matrix multiplication, and reverse projection. Since there are three low-rank projections, the total FLOPs of these projections  $FLOP_p$  is:

$$FLOP_p = 2 \cdot R_x \cdot L \cdot C_x + 2 \cdot R_y \cdot L \cdot C_y + 2 \cdot R_x \cdot L \cdot C_y. \quad (32)$$

Eq. 4 and Eq. 5 illustrate two low-rank matrix multiplications of INSTANT. Since both of them are computed in low-rank spaces, the computational complexity  $FLOP_m$  is:

$$FLOP_m = 2 \cdot R_y \cdot C_y \cdot C_x + 2 \cdot R_x \cdot C_x \cdot C_y. \quad (33)$$

The cost for reverse projection of  $\tilde{\mathbf{g}}_x$  is  $FLOP_r = 2 \cdot R_y \cdot L \cdot C_x$ . Ultimately, the total computational complexity of our backpropagation process  $FLOP_t$  is:

$$FLOP_t = FLOP_p + FLOP_m + FLOP_r = 2(R_x + R_y)(C_x \cdot C_y + L \cdot C_x + L \cdot C_y) \quad (34)$$

Note that this is the computational cost of one sample at one layer; for training one batch of  $B$  samples, the total computational cost is  $B \cdot FLOP_t$ .

### D.2 FLOPS AND MEMORY ANALYSIS FOR GRADIENT FILTER

The Gradient Filter splits the gradient and activations into small patches, then applies pooling to each patch to reduce the number of unique elements. By storing only these unique elements in the memory, the Gradient Filter can save  $64 \times$  memory compared to vanilla training with a patch size  $8 \times 8$ . Let:

$$p_h = \lceil h/8 \rceil, \quad p_w = \lceil w/8 \rceil. \quad (35)$$

Gradient Filter compresses the activation  $\mathbf{x} \in \mathbb{R}^{L \times C_x}$ , with  $L = h \times w$  into  $\hat{\mathbf{x}} \in \mathbb{R}^{L' \times C_x}$ , with  $L' = p_h \times p_w$ . The activation storage is calculated as  $4 \cdot C_x \cdot p_h \cdot p_w$ . Similarly, the gradient  $\mathbf{g}_y \in \mathbb{R}^{L \times C_y}$  is compressed into  $\hat{\mathbf{g}}_y \in \mathbb{R}^{L' \times C_y}$ . The total compression cost for activation and gradient is:

$$FLOP_c = (C_x + C_y) \times p_h \times p_w \times 8^2 \quad (36)$$

After compressing, by doing both 2 matrix multiplications in the low-rank space, the total computational cost in backpropagation of Gradient Filter is:

$$FLOP_b = 4 \times C_x \times C_y \times L' = 4 \times C_x \times C_y \times p_h \times p_w \quad (37)$$

Finally, the total computational cost of backpropagation with Gradient Filter is:

$$FLOP = FLOP_b + FLOP_c = 4 \times C_x \times C_y \times p_h \times p_w + (C_x + C_y) \times p_h \times p_w \times 8^2 \quad (38)$$

### D.3 FLOPs AND MEMORY ANALYSIS FOR LBP-WHT

LBP-WHT is originally designed for computer vision tasks. Considering a linear layer, let  $\mathbf{x} \in \mathbb{R}^{L \times C_x}$  as the input. LBP-WHT first splits the sequence length into  $H$  and  $W$ , such that  $L = H \cdot W$ , then reshapes to  $\mathbf{x} \in \mathbb{R}^{C_x \times H \times W}$ . Afterward, at each channel, the matrix shape  $[H, W]$  is split into  $(p_h \cdot p_w)$  patches  $(8 \times 8)$  with:

$$p_h = \lceil h/8 \rceil, \quad p_w = \lceil w/8 \rceil. \quad (39)$$

At each patch, the Walsh-Hadamard transformation is applied with only  $R$  out of the total 64 bases of the WHT, where  $R$  is the hyperparameter. The FLOPs of this projection  $WFLOP_{px}$  is :

$$WFLOP_{px} = 2 \cdot R \cdot C_x \cdot p_h \cdot p_w \cdot 8^2, \quad (40)$$

where  $8^2$  is because of the patch size  $8 \times 8$ . This compressed version is stored in memory instead of the original  $\mathbf{x}$ , therefore, the activation storage is:  $4 \cdot R \cdot C_x \cdot p_h \cdot p_w$ .

In the backward pass, the gradient is projected by the same transformation as the activation. Therefore, the computational cost  $WFLOP_{pg}$  is:

$$WFLOP_{pg} = 2 \cdot R \cdot C_y \cdot p_h \cdot p_w \cdot 8^2. \quad (41)$$

LBP-WHT does two matrix multiplications in the low-rank space to calculate the weight gradient and compressed input gradient. The total cost of these multiplications is:

$$WFLOP_m = 2 \cdot R \cdot C_y \cdot p_h \cdot p_w \cdot C_x + 2 \cdot R \cdot C_y \cdot C_x \cdot p_h \cdot p_w + R \cdot C_x \cdot C_y. \quad (42)$$

Finally, the compressed input gradient is mapped to the original space to propagate to the previous layer with cost:

$$WFLOP_r = 2 \cdot R \cdot C_x \cdot p_h \cdot p_w \cdot 8^2. \quad (43)$$

In conclusion, the total FLOPs of LBP-WHT is computed as:

$$WFLOP = WFLOP_{px} + WFLOP_{pg} + WFLOP_m + WFLOP_r \quad (44)$$

$$= 4 \cdot R \cdot C_x \cdot C_y \cdot p_h \cdot p_w + R \cdot C_x \cdot C_y + 256 \cdot R \cdot C_x \cdot p_h \cdot p_w + 128 \cdot R \cdot C_y \cdot p_h \cdot p_w \quad (45)$$

We recommend that the readers be familiar with LBP-WHT (Yang et al., 2023b) paper and the source code for a better understanding of the calculation in each step.

