
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IDINIT: A UNIVERSAL AND STABLE INITIALIZATION
METHOD FOR NEURAL NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks have achieved remarkable accomplishments in practice.
The success of these networks hinges on effective initialization methods, which
are vital for ensuring stable and rapid convergence during training. Recently, ini-
tialization methods that maintain identity transition within layers have shown good
efficiency in network training. These techniques (e.g., Fixup) set specific weights
to zero to achieve identity control. However, settings of remaining weight (e.g.,
Fixup uses random values to initialize non-zero weights) will affect inductive bias
that is achieved only by a zero weight, which may be harmful to training. Ad-
dressing this concern, we introduce fully identical initialization (IDInit), a novel
method that preserves identity in both the main and sub-stem layers of residual
networks. IDInit employs a padded identity-like matrix to overcome rank con-
straints in non-square weight matrices. Furthermore, we show the convergence
problem of an identity matrix can be solved by stochastic gradient descent. Addi-
tionally, we enhance the universality of IDInit by processing higher-order weights
and addressing dead neuron problems. IDInit is a straightforward yet effective ini-
tialization method, with improved convergence, stability, and performance across
various settings, including large-scale datasets and deep models.

1 INTRODUCTION

Deep neural networks have attracted significant attention due to their versatility in various applica-
tions (He et al., 2016; Li et al., 2021). Behind these successes, initialization methods play a crucial
role in promoting stable and fast-convergent training processes for networks (Sutskever et al., 2013;
Arpit et al., 2019; Huang et al., 2020; Pan et al., 2022). Usually, initialization methods make effects
by controlling the magnitude of signals. For example, Xavier (Glorot & Bengio, 2010) initializa-
tion is originally proposed to maintain signals in the non-saturated region of the sigmoid activation
function by restricting signal variances, which greatly solved the difficulty of training. Then, Gilboa
et al. (2019); Poole et al. (2016) propose to initialize network weights by constraining signals on the
edge of chaos through dynamical isometry, which can further benefit the network training. Later,
Hardt & Ma (2017) analyzed the optimization landscape of linear residual networks, and found that
weights that transit identity in layers can help networks converge fast as their F-norm is close to that
of the final converged weights. And identity transition also corresponds to isometry theory (Zhang
et al., 2019), thereby, contributing to avoiding gradient explosion and diffusion.

Identity-Control:

Figure 1: A case of identity-control initializa-
tion, which sets W2 = 0 to satisfy Y = X .

An instance of preserving identity across neural
network layers, known as ”identity-control,” is de-
picted in Figure 1 and formally expressed as Y =
X . This type of initialization can be implemented
by setting specific weights (e.g., W2) to 0, thereby
ensuring zero output in the sub-stem, as eluci-
dated by Hardt & Ma (2017). This approach, how-
ever, poses challenges in configuring the remaining
weight W1. Previous work such as Fixup (Zhang et al., 2019) and ZerO (Zhao et al., 2022) initial-
ize W1 using the Xavier and Hadamard methods, respectively. These initializations can adversely
affect the inductive bias already established by setting W2 = 0, a setting beneficial for training.
As evidenced in Figure 2, both Xavier and Hadamard methods cause difficulties in achieving con-
vergence. Observing this, we propose initializing W1 with an identity matrix I , which retains the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Random Hadamard Partial Identity IDInit

0.14 0.05

0.06 0.03

0.04 -0.01

0.05 -0.03

1 1

1 -1

1 1

1 -1

1 0

0 1

0 0

0 0

1 0

0 1

1 0

0 1

(a) Initialization methods.

0 20 40 60 80 100

Epoch
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Identity-1
Random
Hadamard
IDInit

(b) Square Loss.

0 20 40 60 80 100

Epoch
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Default
Random
Hadamard
Partial Identity
IDInit

(c) Rectangle Loss.

Figure 2: Analyzing effect of initializing W1 while W2 = 0. The experiment uses Cifar10 and
blocks in Figure 1, and more details are in Appendix C.5. (a) The initialization methods for W1 in
a rectangular format. Fixup: “Random”; ZerO: “Hadamard”. And “Partial Identity” and “IDInit”
denote padding 0 and I to an identity matrix, respectively. (b) Set W1 ∈ R240×240 and W2 ∈
R240×240 as square matrices. “Identity-1” represents a configuration where only one weight is
initialized as 0. Interestingly, while “Random” and “Hadamard” methods may outperform “Identity-
1” in initial training epochs due to more network weights, they are hard to capture the inductive bias
of “Identity-1”, resulting in convergence difficulties. In contrast, IDInit can effectively leverage the
training dynamics associated with “Identity-1”. (c) Set W1 ∈ R280×240 and W2 ∈ R240×280 as
rectangle matrices. “Default” means W1 and W2 are initialized with Xavier. However, “Default”
proves ineffective for training, as it conflicts with dynamical isometry. Furthermore, even though
“Partial Identity” exhibits the capability to transmit partial signals, it performs poorly due to rank
constraint issues. Finally, IDInit maintains well-training conditions by padding the identity matrix.

inductive bias as IW2 ≡ W2. Moreover, I also achieves dynamical isometry in the sub-stem layer
as discussed by Zhao et al. (2022). Figure 2 demonstrates that using an identity matrix significantly
aids in training convergence. Nonetheless, the practical application of an identity matrix faces two
primary obstacles. First, an identity matrix requires square-shaped weights, a condition seldom met
in practical networks. While a partial identity matrix (by padding 0 to an identity matrix) offers
a workaround, it leads to rank constraints issues (Zhao et al., 2022) when the output dimension
exceeds the input dimension, impairing network generalization. The second obstacle concerns the
convergence capability. As Bartlett et al. (2019) pointed out, weights initialized with an identity
matrix are difficult to converge to the ground truth, of which eigenvalues contain negative values.
This convergence problem is important as it indicates a limited universality of applying an identity
matrix as an initialization method.

IDInit. In light of the preceding discussion, we aim to address these two major obstacles. To handle
a non-square matrix, we pad a new identity matrix in adjacency to an identity matrix. We theo-
retically demonstrate this operation can resolve the rank constraint problem. Then, to alleviate the
replica problem induced by this padding scheme, we impose a loosening condition on the padded
identity-like matrix. Turning to the matter of convergence, we conduct an experiment to analyze it.
Interestingly, we find that the convergence problem can be solved by adding a moment in an opti-
mizer (e.g., the stochastic gradient descent optimizer), which is the most general setting for training
neural networks. By introducing the identity-like matrix into the identity-control framework, we
implement a fully identical initialization (IDInit), which ensures identity transition across both main
and sub-stem layers. Moreover, we explore two additional techniques for improving the universality
of IDInit and the identity-control framework:

(1) Higher-order Weights: An identity matrix is a 2-D array and it is necessary to consider an efficient
method to transfer the identity matrix to a higher-order weight (e.g., a 4-D convolution). A previous
strategy is to keep identity along the channel (see Sec. 3.1.3). However, this causes diversity loss
in channels, which is harmful to performance. To remedy this shortage, we keep identity in patches
alternatively for more diversity in channels to achieve improvement.

(2) Dead Neurons: As an identity-control method, IDInit sets the last layer of the sub-stem to 0
for transiting identity in the main branch. However, a dead neuron problem is possibly caused by
this setting, especially for residual convolutional networks (Zhang et al., 2019; Zhao et al., 2022).
Addressing this, we select some elements to a small numerical value ε to increase trainable neurons
as in Figure 3.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

To our knowledge, IDInit is the first successful trial to maintain identity in both main- and sub-
stems by breaking the rank constraints, which promise the expressive power of IDInit. Then, we
address the replica problem by adding small noise while maintaining the dynamical isometry. By
further proposing modifications to CNNs and solutions to dead neuron problems, we have signifi-
cantly improved accuracy of classifying Cifar10 on ResNet-20 by 3.42% and 5.89%, respectively.
(see Section 4.3). Note that, although the identity matrix is used as initialization in prior work, it
was only used for square matrix, e.g., Le et al. (2015) set a hidden-to-hidden layer in a recurrent
neural network with an identity matrix for better performance. IDInit is novel for the consideration
of non-standard situations, e.g., non-square matrix. On ImageNet, compared to the default ran-
dom initialization, IDInit demonstrates superior performance, achieving an average improvement of
0.55%, and facilitates faster convergence across various settings, reducing the required training time
by an average of 7.4 epochs. IDInit can accelerate the training procedure of BERT-Base, manifesting
an 11.3% reduction in computational cost. Therefore, our approach yields consistently significant
advantages in the training of neural networks.

2 RELATED WORK

Consider an L-layer residual network, each residual block of which consists of a residual connection
and a residual stem that refers to the component excluding the residual connection. Assumming
each residual stem contains two parameters, and the network’s input signal is denoted as x(0), the
i-th layer can be formulated as

x(i+1) = a(I + θ(i,0)θ(i,1))x(i), (1)

where a(·) denotes the activation function, x(i) means an input of i-th residual block in a network,
I is an identity matrix denoting residual connection, and θ(i,0) and θ(i,1) are weights in the i-th
residual stem of a residual block.

Dynamical Isometry. Assuming signal magnitude (e.g., σ2(x(i))) of each layer changing in a
scale α, the last signal magnitude can reach αL (e.g., σ2(x(L)) = αLσ2(x(0))), making it easy
to cause signal explosion and diffusion, especially for large L. Dynamic isometry is a mechanism
that comes from the mean-field theory (Pennington et al., 2017; 2018). Before introducing the
mechanism, we first consider the input-output Jacobian which is defined as

Jio =
∂x(L)

∂x(0)
, (2)

with the mean squared singular value noted as χ. Pennington et al. (2017) and Bachlechner et al.
(2021) show that χ > 1 indicates that the model is in a chaotic phase, and back-propagated gra-
dients will explode exponentially. By contrast, χ < 1 means a model in an ordered manner that
back-propagated gradients vanish exponentially. χ = 1 is a critical line of initialization, avoiding
gradient vanishing or exploding. The isometry can provide sufficient robustness for the network
training (Gilboa et al., 2019; Poole et al., 2016; Yang & Schoenholz, 2017).

Network Initialization. Common initialization methods are Xavier (Glorot & Bengio, 2010) and
Kaiming initialization (He et al., 2015). Especially for residual networks efficiency, Hardt & Ma
(2017) theoretically demonstrates that network training benefits from keeping identity. Le et al.
(2015) set a hidden-to-hidden layer in a recurrent neural network with an identity matrix for bet-
ter performance. Fixup (Zhang et al., 2019) and ZerO (Zhao et al., 2022) successfully initialize
ResNets by setting residual stem to 0 (not residual connections) to guarantee the identity of sig-
nals. SkipInit (De & Smith, 2020) replaces Batch Normalization with a multiplier whose value is 0.
ReZero (Bachlechner et al., 2021) directly adds extra parameters of value 0 to keep identity, leading
to fast convergence.

Identity-Control Training Framework. Net2Net (Chen et al., 2016) proposes to expand network
depth by maintaining identity. DiracNet (Zagoruyko & Komodakis, 2017) maintains an identity
for propagating information deeper into the network. However, it suffers from reducing residual
connection, causing performance loss. ISONet (Qi et al., 2020) is an isometric learning framework
that contains an identical initialization (i.e., the Dirac function that is also used in ZerO (Zhao et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Identity-Preserving Initialization

0

0

0

0

0

0

0

0

0

Zero-Preserving Initialization

0 0 0 0

0 0 0 0

0 0 0 0

Shortcut
Addition

Figure 3: An overview of IDInit, which consists of identity-preserving initialization IDIτ and zero-
preserving initialization IDIZε. τ and ϵ are usually set to 1 and 1e-6 to maintain identity and transit
zero, respectively. Di means an input dimension and Di+1 denotes an output dimension.

