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ABSTRACT

Recent hybrid video generation models combine autoregressive temporal dynamics
with diffusion-based spatial denoising, but their sequential, iterative nature leads
to error accumulation and long inference times. In this work, we propose a
distillation-based framework for efficient causal video generation that enables
high-quality synthesis with extreme limited denoising steps. Our approach builds
upon Distribution Matching Distillation (DMD) framework and proposes a novel
form of Adversarial Self-Distillation (ASD) strategy, which aligns the outputs of
the student model’s n-step denoising process with its (n+1)-step version in the
distribution level. This design provides smoother supervision by bridging small
intra-student gaps and more informative guidance by combining teacher knowledge
with locally consistent student behavior, substantially improving training stability
and generation quality in extremely few-step scenarios. In addition, we present a
First-Frame Enhancement (FFE) strategy, which allocates more denoising steps
to the initial frames to mitigate error propagation while applying larger skipping
steps to later frames. Extensive experiments on VBench demonstrate that our
method surpasses state-of-the-art approaches in both one-step and two-step video
generation. Notably, our framework produces a single distilled model that flexibly
supports multiple inference-step settings, eliminating the need for repeated re-
distillation and enabling efficient, high-quality video synthesis.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021a; Nichol & Dhariwal, 2021) have achieved
remarkable progress in high-quality image (Dhariwal & Nichol, 2021; Nichol et al., 2022; Rombach
et al., 2022) and video generation (Ho et al., 2022; Brooks et al., 2024; Blattmann et al., 2023).
However, their application to long-form video (Chen et al., 2023; Zhang et al., 2023) and interactive
settings (Che et al., 2025) remains limited by the high computational cost of iterative denoising
and the reliance on bidirectional attention, which requires synthesizing entire sequences jointly.
Autoregressive methods (Liang et al., 2022; Ge et al., 2022; Wang et al., 2024), in contrast, allow
causal frame-by-frame generation, but often suffer from error accumulation that compromises
realism. Recent works (Chen et al., 2024; Jin et al., 2025; Li et al., 2025) have attempted to combine
autoregressive temporal modeling with diffusion-based spatial refinement, yet these hybrid approaches
inherit the efficiency bottleneck of multi-step denoising.

To alleviate this limitation, distillation has emerged as a promising direction for accelerating diffusion
models (Sauer et al., 2024b; Yin et al., 2024b; Lu et al., 2025). By reducing a multi-step model to
a few-step counterpart, distillation greatly improves efficiency while preserving generation quality.
Nonetheless, existing distillation objective primarily focuses on aligning the prediction distributions
of the few-step student with those of the multi-step teacher. When the student performs only 1- or
2-step generation, the discrepancy from the multi-step teacher becomes excessively large, making
direct alignment unstable and causing severe quality degradation (Cheng et al., 2025; Yin et al.,
2025; Huang et al., 2025). In other words, the fewer the denoising steps, the larger the semantic
and statistical gap to be bridged, which explains why extremely few-step distillation is particularly
challenging.
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Figure 1: Conceptual illustration of the different
alignment strategies of DMD and ASD during dis-
tillation. The points plotted in the figure indicate
the multiple modes (or peaks) of the real data dis-
tribution, highlighting its multimodal nature.

In this paper, we introduce a novel method to
address the challenge of high-quality video gen-
eration with minimal denoising steps (e.g. 1
and 2 steps). We extend the distribution match-
ing distillation (DMD) framework (Yin et al.,
2024b;a), and propose a novel Adversarial Self-
Distillation (ASD) strategy. Unlike prior dis-
tillation methods (Song et al., 2023; Song &
Dhariwal, 2024; Lin et al., 2024) that rely solely
on supervision from the multi-step teacher, ASD
provides the student with additional guidance
from its own intermediate variants with slightly
different denoising steps. Specifically, a dis-
criminator is employed to adversarially match
the n-step and (n+1)-step denoising distribution.
As shown in Fig. 1, this step-wise self-alignment
has two advantages: (1) it produces smoother
supervision by bridging smaller step-to-step gaps instead of the large teacher–student gap, and (2) it
yields more informative signals, since the student learns from both global teacher knowledge and
its own locally consistent behavior. Together, these factors substantially enhance training stability
and generation quality under extreme few-step settings. Fig. 2 also demonstrates that our method
substantially reduces the performance degradation associated with a decreasing number of inference
steps. Moreover, our framework introduces a step-unified design: instead of training a separate
distilled model for each desired step size, a single student model trained with ASD can flexibly
support multiple inference-step configurations at deployment. This property significantly improves
practical usability, as it removes the need for repetitive re-distillation, which is especially valuable in
scenarios such as dynamically balancing speed and quality trade-offs and accommodating deployment
across varied resource settings.