1026 **E DATASET DESCRIPTION**  
10271028 **Computer vision tasks.**  
1029

- 1030 • **CIFAR10** (CF10) (Krizhevsky et al., 2009) is a widely used image classification dataset  
1031 consisting of 60,000  $32 \times 32$  color images across 10 classes, such as airplane, cat, and truck.  
1032 It includes 50,000 training images and 10,000 test images, evenly distributed across classes.  
1033
- 1034 • **CIFAR100** (CF100) (Krizhevsky et al., 2009) is an image classification dataset similar  
1035 to CIFAR-10 but with 100 classes. It contains 60,000 color images of size  $32 \times 32$  pixels—50,000 for  
1036 training and 10,000 for testing. CIFAR-100 is more challenging than CIFAR-10 due to the larger  
1037 number of categories and finer-grained distinctions between them, making it a popular benchmark for  
1038 evaluating model performance on more complex classification tasks.  
1039
- 1040 • **Flowers** (Nilsback & Zisserman, 2006) contains 8,189 images of 102 flower categories  
1041 found in the UK. Each class has between 40 and 258 images. The images have high  
1042 variability in scale, pose, and lighting, making the dataset a useful benchmark for testing the  
1043 robustness of computer vision models in fine-grained classification.  
1044
- 1045 • **Food-101** (Bossard et al., 2014) is a popular benchmark for food image classification,  
1046 containing 101,000 images across 101 food categories such as pizza, sushi, and apple  
1047 pie. Each class has 1,000 images—750 for training and 250 for testing—with real-world  
1048 variability in presentation, lighting, and background.  
1049
- 1050 • **The Oxford-IIIT Pet** (Parkhi et al., 2012) is a popular image dataset for pet classification  
1051 and segmentation tasks. It contains 7,349 images of 37 different breeds of cats and dogs, with  
1052 roughly 200 images per breed. The dataset features high variability in poses, lighting, and  
1053 background, making it ideal for training and evaluating models in fine-grained classification.  
1054

1055 **Natural language processing tasks.**  
1056

- 1057 • **QNLI** (Question Natural Language Inference) has around 110k samples derived from the  
1058 SQuAD dataset and reframed as a binary classification task, where the model determines if  
1059 a given sentence contains the answer to a question (entailment or not).  
1060
- 1061 • **SST-2** (Stanford Sentiment Treebank) is a sentiment analysis dataset with about 70k movie  
1062 review sentences. Each sample is labeled as either positive or negative, making it a simple  
1063 and clean binary classification task for sentiment understanding.  
1064
- 1065 • **MNLI** (Multi-Genre Natural Language Inference) contains 433k sentence pairs from various  
1066 text genres. The task is to determine whether a hypothesis is entailed, neutral, or contradicted  
1067 by a given premise, making it a 3-class classification problem and a robust test of a model’s  
1068 reasoning ability.  
1069
- 1070 • **CoLA** (Corpus of Linguistic Acceptability) comprises over 10k English sentences labeled  
1071 as grammatically acceptable or unacceptable. It evaluates a model’s ability to judge gram-  
1072 matical correctness, testing syntactic understanding.  
1073
- 1074 • **MRPC** (Microsoft Research Paraphrase Corpus) includes around 5.8k sentence pairs from  
1075 news sources, with binary labels indicating whether the two sentences are paraphrases. It’s a  
1076 common benchmark for paraphrase detection.  
1077
- 1078 • **RTE** (Recognizing Textual Entailment) is a binary classification task with around 2.8k  
1079 samples, where the goal is to decide whether a premise sentence entails a given hypothesis.  
1080 It’s a small dataset, but it’s useful for testing generalization.  
1081

1082 **F THE REASON BEHIND OVERSAMPLING**  
1083

1084 In this section, we will prove our argument that oversampling is helpful since the energy threshold  
1085 can only guarantee the amount of information when the calibration happens. More concretely, we  
1086 will show that if we calibrate more, the oversampling is unnecessary. Conversely, we also show that  
1087 oversampling can help even without calibration.



Figure 8: The effectiveness of oversampling. This experiment is conducted with BERT on the QNLI dataset.

Table 4: INSTANT can combine with LoRA to achieve a low-rank space of weight, activation, and gradient.

| Model     | Method           | MFLOPs ↓ | Mem ↓ | CF10 ↑ | CF100 ↑ |
|-----------|------------------|----------|-------|--------|---------|
| Efficient | LoRA             | 896      | 1.95  | 94.48  | 77.27   |
|           | LoRA + INSTANT-0 | 335      | 0.06  | 93.91  | 75.79   |
|           | LoRA + INSTANT-5 | 413      | 0.26  | 94.35  | 76.73   |
|           | LoRA + INSTANT-7 | 449      | 0.34  | 94.38  | 76.80   |

As shown in Fig. 8, without oversampling, increasing the calibration frequency (or reducing the number of steps after each calibration) results in a remarkable increase in accuracy. This shows that when the calibration happens more, the energy threshold is enough for capturing the information. However, since the cost for calibration is larger compared to training with INSTANT, oversampling can help in reducing the frequency of this phase. In addition, we experiment with only one calibration before training starts. Fig 8 (right) strengthens our argument by showing that without oversampling, the performance degrades significantly. Meanwhile, with a few values of oversampling, the accuracy increases approximately 10%.

## G INSTANT IS ORTHOGONAL TO LORA

LoRA (Hu et al., 2022), and its variances, are popular for low-rank adaptation. However, this research focuses on the low-rank characteristic of weights, while INSTANT is applied to the low-rank space of the activation and gradients. We, therefore, provide an additional ablation study to show that these 2 methods are orthogonal and can be combined.

While LoRA successfully reduces the number of trainable parameters, it still requires storing the original activations in memory to compute gradients, thus failing to reduce memory usage. Furthermore, LoRA necessitates the multiplication of two large matrices to compute the activation gradient, which is then backpropagated to the previous layer. As a result, the computational cost and memory of applying INSTANT are much smaller compared to LoRA only, as shown in Tab. 4.