2022) by padding 0 in a non-square matrix case), and isometric regulation in training. ISONet
multiplies 0 to the residual stem like Fixup (Zhang et al., 2019). ISONet lacks the flexibility for
various convolutions as it specifies the net without normalization, and requires SReLU.

3 FULLY IDENTICAL INITIALIZATION

The identity-control scheme serves as a practical initialization framework, with prior studies such as
Fixup (Zhang et al., 2019) and ZerO (Zhao et al., 2022) demonstrating success within this paradigm.
However, as shown in Figure 2, both Fixup and ZerO exhibit changes to the status of Identity-1, lead-
ing to training degradation. To address this issue, we propose IDInit, an approach that integrates an
identity matrix to preserve the inductive bias of Identity-1, thereby imparting significant improve-
ments to training process.

As depicted in Figure 3, IDInit comprises two components: identity-preserving initialization and
zero-preserving initialization, aimed at transferring identity and zero, respectively. We elaborate on
the identity-preserving initialization, which involves padding identity matrices, in Section 3.1, and
discuss the zero-preserving initialization, which addresses dead neurons, in Section 3.2.

3.1 PRESERVING IDENTITY BY PADDING IDENTITY

A standard identity matrix can naturally satisfy identity transition. However, in a non-square situa-
tion, this natural advantage is lost. To address this problem, we pad the identity matrix on an identity
matrix to fit a non-square matrix. Specifically, for a fully-connected layer transformed from Eq. (1)
as x(i+1) = θ(i)x(i), we set the weight θ(i) ∈ RDi+1×Di to

θ
(i)
m,j =

{
τ, if m ≡ j (mod Di),

0, otherwise.
(3)

The initialization formulated as Eq. (3) is termed as IDIτ , where IDI means the identical initial-
ization function, and τ is calculated by considering the activation function, e.g., τReLU =

√
2 and

τsigmoid = 1 for the ReLU and sigmoid functions. As shown in Figure 3, setting τ = 1 can form
IDI1 initialization.

3.1.1 ANALYSIS ON CONVERGENCE ABILITY OF THE IDENTITY MATRIX

As proposed by Bartlett et al. (2019), weights initialized with an identity matrix face difficulty in
converging towards the target when its eigenvalues include negative values. This implies a potential
constraint on the convergence efficacy of the IDInit method. Consequently, we will delve deeper into
this issue in the following discussion. According to their study, when layers in a neural network are
initialized using the identity matrix, all the weight matrix of layers will be symmetric at each step of
the training process. This persistent symmetry leads to the weights of layers always being the same

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Layer 0 Layer 1 Layer 2 Layer 3

La
ye

r 0
La

ye
r 1

La
ye

r 2
La

ye
r 3

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

GD w/o momentum

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a) GD w/o momentum

Layer 0 Layer 1 Layer 2 Layer 3

La
ye

r 0
La

ye
r 1

La
ye

r 2
La

ye
r 3

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

GD w/ momentum

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) GD w/ momentum

Layer 0 Layer 1 Layer 2 Layer 3

La
ye

r 0
La

ye
r 1

La
ye

r 2
La

ye
r 3

0.000 0.053 0.062 0.087

0.053 0.000 0.022 0.066

0.062 0.022 0.000 0.056

0.087 0.066 0.056 0.000

SGD w/o momentum

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(c) SGD w/o momentum

Layer 0 Layer 1 Layer 2 Layer 3
La

ye
r 0

La
ye

r 1
La

ye
r 2

La
ye

r 3

0.000 0.102 0.114 0.168

0.102 0.000 0.063 0.123

0.114 0.063 0.000 0.109

0.168 0.123 0.109 0.000

SGD w/ momentum

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(d) SGD w/ momentum

Figure 4: The distance between two layers in a 4-layer network after training. In this experiment,
we set the target matrix as −I ∈ R10×10. The weights are W0,W1,W2,W3 ∈ R10×10. We
randomly generated 4000 data pairs {Xi, Yi} by Yi = −IXi + ξ, where Xi, Yi ∈ R10, and ξ is
noise with mean 0 and std 1e-2. We use 2000 samples for training the network. We use the other
2000 samples for testing. Batch size is 4. Mean squared error (MSE) is used as the loss function.
We calculate the distance by averaging the absolute value from the difference value of two layers.
Layers trained using SGD display distinct differences from one another, and the incorporation of
momentum significantly increases these differences, thereby accelerating the convergence speed.

at any training step, causing the aforementioned convergence difficulty. Interestingly, we find that
this problem is mainly caused by the gradient descent (GD) which uses all the data in one batch, and
employing a stochastic gradient descent (SGD) of which data in different batches can be different,
can effectively break the symmetry in gradients which facilitates convergence, and incorporating
momentum can further accelerate the convergence process.

To elaborate on this problem, we present a training case for a single-layer network expressed as
y = θx, where x ∈ Rd represents the input, y ∈ Rd denotes the output, and θ ∈ Rd×d is the weight
matrix. The weight matrix θ is initialized to the identity matrix I , denoted as θ(0) = I . For our loss
function, we employ the Mean Squared Error (MSE) and a learning rate denoted by η. Consider
two training pairs {x1, y1} and {x2, y2} sampled from the same dataset D. The network is initially
trained with {x1, y1}, and trained with {x2, y2} in the next step.

Being updated after two steps, the final gradient ∆θ(1) can be calculated as
x2x

T
2 − ηx1x

T
1 x2x

T
2 + ηy1x

T
1 x2x

T
2 − y2x

T
2 . (4)

While x2x
T
2 is symmetric, x1x

T
1 x2x

T
2 , y1xT

1 x2x
T
2 , and y2x

T
2 can be asymmetric. As η is usually

1e − 1, and both training pairs {x1, y1} and {x2, y2} can be generally normalized to N ∼ (0, 1),
thereby, such magnitude of the asymmetric component can sufficiently influence the symmetry as

θ(2) = θ(1) − η∆θ(1). (5)

When introducing a momentum m(0) initialized to ∆θ(0), θ(2) will be updated as

m(1) = γm(0) + η∆θ(1),

θ(2) = θ(1) −m(1) = θ(1) − γm(0) − η∆θ(1), (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where γ is the coefficient of m. Therefore, momentum can promote the weight to become asym-
metric by accumulating the asymmetry of gradients in steps and impact more when samples are
increased. We show that SGD with momentum can effectively resolve the issue of layers being the
same in networks initialized with the identity matrix during training, which facilitates the conver-
gence process. The completed derivation is provided in Sec. A.2 of the appendix.

As for networks of multiple layers, when their layers are asymmetric, each layer can be updated dif-
ferently which breaks the convergence problem caused by the same gradients in each step (which is
stated in Lemma 5 of Bartlett et al. (2019)). As illustrated in Figure 4, it is evident that layers trained
using SGD are different from each other, with the momentum component amplifying the degree of
this difference. By theoretically and empirically demonstrating that SGD with momentum can ef-
ficiently address this convergence problem, we hope this finding can offer valuable insights for the
research community, encouraging further investigation into identity initialization and its significant
role in model training.

3.1.2 ON RANK CONSTRAINT PROBLEM

Padding Zero

(PZ)

Padding Identity

(PI)

(a) Padding schemes.

0 2000 4000 6000 8000 10000
Iterations

0

200

400

600

800

1000

Ra
nk

input_dim=784
PZ
Loose PZ
Hadamard
PI
Loose PI

(b) Rank plot.

Figure 5: Two padding schemes and their influ-
ence on ranks of a layer. We trained a 3-layer net-
work on MNIST, and set D0 = 768 and Dh =
2048. We plot rank(∆θ(1)) ∈ RDh×Dh in (b). As
shown in (b), padding identity can achieve more
than a rank of 768 like Hadamard, while padding
zero is limited under 768. The loose condition can
lead to better rank performance, however, cannot
solve the rank constraint problem of padding zero.

ZerO (Zhao et al., 2022) identifies that a
dimension-increasing matrix (i.e., Di+1 > Di)
may face a rank constraint problem if padding
zero values. In this analysis, we investigate
whether padding with an identity matrix simi-
larly results in this constraint.

Rank Constraint Problem. Consider a 3-layer
network with weights {θ(i)}2i=0, where θ(0) ∈
RDh×D0 , θ(1) ∈ RDh×Dh , θ(2) ∈ RDL×Dh

where Dh > D0, DL. Given an input batch
x(0) ∈ RD0×N with a size N , the formulation
of the i-th layer is x(i+1) = θ(i)x(i), where i ∈
[2]. Define residual component ∆θ(1) = θ(1) −
I . When initializing the dimension-increasing
weight θ(0) by padding zeros (PZ) values, the
rank constraint problem refers to

rank(∆θ(1)) ≤ D0. (7)

This rank constraint issue signifies a performance limitation associated with the initialization
method. Intriguingly, our findings indicate that the initialization method IDIτ successfully avoids
this rank constraint, as detailed in Theorem 3.1. The proof is deferred to Appendix A.3.

Theorem 3.1. If initializing all weights {θ(i)}2i=0 by IDI1, the rank of ∆θ(1) can attain

rank(∆θ(1)) ≥ D0, (8)

which breaks the rank constraint.

Notably, Theorem 3.1 suggests that an IDInit initialized network can break this constraint through
SGD without the help of non-linearity like ReLU which is mentioned as necessary in the prior
study (Zhao et al., 2022). Specifically, when non-linearity like ReLU is not applied, the rank of the
middle weight being limited to D0 only happens at the beginning. After training for several steps,
an IDInit-initialized network can break this constraint.

Replica Problem. When recurrently padding the identity matrix, the output features are still repli-
cated. According to Blumenfeld et al. (2020), such a replica problem can be solved by adding noise
to weights. Inspired by that, we loosen the identity condition to generate τ ∼ N(τ, ϵτ), while
keeping most identity. ϵτ is a small value and set to 1e-6 in this paper. With this loose condition,
IDInit can give additional noise to output features and bring more feature diversity. Profiting from
the feature diversity, IDInit therefore can increase the rank values as shown in Figure 5(b).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.1.3 PATCH-MAINTAIN CONVOLUTION

Convolution layers are important structures in deep neural networks. Here, we will explore an
initialization pattern for convolution with the identity transition. A convolution kernel is usually
defined as C ∈ Rk×k×cin×cout , where cin and cout denote the number of channels of input and
output, respectively, and k denotes convolutional kernel size. Similar to an identity matrix, Zhao
et al. (2022) propose a channel-maintain convolution layer that transits identity by setting 0-filled C
through IDIτ (Cn,n,:,:), where n ∈ N+ and k = 2n+1. As a convolutional kernel window size, k is
usually an odd number. When cin = cout, the convolution maintains the identity. When cin > cout
or cin < cout, C will under-sample and over-sample on an input feature along channel respectively.
Keeping identity is usually considered as an efficient way to improve model performance, however,
we find that this setting can lead to a fatal performance degeneration (see Sec. 4.3).

Patch-Maintain Convolution. Inspired by Han et al. (2020) that enhance model performance
by increasing channel diversity, we propose to fuse spatial information by simply reshaping a
matrix initialized with IDIτ . Specifically, we reshape the convolutional kernel C into a matrix
C ∈ Rcout×kkcin . We initialize C as

IDIτ (C). (9)

Then by reshaping C into C ∈ Rk×k×cin×cout , our initialization for a convolution is completed.
This reshaping strategy can shift spatial features, thereby increasing feature diversity. We utilize
IDICτ to denote such a reshaping process. A detailed description is in Figure 11 in the Appendix.