To further improve video fidelity, we first conduct empirical analysis and observe that later frames
exhibit higher generative redundancy compared to the first frame. Motivated by this, we propose
a frame-wise inference strategy with varying denoising strengths. Unlike previous methods that
treat all frames equally, we allocate more denoising steps to the crucial initial frames to mitigate
error accumulation, while later frames are generated with larger skipping steps. This First-Frame
Enhancement (FFE) strategy maintains a low overall computational cost while notably improving
visual quality. Extensive experiments on VBench demonstrate that our method surpasses state-of-the-
art approaches in both one-step and two-step video generation. Importantly, it achieves both efficiency
and flexibility by using a single distilled model to support a wide range of inference settings.

In summary, our contributions are as follows:

• We propose a unified adversarial self-distillation strategy that aligns prediction distributions
across different denoising steps of the student model, significantly improving few-step
generation quality.

• We propose a frame-wise inference strategy that allocates more denoising steps to crucial
initial frames, reducing error accumulation and improving video fidelity.

• Our experiments demonstrate that our method surpasses the state-of-the-art in few-step
generation quality while eliminating the need for separate distillation training for each
desired step size.

2 RELATED WORK

2.1 AUTOREGRESSIVE/DIFFUSION VIDEO GENERATION

Diffusion (Blattmann et al., 2023; Ho et al., 2022; Yang et al., 2025) and autoregressive models (Ge
et al., 2022; Kondratyuk et al., 2024; Yu et al., 2024) are the two dominant paradigms in video
generation due to their ability to produce high-quality results. Diffusion models employ bidirectional
attention (Bao et al., 2022; Peebles & Xie, 2023) to denoise and synthesize all frames simultaneously,
achieving strong temporal consistency but preventing frame-wise editing or interactive generation. In
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Figure 2: Qualitative results of Self Forcing (Huang et al., 2025) and ours under 4-step, 2-step and
1-step generation. Our method consistently maintains high-quality generation across 4-step, 2-step,
and 1-step inference.

contrast, autoregressive models generate frames sequentially by predicting the next token conditioned
on previously generated frames. However, this strong dependence on earlier outputs often leads to
error accumulation, making it difficult to synthesize highly realistic long videos (Che et al., 2025).

Recent works (Chen et al., 2024; Hu et al., 2025; Jin et al., 2025; Li et al., 2025; Yin et al., 2025; Weng
et al., 2024) have proposed hybrid frameworks that integrate diffusion and autoregressive generation.
A common design is to model temporal dynamics autoregressively while applying diffusion-based
iterative denoising spatially. Despite their improved flexibility, their sequential and iterative nature
introduces more complex generation processes and prolonged inference times. Building upon this
line of research, our work adopts a distillation-based framework that significantly reduces generation
latency, enhancing real-time interactivity in video synthesis.

2.2 ADVERSARIAL DISTILLATION

A line of work (Song et al., 2023; Song & Dhariwal, 2024; Liu et al., 2022; Meng et al., 2023;
Berthelot et al., 2023) focuses on distilling the multi-step generation process into a few steps
to improve the sampling efficiency of diffusion models. These methods train a student model
to approximate the ordinary differential equation (ODE) trajectory of the original teacher model.
Adversarial distillation uses a discriminator to align the distribution of the student model with the
target distribution. ADD (Sauer et al., 2024b) and UFOGen (Xu et al., 2024) aim for the student
model’s final output to be indistinguishable from real data.

Further advancements have sought to preserve the generation trajectory itself, not just the final output.
SDXL-Lightning (Lin et al., 2024) and LADD (Sauer et al., 2024a) achieve this by aligning the
intermediate denoising states of the student model with those of the teacher model. Zhang et al. (2024)
and Lin et al. (2025) fine-tune a pre-trained diffusion video model for AR generation via adversarial
training, but they directly align one-step outputs with real data. Our work employs a discriminator to
align the generated results of an n-step denoising process with those of an (n+ 1)-step process. This
approach enhances the model’s performance and consistency across various limited-step scenarios.

2.3 SCORE DISTILLATION

Existing methods (Zhou et al., 2024; Lu et al., 2025) also utilize score-based models to achieve distri-
bution matching across different noise states during distillation. For example, Dreamfusion (Poole
et al., 2023) and ProlificDreamer (Wang et al., 2023) leverage a T2I diffusion model’s score function
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Figure 3: Pipeline of our proposed adversarial self-distillation process. We employ a discriminator
Dn to align the randomly noised n-step video with the (n+1)-step one through calculating the ASD
loss in Equation (4). The generator G is optimized using a combined objective function that includes
the standard DMD loss and the ASD loss. Note that distillation is performed in the latent space, while
the pixel domain is primarily used for visual analysis and display.

to guide text-conditioned 3D generation. Distribution Matching Distillation (DMD) (Yin et al.,
2024b;a) extends this approach to accelerate diffusion model generation by employing the original
model as a score estimator for real data and a fine-tuned version as a score estimator for generated
data.

Our approach is similar in that it aims to maintain a consistent sample probability across distributions
under a particular noise level. To achieve this, we align the noisy version of the predictions from our
few-step model’s n-step and (n+1)-step denoising.