## H COMPARISON OF INSTANT WITH OPTIMIZER STATE COMPRESSION TECHNIQUES

In this appendix, we will provide additional results to compare INSTANT with two optimizer compression techniques, which are GaLore (Zhao et al., 2024) and CompAct (Shamshoum et al., 2025). Table 5 shows that GaLore consistently achieves better performance than CompAct under

1134 Table 5: Comparison of INSTANT with GaLore and CompAct, presented for both fine-tuning the last  
 1135 layer and the entire model. We report the MFLOPs and memory (Mem) required for training a single  
 1136 sample on QNLI and SST2.

| Fine-tuning the Last Block |            |          |            |              |              |
|----------------------------|------------|----------|------------|--------------|--------------|
| Model                      | Method     | MFLOPs ↓ | Mem (MB) ↓ | Datasets     |              |
|                            |            |          |            | QNLI ↑       | SST-2 ↑      |
| BERT                       | Vanilla    | 14495    | 13.50      | 86.12        | 91.63        |
|                            | GaLore-8   | 14495    | 13.50      | 82.45        | 90.47        |
|                            | GaLore-32  | 14495    | 13.50      | 84.37        | 91.28        |
|                            | CompAct-8  | 7978     | 0.11       | 80.65        | 88.30        |
|                            | CompAct-32 | 8355     | 0.44       | 84.37        | 91.28        |
|                            | INSTANT-0  | 175      | 0.03       | 79.33        | 90.71        |
|                            | INSTANT-7  | 565      | 0.21       | 84.13        | 90.94        |
|                            | INSTANT-15 | 1018     | 0.42       | <b>84.68</b> | <b>91.63</b> |

| Full fine-tuning |            |          |            |              |              |
|------------------|------------|----------|------------|--------------|--------------|
| Model            | Method     | MFLOPs ↓ | Mem (MB) ↓ | Datasets     |              |
|                  |            |          |            | QNLI ↑       | SST-2 ↑      |
| BERT             | Vanilla    | 173946   | 162        | 91.43        | 93.23        |
|                  | GaLore-8   | 173946   | 162        | 90.44        | 91.74        |
|                  | GaLore-32  | 173946   | 162        | <b>91.31</b> | 92.09        |
|                  | CompAct-8  | 95736    | 1.32       | 89.09        | 91.28        |
|                  | CompAct-32 | 100260   | 5.28       | 90.30        | 92.09        |
|                  | INSTANT-0  | 9143     | 2.83       | 89.66        | 92.22        |
|                  | INSTANT-15 | 15353    | 5.43       | 90.63        | <b>92.43</b> |
|                  | INSTANT-25 | 20753    | 8.52       | <b>90.79</b> | <b>93.35</b> |

1158 the same low-rank constraint. However, because GaLore primarily targets the optimizer states, its  
 1159 activation memory consumption and computational cost remain similar to Vanilla training. In contrast,  
 1160 CompAct substantially reduces activation memory by compressing activations during the forward  
 1161 pass. Compared to CompAct, under the same activation memory budget, INSTANT is able to save a  
 1162 large portion of the backward computational cost while achieving better performance.

1163 However, because CompAct also compresses the optimizer states, it explores a complementary  
 1164 dimension to INSTANT. In principle, the two approaches can be combined to simultaneously reduce  
 1165 activation memory, optimizer-state memory, and computational cost. We further believe that our  
 1166 calibration-based projection can, at least theoretically, be extended to compress optimizer states as  
 1167 well.

## I EXTENSION TO CONVOLUTION

### I.1 CONVERT CONVOLUTIONAL OPERATION TO LINEAR OPERATION

1172 Many convolutional architectures (ResNet, VGGNet,...) utilize image-to-column transformation  
 1173 (Chellapilla et al., 2006) when working on convolutional operations. By stretching matrices,  
 1174 this transformation turns a convolutional operation into a linear operation to utilize matrix multi-  
 1175 plication optimization of deep learning libraries. We apply this idea to transform the convolutional  
 1176 operation into a linear operation, before applying tensor decomposition and low-rank backprop-  
 1177 agation (Sec. 3.2, 3.3) to save memory and computation. Due to the low-cost transformation of  
 1178 image-to-column, we achieve up to 3x computation reduction.

### I.2 RESULTS

1182 Fig. 9 shows the efficiency of INSTANT on 2 popular convolutional architectures: ResNet-50 and  
 1183 MobileNetV2, on 2 datasets CIFAR10 and CIFAR100. In all experiments, our method can save  
 1184 significant memory and FLOPs while maintaining high accuracy, compared to Vanilla. Specifically,  
 1185 INSTANT-5 and INSTANT-7 consistently outperform Vanilla in all three reported metrics. In ResNet-  
 1186 50, INSTANT-5 gains better performance with 3× in FLOPs and 79× in memory. These results  
 1187 indicate the efficiency of INSTANT on all architectures, including both Transformer-based and  
 Convolutional-based models.

