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Abstract

Diffusion-based generative models have been used as powerful priors for magnetic
resonance imaging (MRI) reconstruction. We present a learning method to optimize
sub-sampling patterns for compressed sensing multi-coil MRI that leverages pre-
trained diffusion generative models. Crucially, during training we use a single-step
reconstruction based on the posterior mean estimate given by the diffusion model
and the MRI measurement process. Experiments across varying acceleration factors
and pattern types show that sampling operators learned with our method lead to
competitive, and in the case of 2D patterns, improved reconstructions compared to
baseline patterns.

1 Introduction

Compressed sensing (CS) [7, 11] has been used to accelerate magnetic resonance imaging (MRI)
beyond the Nyquist rate by sampling a pseudo-random subset of Fourier coefficients in k-space and
imposing a sparse prior on the image [20]. More recently, deep learning has been used as a powerful
tool to solve ill-posed inverse problems such as MRI reconstruction beyond the capabilities of sparsity
priors [21]. In particular, several approaches have been introduced to optimize the sampling pattern
for MRI either separately or jointly with the reconstruction network through end-to-end learning
[4, 1, 29, 23, 33, 2]. However, these approaches are only suitable when the gradient of the sampling
operator can be calculated through the full reconstruction process. Thus, while these techniques have
been successful for optimizing sampling patterns for end-to-end reconstruction networks, it is unclear
how to extend them to unsupervised methods such as CS with generative models (CSGM) [6].

Our Contributions In this work we optimize the sampling operator for CSGM MRI. We use the
recently proposed unsupervised method of posterior sampling with diffusion models [15, 9, 19, 25],
since it has been shown to be robust to changes in imaging anatomy, acceleration factor, and sub-
sampling patterns without requiring retraining. Since diffusion-based posterior sampling is not
amenable to algorithm unrolling, we propose a simple and effective alternative to the full gradient of
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Figure 1: Reconstructions using baseline masks vs masks learned with our method. We perform
posterior sampling using a diffusion model to reconstruct MRI scans using varying pattern types and
acceleration factors (R). Artifacts in the reconstructions are highlighted with red arrows and insets
(zoom may be needed). Masks learned with our method produce reconstructions with fewer artifacts.

the reconstruction process that can be used to optimize the selection of which samples to keep. We
apply our approach to multi-coil Cartesian MRI and demonstrate that optimized sampling patterns
can be used to reduce the reconstruction error for a given acceleration factor.

2 Background

Diffusion-Based Generative Models Diffusion-based models learn to generate new signals by
reversing a corruption process, such as removing additive Gaussian noise. Early work treated various
discrete-time diffusion processes [24, 13], which Song et al. [26] unify under the framework of
continuous-time Stochastic Differential Equations (SDEs). We focus on the Variance Exploding (VE)
class of SDEs.

The noisy signal at time t in the forward diffusion process is given by xt ∈ Rn. The diffusion process
is modeled as the solution to an Itô SDE of the form

dx = f(x, t)dt+ g(t)dw. (1)

Here, w is the standard n-dimensional Wiener process, and in the VE case, f(x, t) = 0 and g(t) =√
dσ2

t /dt. The variance σ2
t is a monotonically increasing function that defines the distribution of the

diffused signal, with the property that at time t = 0 we recover the data distribution: x0 ∼ p0 = pdata.
The goal of Diffusion-based models is to start from samples xT ∼ pT consisting of pure Gaussian
noise and reverse the forward diffusion given by Eq. (1) to arrive at samples x0 ∼ p0. Conveniently,
the reverse of the forward SDE is also an SDE [3], with the form

dx = [f(x, t)− g(t)2∇xt
log pt(xt)]dt+ g(t)dw̄, (2)

where dt is now a negative time step and w̄ is the standard Wiener process when time flows backward.
The reverse SDE depends on the score function ∇xt

log pt(xt) of the marginal distribution at time t,
which can be estimated by training a score network sθ(xt, t) with denoising score matching [28] loss
so that sθ(xt, t) ≃ ∇xt

log pt(xt).