3 METHODOLOGY

To achieve high-quality and flexible causal video generation with minimal computational overhead,
our distillation process employs two key strategies. We use Distribution Matching Distillation (DMD)
to distill a multi-step generative model into a few-step student model through score-based alignment.
Meantime, we introduce a novel form of self-supervision by aligning the student model’s n-step
denoising with its (n+1)-step version in the distribution level. This dual supervision not only enhances
the generation quality but also enables the final model to produce consistent, hight-quality output
across a variety of few-step settings. The few-step generator, the generator’s score estimator and
the discriminator are trained alternately to facilitate this process. The pipeline of the Adversarial
Self-Distillation (ASD) process is depicted in Fig. 3. During inference, we further improve efficiency
and quality by employing a First-Frame Enhancement (FFE) strategy, which uses a more intensive
denoising process for the initial frame while reducing the number of steps for subsequent frames.

3.1 PRELIMINARY: DISTRIBUTION MATCHING DISTILLATION

Distribution Matching Distillation (DMD) (Yin et al., 2024a;b) presents a score-based approach
to align a few-step student model with a multi-step teacher model. Unlike other distillation meth-
ods (Song et al., 2023; Song & Dhariwal, 2024), DMD not only accelerates generation but also
improves output quality by aligning the output distributions. In diffusion models, the score function
is represented by the gradient of the log probability of the distribution:

sθ(xt, t) = ∇xt
log p(xt) = −ϵθ(xt, t)

σt
, (1)

where xt is the noisy sample at timestep t with p(xt) as its corresponding data distribution, t ∈
{0, ..., T}. p(xT ) is a standard Gaussian distribution. ϵθ(xt, t) is the predicted output of the
generative model parameterized by θ and σt is predefined by the noise schedule (Karras et al., 2022;
Song et al., 2021b). DMD minimizes the reverse Kullback-Leibler (KL) divergence between the
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Algorithm 1 Adversarial Self-Distillation Process
Require: Few-step denoising steps T = {t1, . . . , tN}, score function of teacher model sdata
1: Initialize few-step student model Gθ with the original model
2: Initialize generator’s score function sgen with sdata estimated by the original model
3: Initialize discriminator Dn

ψ with the original model with trainable heads, Dn
ψ and sgen share the same

backbone parameters
4: while training do
5: n← RandomInteger(1, N)
6: Predict few-step student model generate sample xn+1

0 = Gn+1
θ (z1),z1 ∼ N (0, I)

7: Add noise x1
t = (1− t)xn+1

0 + tϵ, ϵ ∼ N (0, I), t ∼ Uniform(T )
8: Predict few-step student model generate sample xn0 = Gnθ (z2),z2 ∼ N (0, I)
9: Add noise x2

t = (1− t)xn0 + tϵ, ϵ ∼ N (0, I)
10: Update few-step generator Gθ using DMD loss and ASD loss ▷ Eq. 5
11: Update discriminator Dn

ψ with ASD loss ▷ Eq. 4
12: Update generator’s score function sdata using diffusion loss Lϕgen ▷ Eq. 3
13: end while

score of the true data distribution and the score of the student model’s generated data distribution.
The gradient of DMD loss can be represented by:

∇θLDMD ≜ Et (∇θKL (pgen,t∥pdata,t))

≈ − E
z,t,xt

[(sdata (xt, t)− sgen (xt, t))
dGθ(z)

dθ
], (2)

where sdata and sgen are the score functions that trained of real data and generated data, which point
towards the higher density of data for pgen,t and pdata,t. The noisy sample xt is obtained by the
diffusion forwarding process xt = αtx̂0 + σtϵ, ϵ ∼ N (0, I), where x̂0 is the generated output of
the few-step student model Gθ. αt, σT > 0 are defined by the noise schedule. z ∼ N (0, I) is the
Gaussian distribution.

The true data score sdata is estimated by the original teacher model, while the generation score sgen is
estimated by a "teaching assistant" (TA) model, which is a fine-tuned version of the teacher. The TA
model and the few-step generator are typically trained in an alternating fashion. The TA model is
fine-tuned on the standard diffusion denoising loss on the generated data from the student model:

Lϕgen =
∥∥ϵϕgen(xt, t)− ϵ

∥∥2
2
. (3)

3.2 ADVERSARIAL SELF-DISTILLATION

A key drawback of DMD is its lack of flexibility. The resulting student model is optimized for a
single, fixed number of steps, requiring a separate distillation for each desired configuration (e.g., 4
steps vs. 2 steps). To overcome this rigidity, we introduce a method that aligns the outputs of a single
few-step model across varying step counts.