3.2 PRESERVING ZERO BY TACKLING DEAD NEURONS

Given a residual network formulated by Eq. (1), prior identity-control initialization (Zhang et al.,
2019; Zhao et al., 2022) set the last transformation in the residual stem to 0, i.e., θ(i,0) = 0, thereby
maintaining an identity as

x(i+1) = (I + 0)x(i) = x(i). (10)

However, the setting can possibly cause dead neurons.

Dead Neuron Problem. The dead neuron problem occurs when a neuron’s weight becomes zero
and receives zero gradients, rendering it incapable of updating. This issue is harmful to the training
performance of models. Fixup (Zhang et al., 2019) only uses a multiplier of 1 after θ(i,0) = 0,
thereby obtaining non-zero gradients. However, in a realistic implementation of neural networks, the
multiplier of Batch Normalization can be set to 0 (Goyal et al., 2017), and down-sampling operation
can also cause 0 filled features12. Under the implementations, θ(i,0) always acquires gradients with
0 values, known as the dead neuron problem, which causes failed weight updating.

0 50 100 150 200 250

0

20

(a) Weight initialized with numerical value 0.
0 50 100 150 200 250

0

20

(b) Weight initialized with IDIZ1e−6.

Figure 6: The last weight in a residual block of a trained ResNet. More than half of elements in (a)
are not trained, which is known as the dead neuron. By contrast, IDIZ1e−6 successfully solves the
dead neuron problem and makes all the elements in (b) trainable.

Tackling this problem, we generate small values on θ(i,0) to assist in training. Recall the goal of
identity-control initialization that outputs 0. Therefore, we build a calculation to get the expectation
and variance of outputs approaching 0. Considering two i.i.d variables, v1 and v2, whose variances

1https://github.com/hongyi-zhang/Fixup/blob/master/cifar/models/resnet_
cifar.py

2https://github.com/akamaster/pytorch_resnet_cifar10/edit/master/
resnet.py

7

https://github.com/hongyi-zhang/Fixup/blob/master/cifar/models/resnet_cifar.py
https://github.com/hongyi-zhang/Fixup/blob/master/cifar/models/resnet_cifar.py
https://github.com/akamaster/pytorch_resnet_cifar10/edit/master/resnet.py
https://github.com/akamaster/pytorch_resnet_cifar10/edit/master/resnet.py

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

are σ2(v1) = σ2(v2) = φ and means are µ(v1) = µ(v2) = γ, the variable v = ε(v1− v2) have{
µ(v) = 0,

σ2(v) = 2φε2,
(11)

where ε is a coefficient, and σ2(v) will be limited to 0 when ε is sufficiently small. Assuming
elements of x(i) are i.i.d to each other, by applying subtraction on any two elements, the result has
a mean of 0, and a variance related to ε. We also take θ(i,0) ∈ RDi+1×Di as an instance. At first,
we initialize θ(i,0) with IDIε. Then consider two cases: (i) if Di+1 < Di, setting θ

(i)
:,Di+1+1:Di

with

IDI−ε; (ii) if Di+1 ≥ Di, set θ(i)m,j = −ε, when m%Di = j − 1. Therefore, we can obtain a
variance of 0 by setting ε to a small value. This method is termed as IDIZε, and we illustrate some
cases in Figure 3. In this paper, we set ε = 1e − 6 everywhere. As shown in Figure 6, IDIZ1e−6

successfully initializes the last weight in a residual block. In addition, we also transform IDIZε to a
convolution form IDIZCε through the patch-maintain scheme.

The IDInit framework is characterized as follows: (1) For Non-Residual Networks: It involves di-
rectly applying IDI τ to fully-connected layers and IDIC τ to convolutional layers. (2) For Residual
Networks: This includes two steps: (i) Implementing IDI τ and IDIC τ across all fully-connected
and convolutional layers, respectively; (ii) Utilizing IDIZ ε and IDIZC ε for fully-connected and
convolutional layers positioned at the end of residual blocks, and for the final classification layer.

4 EXPERIMENTS

In this section, we first analyze hyperparameters in Sec. 4.1. Then, we conduct experiments on
residual convolution in Sec. 4.2. We implement an ablation experiment in Sec. 4.3 to show the effect
of the proposed two modifications in Sec. 3. And we conduct image classification on ImageNet in
Sec. 4.4. Later we conduct a text classification experiment in Sec. 4.5. At last, we employ a pre-
training experiment on the large-scale dataset in Sec. 4.6 separately. We conduct experiments on
non-residual convolution in Sec. C.2. We also analyze the variance amplification in Sec. C.3, weight
distribution in Sec. C.4, and dynamical isometry in Sec. C.5.

4.1 EXPERIMENT FOR HYPERPARAMETERS

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

W
ei

gh
t D

ec
ay

16.38±1.28 21.68±2.61 68.2±5.79 82.17±0.14

22.57±2.69 90.36±0.06 93.28±0.04 83.18±0.14

89.76±0.18 94.08±0.13 90.09±0.22 81.42±0.13

94.08±0.08 92.54±0.11 88.33±0.03 81.15±0.26

IDInit

60

65

70

75

80

85

90

95

(a) IDInit

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

W
ei

gh
t D

ec
ay

10.38±0.35 21.12±2.73 51.88±5.98 69.52±7.6

21.77±3.1 90.23±0.18 92.78±0.14 55.26±1.14

89.96±0.49 93.69±0.12 82.02±0.01 51.25±1.17

94.06±0.11 91.24±0.1 78.37±0.41 50.75±1.26

Kaiming

60

65

70

75

80

85

90

95

(b) Kaiming

Figure 7: The hyperparameter experiment on Ci-
far10. IDInit demonstrates superior adaptability
across a broader range of training configurations
compared to Kaiming initialization, exhibiting no-
table stability.

In this experiment, we compare IDInit with
Kaiming by analyzing the training hyperparam-
eters, i.e., the weight decay and the learning
rate. We use Cifar10. The backbone is ResNet-
32, we use SGD with a momentum of 0.9. The
batch size is 1024. We train models for 200
epochs. The learning rate is reduced with a co-
sine function. Each setting is trained 3 times to
calculate the standard deviation. More details
and results are in Sec. B.2 of the appendix.

As shown in Figure 7, IDInit achieves a peak
accuracy of 94.08% with a weight decay of 1e-
3 and a learning rate of 1e-1. In comparison
to Kaiming, IDInit demonstrates superior sta-
bility, maintaining high accuracy even when the learning rate is reduced below 1e-1. Overall, IDInit
consistently delivers robust performance while maintaining stability, making it a promising candi-
date for practical applications.

4.2 IMAGE CLASSIFICATION ON CIFAR10

In this experiment, we validate IDInit with the comparison with existing initialization, including (1)
Fixup; (2) SkipInit; (3) ReZero; (4) Kaiming; (5) Zero γ (Setting the scale in Batch Normalization
(BN) to 0) (Goyal et al., 2017); (6) ZerO. We use ResNet-56/110 as backbones on Cifar10. For
analyzing convergence, we adopt both SGD and Adam optimizer for updating models. We set SGD,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Results on Cifar10. ZerO performs worse for zero down-sampling as mentioned in Sec. 3.2.
IDInit consistently facilitates rapid convergence when employed with SGD and Adam.

Initialization 56 Layer (SGD/Adam) 110 Layer (SGD/Adam)

Acc. Epochs to 80% Acc. Acc. Epochs to 80% Acc.

Zero γ 92.32±0.19 / 87.37±0.43 57±7 / 63±4 93.07±0.28 / 88.30±0.31 36±2 / 56±7

ZerO 90.57±0.31 / 83.53±0.42 57±3 / 85±4 91.71±0.21 / 84.24±0.10 55±3 / 76±2

Fixup 93.24±0.82 / 89.50±0.18 31±3 / 55±3 93.32±0.23 / 90.67±0.12 33±3 / 49±2

SkipInit 92.29±0.30 / 85.45±0.74 26±1 / 81±3 92.67±0.16 / 87.18±0.94 31±5 / 70±7

ReZero 93.06±0.54 / 89.26±0.30 33±2 / 44±3 94.03±0.26 / 90.25±0.20 35±5 / 38±3

Kaiming 93.36±0.14 / 87.55±0.32 34±3 / 50±2 94.06±0.18 / 87.89±0.41 33±4 / 56±3

IDInit 93.41±0.10 / 90.01±0.32 26±1 / 34±1 94.04±0.24 / 90.53±0.10 27±1 / 36±2

with the momentum 0.9, the weight decay 5e-4, and the learning rate 0.2. For Adam, the learning
rate is 0.001, β1 is 0.9 and β2 is 0.999. The training epoch is 200.

Results are shown in Table 1. Although ZerO uses the Hadamard matrix to break the rank constraint
problem, it can be damaged by zero down-sampling as mentioned in Sec. 3.2. Therefore, we reclaim
the importance of using IDIZε and IDIZCε for avoiding such potential damage. Compared with
baselines, IDInit derives the best accuracies in most cases. In addition, IDInit can achieve the least
epochs to reach 80% accuracy in all settings, which shows a good convergence ability.

4.3 ABLATION EXPERIMENT

We conduct this experiment to validate the effect of the proposed two improvements. The dataset is
Cifar10 and the backbone is ResNet-20. We run four times following settings: (i) IDInit w/o IDICτ

and w/o IDIZCε; (ii) IDInit w/o IDICτ and w/ IDIZCε; (iii) IDInit w/ IDICτ and w/o IDIZCε; (iv)
IDInit. For model training for 200 epochs, we employ SGD with a momentum of 0.9, a weight decay
of 5e-5, and an initial learning rate of 0.1, which is adjusted using a cosine annealing schedule.

Table 2: Results of the ablation experiment on ResNet-20.
Setting (i) (ii) (iii) (iv)
Accracy 87.01±0.29 92.9±0.18 90.43±0.14 93.22±0.05

As shown in Table 2, by applying
the identity matrix directly, (i) ob-
tains the lowest accuracy of 87.01%
among all cases. Regarding results
of (ii) and (iii), both the two settings can make significant improvements of nearly 5.89% and 3.42%
from (i), respectively. And IDIZCε can make a deeper effect than IDICτ . Equipping IDICτ and
IDIZCε, IDInit will improve performance further, which demonstrates our modification is efficient.

4.4 IMAGE CLASSIFICATION ON IMAGENET

50 100 150 200 250 300
Epoch

0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72

Te
st

 A
cc

ur
ac

y

Default
IDInit

(a) ViT-B/32

0 20 40 60 80
Epoch

0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

Default
IDInit

(b) RN-50

Figure 8: Results on ImageNet. “Default” means
the default initialization of models.

We validate ViT-B/32 (Dosovitskiy et al.,
2021), ResNet-50/152 (RN-50/152) and Se-
ResNet-50 (SRN-50) as backbones on Ima-
geNet in this experiment. For ViT-B/32, the
optimizer is AdamW with a learning rate 1e-
3 and a weight decay 5e-2. The training epochs
is 300. We use 30 epochs for warm-up. For
RN-50/152 and SRN-50, we use SGD with a
learning rate 1e-1 and a weight decay 1e-4 for
90-epoch training. We use 9 epochs for warm-up. For all models, the batch size is 1024, and we
apply data augment including cutmix (Yun et al., 2019) with α = 1.0, mixup (Zhang et al., 2018)
with α = 0.8, the switching probability is 0.5 and a label smoothing with 0.1.