Posterior Sampling We are given measurements of the form y = A(x0)+ϵ, whereA : Rn → Rm

is a known forward operator, ϵ ∈ Rm is some additive noise, and x0 ∈ Rn is a signal we want to
recover. Using Bayes’ rule, we observe that the score of the posterior distribution can be decomposed
as ∇x log p(x|y) = ∇x log p(x) + ∇x log p(y|x). We can reconstruct the signal using posterior
sampling via the reverse SDE in Eq.(2), replacing the score term with our decomposed posterior
score:

dx = [f(x, t)− g(t)2(∇xt log pt(xt) +∇xt log pt(y|xt))]dt+ g(t)dw̄. (3)
While we can train a score network to approximate ∇xt log pt(xt), the time-dependent likelihood
pt(y|xt) is not easy to obtain. In graphical terms, xt ← x0 → y, but there is no explicit dependence
between the measurements y and the noisy signal xt.
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Figure 2: Mean test SSIM [30] for 2D and 3D patterns. We compare reconstructions with masks
learned using our method to those with fixed baseline masks across a range of acceleration factors.
The shaded areas indicate a 95% confidence interval. Masks learned with our method consistently
lead to better reconstructions than baseline masks for 2D patterns. For 3D patterns, our masks offer
competitive performance with baselines.

Diffusion Posterior Sampling (DPS) [8] is a technique that approximates the time-dependent score of
the likelihood as ∇xt

log pt(y|xt) ≃ ∇xt
log pt(y|x̂0), where x̂0 is a “one-step” denoised estimate

given by Tweedie’s formula [12] as the posterior mean

x̂0 := Ext∼pt(xt|x0)[x0|xt] = xt + σ2
t∇xt

log pt(xt). (4)

We can replace the score function in Eq.(4) using our trained score network sθ(xt, t) to approximate
x̂0. Finally, using the DPS approximation, we can sample from the posterior using the reverse SDE
from Eq.(3).

MRI Reconstruction A common approach for accelerating MRI scans is to collect fewer measure-
ments and solve the resulting ill-posed inverse problem. The measurement process for multi-coil
MRI can be written in the form

yi = PFSix0 + ϵ, (5)

where yi ∈ Cm are the measurements in the spatial frequency domain (or k-space) for the ith coil,
x0 ∈ Cn is the image of interest, Si ∈ Cn×n is the coil sensitivity map for the ith coil (c coils in
total), F ∈ Cn×n is the Fourier transform matrix, P ∈ Cm×n is a sub-sampling operator whose rows
are a subset of the rows of the n× n identity matrix, and ϵ ∈ Cm is i.i.d Gaussian noise. We also
define the acceleration factor R := m/n as the under-sampling ratio.

3 Methods

We would like to learn a distribution pθA(A), parameterized by weights θA, over forward operators
A that produce measurements y = A(x0) + ϵ. Our goal is to minimize the reconstruction error
between the true signal x0 and the estimates x̃0 ∼ p0(x0|y) produced by sampling from the posterior
using a diffusion-based generative model. We can write the problem as an optimization that can be
solved using gradient descent-based methods:

θ∗A = argmin
θA

Ex0∼p0(x0), x̃0∼p0(x0|y), y∼p(y|x0), A∼pθA (A)∥x0 − x̃0∥22. (6)

In practice, however, sampling from the posterior to get x̃0 involves an iterative application of an
SDE solver or ancestral sampling. This makes differentiating with respect to θA challenging, as
naïvely backpropagating through the sampling procedure is infeasible due to memory constraints.

To motivate our solution, recall that Tweedie’s formula allows us to use Eq. (4) to get a one-step
approximation of the denoised posterior mean Ext∼pt(xt|x0)[x0|xt]. We show in Proposition 3.1 that
we can extend Tweedie’s formula to include measurements y ∼ p(y|x0).