Our core idea is to align the n-step denoising distribution with the (n+1)-step version. This ensures
that the model can maintain consistent, high-quality output regardless of the chosen few-step setting.
Since adversarial distillation objectives (Sauer et al., 2024b; Lin et al., 2024) are known to preserve
sharpness and fine details better than DMD under low-step constraints, this alignment is performed
using a discriminator Dn

ψ. This discriminator’s task is to make the outputs of adjacent denoising
steps indistinguishable through a relativistic pairing GAN objective (Jolicoeur-Martineau, 2018). The
adversarial self-distillation loss is represented as:

LASD(θ, ψ) = E
z1∼N (0,I)
z2∼N (0,I)

[
f
(
Dn
ψ (Ψ (Gnθ (z1)))−Dn

ψ(Ψ
(
Gn+1
θ (z2))

))]
, (4)

where Gnθ tries to maxmize LASD and Dn
ψ is optimizied to minimize it. f(t) = − log (1 + e−t) is

drawn from classic GAN (Goodfellow et al., 2020; Nowozin et al., 2016) and Ψ represents the adding
noise process. Gnθ and Gn+1

θ are the generated output of the few-step generator with n steps and
(n+1) steps. The few-step generator is trained with both DMD loss and ASD loss:

Ltotal = LDMD + α ∗ LASD, (5)
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Algorithm 2 Inference Procedure with First-Frame Enhancement
Require: Intensive denoising timesteps {t1, . . . , tT }, reduced denosing timesteps {t1, . . . , tR}, video length

L, few-step autoregressive video generator Gθ ,
1: for i = 1 to L do
2: Initialize: xi ∼ N (0, I)

3: K =

{
T if i = 1

R otherwise
4: for j = 1 to K do
5: Predict x̂i0 = Gθ(x

i, tj)
6: Update xi = Ψ(x̂i0, ϵ, tj+1), where ϵ ∼ N (0, I)
7: end for
8: end for
9: Return {x̂i0}Li=1

where α is the hyperparameter that weights the two loss functions. The detailed distillation process is
shown in Alg. 1.

Crucially, aligning the outputs of two adjacent few-step predictions is a much more stable training
objective than directly aligning a few-step model with its multi-step teacher. The smaller distributional
gap between adjacent steps makes our few-step generator significantly easier to train. This approach
also provides a unique benefit: the n-step generator receives a supervision signal not only from the
teacher model’s trajectory but also from the (n+1)-step prediction, a novel form of self-distillation
that further boosts the model’s generation quality.

3.3 FIRST-FRAME ENHANCEMENT

1 2 3 4

1

2

3

4

Frame Index 
1 2 3 4

Steps 0

1

0.5

The similarity matrix of predicted ො𝑥0 under different denoising steps.

Figure 4: Cosine similarity matrices of differ-
ent frames in causal diffusion video generation.
Each matrix shows the similarity of the predicted
x̂0 between different denoise steps (from 1 to 4).

Existing causal video generation methods typi-
cally employ a uniform number of denoising steps
for each frame. However, in causal generation pro-
cess, the quality of subsequent frames is critically
dependent on the preceding frames. The quality
defects in earlier frames are highly likely to be
propagated throughout the rest of the sequence.
This is particularly true for the first frame, which
has no prior context and must synthesize a high-
quality initial state from a zero-data starting point.
Consequently, the generation of the first frame re-
quires dedicated attention to mitigate accumulated
error and ensure high overall video quality. Fig. 4
shows the similarity of predicted x̂0 for different video frames across various denoising steps. It
reveals that the first frame has low similarity across steps, indicating that each denoising step is
crucial. In contrast, subsequent frames exhibit higher similarity, suggesting a greater redundancy that
makes them more suitable for few-step prediction. These results are based on the Self Forcing model
and are consistent across multiple prompt variants and random seeds. We include additional results
across scenarios in the Appendix Section C.

Based on this observation, we propose a novel Frist-Frame Enhancement (FFE) denoising strategy, as
detailed in Alg. 2. The first frame undergoes a more intensive denoising process, requiring a minimum
of four steps, while subsequent frames can be generated with a significantly reduced number of steps,
such as one or two. This frame-based control allows us to enhance the quality of the generated video
in the few-step scenario.

4 EXPERIMENTS

4.1 IMPLEMENTATIONS

Our approach employs a causal video distillation framework based on the Self Forcing (Huang et al.,
2025) training paradigm. The causal model architecture builds upon the Wan2.1-T2V-1.3B (Wang

6
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Figure 5: Qualitative comparisons. We visualize videos generated by Ours against those by
Wan2.1 (Wang et al., 2025), SkyReels-V2 (Chen et al., 2025), CausVid (Yin et al., 2025) and
Self Forcing (Huang et al., 2025) at 4-step generation. All models share the same architecture with
1.3B parameters.

et al., 2025) backbone, a Flow Matching based model (Lipman et al., 2023). We adopt CausVid’s (Yin
et al., 2025) initialization protocol to stabilize early causal training phases via asymmetric distillation
from a pre-trained bidirectional teacher model. For training data, we utilize the exact text prompts
from Self Forcing for fair comparison. The diffusion process is optimized with a 4-step denoising
schedule during training, while using our step-skipping strategy during inference to accelerate
generation. Adversarial training objective is incorporated via integration of RpGAN (Jolicoeur-
Martineau, 2019) objectives with R1 (Mescheder et al., 2018) and R2 regularization terms following
R3GAN (Huang et al., 2024a). And we use the frozen fake score function as the backbone of the
discriminator following DMD2 Yin et al. (2024a). To reduce computational cost and the number
of parameters, we model discriminators Dn’s output logits as the n-th dimensional output logit of
the final layer, thus different Dn share the same backbone and classifier head. The performance is
rigorously assessed using VBench (Huang et al., 2024b) for multidimensional evaluation and user
preference studies to quantify human-perceived visual quality and semantic alignment.