Table 3: Results on ImageNet. The value in brackets means “Epochs to
60% Acc”. On average, IDInit enhances accuracy by 0.55% compared
to the baseline and expedites model convergence by 7.4 epochs.
Model ViT-B/32 RN-50 (Adamw) RN-50 SRN-50 RN-152 Avg (∆)

Default 71.05 (44) 76.20 (20) 75.70 (38) 76.30 (32) 78.76 (28) 0 (0)

IDInit 71.60 (42) 76.71 (14) 76.72 (24) 76.93 (22) 79.10 (23) 0.55 (7.4)

Results are shown in Fig-
ure 8 and Table 3. On
three types of networks,
i.e., ViT, ResNet and
Se-ResNet, and multi-
ple depths, IDInit always

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Results of text classification on SST2 and TREC-6. The subscript G denotes the embedding
layer is initialized by Glove, while W indicates Word2Vec. “Default” means the default initialization
of models, specifically, Kaiming for TextCNN, and Xavier for both TextRNN and Transformer.
Fixup is only applicable to the Transformer, as it is specifically designed for residual networks. Std
values larger than 1.0 are marked in red. More results can be found in Table 6.
Datasets Init. TextCNNG/W TextRNNG/W TransformerG/W AverageG/W

SST2

Default 81.40±0.66 / 84.56±0.43 81.69±0.30 / 84.29±0.70 80.97±1.20 / 83.36±0.76 81.35±0.72 / 84.07±0.63

Orthogonal 82.24±0.44 / 84.37±0.38 81.86±0.55 / 84.61±0.78 82.22±0.87 / 83.99±0.23 82.11±0.62 / 84.32±0.46

Fixup - - 78.72±0.78 / 81.25±0.27 -
ZerO 82.05±0.67 / 84.26±0.39 82.03±0.41 / 84.80±0.64 82.28±0.81 / 82.72±0.55 82.12±0.63 / 83.93±0.53

IDInit 82.60±0.24 / 85.67±0.41 82.66±0.16 / 85.49±0.33 82.48±0.55 / 84.51±0.24 82.58±0.32 / 85.22±0.33

TREC-6

Default 90.80±0.94 / 92.06±1.00 86.34±1.04 / 90.52±1.54 86.68±2.68 / 89.20±1.20 87.94±1.55 / 90.59±1.25

Orthogonal 90.34±0.72 / 92.72±0.84 85.86±0.90 / 89.88±1.54 86.90±1.51 / 89.26±0.86 87.70±0.71 / 90.62±0.75

Fixup - - 86.95±0.35 / 89.35±0.53 -
ZerO 90.89±0.41 / 92.90±0.50 87.24±0.64 / 88.71±0.40 86.97±0.75 / 89.38±0.64 88.37±0.60 / 90.33±0.51

IDInit 91.22±0.54 / 92.94±0.48 87.04±0.26 / 90.60±0.58 87.32±0.78 / 90.06±0.60 88.53±0.53 / 91.20±0.55

achieves faster conver-
gence and better performance than the baseline. When training RN-50 with Adamw, the convergence
of IDInit is consistently fast. Compared with RN-50, our initialization shows a faster convergence
speed. IDInit has an average improvement of 0.55%, which is significant to be in practice. This
experiment shows the good practicability and promising probability of IDInit, which is beneficial to
the artificial intelligence community.

4.5 TEXT CLASSIFICATION

We implement text classification on SST2 (Socher et al., 2013) and TREC-6 (Li & Roth, 2002) and
select TextCNN (Kim, 2014), TextRNN (Lai et al., 2015) and Transformer (Vaswani et al., 2017) for
comparison. For TextCNN and TextRNN, we use AdaDelta (Zeiler, 2012) optimizer with a learning
rate 1.0 and adopt Adam (Kingma & Ba, 2015) for Transformer with a learning rate 1e-4. For the
embedding layer, we utilize Glove (Pennington et al., 2014) and Word2Vec(Mikolov et al., 2013) to
initialize the embedding weights. All models are trained up to 10 epochs for 5 times.

As shown in Table 4, all the initialization methods can work normally. Default random initialization
obtains the lowest accuracy in most cases on both SST2 and TREC-6. Orthogonal initialization
always derives modest results. By contrast to baselines, IDInit can achieve the highest accuracy in all
conditions. In addition, IDInit always obtains the smallest std values, showing stable performance.

4.6 PRE-TRAINING ON LANGUAGE MODEL

1 3 5 7
FLOPs (1e19)

1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

M
LM

 L
os

s

5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25
1e19

1.44

1.46

1.48

1.50

11.3% 0%

Default
IDInit

Figure 9: Results of BERT-Base.

Pre-training plays an important role in various applications.
We conduct the experiment to show the fast convergence on
BERT (Devlin et al., 2019). The dataset is the concatenation
of English Wikipedia and Toronto Book Corpus Zhu et al.
(2015). We train the BERT-Base for 40 epochs with 768
batch size. The optimizer is AdamW with learning rate 1e-
4 and weight decay 1e-2. 32 NVIDIA V100s are used.

As shown in Figure 9, “Default” means the default initial-
ization of BERT-Base. IDInit achieves faster convergence.
Specifically, IDInit shows an 11.3% acceleration ratio in
terms of FLOPs. Moreover, IDInit can derive a lower loss of 1.46 in the end. As a result, IDInit is
promising used in practice for enhancing convergence ability and performance.

5 CONCLUSION

An efficient initialization approach is crucial for training deep neural networks. In this paper, we
introduce a fully identical initialization (IDInit) that is based on the identity matrix. Addressing
the problems encountered when developing IDInit, i.e., dead neurons and performance degenera-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

tion, we give two concise solutions, namely using small numerical values to wipe off dead neurons
and reshaping an identity-like matrix into a tensor thus increasing feature diversity, leading to a
performance improvement. With good performance on wide generality, high stability, and fast con-
vergence, IDInit is promising to be applicable in practice. In the future, we hope that this identical
design can motivate the AI community to implement more novel initialization methods.

REFERENCES

Devansh Arpit, Vı́ctor Campos, and Yoshua Bengio. How to initialize your network? robust initial-
ization for weightnorm & resnets. In NeurIPS, pp. 10900–10909, 2019.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Gary Cottrell, and Ju-
lian J. McAuley. Rezero is all you need: fast convergence at large depth. In UAI, volume 161 of
Proceedings of Machine Learning Research, pp. 1352–1361. AUAI Press, 2021.

Peter L. Bartlett, David P. Helmbold, and Philip M. Long. Gradient descent with identity initializa-
tion efficiently learns positive-definite linear transformations by deep residual networks. Neural
Comput., 31(3), 2019.

Yaniv Blumenfeld, Dar Gilboa, and Daniel Soudry. Beyond signal propagation: Is feature diversity
necessary in deep neural network initialization? In ICML, volume 119 of Proceedings of Machine
Learning Research, pp. 960–969. PMLR, 2020.

Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. In ICLR, 2016.

Soham De and Samuel L. Smith. Batch normalization biases residual blocks towards the identity
function in deep networks. In NeurIPS, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), pp. 4171–4186. As-
sociation for Computational Linguistics, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR. OpenReview.net, 2021.

Dar Gilboa, Bo Chang, Minmin Chen, Greg Yang, Samuel S. Schoenholz, Ed H. Chi, and Jef-
frey Pennington. Dynamical isometry and a mean field theory of lstms and grus. CoRR,
abs/1901.08987, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, volume 9 of JMLR Proceedings, pp. 249–256. JMLR.org, 2010.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training ima-
genet in 1 hour. CoRR, abs/1706.02677, 2017.

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet: More
features from cheap operations. In CVPR, pp. 1577–1586. Computer Vision Foundation / IEEE,
2020.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In ICLR (Poster). OpenReview.net,
2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, pp. 1026–1034. IEEE Computer
Society, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778. IEEE Computer Society, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiao Shi Huang, Felipe Pérez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimiza-
tion through better initialization. In ICML, volume 119 of Proceedings of Machine Learning
Research, pp. 4475–4483. PMLR, 2020.

Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP, pp. 1746–1751.
ACL, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural networks for text
classification. In AAAI, pp. 2267–2273. AAAI Press, 2015.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize recurrent networks
of rectified linear units. CoRR, abs/1504.00941, 2015.

Nannan Li, Yu Pan, Yaran Chen, Zixiang Ding, Dongbin Zhao, and Zenglin Xu. Heuristic rank
selection with progressively searching tensor ring network. Complex & Intelligent Systems, pp.
1–15, 2021.

Xin Li and Dan Roth. Learning question classifiers. In COLING, 2002.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. In ICLR (Workshop Poster), 2013.

Yu Pan, Zeyong Su, Ao Liu, Jingquan Wang, Nannan Li, and Zenglin Xu. A unified weight initializa-
tion paradigm for tensorial convolutional neural networks. In ICML, volume 162 of Proceedings
of Machine Learning Research, pp. 17238–17257. PMLR, 2022.

Yu Pan, Ye Yuan, Yichun Yin, Zenglin Xu, Lifeng Shang, Xin Jiang, and Qun Liu. Reusing pre-
trained models by multi-linear operators for efficient training. In NeurIPS, 2023.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In EMNLP, pp. 1532–1543. ACL, 2014.

Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In NIPS, pp. 4785–4795, 2017.

Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. The emergence of spectral univer-
sality in deep networks. In AISTATS, volume 84 of Proceedings of Machine Learning Research,
pp. 1924–1932. PMLR, 2018.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Expo-
nential expressivity in deep neural networks through transient chaos. In NIPS, pp. 3360–3368,
2016.

Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Malik. Deep isometric learning for
visual recognition. In ICML, volume 119 of Proceedings of Machine Learning Research, pp.
7824–7835. PMLR, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, pp. 1631–1642. ACL, 2013.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving
for simplicity: The all convolutional net. In ICLR (Workshop), 2015.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of
initialization and momentum in deep learning. In ICML (3), volume 28 of JMLR Workshop and
Conference Proceedings, pp. 1139–1147. JMLR.org, 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Greg Yang and Samuel S. Schoenholz. Mean field residual networks: On the edge of chaos. In
NIPS, pp. 7103–7114, 2017.

Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV, pp.
6022–6031. IEEE, 2019.

Sergey Zagoruyko and Nikos Komodakis. Diracnets: Training very deep neural networks without
skip-connections. CoRR, abs/1706.00388, 2017.

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In ICLR (Poster). OpenReview.net, 2018.

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. In ICLR (Poster). OpenReview.net, 2019.

Jiawei Zhao, Florian Tobias Schaefer, and Anima Anandkumar. Zero initialization: Initializing
neural networks with only zeros and ones. Transactions on Machine Learning Research, 2022.
ISSN 2835-8856. URL https://openreview.net/forum?id=1AxQpKmiTc.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In ICCV, pp. 19–27. IEEE Computer Society, 2015.

A IDINIT DETAILS

A.1 FULL IDINIT SCHEME

Here, we show the full IDInit scheme in Figure 10.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Identity Preserving Initialization

0

0

0

0

0

0

0

0

0

Zero Preserving Initialization

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0

Figure 10: Illustration of IDInit with all conditions.

