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ABSTRACT

Learning high-dimensional distributions is often done with explicit likelihood
modeling or implicit modeling via minimizing integral probability metrics (IPMs).
In this paper, we expand this learning paradigm to stochastic orders, namely,
the convex or Choquet order between probability measures. Towards this end,
exploiting the relation between convex orders and optimal transport, we introduce
the Choquet-Toland distance between probability measures, that can be used as
a drop-in replacement for IPMs. We also introduce the Variational Dominance
Criterion (VDC) to learn probability measures with dominance constraints, that
encode the desired stochastic order between the learned measure and a known
baseline. We analyze both quantities and show that they suffer from the curse of
dimensionality and propose surrogates via input convex maxout networks (ICMNs),
that enjoy parametric rates. We provide a min-max framework for learning with
stochastic orders and validate it experimentally on synthetic and high-dimensional
image generation, with promising results. Finally, our ICMNs class of convex
functions and its derived Rademacher Complexity are of independent interest
beyond their application in convex orders. Code to reproduce experimental results
is available here.

1 INTRODUCTION

Learning complex high-dimensional distributions with implicit generative models (Goodfellow
et al., 2014; Mohamed & Lakshminarayanan, 2017; Arjovsky et al., 2017) via minimizing integral
probability metrics (IPMs) (Müller, 1997a) has led to the state of the art generation across many
data modalities (Karras et al., 2019; De Cao & Kipf, 2018; Padhi et al., 2020). An IPM compares
probability distributions with a witness function belonging to a function class F , e.g., the class of
Lipchitz functions, which makes the IPM correspond to the Wasserstein distance 1. While estimating
the witness function in such large function classes suffers from the curse of dimensionality, restricting
it to a class of neural networks leads to the so called neural net distance (Arora et al., 2017) that
enjoys parametric statistical rates.

In probability theory, the question of comparing distributions is not limited to assessing only equality
between two distributions. Stochastic orders were introduced to capture the notion of dominance
between measures. Similar to IPMs, stochastic orders can be defined by looking at the integrals of
measures over function classes F (Müller, 1997b). Namely, for µ+, µ− ∈ P1(Rd), µ+ dominates
µ−, or µ− ⪯ µ+, if for any function f ∈ F , we have

∫
Rd f(x) dµ−(x) ≤

∫
Rd f(x) dµ+(x) (See

Figure 1a for an example). In the present work, we focus on the Choquet or convex order (Ekeland &
Schachermayer, 2014) generated by the space of convex functions (see Sec. 2 for more details).

Previous work has focused on learning with stochastic orders in the one dimensional setting, as it
has prominent applications in mathematical finance and distributional reinforcement learning (RL).
The survival function gives a characterization of the convex order in one dimension (See Figure 1b
and Sec. 2 for more details). For instance, in portfolio optimization (Xue et al., 2020; Post et al.,
2018; Dentcheva & Ruszczynski, 2003) the goal is to find the portfolio that maximizes the expected
return under dominance constraints between the return distribution and a benchmark distribution.

∗Work done while at IBM.
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Figure 1: VDC example in 1D. Figure 1a :µ+ is mixture of 3 Gaussians , µ− corresponds to a single
mode of the mixture. µ+ dominates µ− in the convex order. Figure 1b : uni-variate characterization
of the convex order with survival functions (See Sec. 2 for details). Figure 1c: Surrogate VDC
computation with Input Convex Maxout Network and gradient descent. The surrogate VDC tends to
zero at the end of the training and hence characterizes the convex dominance of µ+ on µ−.

A similar concept was introduced in distributional RL (Martin et al., 2020) for learning policies
with dominance constraints on the distribution of the reward. While these works are limited to the
univariate setting, our work is the first, to the best of our knowledge, that provides a computationally
tractable characterization of stochastic orders that is sample efficient and scalable to high dimensions.

The paper is organized as follows: in Sec. 3 we introduce the Variational Dominance Criterion
(VDC); the VDC between measures µ+ and µ− takes value 0 if and only if µ+ dominates µ− in the
convex order, but it suffers from the curse of dimension and cannot be estimated efficiently from
samples. To remediate this, in Sec. 4 we introduce a VDC surrogate via Input Convex Maxout
Networks (ICMNs). ICMNs are new variants of Input Convex Neural Nets (Amos et al., 2017) that
we propose as proxy for convex functions and study their complexity. We show in Sec. 4 that the
surrogate VDC has parametric rates and can be efficiently estimated from samples. The surrogate
VDC can be computed using (stochastic) gradient descent on the parameters of the ICMN and can
characterize convex dominance (See Figure 1c). We then show in Sec. 5 how to use the VDC and
its surrogate to define a pseudo-distance on the probability space. Finally, in Sec. 6 we propose
penalizing generative models training losses with the surrogate VDC to learn implicit generative
models that have better coverage and spread than known baselines. This leads to a min-max game
similar to GANs. We validate our framework in Sec. 7 with experiments on portfolio optimization
and image generation.