Proposition 3.1 (Tweedie’s formula with additional measurements). Let x0 ∼ p0(x0) be an unknown
signal, xt ∼ pt(xt|x0) = N (xt;x0, σ

2
t I) a version of x0 corrupted by additive Gaussian noise,

and y ∼ p(y|x0) some additional measurements of x0. Furthermore, let xt and y be conditionally
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independent given x0: pt(xt|x0,y) = pt(xt|x0). Finally, assume that pt(xt|y) is supported
everywhere. Then, the posterior mean of x0 conditioned on xt and y is given by

E[x0|xt,y] = xt + σ2
t∇xt log pt(xt|y). (7)

We give the proof in Appendix A. Recalling that ∇xt
log pt(xt|y) = ∇xt

log pt(xt) +
∇xt

log pt(y|xt), our result essentially allows us to leverage the score of the likelihood in addi-
tion to the prior to obtain a finer estimate of x0 than using the prior alone. The assumption of
conditional independence of xt and y given x0 is satisfied in the inverse problem setting, as we have
that xt ← x0 → y with no other dependencies.

In reality, we only have access to a score network and an approximation of the likelihood score from
DPS. Therefore, a tractable approximation of the expectation in Eq. (7) is

E[x0|xt,y] ≃ xt + σ2
t [sθ(xt, t) +∇xt

log pt(y|x̂0)], (8)

where x̂0 is given by Tweedie’s formula as in Eq. (4). In practice, we assume that pt(y|x̂0) ∼
N (y;A(x̂0), σ

2
t I) and calculate the posterior mean as

E[x0|xt,y] ≃ xt + σ2
t sθ(xt, t)− γ∇xt∥A(x̂0)− y∥22, (9)

where γ is a likelihood step size.

Using the result from Proposition 3.1, we finally present our training objective:

θ∗A = argmin
θA

Ex0∼p0(x0)∥x0 − x̃0∥22

x̃0 = EA∼pθA (A), y∼N (A(x0),σ2
yI), xt∼pt(xt|x0), t∼qt(t)[x0|xt,y],

(10)

where qt(t) is a distribution over time steps and we use the approximation from Eq. (9) to calculate
the posterior mean estimate x̃0. During training, we calculate the gradient w.r.t θA with automatic
differentiation (e.g. using PyTorch [22]), which involves backpropagating through x̃0 and therefore
through the score network.

4 Experiments

Dataset We experiment on the fastMRI multi-coil brain dataset [31]. We create single-coil minimum
variance unbiased estimator (MVUE) images from the fully-sampled k-space data and sensitivity
maps (calculated using ESPIRiT [27]) to use as our ground truth reference. For training and testing
sub-sampling patterns, we create a subset of 200 training and 50 validation scans from the fastMRI
training set and 100 test scans from the fastMRI validation set.

Diffusion Model We train a score-based network using the ADM architecture [10] with the EDM
repo [17]. We use the EDM [17] default pre-conditioning and training parameters, with a learning
rate of 1 × 10−4, batch size of 15, and an exponential moving average (ema) half-life of 100K
images, and train the models for 140 epochs. For posterior sampling, we modify the the stochastic
sampling algorithm from EDM to have no second-order correction and add a log-likelihood step. We
present our sampler in Algorithm 1 in Appendix C. Following the implementation of DPS [8], we
set the sampling likelihood step size parameter as ρdps = ρ/∥y − A(x̂0)∥, where ρ is a tuneable
hyperparameter. We use 100 sampling steps with ρ = 10 and the stochasticity parameter Schurn = 0.

Learning Sampling Patterns We describe our choice of sampling pattern parameterization in
Appendix B. When learning sub-sampling patterns, we use the noise schedule from EDM with
σt = t and noise distribution qt(t) = qσt(σt) such that lnσt ∼ N (Pmean, P

2
std), where we use the

default values Pmean = −1.2 and Pstd = 1.2 [17]. We set the measurement noise σy = 0, training
likelihood step size to γ = 1, training batch size to 1, and Gumbel temperature to τ = 1. We use
the Adam optimizer [18] with a learning rate of 1× 10−2 and optimize for 10 epochs over all 200
training samples. We fix a central 16-pixel wide region that is always fully sampled for calibration
purposes on both our masks and baselines, and initialize pattern weights as θP = 0.
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Results We train 2D and 3D sub-sampling patterns for brain scans across various accelerations.
As a baseline, we compare to posterior sampling using fixed equispaced masks for the 2D case and
Poisson disc masks for 3D. We display reconstructions in Figure 1. Our masks can reduce small- and
large-scale artifacts compared to baseline masks, as shown by the areas indicated with red arrows
and insets in Figure 1. We note that our reconstruction at R = 20 displays a shading artifact in the
top-left, indicating limited quality for 2D patterns at high accelerations regardless of training.