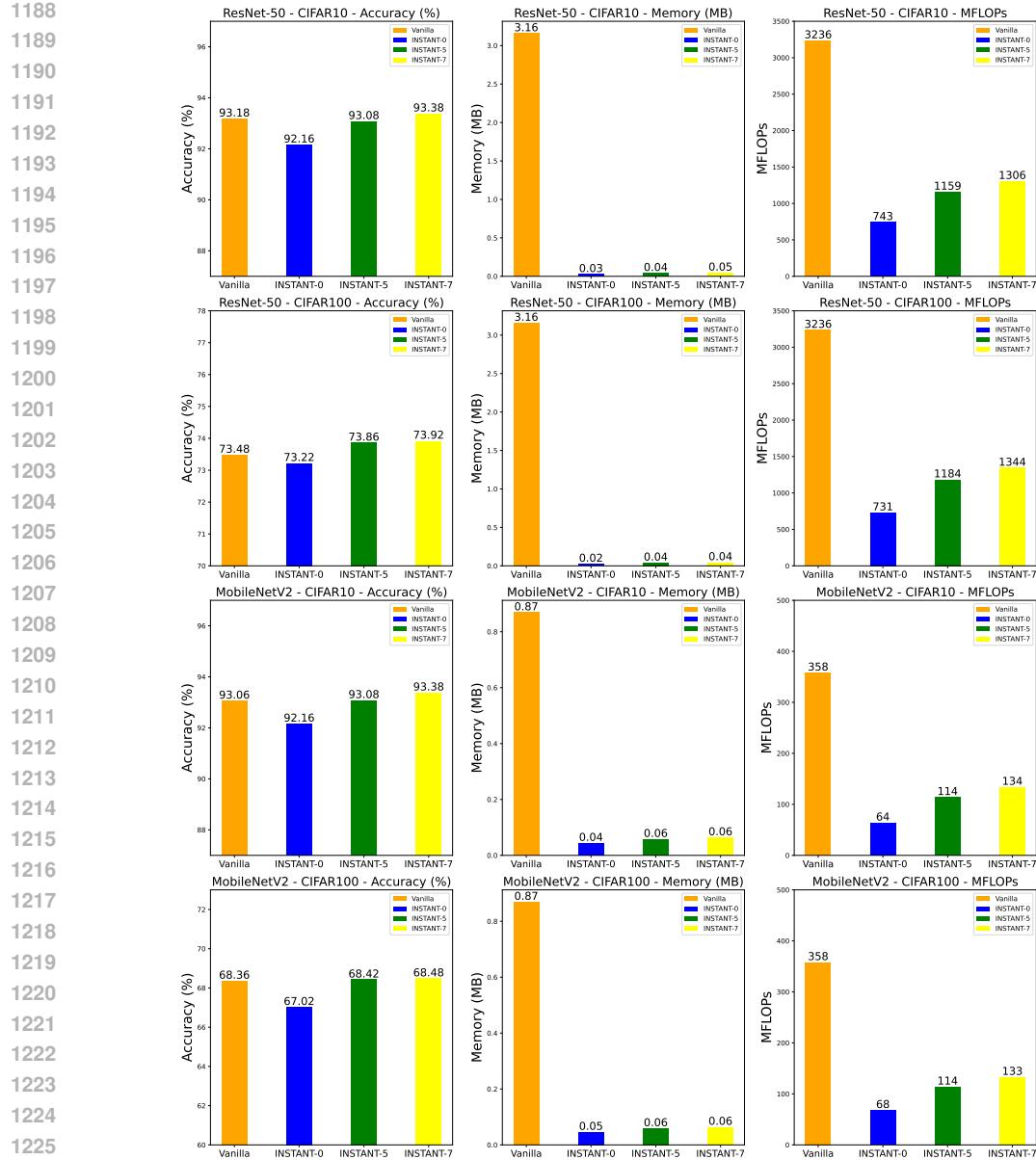


Figure 9: Performance of INSTANT on convolutional architectures.

## J TRAINING LATENCY ANALYSIS

### J.1 EDGE DEVICES TRAINING LATENCY

Table 6: Iteration and backward time when finetuning 9 last layers of ViT-B/32 on CIFAR10. We also report backward speedup compared to Vanilla.

| Method             | Raspberry Pi 5 |                   |               | Intel E5-2267  |                   |              |
|--------------------|----------------|-------------------|---------------|----------------|-------------------|--------------|
|                    | Total time (s) | Backward time (s) | Speedup       | Total time (s) | Backward time (s) | Speedup      |
| Vanilla            | 6.47           | 5.52              | 1×            | 2.69           | 1.80              | 1×           |
| Gradient Filtering | 1.85           | 0.84              | 2.17×         | 1.66           | 0.76              | 2.37×        |
| LBP-WHT-4          | 20.67          | 14.23             | 0.39×         | 14.83          | 9.76              | 0.18×        |
| INSTANT-0          | <b>1.43</b>    | <b>0.44</b>       | <b>12.55×</b> | <b>1.19</b>    | <b>0.22</b>       | <b>8.18×</b> |

1242 We provide extra results of INSTANT on  
 1243 EfficientFormer-L1 on CPU Intel E5-2667 in  
 1244 Fig. 10. We conduct experiments with the same  
 1245 setup as in Sec. 4.1, using the PyTorch framework.  
 1246 Considering the larger architecture ViT-B/32, in which  
 1247 INSTANT-0 can save  $17\times$  computation compared to  
 1248 Vanilla.

1249 We provide additional results of INSTANT on ViT-  
 1250 B/32 using a Raspberry Pi 5 and an Intel E5-2267 CPU,  
 1251 as presented in Tab.6. Noticeably, we can save  $8\times$   
 1252 backward time on Intel E5-2267 and  $12\times$  backward  
 1253 time on Raspberry Pi 5. The  $(12\times)$  time reduction is not  
 1254 comparable to  $(17\times)$  FLOP reduction (Tab.11). This  
 1255 reduction gap is reduced when implementing in other  
 1256 frameworks, such as CUDNN, as shown in Gradient  
 1257 Filter (Yang et al., 2023c). We also observe that the  
 1258 time reduction is strongly affected by the use of the device. However, these engineering-level  
 1259 optimizations fall outside the paper’s scope. Generally, **computation reduction is converted into**  
 1260 **time reduction**, which proves the efficiency and applicability of INSTANT.  
 1261  
 1262

## 1263 J.2 GPU TRAINING LATENCY

1264 We conducted experiments on the framework of MMCV, model EfficientFormerL1, with datasets  
 1265 CIFAR10, and with all methods (LBP-WHT, Gradient Filtering, INSTANT (ours), Vanilla) as  
 1266 provided in Tab. 1. We observed similar results on CIFAR100. As shown in Tab. 7, on V100 GPU,

1267 Table 7: Time reported for training 1 epoch with V100 GPU when partially and fully finetuning  
 1268 EfficientFormerL1 on CIFAR10. These reported numbers are averaged over 10 training epochs.