2 THE CHOQUET OR CONVEX ORDER

Denote by P(Rd) the set of Borel probability measures on Rd and by P1(Rd) ⊂ P(Rd) the subset
of those which have finite first moment: µ ∈ P1(R) if and only if

∫
Rd ∥x∥ dµ(x) < +∞.

Comparing probability distributions Integral probability metrics (IPMs) are pseudo-distances
between probability measures µ, ν defined as dF (µ, ν) = supf∈F Eµf − Eνf , for a given function
class F which is symmetric with respect to sign flips. They are ubiquitous in optimal transport and
generative modeling to compare distributions: if F is the set of functions with Lipschitz constant 1,
then the resulting IPM is the 1-Wasserstein distance; if F is the unit ball of an RKHS, the IPM is
its maximum mean discrepancy. Clearly, dF (µ, ν) = 0 if and only Eµf = Eνf for all f ∈ F , and
when F is large enough, this is equivalent to µ = ν.

The Choquet or convex order When the class F is not symmetric with respect to sign flips,
comparing the expectations Eµf and Eνf for f ∈ F does not yield a pseudo-distance. In the case
where F is the set of convex functions, the convex order naturally arises instead:
Definition 1 (Choquet order, Ekeland & Schachermayer (2014), Def. 4). For µ−, µ+ ∈ P1(Rd), we
say that µ− ⪯ µ+ if for any convex function f : Rd → R, we have∫

Rd f(x) dµ−(x) ≤
∫
Rd f(x) dµ+(x).
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µ− ⪯ µ+ is classically denoted as “µ− is a balayée of µ+”, or “µ+ dominates µ−”. It turns out that
⪯ is a partial order on P1(Rd), meaning that reflexivity (µ ⪯ µ), antisymmetry (if µ ⪯ ν and ν ⪯ µ,
then µ = ν), and transitivity (if µ1 ⪯ µ2 and µ2 ⪯ µ3, then µ1 ⪯ µ3) hold. As an example, if µ−,
µ+ are Gaussians µ− = N(0,Σ−), µ+ = N(0,Σ+), then µ− ⪯ µ+ if and only if Σ− ⪯ Σ+ in the
positive-semidefinite order (Müller, 2001). Also, since linear functions are convex, µ− ⪯ µ+ implies
that both measures have the same expectation: Ex∼µ−x = Ex∼µ+

x.

In the univariate case, µ− ⪯ µ+ implies that supp(µ−) ⊆ supp(µ+) and that Var(µ−) ≤ Var(µ+),
and we have that µ− ⪯ µ+ holds if and only if for all x ∈ R,

∫ +∞
x

F̄µ−(t) dt ≤
∫ +∞
x

F̄µ+
(t) dt,

where F̄· is the survival function (one minus the cumulative distribution function). Note that this
characterization can be checked efficiently if one has access to samples of µ− and µ+.

In the high-dimensional case, there exists an alternative characterization of the convex order:
Proposition 1 (Ekeland & Schachermayer (2014), Thm. 10). If µ−, µ+ ∈ P1(Rd), we have
µ− ⪯ µ+ if and only if there exists a Markov kernel R (i.e. ∀x ∈ Rd,

∫
Rd y dRx(y) = x) such that

µ+ =
∫
Rd Rx dµ−.

Equivalently, there exists a coupling (X,Y ) such that Law(X) = µ−, Law(Y ) = µ+ and X =
E(Y |X) almost surely. Intuitively, this means that µ+ is more spread out than µ−. Remark that this
characterization is difficult to check, especially in high dimensions.