We also evaluate the performance of each method using the structural similarity index measure
(SSIM) [30] between the reference MVUE and the reconstruction and plot the results in Figure 2.
Our method achieves better reconstruction error for 2D imaging at R > 4. Interestingly, both our
masks and the Poisson disc masks perform similarly in the 3D case. We note that training a diffusion
model end-to-end or fine-tuning a pre-trained model with the objective in Eq. (10) may offer better
performance. However, these approaches would be more computationally expensive and couple the
diffusion model with the forward operator, decreasing generalization ability.
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A Proof of Proposition 3.1

Proposition 3.1 (Tweedie’s formula with additional measurements). Let x0 ∼ p0(x0) be an unknown
signal, xt ∼ pt(xt|x0) = N (xt;x0, σ

2
t I) a version of x0 corrupted by additive Gaussian noise,

and y ∼ p(y|x0) some additional measurements of x0. Furthermore, let xt and y be conditionally
independent given x0: pt(xt|x0,y) = pt(xt|x0). Finally, assume that pt(xt|y) is supported
everywhere. Then, the posterior mean of x0 conditioned on xt and y is given by

E[x0|xt,y] = xt + σ2
t∇xt log pt(xt|y). (7)

Proof. We begin by representing the distribution pt(xt|y) as marginalizing out x0 conditioned on y:

pt(xt|y) =
∫
x0

pt(xt|x0,y)p0(x0|y)dx0.

Next, we take the gradient w.r.t. xt on both sides:

∇xtpt(xt|y) = ∇xt

∫
x0

pt(xt|x0,y)p0(x0|y)dx0

=

∫
x0

p0(x0|y)∇xtpt(xt|x0,y)dx0

=

∫
x0

p0(x0|y)pt(xt|x0,y)∇xt
log pt(xt|x0,y)dx0.

On the last line, we use the identity∇x log f(x) = ∇xf(x)/f(x). We note that since pt(xt|x0,y) =
pt(xt|x0), and pt(xt|x0) is Gaussian, pt(xt|x0,y) has non-zero value everywhere and we avoid
singularities from the denominator.

Continuing, we use the conditional independence of xt and y given x0 to replace∇xt
log pt(xt|x0,y)

on the right-hand side with∇xt
log pt(xt|x0) and obtain:

∇xtpt(xt|y) =
∫
x0

p0(x0|y)pt(xt|x0,y)∇xt log pt(xt|x0)dx0

=

∫
x0

p0(x0|y)pt(xt|x0,y)

(
x0 − xt

σ2
t

)
dx0.

Here, we use the fact that pt(xt|x0) = N (xt;x0, σ
2
t In) is a Gaussian and replace the score function

∇xt log pt(xt|x0) by its exact value, (x0 − xt)/σ
2
t .

Expanding the right-hand-side, we get:

∇xt
pt(xt|y) =

1

σ2
t

[ ∫
x0

p0(x0|y)pt(xt|x0,y)x0dx0 −
∫
x0

p0(x0|y)pt(xt|x0,y)xtdx0

]
=

1

σ2
t

[ ∫
x0

p0(x0|y)pt(xt|x0,y)x0dx0 − xt

∫
x0

p0(x0|y)pt(xt|x0,y)dx0

]
=

1

σ2
t

[ ∫
x0

p0(x0|y)pt(xt|x0,y)x0dx0 − xtpt(xt|y)
]
.