| 1271<br>1272<br>1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280<br>1281<br>1282<br>1283<br>1284<br>1285<br>1286<br>1287<br>1288<br>1289<br>1290<br>1291<br>1292<br>1293<br>1294<br>1295 | 1271<br>1272<br>1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280<br>1281<br>1282<br>1283<br>1284<br>1285<br>1286<br>1287<br>1288<br>1289<br>1290<br>1291<br>1292<br>1293<br>1294<br>1295 |              |            | 1271<br>1272<br>1273<br>1274<br>1275<br>1276<br>1277<br>1278<br>1279<br>1280<br>1281<br>1282<br>1283<br>1284<br>1285<br>1286<br>1287<br>1288<br>1289<br>1290<br>1291<br>1292<br>1293<br>1294<br>1295 |              |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|
|                                                                                                                                                                                                      | Method / Time(s)                                                                                                                                                                                     | Calibration* | Backward** | Total epoch***                                                                                                                                                                                       | Calibration* | Backward** |
| Vanilla                                                                                                                                                                                              | 0                                                                                                                                                                                                    | 6.11         | 73.6       | 0                                                                                                                                                                                                    | 12.66        | 110.8      |
| Gradient Filtering                                                                                                                                                                                   | 0                                                                                                                                                                                                    | 7.77         | 74.0       | 0                                                                                                                                                                                                    | 15.07        | 94.2       |
| LBP-WHT-2                                                                                                                                                                                            | 0                                                                                                                                                                                                    | 7.99         | 79.8       | 0                                                                                                                                                                                                    | 19.6         | 146.4      |
| LBP-WHT-4                                                                                                                                                                                            | 0                                                                                                                                                                                                    | 9.02         | 123.8      | 0                                                                                                                                                                                                    | 18.55        | 246.0      |
| LBP-WHT-8                                                                                                                                                                                            | 0                                                                                                                                                                                                    | 10.45        | 291.4      | 0                                                                                                                                                                                                    | 20.5         | 625.0      |
| INSTANT-0                                                                                                                                                                                            | 2.16                                                                                                                                                                                                 | 8.8          | 74.2       | 4.99                                                                                                                                                                                                 | 17.55        | 116.6      |
| INSTANT-5                                                                                                                                                                                            | 2.2                                                                                                                                                                                                  | 9.01         | 74.0       | 4.98                                                                                                                                                                                                 | 17.68        | 120.0      |
| INSTANT-7                                                                                                                                                                                            | 2.22                                                                                                                                                                                                 | 8.73         | 74.2       | 4.98                                                                                                                                                                                                 | 17.17        | 120.2      |

(\*) Calibration time is total time used for creating periodically updated subspaces during 1 training epoch

(\*\*) Backward time is total time of `loss.backward()` during 1 training epoch.

(\*\*\*) Epoch time is the total running time of training 1 epoch, including calibration time, forward pass, activation savings, loss calculation, backward pass, optimizer update,...

INSTANT’s backward time is  $1.4\times$  compared to Vanilla backwards time. The total training time (epoch time) of INSTANT is slightly higher than Vanilla. In short, INSTANT’s FLOP reductions are not converted into time reduction like training on CPU.

## K ABLATION STUDY

### K.1 GRADIENT AND ACTIVATION COMPRESSION

We conduct an ablation study to show the effectiveness of each compression approach (Tab. 8). First, we only apply gradient compression to INSTANT (INSTANT compress  $g_y$ ). This method achieves good performance, even surpassing Vanilla training. However, due to saving full-rank activation, INSTANT (compress  $g_y$ ) requires the same memory as Vanilla. Second, we apply activation

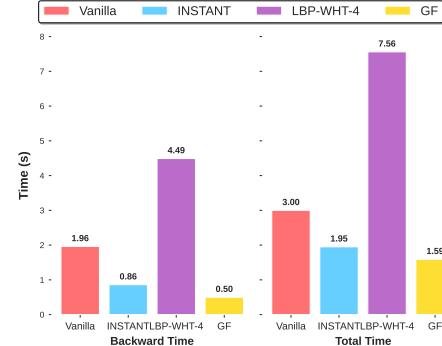


Figure 10: Training time over 1 epoch on CIFAR10 using an Intel E5-2667.

1296 Table 8: Experimental results across 5 different CV datasets when fine-tuning the last block of  
 1297 EfficientFormer-L1. We report the MFLOPs and memory (Mem) required for training a single  
 1298 sample.

| 1300 | Method                       | p | Fine-tuning the Last Block of EfficientFormer-L1 |            | Datasets |        |           | mAcc ↑ |       |       |
|------|------------------------------|---|--------------------------------------------------|------------|----------|--------|-----------|--------|-------|-------|
|      |                              |   | MFLOPs ↓                                         | Mem (MB) ↓ | CF100 ↑  | CF10 ↑ | Flowers ↑ |        |       |       |
| 1301 | Vanilla                      | – | 1484                                             | 1.95       | 79.28    | 95.23  | 95.5      | 84.04  | 93.13 | 89.44 |
| 1302 | INSTANT<br>(compress $g_y$ ) | 0 | 973                                              | 1.95       | 78.45    | 95.02  | 95.74     | 82.91  | 93.08 | 89.04 |
| 1303 |                              | 5 | 1069                                             | 1.95       | 79.00    | 95.26  | 96.16     | 83.49  | 93.02 | 89.39 |
| 1304 |                              | 7 | 1104                                             | 1.95       | 79.18    | 95.39  | 95.95     | 83.73  | 93.08 | 89.47 |
| 1305 | INSTANT<br>(compress $x$ )   | 0 | 796                                              | 0.12       | 78.80    | 95.07  | 94.99     | 82.63  | 92.83 | 88.86 |
| 1306 |                              | 5 | 885                                              | 0.33       | 78.99    | 95.35  | 95.37     | 83.01  | 92.75 | 89.09 |
| 1307 |                              | 7 | 921                                              | 0.41       | 78.93    | 95.40  | 95.43     | 83.19  | 92.80 | 89.15 |
| 1308 | INSTANT                      | 0 | 270                                              | 0.16       | 77.64    | 94.66  | 92.23     | 81.97  | 92.64 | 87.83 |
| 1309 |                              | 5 | 475                                              | 0.38       | 78.65    | 95.07  | 95.93     | 82.84  | 93.21 | 89.14 |
| 1310 |                              | 7 | 544                                              | 0.45       | 79.01    | 95.23  | 95.92     | 83.05  | 93.02 | 89.25 |