3 THE VARIATIONAL DOMINANCE CRITERION

In this section, we present a quantitative way to deal with convex orders. Given a bounded open
convex subset Ω ⊆ Rd and a compact set K ⊆ Rd, let A = {u : Ω → R, u convex and ∇u ∈
K almost everywhere}. We define the Variational Dominance Criterion (VDC) between probability
measures µ+ and µ− supported on Ω analogously to IPMs, replacing F by A:

VDCA(µ+||µ−) := supu∈A
∫
Ω
u d(µ− − µ+). (1)

Remark that when 0 ∈ K, VDCA(µ+||µ−) ≥ 0 because the zero function belongs to the set A.
We reemphasize that since A is not symmetric with respect to sign flips as f ∈ A does not imply
−f ∈ A, the properties of the VDC are very different from those of IPMs. Most importantly, the
following proposition, shown in App. A, links the VDC to the Choquet order.
Proposition 2. Let K compact such that the origin belongs to the interior of K. If µ+, µ− ∈ P(Ω),
VDCA(µ+||µ−) := supu∈A

∫
Ω
u d(µ− − µ+) = 0 if and only if

∫
Ω
u d(µ− − µ+) ≤ 0 for any

convex function on Ω (i.e. µ− ⪯ µ+ according to the Choquet order).

That is, Proposition 2 states that the VDC between µ+ and µ− takes value 0 if and only if µ+

dominates µ−. Combining this with the interpretation of Proposition 1, we see that intuitively, the
quantity VDCA(µ+||µ−) is small when µ+ is more spread out than µ−, and large otherwise. Hence,
if we want to enforce or induce a Choquet ordering between two measures in an optimization problem,
we can include the VDC (or rather, its surrogate introduced in Sec. 4) as a penalization term in the
objective. Before this, we explore the connections between VDC and optimal transport, and study
some statistical properties of the VDC.

3.1 THE VDC AND OPTIMAL TRANSPORT

Toland duality provides a way to interpret the VDC through the lens of optimal transport. In the
following, W2(µ, ν) denotes the 2-Wasserstein distance between µ and ν.
Theorem 1 (Toland duality, adapted from Thm. 1 of Carlier (2008)). For any µ+, µ− ∈ P(Ω), the
VDC satisfies:

VDCA(µ+||µ−) = sup
ν∈P(K)

{
1

2
W 2

2 (µ+, ν)−
1

2
W 2

2 (µ−, ν)

}
− 1

2

∫
Ω

∥x∥2 d(µ+ − µ−)(x) (2)

The optimal convex function u of VDC in (1) and the optimal ν in the right-hand side of (2) satisfy
(∇u)#µ+ = (∇u)#µ− = ν, where (∇u)#µ+ denotes the pushforward of µ+ by∇u.
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Note that under the assumption 0 ∈ K, Theorem 1 implies that VDCA(µ+||µ−) = 0 if and only
if W 2

2 (µ+, ν) − 1
2

∫
Ω
∥x∥2 dµ+ ≤ W 2

2 (µ−, ν) − 1
2

∫
Ω
∥x∥2 dµ− for any ν ∈ P(K). Under the

equivalence VDCA(µ+||µ−) = 0 ⇐⇒ µ+ ⪰ µ− shown by Proposition 2, this provides yet another
characterization of the convex order for arbitrary dimension.

3.2 STATISTICAL RATES FOR VDC ESTIMATION

In this subsection, we present an upper bound on the statistical rate of estimation of VDCA(µ||ν)
using the estimator VDCA(µn||νn) based on the empirical distributions µn = 1

n

∑n
i=1 δxi

, νn =
1
n

∑n
i=1 δyi built from i.i.d. samples (xi)ni=1, (yi)ni=1 from µ and ν, respectively.

Theorem 2. Let Ω = [−1, 1]d and K = {x ∈ Rd | ∥x∥2 ≤ C} for an arbitrary C > 0. With
probability at least 1− δ,

|VDCA(µ||ν)−VDCA(µn||νn)| ≤
√

18C2d log( δ4 )(
2√
n
) + 8Kn− 2

d ,

where K depends on C and d.

The proof of this result is in App. A. The dependency on n−
2
d is indicative of the curse of dimension:

we need a number of samples n exponential in d to control the estimation error. While Theorem 2
only shows an upper bound on the difference between the VDC and its estimator, in Subsec. 5.1 we
study a related setting where a Ω̃(n−

2
d ) lower bound is available. Hence, we hypothesize that VDC

estimation is in fact cursed by dimension in general.