In the previous line, we marginalize out x0 conditioned on y as in the first line of the proof to recover
pt(xt|y).
Next, we observe that Bayes’ rule tells us p0(x0|y)pt(xt|x0,y) = pt(xt|y)p0(x0|xt,y) and replace
the former quantity by the latter on the right-hand side:

∇xtpt(xt|y) =
1

σ2
t

[ ∫
x0

pt(xt|y)p0(x0|xt,y)x0dx0 − xtpt(xt|y)
]

=
1

σ2
t

[
pt(xt|y)E[x0|xt,y]− xtpt(xt|y)

]
=

pt(xt|y)
σ2
t

[
E[x0|xt,y]− xt

]
∇xtpt(xt|y)
pt(xt|y)

=
1

σ2
t

[
E[x0|xt,y]− xt

]
.
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We note that from our assumption, pt(xt|y) is fully supported everywhere, so we avoid singularities
when dividing by this quantity.

Finally, we again invoke the identity ∇x log f(x) = ∇xf(x)/f(x) to rewrite the left-hand side and
rearrange to obtain the desired result:

∇xt
log pt(xt|y) =

1

σ2
t

[
E[x0|xt,y]− xt

]
E[x0|xt,y] = xt + σ2

t∇xt log pt(xt|y).
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B Parameterizing the Sampling Pattern

We wish to learn a distribution over optimal sampling pattern for reconstructing MRI images for
some fixed acceleration R. This amounts to learning Ai(x) = PFSix, for i ∈ [c] with F and Si

fixed. Therefore, we only need to learn a distribution pθP parameterized by weights θP over the
sub-sampling operator P. We base our parameterization and sampling scheme on that of LOUPE
[32], with some changes. For n-dimensional images, we learn parameters θP ∈ Rn. Each entry
θP,i, i ∈ [n], defines an independent Bernouli random variable B(p(θP,i)) at each location in the
k-space of an image, where p(θP,i) is the probability that the variable takes the value 1. The sampling
mask distribution is defined as pθP =

∏n
i=1 B(p(θP,i)).

Following LOUPE, we re-scale the values σ(θP,i), where σ(x) = 1/(1 + e−x) is the standard
sigmoid function, so that they have mean 1/R. Since the Bernouli random variables are independent,
sample patterns drawn from the re-scaled distribution will have an average acceleration factor of R.
Given the unnormalized mean p̄ = 1

n

∑n
i=1 σ(θP,i), we define p(θP,i) as

p(θP,i) =

{
1
p̄Rσ(θP,i) if p̄ ≥ 1

R

1− R−1
R−p̄R (1− σ(θP,i) otherwise

, (11)

which outputs values in the range [0, 1] and has the desired mean 1
n

∑n
i=1 p(θP,i) = 1/R.

Next, we need to sample from pθP in a way that is differentiable with respect to θP. We use the
Gumbel Straight-Through estimator [16], which shows superior performance to the vanilla Straight-
Through estimator [5] used by LOUPE. For samples g1 and g2 drawn i.i.d. from the Gumbel(0,
1) distribution and temperature τ > 0, the Gumbel Straight-Through estimator generates a sample
zi ∈ {0, 1} for k-space location i ∈ [n] as

zi = 1≥0.5(yi), yi =
uτ (p(θP,i), g1)

uτ (p(θP,i), g1) + uτ (1− p(θP,i), g2)
, uτ (p, g) = exp

(
log p+ g

τ

)
, (12)

where 1≥0.5(·) is the indicator function that takes the value 1 if its argument is ≥ 0.5 and 0 otherwise.
As τ → 0, we have that E[yi]→ p(θP,i). The Gumbel Straight-Through estimator replaces∇θPzi
with∇θPyi during backpropagation. This trick allows us to draw realistic binary samples zi while
enjoying well-defined gradients from the smooth softmax sample yi.
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C Posterior Sampling Algorithm

Algorithm 1 Posterior sampling

Require: sθ(xt, t), σt∈{tN ,...,t0}, Schurn, ρdps,y
1: sample xN ∼ N (0, σ2

tN I)
2: for i ∈ {N, . . . , 1} do
3: sample zi ∼ N (0, I)
4: αi ← min(Schurn/N,

√
2− 1)