1311  
 1312  
 1313 Table 9: [Partially finetuning last layer of EfficientFormer-L1 on CIFAR10, CIFAR100 with INSTANT-random \(Appendix. K.2\) and ESPACE \(Appendix. L.1\) methods.](#)  
 1314  
 1315

| 1316 | Method       | CIFAR10 | CIFAR100 | Forward MFLOPs | Backward MFLOPs | Activation Mem (MB) |
|------|--------------|---------|----------|----------------|-----------------|---------------------|
| 1317 | ESPACE – N/2 | 95.23   | 78.41    | 414            | 827             | 0.96                |
| 1318 | ESPACE – N/4 | 94.21   | 76.26    | 212            | 414             | 0.48                |
| 1319 | Random – N/2 | 86.52   | 73.13    | 742            | 827             | 0.96                |
| 1320 | Random – N/4 | 64.97   | 46.02    | 742            | 414             | 0.48                |
| 1321 | INSTANT-0    | 94.66   | 77.64    | 742            | 270             | 0.16                |
| 1322 | INSTANT-5    | 95.07   | 78.65    | 742            | 475             | 0.38                |
| 1323 | INSTANT-7    | 95.23   | 79.01    | 742            | 544             | 0.45                |
|      | Vanilla      | 95.23   | 79.28    | 742            | 1484            | 1.95                |

1324  
 1325  
 1326 compression to INSTANT (INSTANT compress  $x$ ). This approach achieves good performance with  
 1327 a high compression rate, which makes it save a large amount of memory. However, this method  
 1328 gains a low compression rate in computation, due to still involving one full-rank multiplication in the  
 1329 backward pass. INSTANT (compressing both  $x$ ,  $g_y$ ) achieves the highest computation compression  
 1330 rate and high memory compression rate with a negligible performance drop compared to Vanilla. In  
 1331 short, INSTANT (only compress  $x$ ) is a good choice if tasks only require a small memory budget.  
 1332 INSTANT (compressing both  $x$ ,  $g_y$ ) is good at tasks requiring a small memory budget and small  
 1333 training time, making it efficient for resource-efficient training.

## 1338 K.2 INSTANT WITHOUT CALIBRATION

1339 To highlight the necessity and efficiency of our calibration scheme, we also provide extra baseline:  
 1340 Random - which is INSTANT using random subspaces  $P, Q$  for compressing activation  $x$  and  
 1341 activation gradient  $g_y$ . The difference is that in this Random scheme, we periodically update  $P, Q$   
 1342 by random Gaussian matrices each  $N_t = 200$  training iterations.

1343 The experimental results (Tab. 9, Tab. 10) demonstrate that INSTANT significantly outperforms the  
 1344 Random projection method, where the compression rank is set to  $\frac{N}{2}$  or  $\frac{N}{4}$ , with  $N$  representing the  
 1345 input dimension. This highlights that INSTANT effectively requires a compact yet precise low-rank  
 1346 space to retain gradient information for accurate backpropagation through the network. Notably, in  
 1347 the case of full fine-tuning, the Random projection method fails to converge, as the gradients struggle  
 1348 to propagate through multiple layers, resulting in significant error accumulation due to the lack of a  
 1349 well-defined low-rank space.

1350  
1351 Table 10: Full finetuning EfficientFormer-L1 on CIFAR10, CIFAR100 with INSTANT-random (Ap-  
1352 penix. K.2) and ESPACE (Appendix. L.1) methods.  
1353

| Method       | CIFAR10      | CIFAR100     | Forward MFLOPs | Backward MFLOPs | Activation Mem (MB) |
|--------------|--------------|--------------|----------------|-----------------|---------------------|
| ESPACE – N/2 | 93.16        | 74.56        | 2347           | 4694            | 4.29                |
| ESPACE – N/4 | 51.18        | 35.62        | 1173           | 2347            | 2.14                |
| Random – N/2 | 13.47        | 3.66         | 2264           | 4694            | 4.29                |
| Random – N/4 | 10.00        | 9.26         | 2264           | 2347            | 2.14                |
| INSTANT-5    | 96.29        | 82.41        | 2264           | 2107            | 1.98                |
| INSTANT-10   | 96.48        | 83.05        | 2264           | 2491            | 2.73                |
| INSTANT-15   | <b>96.85</b> | <b>83.56</b> | 2264           | 2884            | 3.45                |
| Vanilla      | 96.99        | 84.84        | 2264           | 4528            | 18.46               |

1361  
1362 Table 11: Experimental results on CIFAR10 when fine-tuning 9 last layers of ViT-B/32. We report  
1363 the MFLOPs and memory (Mem) required for training a single sample.  
1364

| Model    | Method             | MFLOPs ↓ | Mem ↓ | CF10 ↑ |
|----------|--------------------|----------|-------|--------|
|          | Vanilla            | 2831     | 2.20  | 96.56  |
|          | Gradient Filtering | 63       | 0.07  | 30.38  |
| ViT-B/32 | LBP-WHT-4          | 863      | 0.70  | 92.1   |
|          | INSTANT-0          | 161      | 0.11  | 96.36  |
|          | INSTANT-5          | 445      | 0.31  | 96.36  |
|          | INSTANT-7          | 567      | 0.40  | 96.6   |

1373 L ADDITIONAL RESULTS  
13741375  
1376  
1377 L.1 COMPARISON OF INSTANT WITH ESPACE  
1378

1379 ESPACE primarily focuses on compressing activations only, whereas our main objective is to jointly  
1380 compress both activations and activation gradients. In trade-off to save forward computations,  
1381 ESPACE performance is degraded compared to INSTANT due to error accumulations, even in the  
1382 forward pass. Noticeably, using quite high dimension compressions  $r = \frac{N}{2}$  or  $r = \frac{N}{4}$ , ESPACE  
1383 observes limited overhead reductions compared to INSTANT. More experimental results are shown  
1384 in Tab. 9 and Tab. 10.