A.2 ANALYSIS ON CONVERGENCE

The issue of convergence was proposed by Bartlett et al. (2019). According to their study, when
layers in a neural network are initialized using the identity matrix, all the weight matrix of layers
will be symmetric at each step of the training process. This persistent symmetry leads to the weights
of layers being the same as each other at any step, posing a significant challenge in converging to

13

https://openreview.net/forum?id=1AxQpKmiTc

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

the ground truth of which eigenvalues with negative values. Our findings indicate that employing
a stochastic gradient descent (SGD) approach can effectively break the symmetry which facilitates
convergence, and incorporating momentum can further accelerate the convergence process. In this
context, we provide formal proof demonstrating that SGD with momentum can alleviate the conver-
gence issue.

Proof. First of all, we present a training case for a single-layer network expressed as y = θx, where
x ∈ Rd represents the input, y ∈ Rd denotes the output, and θ ∈ Rd×d is the weight matrix. The
weight matrix θ is initialized to the identity matrix I , denoted as θ(0) = I . For our loss function,
we employ the Mean Squared Error (MSE) and a learning rate denoted by η. Consider two training
pairs {x1, y1} and {x2, y2} sampled from the same dataset D. The network is initially trained with
{x1, y1}, and trained with {x2, y2} in the next step.

In the first step, we can get the prediction as

ŷ1 = θ(0)x1. (12)

The updated θ(1) can be derived by

∆θ(0) = (ŷ1 − y1)x
T
1 = (θ(0)x1 − y1)x

T
1 = (x1 − y1)x

T
1 ,

θ(1) = θ(0) − η∆θ(0) = θ(0) − η(x1 − y1)x
T
1 = I − η(x1 − y1)x

T
1 . (13)

Therefore, in the second step, the gradient ∆θ(1) can be calculated as

∆θ(1) = (ŷ2 − y2)x
T
2 ,

= (θ(1)x2 − y2)x
T
2 ,

= ((I − η(x1 − y1)x
T
1)x2 − y2)x

T
2 ,

= x2x
T
2 − ηx1x

T
1 x2x

T
2 + ηy1x

T
1 x2x

T
2 − y2x

T
2 . (14)

While x2x
T
2 is symmetric, the component −ηx1x

T
1 x2x

T
2 +ηy1x

T
1 x2x

T
2 −y2x

T
2 will be asymmetric.

As η is usually 1e − 1, and both training pairs {x1, y1} and {x2, y2} can be generally normalized
to N ∼ (0, 1), thereby, such magnitude of the asymmetric component can sufficiently influence the
symmetry of the weight as

θ(2) = θ(1) − η∆θ(1). (15)

When introducing a momentum m(0) initialized to ∆θ(0), assuming the coefficient of m is γ, θ(2)
will be updated as

m(1) = γm(0) + η∆θ(1),

θ(2) = θ(1) −m(1) = θ(1) − γm(0) − η∆θ(1). (16)

Therefore, momentum can promote the weight to become asymmetric by accumulating the asym-
metry of gradients in steps and impact more when samples are increased.

As for networks of multiple layers, when their layers are asymmetric, each layer can be updated
differently which breaks the convergence problem caused by the same gradients in each step (which
is stated in Lemma 5 of Bartlett et al. (2019)).

This proof primarily demonstrates that SGD with momentum can effectively resolve the issue of lay-
ers being the same in networks initialized with the identity matrix during training, which facilitates
the convergence process. As illustrated in Figure 4, it is evident that layers trained using SGD are
different from each other, with the momentum component amplifying the degree of this difference.
By theoretically and empirically demonstrating that SGD with momentum can efficiently address
this convergence problem, we hope this finding can offer valuable insights for the research com-
munity, encouraging further investigation into identity initialization and its significant role in model
training.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 PROOF FOR THEOREM 3.1.

Proof. Consider a network with a single hidden layer (i.e. L = 3) and a batch of linearly indepen-
dent samples, x(0)

1 =
{
x
(0,1)
1 , . . . , x

(0,N)
1

}
, with N = D0. Using Π1 =

∑N
i=1

∂L
∂x

(3,i)
1

× x
(0,i)
1 , the

gradients for the first update step can be written as

∂L
∂θ(0)

=

(
Π1

0

)
∂L
∂θ(1)

=

(
Π1 Π1

0 0

)
∂L
∂θ(2)

= (Π1 Π1) . (17)

After updating the weights with learning rate η > 0, we have

θ(0) =

(
I − ηΠ1

I

)
θ(1) =

(
I − ηΠ1 −ηΠ1

0 I

)
θ(2) = (I − ηΠ1 −ηΠ1) . (18)

As a result, the gradients of θ(1) for the second update with a second batch of linearly independent
samples x(0)

2 =
{
x
(0,1)
2 , . . . , x

(0,N)
2

}
, are given by

∂L
∂θ(1)

=
N∑
i=1

(
θ(0) · x(0,i)

2

)
×
(

∂L
∂x

(3,i)
2

· θ(2)T
)

(19)

=

(
(I − ηΠT

1)Π2 (I − ηΠT
1) (I − ηΠT

1)Π2

−ηΠT
1 Π2 (I − ηΠT

1) −ηΠT
1 Π2

)
, (20)

with Π2 =
∑N

i=1
∂L

∂x
(3,i)
2

× x
(0,i)
2 . Using the gradients of the second batch to update the parameters

with the same learning rate, we obtain

θ(1) =

(
I − ηΠ1 − η (I − ηΠT

1)Π2 (I − ηΠT
1) −ηΠ1 − η (I − ηΠT

1)Π2

η2 ΠT
1 Π2 (I − ηΠT

1) I + η2 ΠT
1 Π2

)
.

Consequently, the difference of the weights after two updates to the initial value, I , is given by

∆θ(1) =

(
−ηΠ1 − η (I − ηΠT

1)Π2 (I − ηΠT
1) −ηΠ1 − η (I − ηΠT

1)Π2

η2 ΠT
1 Π2 (I − ηΠT

1) η2 ΠT
1 Π2

)
.

Assuming that the gradients ∂L
∂x

(3)
1

and ∂L
∂x

(3)
2

are also linearly independent, rank(Π1) = rank(Π2) =

D0. Due to Sylvester’s rank inequality, we can conclude that also rank(Π1 Π2) = D0. As a result,
the lower-right part of the difference has rank D0, from which we can conclude that rank(∆θ(1)) ≥
D0.

A.4 IMPLEMENTING IDINIT ON ATTENTION LAYER IN TRANSFORMER

In this part, we show the way to initialize the attention layer with IDInit. Prior to that, formulating
an attention layer as

Att(Q,K, V) = softmax(
QWQWKK√

d
)VWV WO, (21)

where Q is the query matrix, K means the key matrix, V denotes the value matrix, WQ, WK and
WV represents the weights for Q, K, and V respectively, and WO is the output transformation.
Following the instruction of IDInit in Sec. 3, we firstly use IDIτ to initialize WQ, WK , WV and
WO. And then, we use IDIZε to initialize the last fully-connected layer WO. The τ and ε are
consistently set with the paper content to 1 and 1e-6, respectively.

A.5 DETAILS OF PATCH-MAINTAIN CONVOLUTION

We illustrate the figure to show the comparison between channel-maintain convolution and patch-
maintain convolution in Figure 11.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Identity Transition
Unchanged

Features
Lacking

Diversity

Shifted

Features

Increasing

Diversity

Input number "7"

Figure 11: A case of number “7” on Identical Convolution Layer. The upper sub-figure maintains
the identity transition. The under sub-figure is IDICτ initialization that shifts features for increasing
diversity. More feature diversity from IDICτ is beneficial for improving model performance.

B DETAILED SETTINGS OF EXPERIMENTS

In this paper, for ReLU activated networks, τ is set to
√
2 for the first layer in a network and 1 for

other IDIτ / IDICτ initializing layers, while for tanh-activated networks, all IDIτ is set to 1, and ε
is 1e− 6 for all IDIZε / IDIZCε initializing layers.

B.1 DETAILS OF VALIDATION ON NON-RESIDUAL CONVOLUTION EXPERIMENT

In this experiment, we use AllConv (Springenberg et al., 2015) which consists of nine convolutional
layers as the backbone network. We show the structure of AllConv in Table 5. The dataset is Cifar10.
The optimizer is Stochastic Gradient Descent (SGD) with momentum 0.9, weight decay 5e-4, and
learning rate 1e-1. The learning rate scheduler adopts a warm-up cosine reduction strategy. We
run the model in 300 epochs on one Nvidia A100. We adopt Kaiming initialization and IDInit w/o
IDICτ initialization for comparison. Since there is no residual connection, we do not consider the
IDIZCε function in this experiment. For each initialization, we have run them with 0, 10, 20, 30,
40, 50, and 60 warm-up epochs. The experiment is conducted on one Nvidia A100.

Table 5: Architectures of the tensorial All-Conv networks. Window means the convolutional kernel
window size. Channels indicate cin and cout of a standard convolutional kernel C ∈ Rcin×cout×k×k.
The avg pool denotes the average pooling operation.

Layer Window Channels
conv1 3×3 3× 96
conv2 3×3 96× 96
conv3 3×3 96× 96
conv4 3×3 96× 192
conv5 3×3 192× 192
conv6 3×3 192× 192
conv7 3×3 192× 192
conv8 1×1 192× 192

conv9 1×1 192× 10
avg pool

B.2 EXPERIMENT FOR HYPERPARAMETERS

In this experiment, we compare IDInit with other initialization methods, including (1) Fixup; (2)
ReZero; (3) Kaiming; and (4) Zero, by analyzing the training hyperparameters, i.e., the weight
decay and the learning rate. We use Cifar10. The backbone is ResNet-32, we use SGD with a

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

momentum of 0.9. The batch size is 1024. We train models for 200 epochs. The learning rate is
reduced with a cosine function. Each setting is trained 3 times to calculate the standard deviation.

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

W
ei

gh
t D

ec
ay

16.38±1.28 21.68±2.61 68.2±5.79 82.17±0.14

22.57±2.69 90.36±0.06 93.28±0.04 83.18±0.14

89.76±0.18 94.08±0.13 90.09±0.22 81.42±0.13

94.08±0.08 92.54±0.11 88.33±0.03 81.15±0.26

IDInit

60

65

70

75

80

85

90

95

(a) IDInit

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

W
ei

gh
t D

ec
ay

16.63±2.74 24.27±0.34 58.97±6.76 79.13±0.26

26.13±3.78 84.0±0.38 88.25±0.24 81.61±0.31

84.39±0.32 88.99±0.25 85.43±0.25 81.07±0.41

89.32±0.25 87.66±0.25 84.41±0.1 81.0±0.42

ZerO

60

65

70

75

80

85

90

95

(b) ZerO

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

W
ei

gh
t D

ec
ay

10.38±0.35 21.12±2.73 51.88±5.98 69.52±7.6

21.77±3.1 90.23±0.18 92.78±0.14 55.26±1.14

89.96±0.49 93.69±0.12 82.02±0.01 51.25±1.17

94.06±0.11 91.24±0.1 78.37±0.41 50.75±1.26

Kaiming

60

65

70

75

80

85

90

95

(c) Kaiming

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

W
ei

gh
t D

ec
ay

18.32±0.94 19.22±0.32 18.62±0.7 18.73±0.37

23.86±0.92 49.78±2.35 41.36±0.19 25.23±0.28

33.33±0.88 92.19±0.06 68.28±0.91 28.14±0.34

30.53±5.35 92.37±0.02 72.95±1.11 28.47±0.42

Fixup

60

65

70

75

80

85

90

95

(d) Fixup

1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

W
ei

gh
t D

ec
ay

10.12±0.2 19.49±0.87 21.03±0.22 20.77±0.78

25.99±5.12 88.75±1.67 92.61±1.53 32.7±2.56

88.92±0.74 93.64±0.64 79.98±2.33 34.02±2.03

93.86±0.26 90.95±0.68 74.91±2.31 33.98±1.92

Rezero

60

65

70

75

80

85

90

95

(e) Rezero

Figure 12: The hyperparameter experiment on Cifar10.