5: σ̂ti ← σti + αiσti

6: x̂i ← xi +
√

σ̂2
ti − σ2

tizi

7: x̂0 ← x̂i + σ̂2
tisθ(x̂i, t̂i)

8: x̂′
i ← x̂i + (σ̂ti − σti−1

)sθ(x̂i, t̂i)
9: xi−1 ← x̂′

i − ρdps∇x̂i
∥A(x̂0)− y∥22

10: return x0
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D Extended Experimental details

D.1 Dataset

All MRI data are initially stored as complex-valued multi-coil k-space measurements. We appro-
priately crop the raw k-space data and MVUE images for brain scans to 384 × 384 pixels for all
experiments.

For training the score network on brain scans, we take volumes from the fastMRI multi-coil brain
training set and remove the last two noisy slices from each volume for a total of 57,297 scans. We
use scans from all available contrasts and field strengths for training the score networks. To make the
data compatible with real-valued network weights, we represent the complex-valued MVUE images
as two-channel, real-valued images.

Since the data exhibit a wide dynamic range of pixel values, we linearly scale images to the range
[-1,1] when training the score networks using the minimum and maximum pixel values from the two-
channel fully-sampled MVUE images. When learning sampling patterns and performing posterior
sampling, we use the minimum and maximum pixel values from the MVUE calculated from the
retrospectively-undersampled k-space data to perform this scaling.

For training and evaluating sampling patterns, we use T2-weighted brain scans with a field strength
of 3 Teslas. We remove the last five slices from brain volumes when creating the training, validation,
and test sets for learning sampling patterns with our method.

D.2 Training Diffusion Models

We train a score-based network using the ADM architecture [10] and the default parameters for
ImageNet 256 with some changes. We use 128 base channels instead of 256 and self-attention in
the two smallest resolution scales instead of three smallest. The model is trained with classifier-free
diffusion guidance [14] with a label dropout probability of 0.1, treating each unique (contrast, field
strength) pair as a different class.

D.3 Training Sampling Patterns

When training the sampling patterns using Eq. (10), we use a single forward operator A(x) = PFx
instead of usingAi(x) = PFSix for each of the c coils with i ∈ [c]. In other words, we do not use the
coil sensitivity maps Ci when retrospectively sub-sampling training data to create measurements. We
find that this method accelerates training by avoiding memory and computational costs for multiple
coils. We also find that this method improves test performance and leads to more stable convergence
of the learned sampling patterns. During validation and testing, we still perform reconstructions using
undersampled multi-coil k-space data as measurements.

During validation, we perform posterior sampling to reconstruct each image in the validation set and
track the error between the reconstructions and fully-sampled images. Before testing, we restore the
weights of the sampling operator from the iteration with the lowest mean validation error.

D.4 Hyperparameters

We tune the following hyperparameters: the training likelihood step size γ, Gumbel temperature
τ , learning rate for sampling patterns, sampling likelihood step size ρ, and sampling stochasticity
parameter Schurn.

For the general experiments in Figures 1 and 2, we fix the number of sampling steps to 100 and search
for the values of ρ ∈ {0.1, 0.2, . . . , 1, 2, . . . , 10} and Schurn ∈ {0, 10, . . . , 50}. We choose the pair
of values with the smallest reconstruction error on a hold-out set of 30 scans. Once we find the
optimal values ρ = 10 and Schurn = 0, we fix them and search for values of γ ∈ {0.1, 0.5, 1, 5, 10}
and τ ∈ {0.1, 0.5, 1}. We train sampling patterns for 2 epochs on our training set using a learning rate
of 0.1 and choose the pair γ = 1 and τ = 1 that gives the best reconstruction error on the 30 hold-out
scans using the learned pattern. Finally, we fix all previous tuned hyperparameters and search for the
learning rate in {10−4, 10−3, 10−2, 10−1} by again training for 2 epochs and reconstructing hold-out
images, finding 10−2 to be optimal. We tune all listed hyperparameters using 2D patterns with R = 4
and use the same values across all pattern types and accelerations.
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