1385  
1386 L.2 RESULTS ON LARGE ARCHITECTURE FOR VISION TASKS  
1387

1388 Vision Transformer achieves extraordinary performance on image classification. We conduct exper-  
1389 iments with ViT-B/32, a variant of Vision Transformer (Dosovitskiy et al., 2021) with 88 million  
1390 parameters, which is  $7 \times$  EfficientFormer-L1 with 12 million parameters. In terms of accuracy, Gradi-  
1391 ent Filtering fails, while LBP-WHT-4 performs worse than EfficientFormer-L1, which suggests that  
1392 their strategies are inappropriate for ViT-based architectures. Conversely, INSTANT with SVD-based  
1393 compression can preserve significant information while achieving a good compression rate with  
1394 negligible performance drop. Noticeably, INSTANT-7 outperforms Vanilla in all reported metrics,  
1395 including accuracy.

1396  
1397 L.3 RESULTS ON COMPLEX PLACES-365 DATASET  
1398

1399 We finetuned EfficientFormer-L1 on Places-365 (Zhou et al., 2017) dataset, which contains 1.8M  
1400 images and is more challenging than ImageNet, i.e, models often perform worse on Places-365 than  
1401 on the ImageNet dataset. The table above demonstrates that INSTANT remains highly effective  
1402 even with large datasets such as Places-365. All three versions of INSTANT show only a minor  
1403 reduction in performance compared to vanilla training, despite achieving a threefold reduction in  
both computational cost and memory usage. When compared to LBP-WHT, INSTANT offers slightly

Table 12: We finetuned the last layer of EfficientFormer-L1 on Places-365 dataset.

| Method             | Accuracy     | Backward MFLOPs* | Activation Memory (MB) |
|--------------------|--------------|------------------|------------------------|
| Vanilla            | 55.30        | 1484             | 1.95                   |
| Gradient Filtering | 9.2          | 24               | 0.04                   |
| LBP-WHT-2          | 50.92        | 95               | 0.12                   |
| LBP-WHT-4          | 53.27        | 335              | 0.40                   |
| LBP-WHT-8          | 54.67        | 1227             | 1.43                   |
| INSTANT-0          | 54.32        | 388              | 0.37                   |
| <b>INSTANT-5</b>   | <b>54.57</b> | <b>567</b>       | <b>0.60</b>            |
| INSTANT-7          | 54.55        | 606              | 0.66                   |

(\*) The reported Backward MFLOPs includes forward compression in cases of INSTANT, Gradient Filtering, and LBP-WHT

Table 13: TinyLlama results on BoolQ dataset

| Fine-tuning the Last Block |           |          |       |         |
|----------------------------|-----------|----------|-------|---------|
| Model                      | Method    | MFLOPs ↓ | Mem ↓ | BoolQ ↑ |
| TinyLLama                  | Vanilla   | 90194    | 35    | 67.71   |
|                            | LBP-WHT-4 | 15083    | 5.47  | 63.94   |
|                            | INSTANT-0 | 5517     | 0.07  | 63.88   |
|                            | INSTANT-5 | 7298     | 0.41  | 64.77   |
|                            | INSTANT-7 | 7465     | 0.55  | 64.89   |

better performance while maintaining the same memory and computational budget. In contrast, Gradient Filtering fails to converge, yielding poor results.

#### L.4 RESULTS ON LARGE LANGUAGE MODEL (TINYLLAMA)

We conduct some additional experiments on TinyLlama (Zhang et al., 2024) on the BoolQ (Clark et al., 2019) dataset with a similar setup to NLP tasks. The results are reported in Tab. 13. It is noticeable that, with a bigger model, INSTANT only requires a small rank to keep a large amount of energy, thus reducing a large amount of computational and memory consumption. However, in this experiment, although INSTANT witnesses a 3% drop in performance compared to vanilla training, INSTANT can save about 13 $\times$  computational cost and 64 $\times$  memory consumption. This makes training a large model with more than a billion parameters on resource-constrained devices possible.

#### L.5 MORE SAMPLES ON LOW-RANK CHARACTERISTIC

Fig. 11 describes the low-rank characteristic of various samples through various layers of different architectures. In many layers, a large amount of information can be kept on only a few eigenvalues, proving that the compression tensor of INSTANT can work effectively on many blocks of the model.

#### L.6 EFFICIENT TRAINING-AWARE SUBSPACES

Fig. 12 and Fig. 13 illustrate the variation of FLOPs and peak memory between different datasets when we fine-tune with INSTANT. In CV tasks (Fig. 12), INSTANT with  $\epsilon = 0.95$  and  $p = 5$  has a comparable overhead to LBP-WHT-4, but our performance is better (Tab.1). Compared to LBP-WHT-8, our overhead is extremely smaller in every dataset with a trade-off of negligible accuracy. The higher overhead of Flowers is possibly due to its high variance samples, which require larger subspaces  $\mathbf{P}$ ,  $\mathbf{Q}$  to capture sufficient meaningful information of tensors. In language tasks (Fig. 12), INSTANT with  $\epsilon = 0.95$  and  $p = 7$  or  $p = 15$  outperform LBP-WHT-2 in every dataset. It is noticeable that activation storage in every dataset is similar. This is possibly due to the strongly low-rank characteristic of activation, especially in language tasks.