4.2 COMPARISON WITH EXISTING BASELINES

0 50 100

Preference Rate (%)

Ours (4)
Ours (4)
Ours (4)
Ours (4)
Ours (4)
Ours (2)
Ours (1)

67.0% 33.0%

79.0% 21.0%

78.0% 22.0%

85.0% 15.0%

50.0% 50.0%

81.0% 19.0%

98.0% 2.0%

User Preference Study

Self Forcing  (1)
Self Forcing  (2)
Self Forcing (4)
CausVid (4)
Skyreel-V2 (30)
Wan 2.1 (50)
MAGI-1 (64)

Figure 6: User preference study. “(n)” indi-
cates the number of denoising steps for each
method. Self Forcing under 1 & 2 step genera-
tion is retrained for fair comparison, denoted as
Self Forcing†.

Following the protocol of Self-Forcing, we com-
pare with representative open-source text-to-video
models under various inference steps, ranging
from 64 to 4, ensuring a comprehensive assess-
ment. For fair comparison under 2-step and 1-
step generation, we additionally train 2-step and
1-step distilled versions of Self-Forcing and eval-
uate them against our model. As shown in Tab. 1,
our model achieves slightly better performance
compared to Self-Forcing under 4-step generation.
Notably, in both the 2-step and 1-step settings, our
approach outperforms the specifically distilled ver-
sions of Self-Forcing without requiring additional
parameter optimization. For instance, under 1-step
inference, our model exceeds Self-Forcing by 3.27
points in Total Score.

As illustrated in Fig. 5, our method is capable of
generating high-fidelity videos using only approximately 8% and 13% of the denoising steps required
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Table 1: Comparison with relevant baselines. We compare our method with representative open-
source video generation models of similar parameter sizes and resolutions. For simplicity, n-step
generation with FFE strategy is denoted with n∗. Self Forcing under 1 & 2 step generation is retrained
for fair comparison, denoted as Self Forcing†.

Model #Params Resolution Denoising Steps↓ Evaluation scores ↑
Total Quality Semantic
Score Score Score

Many Steps
MAGI-1 (Sand-AI, 2025) 4.5B 832×480 64 79.18 82.04 67.74
Wan2.1 (Wang et al., 2025) 1.3B 832×480 50 84.26 85.30 80.09
SkyReels-V2 (Chen et al., 2025) 1.3B 960×540 30 82.67 84.70 74.53
NOVA (Deng et al., 2025) 0.6B 768×480 25 80.12 80.39 79.05
LTX-Video (HaCohen et al., 2024) 1.9B 768×512 20 80.00 82.30 70.79
Pyramid Flow (Jin et al., 2025) 2B 640×384 20 81.72 84.74 69.62

4 Steps
CausVid (Yin et al., 2025) 1.3B 832×480 4 81.20 84.05 69.80
Self Forcing (Huang et al., 2025) 1.3B 832×480 4 84.31 85.07 81.28
Ours 1.3B 832×480 4 84.38 85.16 81.25

2 Steps
Self Forcing† (Huang et al., 2025) 1.3B 832×480 2 83.49 84.20 80.62
Ours 1.3B 832×480 2∗ 84.32 85.15 81.02

1 Steps
Self Forcing† (Huang et al., 2025) 1.3B 832×480 1 80.62 81.19 78.35
Ours 1.3B 832×480 1∗ 83.89 84.55 81.24

by Wan 2.1(Wang et al., 2025) and SkyReels(Chen et al., 2025), respectively, while achieving visually
superior results. This leads to a substantial reduction in computational cost. Moreover, under the
same number of denoising steps, our approach yields improved detail and visual quality compared
to CausVid(Yin et al., 2025) and better video details compared to Self-forcing(Huang et al., 2025).
Fig. 6 shows the user study results comparing our model against several important baselines. Our
approach is consistently preferred over many-step baselines, including the many-step Wan2.1 that
our model is initialized from. Meanwhile, our results are 70% better than CausVid (Yin et al., 2025)
and on par with Self Forcing, since both our model and Self Forcing use identical DMD-based
supervision in the 4-step setting. For the extreme 1-step and 2-step generation setting, our method
yields a significantly 96% and 62% preference over Self-Forcing, respectively. This demonstrates
the effectiveness of our proposed ASD and FFE strategy in improving extremely few-step video
generation.

4.3 ABLATION STUDY

To better understand the contribution of each component to skip-step generation, we conducted a
comprehensive ablation study, as shown in Tab. 2. As shown in the first two rows, using identical
training data, our ASD training method consistently improves the quality of both 1-step and 2-step
generation during inference. For example, it raises the Total Score by 2.52 and the Semantic Score
by 6.84 under one-step generation. Comparison between the first and third rows reveals that the
FFE inference strategy leads to substantial gains in overall video quality—notably, a 4.19 increase in
Total Score and a 10.64 improvement in Semantic Score for one-step generation, even exceeding the
quality of the original two-step generation results (row 1). Moreover, combining both methodology
further enhances performance, as demonstrated in the last row.