As shown in Figure 12, IDInit achieves a peak accuracy of 94.08% with a weight decay of 1e-3 and
a learning rate of 1e-1. In comparison to other initialization methods including Kaiming, Fixup, and
Rezero, IDInit demonstrates superior stability, maintaining high accuracy even when the learning
rate is reduced below 1e-1. Although ZerO exhibits comparable stability at lower learning rates
owing to its Hadamard matrix’s ability to sustain dynamics, it underperforms at higher learning
rates due to the dead neurons caused by the zero weights in its residual stems. Fixup, on the other
hand, lacks stability by eliminating batch normalization, rendering it unsuitable for high learning
rates. Overall, IDInit consistently delivers robust performance while maintaining stability, making
it a promising candidate for practical applications.

B.3 DETAILS OF IMAGE CLASSIFICATION ON CIFAR10 EXPERIMENT

In this experiment, we validate the proposed initialization with the comparison with existing initial-
ization, including (1) Fixup; (2) SkipInit; (3) ReZero; (4) Kaiming; (5) Zero γ (Setting the scale in
Batch Normalization (BN) to 0). We use ResNet-56/110 as backbones on Cifar10. For analyzing
convergence, we adopt both SGD and Adam optimizer for updating models. We set SGD, with the
momentum 0.9, the weight decay 5e-4, and the learning rate 0.2. For Adam, the learning rate is
0.001, β1 is 0.9 and β2 is 0.999. We train models for 200 epochs. The learning rate is reduced with
a cosine function. The experiment is conducted on one Nvidia A100.

B.4 DETAILS OF ABLATION EXPERIMENT

The dataset is Cifar10 and the backbone is ResNet-20. We choose SGD with momentum 0.9, weight
decay 5e-4, and learning rate 0.1 to train the models for 200 epochs. The learning rate is reduced
with a cosine function. And data-augment mixup is applied. The experiment is conducted on one
Nvidia A100.

B.5 DETAILS OF TEXT CLASSIFICATION EXPERIMENT

We also explore performance networks on text classification datasets including SST2, SST5 (Socher
et al., 2013) and TREC-6, and we select TextCNN (Kim, 2014), TextRNN (Lai et al., 2015)
and Transformer (Vaswani et al., 2017) for comparison. For TextCNN and TextRNN, we use
AdaDelta (Zeiler, 2012) optimizer with a learning rate 1.0 and adopt Adam (Kingma & Ba, 2015)
for Transformer with a learning rate 1e-4. For the embedding layer, we utilize Glove (Pennington
et al., 2014) and Word2Vec (Mikolov et al., 2013) to initialize the embedding weights. All models
are trained up to 10 epochs, and we run all the random initialization 5 times. The experiment is
conducted on one Nvidia A100.

B.6 DETAILS OF IMAGE CLASSIFICATION ON IMAGENET EXPERIMENT

In this experiment, we use ImageNet for validation. We use ViT-B/32 (Dosovitskiy et al., 2021),
ResNet-50/152 (RN-50/152) and Se-ResNet-50 (SRN-50) as backbones. For ViT-B/32 that inputs
32×32 patch window, the optimizer is AdamW with a learning rate 1e-3 and a weight decay of 5e-2.
And the batch size is 1024. The epoch for training is 300. We use 30 epochs for warm-up. The input

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Results of text classification on SST2 and TREC-6. The subscript G denotes the embedding
layer is initialized by Glove, while W indicates Word2Vec. “Default” means the default initialization
of models, specifically, Kaiming for TextCNN, and Xavier for both TextRNN and Transformer.
Fixup, ReZero and SkipInit are only applicable to the Transformer, as it is specifically designed for
residual networks. Std values larger than 1.0 are marked in red.
Datasets Init. TextCNNG/W TextRNNG/W TransformerG/W AverageG/W

SST2

Default 81.40±0.66 / 84.56±0.43 81.69±0.30 / 84.29±0.70 80.97±1.20 / 83.36±0.76 81.35±0.72 / 84.07±0.63

Orthogonal 82.24±0.44 / 84.37±0.38 81.86±0.55 / 84.61±0.78 82.22±0.87 / 83.99±0.23 82.11±0.62 / 84.32±0.46

Fixup - - 78.72±0.78 / 81.25±0.27 -
ReZero - - 81.67±0.77 / 82.32±0.51 -
SkipInit - - 82.30±0.47 / 84.12±0.75 -
ZerO 82.05±0.67 / 84.26±0.39 82.03±0.41 / 84.80±0.64 82.28±0.81 / 82.72±0.55 82.12±0.63 / 83.93±0.53

IDInit 82.60±0.24 / 85.67±0.41 82.66±0.16 / 85.49±0.33 82.48±0.55 / 84.51±0.24 82.58±0.32 / 85.22±0.33

TREC-6

Default 90.80±0.94 / 92.06±1.00 86.34±1.04 / 90.52±1.54 86.68±2.68 / 89.20±1.20 87.94±1.55 / 90.59±1.25

Orthogonal 90.34±0.72 / 92.72±0.84 85.86±0.90 / 89.88±1.54 86.90±1.51 / 89.26±0.86 87.70±0.71 / 90.62±0.75

Fixup - - 86.95±0.35 / 89.35±0.53 -
ReZero - - 86.92±0.98 / 89.36±0.52 -
SkipInit - - 83.59±0.61 / 87.10±0.41 -
ZerO 90.89±0.41 / 92.90±0.50 87.24±0.64 / 88.71±0.40 86.97±0.75 / 89.38±0.64 88.37±0.60 / 90.33±0.51

IDInit 91.22±0.54 / 92.94±0.48 87.04±0.26 / 90.60±0.58 87.32±0.78 / 90.06±0.60 88.53±0.53 / 91.20±0.55

50 100 150 200 250 300
Epoch

0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72

Te
st

 A
cc

ur
ac

y

Default
IDInit

(a) ViT-B/32

0 20 40 60 80
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

Default
IDInit

(b) RN-50
(Adamw)

0 20 40 60 80
Epoch

0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

Default
IDInit

(c) RN-50

0 20 40 60 80
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

Default
IDInit

(d) SRN-50

0 20 40 60 80
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

Default
IDInit

(e) RN-152

Figure 13: Results on ImageNet. “Default” means the default initialization of models. RN-50
(Adamw) means that ResNet-50 is trained with the same optimizer Adamw as the ViT-B/32.

image size is 224× 224. The dropout rates of the embedding layer and the network layer are all 0.1.
For RN-50/152 and SRN-50, the optimizer is SGD with a learning rate 1e-1 and a weight decay of
1e-4. And the batch size is 1024. The epoch for training is 90. We use 9 epochs for warm-up. The
input image size is 160× 160 for the front 35 epochs and 224× 224 for the remaining epochs. For
all models, we apply data-augment including cutmix (Yun et al., 2019) with α = 1.0, mixup (Zhang
et al., 2018) with α = 0.8, the switching probability is 0.5 and a label smoothing with 0.1. The
experiment is conducted on 4 Nvidia A100.

B.7 DETAILS OF PRE-TRAINING ON LANGUAGE MODEL

Pre-training plays an important role in various applications. We conduct the experiment to show
the fast convergence on BERT (Devlin et al., 2019). The dataset is the concatenation of English
Wikipedia and Toronto Book Corpus Zhu et al. (2015). We train the BERT-Base for 40 epochs with
768 batch size. The optimizer is set to AdamW with learning rate 1e-4 and weight decay 1e-2. 32
NVIDIA V100s are used.

Table 7: Results of Linear-5 on MNIST. “Default” means the default initialization of models where
Xavier is for Linear-5-tanh and Kaiming is adopted for Linear-5-ReLU.

Init. Linear-5-tanh Linear-5-ReLU

Default 98.26 98.21

IDInit 98.32 98.4

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(a) FC-0.00

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(b) ResFC-0.00

0 1 2 3 4 5 6 7 8 9
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(c) Conv-0.00

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(d) ResConv-0.00

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(e) FC-0.01

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(f) ResFC-0.01

0 1 2 3 4 5 6 7 8 9
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(g) Conv-0.01

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(h) ResConv-0.01

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(i) FC-0.10

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(j) ResFC-0.10

0 1 2 3 4 5 6 7 8 9
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(k) Conv-0.10

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(l) ResConv-0.10

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(m) FC-1.00

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(n) ResFC-1.00

0 1 2 3 4 5 6 7 8 9
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(o) Conv-1.00

0 2 4 6 8 10
Layer

10.0
7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0

Ac
tiv

at
io

n
Va

lu
e

Default
IDInit

(p) ResConv-1.00

Figure 14: Results of the analysis on variance propagation. The numerical value after the model
name means the standard derivation of the noise. “Default” means the default initialization of
models, specifically, Xavier for FC and ResFC, and Kaiming for Conv and ResConv. The default
methods can only work on non-residual networks FC and Conv, however, fail on residual networks
ResFc and ResConv, for cause instability with giant standard derivation. By contrast, IDInit can
consistently transit data-flow in an appropriate scale on all models and various noises, which shows
sufficient robustness, and can provide models with stable and efficient training.

C ADDITIONAL EXPERIMENTS

We provide additional experiments to further validate IDInit. τ and ε are set the same as Sec. B.

C.1 VALIDATION ON THE LINEAR STRUCTURE

This experiment is conducted on MNIST. We use five linear layers named Liner-5 whose hidden
layers are all of dimension 512. The optimizer is SGD with momentum 0.9, weight decay 5e-4,
and a learning rate 1e-1. The learning rate scheduler adopts a cosine reduction strategy. We run
the model in 30 epochs on one Nvidia A100. We both consider Linear-5-tanh and Linear-5-ReLU
which consist of Linear-5, and tanh and ReLU activation functions, respectively. The experiment is
conducted on one Nvidia A100.

As shown in Table 7, IDInit can achieve the highest accuracy in both different tanh and ReLU
conditions. The results show the ability of our proposed method to train a model with only fully-
connected layers.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.2 VALIDATION ON NON-RESIDUAL CONVOLUTION

We use this experiment to show IDInit can achieve a good initial state for training. In this ex-
periment, we use Cifar10 as the benchmark dataset. We use nine convolutional layers named All-
Conv (Springenberg et al., 2015). We show the structure of AllConv in Table 5 in the appendix. The
optimizer is Stochastic Gradient Descent (SGD) with momentum 0.9, weight decay 5e-4, and learn-
ing rate 1e-1. The learning rate scheduler adopts a warm-up cosine reduction strategy. We run the
model in 300 epochs on one Nvidia A100. We adopt Kaiming initialization and IDInit w/o IDICτ

initialization for comparison.

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

IDInit-0
IDInit-10
Kaiming-10
Kaiming-40
Kaiming-60

(a) Test Top-1

0 10 20 30 40 50 60
Warmup Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
es

t
A

cc
ur

ac
y

IDInit
Kaiming
IDInit w/o IDICτ

(b) Test Best

Figure 15: Results of AllConv on Cifar10. The number behind the initialization denotes the warm-
up epochs.

Results are shown in Figure 15, without a warm-up strategy which is a strong trick for training,
both Kaiming and IDInit w/o IDICε fail to train the model. By contrast, our initialization can train
AllConv and maintain the highest performance in all situations, showing a strong effect on stability
and performance. As IDInit w/o IDICε performs poorly, we demonstrate the patch-maintain strategy
mentioned in Sec. 3.1.3 can be good for increasing feature diversity. This experiment shows the
identical method can be a feasible initialization for non-residual networks.