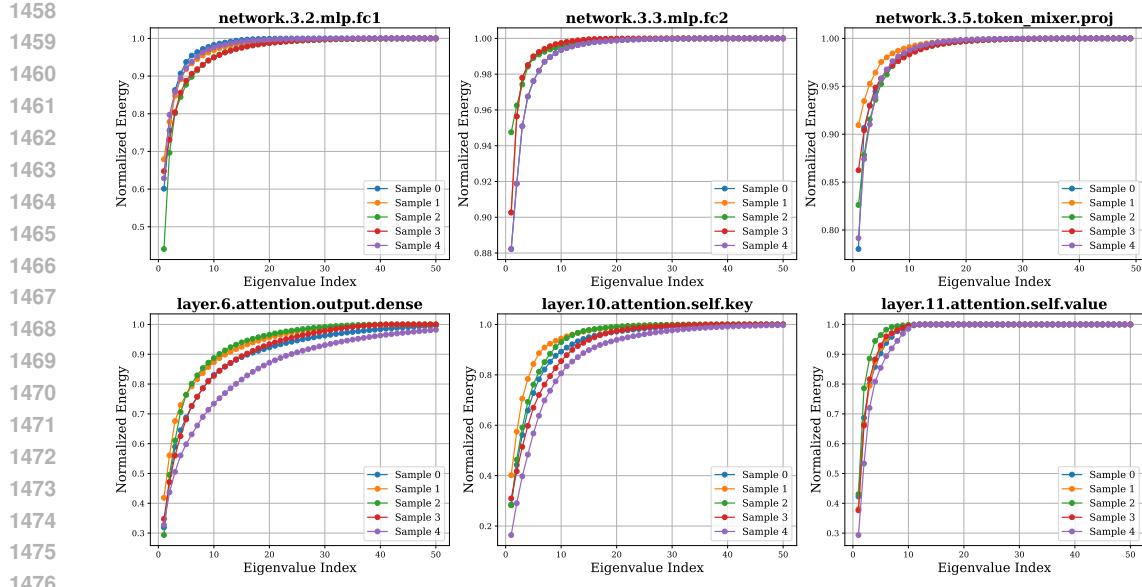


Figure 11: The normalized energy of eigenvalues of the gradient of many different layers in EfficientFormer-L1 and BERT.

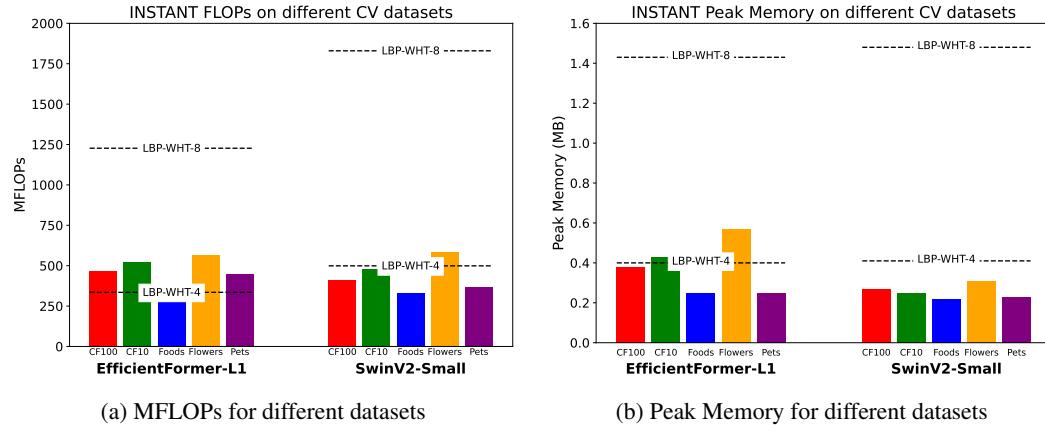


Figure 12: (a) MFLOPs of INSTANT when fine-tuning on 5 datasets with oversampling  $p = 5$ . There are differences in MFLOPs of each dataset, however, in all datasets, INSTANT has a lower MFLOPs compared to LBP-WHT-8. (b) Peak memory of INSTANT when fine-tuning on 5 datasets with oversampling  $p = 5$ . The peak memory on different datasets slightly vary, and in all datasets, INSTANT has lower peak activation memory than LBP-WHT-8.

## M LARGE LANGUAGE MODELS (LLMs) USAGE

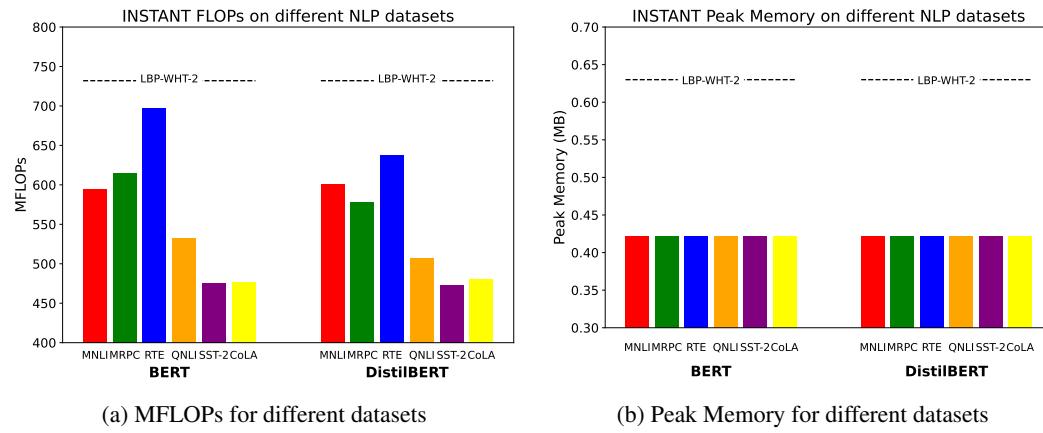
We utilized an LLM as a support tool in preparing this paper. Its role was limited to:

- polishing the clarity and flow of writing (but we do not use it to generate new text)
- assisting with retrieval and discovery, such as identifying relevant prior work and commonly used methods

All scientific design choices, methodological decisions, implementation, data analysis, and interpretation of results were made solely by the authors.

The LLM did not contribute novel ideas or conduct experiments; it was used only as an assistant for writing and literature awareness.

1512  
 1513  
 1514  
 1515  
 1516  
 1517  
 1518  
 1519  
 1520  
 1521  
 1522  
 1523  
 1524  
 1525  
 1526  
 1527  
 1528  
 1529



1544 Figure 13: (a) MFLOPs of INSTANT when fine-tuning on 6 datasets with oversampling  $p = 7$ .  
 1545 There are differences in MFLOPs of each dataset, however, in all datasets, INSTANT has a lower  
 1546 MFLOPs compared to LBP-WHT-2. (b) Peak memory of INSTANT when fine-tuning on 6 datasets  
 1547 with oversampling  $p = 15$ . The peak memory on different datasets is quite similar, and in all datasets,  
 1548 INSTANT has lower peak activation memory than LBP-WHT-2.

1549  
 1550  
 1551  
 1552  
 1553  
 1554  
 1555  
 1556  
 1557  
 1558  
 1559  
 1560  
 1561  
 1562  
 1563  
 1564  
 1565