We qualitatively compare the quality of generated outputs with and without our proposed ASD
training and FFE inference strategies, as illustrated in Fig. 7. For simplicity, n-step generation with
the FFE inference strategy is denoted as n∗-step. When adopting the ASD training strategy, the
generation quality at 2∗-step is comparable to that achieved with 4 steps, while even under the
challenging 1∗-step setting, video quality is well maintained. Moreover, at both 2-step and 1-step
inference, the frame quality is noticeably superior to variants trained without the ASD strategy. This
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t=0s t=2.5s t=5s t=0s t=2.5s t=5s

Ours Ours w/o ASD

4 steps

1* steps

2* steps

2 steps

1 step

Figure 7: Qualitative comparison illustrating the effects of training and inference strategies on video
generation. Left: results using the ASD training method; right: results without it. For simplicity,
inference with the FFE strategy is denoted with ∗.

Table 2: Ablation Study. The symbols ✓ and × denote the inclusion and exclusion of the correspond-
ing strategy, respectively. ASD refers to the Adversarial Self-Distillation strategy in Section 3.2, and
FFE denotes the First-Frame Enhancement strategy introduced in Section 3.3.

Methods 2-step Generation ↑ 1-step Generation ↑
ASD FFE Total Quality Semantic Total Quality Semantic

Score Score Score Score Score Score

× × 82.61 83.84 77.68 78.13 80.33 69.31
✓ × 83.28 84.17 79.69 80.65 81.77 76.15
× ✓ 83.80 84.65 80.40 83.04 83.81 79.95
✓ ✓ 84.32 85.15 81.02 83.89 84.55 81.24

shows the effectiveness of our ASD training strategy under skip-step generation. More specifically,
the variant trained without the ASD strategy exhibits obvious error accumulation under the 2∗ setting,
resulting in noticeable background shifts and character blurring at t = 5s. And under the 1∗-step
condition, the severe blurring occurs as early as t = 2.5s. As demonstrated by the comparison between
rows 2 & 4 and rows 3 & 5, the FFE inference strategy that increases the denoising steps for the
initial frame substantially enhances overall video quality by effectively mitigating artifacts such as
background and subject blurring in the first frame.

5 CONCLUSION

In this work, we introduce an Adversarial Self-Distillation training objective for causal video diffusion
models’ distillation, along with a First-Frame Enhancement inference strategy for efficient sampling.
The adversarial objective encourages the n-step generated video distribution to approximate that of
the (n+1)-step generation, thereby progressively improving few-step generation quality. During
inference, we explicitly distinguish between the first frame and subsequent frames in causal video
generation, allocating different numbers of denoising steps to enhance overall video quality with
low computational overhead. Experiments demonstrate that our distilled model outperforms other
baselines under 1- and 2-step generation configurations.

9
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6 REPRODUCIBILITY STATEMENT

A comprehensive description of the implementation is provided in Section 4.1 and Section A. The
source code and additional comparison videos are included in the supplementary material and will be
released in the future.

7 ETHICS STATEMENT

This work focuses on improving the efficiency of diffusion-based video generation through distillation.
Our contributions are methodological and technical in nature, and do not involve human subjects,
personal or sensitive data, or medical applications. The experiments are conducted on publicly
available benchmark datasets (e.g., VBench), which are widely used in prior research and do not
contain personally identifiable information.

We confirm that this research adheres to the ICLR Code of Ethics and complies with all relevant
institutional and legal standards. No conflicts of interest or external sponsorship influencing the work
are present.
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A DETAILS OF IMPLEMENTATIONS

Our implementation is largely based on the code from Self-Forcing(Huang et al., 2025). Specifically,
we adopt the chunk-wise DMD (Yin et al., 2024b) training variant of Self-Forcing, with all training
conducted in the VAE latent space using a chunk size of 3. Following Self-Forcing, we utilize the
Wan 2.1 14B model as the real score estimator. The model is trained with a batch size of 8 for 3,000
steps.

For Adversarial Self-Distillation, we incorporate the R1 and R2 regularizations (Mescheder et al.,
2018) from the R3GAN (Huang et al., 2024a) objective.

Lreg =
1

2
Et,xn+1

t ,xn
t ,ϵ,ϵ̂

[
∥fψ(xn+1

t )− fψ(x
n+1
t + σ · ϵ)∥22 + ∥fψ(xnt )− fψ(x

n
t + σ · ϵ̂)∥22

]
(6)
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t ,xn

t

[
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n
t )
))]

+ λLreg (7)

LG(θ) = −Et,xn+1
t ,xn

t

[
log

(
sigmoid

(
fψ(x

n
t )− fψ(x

n+1
t )

))]
(8)

where xn+1
t ∼ pθ,n+1,t, xnt ∼ pθ,n,t are the noisy (n+1)-step generation data and n-step generation

data, respectively, ϵ and ϵ̂ are Gaussian noise sampled from N (0, 1), and fψ is the critic network
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temporal style
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Ours 2*-step
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Self Forcing 2-step
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Self Forcing  2-step

Figure 8: VBench scores visualization. We compare our results with Self Forcing Huang et al. (2025)
variants using all 16 VBench metrics under 1-/2-step setting. The retrained 1-/2-step version denotes
as Self Forcing†.