C.3 ANALYSIS ON VARIANCE PROPAGATION

Here we conduct an experiment on Cifar10 to demonstrate data-flow will keep stable. We use 4
types of networks: (1) FC: 10-layer fully-connected layers; (2) ResFC: 10 residual blocks (two fully-
connected layers in a block); (3) Conv: 9-layer AllConv in Sec. B.1; (4) ResConv: 10 residual blocks
(two convolutional layers in a block). For (1) and (2) two fully-connected networks, we reshape
Cifar10 data as X ∈ R32×96 as input and does not use any activation function. For (1), hidden
lengths are {200, 400, 600, 800, 1000, 1000, 800, 600, 400, 200}. For (2), hidden lengths are all set
to 96. For (3) and (4) two convolution networks, we directly input images to them, and use ReLU as
the activation function. For (3), we directly use AllConv as shown in Table 5. For (4), we first use
convolution to transfer an image to 16 channels, and then set the channels of all convolution within
residual blocks to 16. For comparison, we use Xavier for (1) and (2), and Kaiming for (3) and (4) in
terms of the activation function. We also employ noises with 0 mean, and {0.00, 0.01, 0.10, 1.00}
for comparing robustness. In the experiment, we run 500 rounds for each model. The experiment is
conducted on one Nvidia A100.

Results are shown in Figure 14. The regular methods Xavier and Kaiming can only work on non-
residual networks. On residual networks, they both cause giant standard derivation, leading to in-
stability. By contrast, the proposed IDInit can consistently transit data-flow in an appropriate scale
on all models and various noises, which shows sufficient robustness, and can provide models with
stable and efficient training.

C.4 ANALYSIS ON WEIGHT DISTRIBUTION

In this experiment, we conduct an experiment on Cifar10 with ResNet-20 to show the weight dis-
tribution of IDInit. We use an SGD optimizer with a learning rate 0.2, and weight decay 5e-4. The

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

batch size is 1024. Training epochs are 200. The learning rate is reduced with a cosine function.
The experiment is conducted on one Nvidia A100.

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(a) Kaiming-E4

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(b) Kaiming-E24

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(c) Kaiming-E104

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(d) Kaiming-E194

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(e) IDInit-E4

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(f) IDInit-E24

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(g) IDInit-E104

1.0 0.5 0.0 0.5 1.0
Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(h) IDInit-E194

Figure 16: Histograms of the first convolution weights in ResNet-20. “E” means the epoch index.
IDInit contains more zero values in each epoch compared with Kaiming initialization.

The results are shown in Figure 16, weights initialized with IDInit are almost full of zero at the be-
ginning, while Kaiming uses a Gaussian distribution. At the end of the training, IDInit still contains
more zero values than Kaiming, which is beneficial for memory occupation since a 0 value will not
cost memory space.

C.5 ANALYSIS ON INPUT-OUTPUT JACOBIAN

Here we conduct an experiment on Cifar10 with 64 blocks in Figure 1 to demonstrate IDInit follows
the dynamical isometry. We remove batch normalization for the more clear difference between
IDInit and Kaiming. We use an Adagrad optimizer with a learning rate 0.01. The batch size is 100.
The activation is ReLU. The experiment is conducted on one Nvidia A100.

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 2239.07; Loss: 2.95

(a) Default-E1

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 2262.02; Loss: 2.53

(b) Default-E2

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 2244.95; Loss: 2.35

(c) Default-E3

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 2179.46; Loss: 2.24

(d) Default-E4

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 0.76; Loss: 1.40

(e) IDInit-E1

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 1.11; Loss: 1.28

(f) IDInit-E2

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 1.65; Loss: 1.17

(g) IDInit-E3

4 3 2 1 0 1 2 3 4
log(io)

0.0

0.2

0.4

0.6

0.8

1.0
Avg(): 2.54; Loss: 1.07

(h) IDInit-E4

Figure 17: Histograms of log singular values (log(λio)) for the input-output Jacobian. “E” means
the epoch index. Compared with Default initialization, IDInit has a significantly smaller squared
singular value χ, which can achieve a faster reduction of the loss.

As shown in Figure 17, Default initialization cause a high squared singular value χ, reaching more
than 2000. Compared to Default, IDInit only derives χ around 1, indicating correspondence to the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

dynamical isometry. In addition, the loss of IDInit decreases faster than Default, which shows a
good convergent ability.

C.6 FAILURE OF LONG RESIDUAL STEM

We conduct this experiment to show the failure case when the residual stem is long to show the
importance of the stability of the residual stem. In this experiment, we conduct an experiment on
Cifar10. We use a residual network named Res-112 as in Table 8. We set 109 layers in the residual
stem. Batch normalization is not applied for fairly validating the stability of initialization methods.
We use an SGD optimizer with a learning rate 0.2, and weight decay 1e-8. The batch size is 768.
Training epochs are 35. The learning rate is reduced with a cosine function. One Nvidia A100 is
used.

0 5 10 15 20 25 30
Epoch

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y

IDInit
Kaiming
Fixup

(a) Test Accuracy

0 5 10 15 20 25 30
Epoch

0
1
2
3
4
5

nan

St
an

da
rd

 D
er

iv
at

io
n IDInit

Kaiming
Fixup

(b) Standard Derivation

Figure 18: Result of the experiment on the residual network with the long residual stem. Fig-
ure 18(a) shows the accuracy of different initialization. Figure 18(b) shows the standard derivations
of the outputs of networks with different initialization methods. The black dash line is the standard
derivation of the network input.

Results are shown in Figure 18. When the network is trained for 4 epochs, both Kaiming and Fixup
fail to train the network, since the standard derivations of their outputs explode. By contrast, IDInit
successfully trains this network and the standard derivation of the output converges to a stable value.
This experiment demonstrates the ability of IDInit to stabilize the residual stem, which can benefit
the training of the whole network.

Table 8: Architectures of Res-112. Window means the convolutional kernel window size. Channels
indicate cin and cout of a standard convolutional kernel C ∈ Rcin×cout×k×k. The avg pool denotes
the average pooling operation. Linear means a linear layer.

Layer Window Channels
conv1 3×3 3×16

Residual Block

3×3 [16×16]×18

3×3 16× 32
[32×32]×17

3×3 32× 64
[64×64]×17

3×3 64×64

conv2 3×3
64×64

avg pool
Linear 64×10

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D DYNAMICAL ISOMETRY IN IDINIT

−1 0 1 2 3 4 5

w1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

w
2

−11.25

−9.00

−6.75

−4.50

−2.25

0.00

2.25

4.50

6.75

9.00

(a) Non-Residual Plot.

−1 0 1 2 3 4 5

w1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

w
2

−9.00

−6.75

−4.50

−2.25

0.00

2.25

4.50

6.75

9.00

(b) Residual Plot.

Figure 19: Contour plots of the log gradient norm log ||∂R||2 on non-residual and residual net-
works. w(1) and w(2) are both weights. The training process set as Bachlechner et al. (2021),
which is conducted on ground-truth x(L) = 50 × x0 via gradient descent using a training set of
x0 = {1., 1.1, ..., 1.8}. (a) shows {w(2) = w(1) = 1} can avoid poorly conditioned regions around
0, and converge to w(1)w(2) = 2.19. (b) cares about two initial position {w(1) = 0, w(2) = 1}
and {w(2) = 1, w(1) = 0}. The two points’ trajectories do not also pass the poor regions around
w(1) = −1, w(2) = 1 and converge to the solution w(1)w(2) = 1.19.

Following Bachlechner et al. (2021), we utilize a simple example of the mechanism that dynamical
isometry helps IDInit to obtain a fast convergence. Considering a L-layer network with a simple
special case of Eq. (1):

x(L) = (r + w(2)w(1))Lx(0), (22)

where w(1) and w(2) denote the first weight and last weight in a residual stem respectively, and
x(∗) is the feature in layers. r ∈ {0, 1} determines residual connection. Specifically, r = 0 and
r = 1 represent non-residual and residual conditions respectively. The Jacobian of Eq. (22) is
J0L = (r + w(2)w(1))L. Obviously, identity transition on both non-residual and residual settings,
namely {r = 0, w(2) = w(1) = 1} and {r = 1, w(1) = 1, w(2) = 0} respectively, will achieve
J0L = 1, which conforms to the dynamical isometry mechanism that helps improving training
ability (Pennington et al., 2017). Further, we delve into a gradient update analysis. Following
gradient descent, w1 can be updated with

∆w(1) = −λLw(2)x(0)(r + w(2)w(1))L−1∂xR(x)|x=x(L) , (23)

where R means the loss function, and λ is a learning rate. As w(1) and w(2) are equivalent in
Eq. (22), w(2) can be updated similar to Eq. (23). When w(1) = 1, updates are required less than 1.
Therefore, the learning rate is constrained to{

λ ∝ L−1, if non-residual,
λ ∝ L−1(1 + w(2))L−1, if residual.

(24)

For the non-residual condition, the learning rate is polynomial to L, thereby insensitive to the depth.
By contrast, in the residual block, w(2) >> 0 will cause learning rate exponentially small and
w(2) = −1 also cause gradient diffusion. On this condition, setting w(2) = 0 can be a good solution
for avoiding large output and restricting gradients in a suitable norm. Besides, it is feasible to update
w(2) with the first non-trial step

w(2) = −λLw(1)x(0)∂xR(x)|x=x(L) , (25)

and will converge with a learning rate that is polynomial in the depth L of the network. We plot the
training dynamics in Figure 19, and use this simple example to illustrate the mechanism of IDInit,
which is always a well-conditioned position for training.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E IMPACT STATEMENTS

This paper introduces IDInit, an initialization method designed to enhance stability and convergence
during model training. This method is unlikely to have negative societal impacts.

F LIMITATION

While IDInit demonstrates notable advancements in convergence speed and performance enhance-
ment, it faces challenges in converging to ground truths that include negative eigenvalues. However,
this drawback can be easily mitigated by incorporating momentum into the optimizer. Given that
momentum is a commonly used setting, this limitation can be implicitly resolved as we show in the
main context.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

G REBUTTAL

G.1 EXTENDING FIGURE 2 WITH STANDARD DEVIATION

We present the standard deviation for Figure 2(b) and Figure 2(c). As illustrated in Figure 20,
the standard deviation is relatively low, demonstrating that IDInit consistently outperforms other
initialization methods.

0 20 40 60 80 100

Epoch
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Identity-1
Random
Hadamard
IDInit

(a) Square Loss.

0 20 40 60 80 100

Epoch
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Default
Random
Hadamard
Partial Identity
IDInit

(b) Rectangle Loss.

Figure 20: Squared and Rectangle loss with standard derivation.

G.2 EXTENDING FIGURE 2 WITH LARGER SIZE

In this experiment, we increase W1 from R240×240 to R480×480 and W2 from R240×240 to R480×480

in the ”Square” case. Similarly, in the ”Rectangle” case, W1 is increased from R280×240 to
R560×480, and W2 from R240×280 to R480×560. As shown in Figure 21, larger models exhibit faster
convergence. Notably, IDInit continues to deliver the best performance.

0 20 40 60 80 100

Epoch
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Identity-1
Random
Hadamard
IDInit

(a) Square Loss.

0 20 40 60 80 100

Epoch
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Default
Random
Hadamard
Partial Identity
IDInit

(b) Rectangle Loss.