4 A VDC SURROGATE VIA INPUT CONVEX MAXOUT NETWORKS

Given the link between the VDC and the convex order, one is inclined to use the VDC as a quantitative
proxy to induce convex order domination in optimization problems. Estimating the VDC implies
solving an optimization problem over convex functions. In practice, we only have access to the
empirical versions µn, νn of the probability measures µ, ν; we could compute the VDC between the
empirical measures by solving a linear program similar to the ones used in non-parametric convex
regression (Hildreth, 1954). However, the statistical rates for the VDC estimation from samples are
cursed by dimension (Subsec. 3.2), which means that we would need a number of samples exponential
in the dimension to get a good estimate. Our approach is to focus on a surrogate problem instead:

supu∈Â
∫
Ω
u d(µ− − µ+),

where Â is a class of neural network functions included in A over which we can optimize efficiently.
In constructing Â, we want to hardcode the constraints u convex and ∇u ∈ K almost everywhere
into the neural network architectures. A possible approach would be to use the input convex neural
networks (ICNNs) introduced by Amos et al. (2017), which have been used as a surrogate of convex
functions for generative modeling with normalizing flows (Huang et al., 2021) in optimal transport
(Korotin et al., 2021a;b; Huang et al., 2021; Makkuva et al., 2020) and large-scale Wasserstein flows
(Alvarez-Melis et al., 2021; Bunne et al., 2021; Mokrov et al., 2021).

However, we found in early experimentation that a superior alternative is to use input convex maxout
networks (ICMNs), which are maxout networks (Goodfellow et al., 2013) that are convex with respect
to inputs. Maxout networks and ICMNs are defined as follows:
Definition 2 (Maxout networks). For a depth L ≥ 2, letM = (m1, . . . ,mL) be a vector of positive
integers such that m1 = d. Let FL,M,k be the space of k-maxout networks of depth L and widthsM,
which contains functions of the form

f(x) = 1√
mL

∑mL

i=1 aimaxj∈[k]⟨w
(L−1)
i,j , (x(L−1), 1)⟩, ai ∈ R, w(L−1)

i,j ∈ RmL−1+1 (3)

where for any 2 ≤ ℓ ≤ L− 1, and any 1 ≤ i ≤ mℓ, the i-th component of x(ℓ) = (x
(ℓ)
1 , . . . , x

(ℓ)
mℓ) is

computed recursively as:

x
(ℓ)
i = 1√

mℓ
maxj∈[k]⟨w

(ℓ−1)
i,j , (x(ℓ−1), 1)⟩, w

(ℓ)
i,j ∈ Rmℓ+1, (4)

with x(1) = x.
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Definition 3 (Input convex maxout networks or ICMNs). A maxout network f of the form (3)-(4) is
an input convex maxout network if (i) for any 1 ≤ i ≤ML, ai ≥ 0, and (ii) for any 2 < ℓ ≤ L− 1,
1 ≤ i ≤ mℓ+1, 1 ≤ j ≤ k, the first mℓ components of w(ℓ)

i,j are non-negative. We denote the space of
ICMNs as FL,M,k,+.

In other words, a maxout network is an ICMN if all the non-bias weights beyond the first layer are
constrained to be non-negative. This definition is analogous to the one of ICNNs in Amos et al.
(2017), which are also defined as neural networks with positivity constraints on non-bias weights
beyond the first layer. Proposition 5 in App. B shows that ICMNs are convex w.r.t to their inputs.

It remains to impose the condition ∇u ∈ K almost everywhere, which in practice is enforced by
adding the norms of the weights as a regularization term to the loss function. For theoretical purposes,
we define FL,M,k(1) (resp. FL,M,k,+(1)) as the subset of FL,M,k (resp. FL,M,k,+) such that for all
1 ≤ ℓ ≤ L − 1, 1 ≤ i ≤ mℓ, 1 ≤ j ≤ k, ∥w(ℓ)

i,j ∥2 ≤ 1, and ∥a∥2 =
∑mL

i=1 a
2
i ≤ 1. The following

proposition, proven in App. B, shows simple bounds on the values of the functions in FL,M,k(1) and
their derivatives.

Proposition 3. Let f be an ICMN that belongs to FL,M,k(1). For x almost everywhere in B1(Rd),
∥∇f(x)∥ ≤ 1. Moreover, for all x ∈ B1(Rd), |f(x)| ≤ L, and for 1 ≤ ℓ ≤ L, ∥x(ℓ)∥ ≤ ℓ.