(discriminator) of GAN. We use λ = 600, σ = 0.05 for all experiments. The generator, fake score
estimator, and discriminator are optimized alternately with a ratio of 1:4:1, following(Yin et al.,
2024a; Huang et al., 2025). Following Self-Forcing, we inserted additional cross-attention layers and
classification heads (serving as discriminator heads) at layers 12, 21, and 29 of the fake score model.
These discriminator heads operate solely on backbone features and query tokens, without access to
the timestep t. This implementation detail will be explicitly included in the revised manuscript. Note
that we discard ASD Loss for the last step denoising. For simplicity, we reserve the index n of the
n-th discriminator Dn that discriminates the n-step generation distribution from that of (n+ 1)-step
here.

For the retrained Self-Forcing baselines, we use exactly the same hyperparameters as the official
implementation, except for changing the student model’s number of denoising step list from [1000,
750, 500, 250] to [1000, 500] or [1000]. Specifically, we used: real score CFG weight: 3.0, optimizers:
AdamW for both generator and discriminator with β1 = 0, β2 = 0.999, ϵ = 1e-8, weight decay = 0.01,
learning rate (generator): 2e−6, learning rate (discriminator): 4e−7, generator/discriminator update
ratio: 5:1. Training is monitored until convergence.

B VBENCH SCORES ACROSS ALL DIMENSIONS

In Figure 8, we evaluate our method and Self-Forcing across all 16 VBench metrics under both 1-step
and 2-step generation settings. Our method consistently outperforms Self Forcing, achieving notably
higher scores in semantic alignment-particularly in object class, multiple objects, spatial relationships,
and scene. Moreover, it demonstrates superior performance in dynamic modeling, as evidenced by a
significantly higher dynamic degree score.
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Figure 9: Cosine similarity matrices of predicted x̂0 across denoising steps (1 to 4) in causal diffusion
video generation, comparing our method and Self-Forcing (Huang et al., 2025). We report results
averaged separately for VBench, complex object motion, and high camera motion.

C CAUSAL DENOISING TRAJECTORY SIMILARITY ACROSS SCENARIOS

To further validate the generality of the phenomenon in Section 3.3, we apply the analysis to both
our method and Self-Forcing across three diverse scenarios: VBench(Huang et al., 2024b), complex
object motion, and high camera motion. For each, we record denoising trajectories from 200 video
samples, yielding Figure 9. The figure shows that, across all scenarios, the first frame exhibits low
similarity across denoising steps, indicating each step is critical. In contrast, subsequent frames show
high inter-step similarity, suggesting greater redundancy and thus greater suitability for few-step
prediction. Moreover, our method achieves even higher similarity in later frames, demonstrating
that ASD enables the student to match multi-step quality with fewer steps, effectively supporting
step-skipping inference.

D REDUCED DISTRIBUTIONAL GAPS BETWEEN ADJACENT DENOISING
STEPS

To empirically validate the smoother transitions between adjacent denoising steps, we conduct a
quantitative analysis using the Fréchet Video Distance (FVD). Table 3 presents FVD values computed

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

between outputs at step n and step n + 1 (i.e., adjacent steps), as well as between step n and the
50-step 14B teacher model.

Table 3: Fréchet Video Distance (FVD) between video distributions at different denoising steps.
Lower FVD values indicate smaller distributional gaps.

Comparison Step 1 Step 2 Step 3 Step 4
n→ n+ 1 732 1136 441 N/A
n→ teacher 1836 1646 1454 1448

As illustrated in Table 3, the FVD between adjacent denoising steps is consistently lower than that
between each step and the final teacher output. For instance, at step 1, the adjacent-step FVD is
732, much smaller than 1836 for the teacher-step comparison. These results provide quantitative
support that the distributional discrepancy between consecutive steps is substantially smaller than the
divergence from the teacher distribution. The Adjacent-Step Distribution (ASD) objective capitalizes
on this property by aligning each step with its immediate successor, which exhibits lower distributional
divergence. Overall, these findings corroborate the core assumption of our approach: transitions
between adjacent denoising steps are indeed smoother.

E FEW-STEP LONG-VIDEO GENERATION EVALUATION

To demonstrate that our method enables high-quality, long-video generation with few (1 or 2)
denoising steps—and effectively mitigates error accumulation—we generate 20-second continuations
using both 1-step and 2-step inference for our approach and Self-Forcing, and evaluate them on
VBench(Huang et al., 2024b). As shown in Table 4, our method overall outperforms Self-Forcing
both quantitatively and qualitatively in long-video generation. For visual comparison, Figure 10
presents side-by-side 2*-step (ours) vs. 2-step (Self-Forcing) 20-second samples. Our results exhibit
clearly superior performance in motion dynamics (rows 3, 4, 6), visual detail and fidelity (rows 1, 2,
3, 6), and camera motion realism (rows 1, 2, 4).