Figure 21: Squared and Rectangle loss with standard derivation on larger size.

G.3 EXTENDING FIGURE 7 WITH WIDER RANGE

In this section, we add a wider sweeping range. As shown in Figure 22, we scanned the learn-
ing rate from 1e-3 to 1e1 and weight decay from 1e-8 to 1e-1, ensuring that the best-performing

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

hyperparameters are not at the corners or edges of the grid. As illustrated in Figure 22, IDInit con-
sistently performs well across a wide range of settings and achieves the best performance among all
the initialization methods tested.

1e1 1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

1e
-6

1e
-7

1e
-8

W
ei

gh
t D

ec
ay

10.42±0.4 16.38±1.28 21.68±2.61 68.2±5.79 82.17±0.14

11.3±2.17 22.57±2.69 90.36±0.06 93.28±0.04 83.18±0.14

14.69±4.2 89.76±0.18 94.08±0.13 90.09±0.22 81.42±0.13

30.41±2.61 94.08±0.08 92.54±0.11 88.33±0.03 81.15±0.26

92.26±0.51 93.27±0.21 91.92±0.29 88.56±0.13 81.65±0.34

89.43±0.94 92.94±0.18 91.91±0.12 88.47±0.1 80.76±0.61

89.14±1.85 93.02±0.2 91.8±0.18 88.74±0.24 81.0±0.44

89.14±1.49 92.99±0.19 91.96±0.11 88.82±0.34 81.42±0.78

IDInit

60

65

70

75

80

85

90

95

(a) IDInit

1e1 1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

1e
-6

1e
-7

1e
-8

W
ei

gh
t D

ec
ay

12.42±0.47 16.63±2.74 24.27±0.34 58.97±6.76 79.13±0.26

13.3±0.91 26.13±3.78 84.0±0.38 88.25±0.24 81.61±0.31

20.27±3.33 84.39±0.32 88.99±0.25 85.43±0.25 81.07±0.41

28.13±8.82 89.32±0.25 87.66±0.25 84.41±0.1 81.0±0.42

87.33±0.7 88.1±0.01 86.89±0.06 84.3±0.39 80.93±0.55

85.44±1.12 87.89±0.24 86.88±0.46 84.11±0.31 81.44±0.38

84.82±1.35 88.24±0.4 86.81±0.48 84.36±0.17 81.23±0.22

84.52±0.81 88.23±0.29 86.84±0.23 84.09±0.05 81.09±0.19

ZerO

60

65

70

75

80

85

90

95

(b) ZerO

1e1 1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

1e
-6

1e
-7

1e
-8

W
ei

gh
t D

ec
ay

10.39±0.35 10.38±0.35 21.12±2.73 51.88±5.98 69.52±7.6

11.34±0.86 21.77±3.1 90.23±0.18 92.78±0.14 55.26±1.14

11.91±1.27 89.96±0.49 93.69±0.12 82.02±0.01 51.25±1.17

12.22±2.16 94.06±0.11 91.24±0.1 78.37±0.41 50.75±1.26

11.35±1.88 93.06±0.07 90.14±0.12 77.83±0.43 50.81±1.48

10.28±0.25 92.6±0.14 90.01±0.17 78.05±0.33 50.91±1.38

14.08±2.28 92.64±0.11 90.0±0.14 78.32±0.58 51.0±1.22

10.45±0.45 92.48±0.25 89.93±0.09 77.96±0.21 50.79±1.49

Kaiming

60

65

70

75

80

85

90

95

(c) Kaiming

1e1 1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

1e
-6

1e
-7

1e
-8

W
ei

gh
t D

ec
ay

16.51±1.19 18.32±0.94 19.22±0.32 18.62±0.7 18.73±0.37

17.87±2.54 23.86±0.92 49.78±2.35 41.36±0.19 25.23±0.28

20.63±4.3 33.33±0.88 92.19±0.06 68.28±0.91 28.14±0.34

16.51±1.18 30.53±5.35 92.37±0.02 72.95±1.11 28.47±0.42

16.51±1.18 28.17±3.48 92.27±0.19 73.52±1.12 28.5±0.45

16.51±1.18 32.87±6.89 91.98±0.07 73.57±1.19 28.51±0.44

16.51±1.18 26.35±0.69 91.98±0.17 73.62±1.19 28.52±0.44

16.51±1.18 34.3±7.7 92.1±0.16 73.63±1.21 28.5±0.44

Fixup

60

65

70

75

80

85

90

95

(d) Fixup

1e1 1 1e-1 1e-2 1e-3
Learning Rate

1e
-1

1e
-2

1e
-3

1e
-4

1e
-5

1e
-6

1e
-7

1e
-8

W
ei

gh
t D

ec
ay

10.12±0.2 10.12±0.2 19.49±0.87 21.03±0.22 20.77±0.78

13.22±3.85 25.99±5.12 88.75±1.67 92.61±1.53 32.7±2.56

34.49±4.36 88.92±0.74 93.64±0.64 79.98±2.33 34.02±2.03

53.48±3.81 93.86±0.26 90.95±0.68 74.91±2.31 33.98±1.92

36.24±6.41 92.32±0.67 89.68±1.04 74.4±2.31 33.98±1.94

40.13±5.45 92.02±0.89 89.64±0.98 74.34±2.26 34.0±1.9

36.06±0.72 91.86±0.71 89.49±0.88 74.29±2.26 33.98±1.91

35.13±4.65 92.15±0.97 89.55±0.82 74.35±2.24 33.98±1.9

Rezero

60

65

70

75

80

85

90

95

(e) Rezero

Figure 22: The expanded hyperparameter experiment on Cifar10 on ResNet-32.

G.4 EXTENDING HYPERPARAMETER ANALYSIS OF RESNET-110

We perform a detailed hyperparameter analysis for ResNet-110, evaluating the learning rates {1,
2e-1, 1e-1} and weight decays {1e-4, 5e-4, 1e-3} on the standard baseline Kaiming and the more
fragile Fixup method. As shown in Figure 23, both Kaiming and Fixup achieve optimal accuracy
with a learning rate of 2e-1 and a weight decay of 5e-4. However, Fixup fails to train with a learning
rate of 1. Consequently, selecting a learning rate of 2e-1 and a weight decay of 5e-4 as the training
hyperparameters in Section 4.2 is justified.

1 2e-1 1e-1
Learning Rate

1e
-3

5e
-4

1e
-4

W
ei

gh
t D

ec
ay

91.55±0.06 93.92±0.02 93.8±0.57

93.48±0.28 94.06±0.18 93.01±0.14

93.9±0.1 92.05±0.28 90.6±0.14

Kaiming

60

65

70

75

80

85

90

95

(a) Kaiming

1 2e-1 1e-1
Learning Rate

1e
-3

5e
-4

1e
-4

W
ei

gh
t D

ec
ay

22.05±1.07 70.16±1.3 91.67±1.06

21.03±0.54 93.32±0.23 91.78±1.39

26.22±0.74 92.75±0.35 92.25±0.26

Fixup

60

65

70

75

80

85

90

95

(b) Fixup

Figure 23: The tuning hyperparameters on Cifar10 on ResNet-110.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

G.5 EXPERIMENT ON GPT-BASE-MOE

We conducted experiments on GPT-Base-MOE, modifying the GPT-Base with 8 experts. The train-
ing settings mainly follow Pan et al. (2023). The results, shown in Figure 24, indicate that IDInit
can achieve 20% faster performance compared to the default random initialization, demonstrating
the superior performance of IDInit.

0
(0.0B)

6400
(1.7B)

12608
(3.3B)

step
(token)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

lo
ss

0%20%

Default
IDInit

Figure 24: Pretraining on GPT-Base-MOE. IDIinit can achieve 20% after than Default initialization.

G.6 EXPERIMENT ON DIT

We train DiT-S/4 on ImageNet using the provided code3. The experiment is conducted using the
default training settings. As illustrated in Figure 25, IDInit consistently achieves faster convergence
compared to the default initialization.

0 10000 20000
Step

0.170
0.175
0.180
0.185
0.190
0.195
0.200

Te
st

 L
os

s

Default
IDInit

Figure 25: Training on DiT-S/4.

3https://github.com/facebookresearch/DiT

27

https://github.com/facebookresearch/DiT

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

G.7 EXTENTION OF ANALYSIS ON CONVERGENCE ABILITY OF THE IDENTITY MATRIX

In this section, we analyze the magnitude of asymmetry in the gradient. According to Eq. (4), the
asymmetry in the gradient arises from:

Ω = −ηx1x
T
1 x2x

T
2 + ηy1x

T
1 x2x

T
2 − y2x

T
2 . (26)

Here, we assume x1, x2, y1, y2 ∈ Rd are random vectors with entries that are i.i.d. Gaussian random
variables, following N(0, σ2). The magnitude of asymmetry can be calculated as

E(||Ω− ΩT ||2F)
= E{||[−ηx1x

T
1 x2x

T
2 + (ηx1x

T
1 x2x

T
2)

T] + [ηy1x
T
1 x2x

T
2 − (ηy1x

T
1 x2x

T
2)

T] + [−y2x
T
2 + (y2x

T
2)

T]||2F }
(27)

According to Relaxed Triangle Inequality, there is

≤ 3{η2E[|| − x1x
T
1 x2x

T
2 + (x1x

T
1 x2x

T
2)

T ||2F] + η2E[||y1xT
1 x2x

T
2 − (y1x

T
1 x2x

T
2)

T ||2F] + E[|| − y2x
T
2 + (y2x

T
2)

T ||2F]}
≤ 3(η2d2σ2 + η2d2σ2 + d2σ2)

= (6η2 + 3)d2σ2 (28)

This shows that a higher learning rate promotes greater asymmetry, further explaining the observed
differences. However, a high learning rate can affect training stability. Therefore, while using a
higher learning rate to reduce symmetry, it is crucial to carefully select its magnitude to maintain
stability.

28

	Introduction
	Related Work
	Fully Identical Initialization
	Preserving Identity by Padding Identity
	Analysis on Convergence Ability of the Identity Matrix
	On Rank Constraint Problem
	Patch-Maintain Convolution

	Preserving Zero by Tackling Dead Neurons

	Experiments
	Experiment for Hyperparameters
	Image Classification on Cifar10
	Ablation Experiment
	Image Classification on ImageNet
	Text Classification
	Pre-Training on Language Model

	Conclusion
	IDInit Details
	Full IDInit Scheme
	Analysis on Convergence
	Proof for Theorem 3.1.
	Implementing IDInit on Attention Layer in Transformer
	Details of Patch-Maintain Convolution

	Detailed Settings of Experiments
	Details of Validation on Non-Residual Convolution Experiment
	Experiment for Hyperparameters
	Details of Image Classification on Cifar10 Experiment
	Details of Ablation Experiment
	Details of Text Classification Experiment
	Details of Image Classification on ImageNet Experiment
	Details of Pre-Training on Language Model

	Additional Experiments
	Validation on the Linear Structure
	Validation on Non-Residual Convolution
	Analysis on Variance Propagation
	Analysis on Weight Distribution
	Analysis on input-output Jacobian
	Failure of Long Residual Stem

	Dynamical Isometry in IDInit
	Impact Statements
	Limitation
	Rebuttal
	Extending Figure 2 with Standard Deviation
	Extending Figure 2 with larger Size
	Extending Figure 7 with Wider Range
	Extending Hyperparameter Analysis of ResNet-110
	Experiment on GPT-Base-MOE
	Experiment on DiT
	Extention of Analysis on Convergence Ability of the Identity Matrix