These results confirm that ASD not only reduces computational cost but also enhances temporal
coherence and visual quality in extended video generation.

Table 4: VBench evaluation scores for our method vs. Self-Forcing under few-step long-video
(20-second) inference settings

Method Total Score Quality Score Semantic Score

Self Forcing(Huang et al., 2025) (2-step) 0.8250 0.8293 0.8076
Ours (2*-step) 0.8263 0.8329 0.7998
Self Forcing(Huang et al., 2025) (1-step) 0.8066 0.8101 0.7923
Ours (1*-step) 0.8200 0.8248 0.8011

F HYPERPARAMETER ANALYSIS

To investigate the impact of the ASD loss on model performance, we evaluated different variants of
the hyperparameter α in the Equation (5) and computed the corresponding Total Score on VBench
under three inference settings, as illustrated in Figure 11. The results indicate that at 4-step generation,
the Total Scores across different model variants are comparable. When using 2∗-step generation,
the variant without ASD Loss (α = 0) exhibits a noticeable performance drop, while other variants
maintain performance levels similar to those observed in 4-step generation. Under 1∗-step generation,
all methods experience a decline in performance, with the most pronounced degradation occurring
when α is set to zero. These findings demonstrate that the proposed ASD training objective enhances
video quality under skip generation settings and remains robust across a wide range of hyperparameter
values. While absolute values vary slightly across α, the trend is consistent: skip-step performance
improves markedly whenever α ̸= 0.
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Figure 10: Our method versus Self-Forcing on uniformly sampled frames (including first and last)
from 20-second long videos.

G USER STUDY DETAILS

We randomly selected 20 prompts from the VBench(Huang et al., 2024b) prompts expanded by
Self-Forcing. Five baseline methods Sand-AI (2025); Huang et al. (2025); Yin et al. (2025); Chen
et al. (2025); Wang et al. (2025) were used to generate corresponding videos, which were then paired
with corresponding videos generated by our method, resulting in 5× 20 video pairs. During the user
study, each participant (total 12 participants) evaluated 20 video pairs, including 4 randomly selected
pairs from each baseline. The order and pairing of videos were independently randomized for every
participant. Participants could not see each other’s choices. The final results were averaged across
all participants. The user study interface, as shown in Figure 12, displayed a video pair alongside
the corresponding prompt and selection buttons. Participants could choose whether the left video
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Figure 11: Sensitivity analysis. Impact of parameter α in Equation (5) on the VBench(Huang
et al., 2024b) Total Score across three inference scenarios. For simplicity, inference with first-frame
enhancement is denoted with ∗.

Figure 12: User study interface. Participants were asked to select the higher-quality video in each
pair or to indicate if the two were of similar quality.

was better, the right video was better, or both were of similar quality. To ensure a fair comparison
with both one-step and two-step configurations, we retrained the one-step and two-step versions of
Self-Forcing.

H USAGE OF LLMS

In this work, LLMs were primarily used to assist in grammar checking. All outputs from LLMs were
manually reviewed.

I TRAINING DYNAMICS ANALYSIS

Figure 13 presents the DMD loss curves of our method and Self-Forcing during training. Notably,
our approach exhibits significantly reduced fluctuations in DMD loss compared to Self-Forcing. With
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(a) Self Forcing (b) Ours

Figure 13: The DMD loss curves of Self Forcing and our method during training. The DMD loss
values remain around 0.2 for both methods, but our method exhibits substantially lower fluctuation.

ASD, the DMD loss shows lower mean (0.180 vs. 0.198) and dramatically reduced variance (0.00258
vs. 0.01963) compared to pure DMD training, demonstrating that the proposed ASD loss effectively
stabilizes distribution matching with the teacher model during training.

Figure 14: The discriminator’s predicted logit dif-
ference between n-step and (n+1)-step samples
during training.

Figure 14 shows that the discriminator’s logit
difference between n-step and (n+1)-step sam-
ples oscillates calmly around zero, indicating
that the generator and discriminator co-evolve
stably rather than collapsing or diverging. This
behavior supports that ASD training is stable in
practice, despite using an adversarial term.

Training Overhead. The ASD framework in-
troduces only a lightweight discriminator on top
of the existing TA score model’s backbone, us-
ing shared parameters for all n-step discrimi-
nators. This results in minimal extra memory
usage compared to traditional DMD. The addi-
tional GPU memory required by ASD is +1.3% compared to the Self-Forcing baseline, which is
a modest increase. The additional training time is approximately +20% relative to Self-Forcing.
Given that ASD allows a single model to handle multiple inference steps (1, 2, 3, 4), this overhead is
relatively small compared to the computational cost of training separate models for each step.
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