When K = B1(Rd), we have that the space of ICMNs FL,M,k,+(1) is included in A. Hence, we
define the surrogate VDC associated to FL,M,k,+(1) as:

VDCFL,M,k,+(1)(µ+||µ−) = supu∈FL,M,k,+(1)

∫
Ω
u d(µ− − µ+). (5)

Theorem 3. Suppose that for all 1 ≤ ℓ ≤ L, the widths mℓ satisfy mℓ ≤ m, and assume that µ, ν
are supported on the ball of Rd of radius r. With probability at least 1− δ,

|VDCFL,M,k,+(1)(µ||ν)−VDCFL,M,k,+(1)(µn||νn)|

≤
√
18r2 log( δ4 )

(
2√
n

)
+ 512

√
(L−1)km(m+1)

n

(√
(L+ 1) log(2) + log(L2+1)

2 +
√
π
2

)
,

We see from Theorem 3 that VDCFL,M,k,+(1) in contrast to VDCA has parametric rates and hence
favorable properties to be estimated from samples. In the following section, wes see that VDC can be
used to defined a pseudo-distance on the probability space.

5 FROM THE CONVEX ORDER BACK TO A PSEUDO-DISTANCE

We define the Choquet-Toland distance (CT distance) as the map dCT,A : P(Ω)×P(Ω)→ R given
by

dCT,A(µ+, µ−) := VDCA(µ+||µ−) + VDCA(µ−||µ+).

That is, the CT distance between µ+ and µ− is simply the sum of Variational Dominance Criteria.
Applying Theorem 1, we obtain that dCT,A(µ+, µ−) =

1
2 (supν∈P(K)

{
W 2

2 (µ+, ν)−W 2
2 (µ−, ν)

}
+

supν∈P(K)

{
W 2

2 (µ+, ν)−W 2
2 (µ−, ν)

}
). The following result, shown in App. C, states that dCT,K

is indeed a distance.

Theorem 4. Suppose that the origin belongs to the interior of K. dCT,A is a distance, i.e. it fulfills

(i) dCT,A(µ+, µ−) ≥ 0 for any µ+, µ− ∈ P(Ω) (non-negativity).

(ii) dCT,A(µ+, µ−) = 0 if and only if µ+ = µ− (identity of indiscernibles).

(iii) If µ1, µ2, µ3 ∈ P(Ω), we have that dCT,A(µ1, µ2) ≤ dCT,A(µ1, µ3) + dCT,A(µ3, µ2).

As in (5), we define the surrogate CT distance as:

dCT,FL,M,k,+(1)(µ+, µ−) = VDCFL,M,k,+(1)(µ+||µ−) + VDCFL,M,k,+(1)(µ−||µ+). (6)

5
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5.1 STATISTICAL RATES FOR CT DISTANCE ESTIMATION

We show almost-tight upper and lower bounds on the expectation of the Choquet-Toland dis-
tance between a probability measure and its empirical version. Namely, E[dCT,A(µ, µn)] =

O(n−
2
d ),Ω(n−

2
d / log(n)).

Theorem 5. Let C0, C1 be universal constants independent of the dimension d. Let Ω = [−1, 1]d,
and K = {x ∈ Rd | ∥x∥2 ≤ C}. Let µn be the n-sample empirical measure corresponding to a
probability measure µ over [−1, 1]d. When µ is the uniform probability measure and n ≥ C1 log(d),
we have that

E[dCT,A(µ, µn)] ≥ C0

√
C

d(1+C) log(n)n
− 2

d . (7)

For any probability measure µ over [−1, 1]d,

E[dCT,A(µ, µn)] ≤ Kn−
2
d , (8)

where K is a constant depending on C and d (but not the measure µ).

Overlooking logarithmic factors, we can summarize Theorem 5 as E[dCT,A(µ, µn)] ≍ n−
2
d . The

estimation of the CT distance is cursed by dimension: one needs a sample size exponential with
the dimension d for µn to be at a desired distance from µ. It is also interesting to contrast the
rate n−

2
d with the rates for similar distances. For example, for the r-Wasserstein distance we have

E[W r
r (µ, µn)] ≍ n−

r
d (Singh & Póczos (2018), Section 4). Given the link of the CT distance and

VDC with the squared 2-Wasserstein distance (see Subsec. 3.1), the n−
2
d rate is natural.

The proof of Theorem 5, which can be found in App. D, is based on upper-bounding and lower-
bounding the metric entropy of the class of bounded Lipschitz convex functions with respect to an
appropriate pseudo-norm. Then we use Dudley’s integral bound and Sudakov minoration to upper
and lower-bound the Rademacher complexity of this class, and we finally show upper and lower
bounds of the CT distance by the Rademacher complexity. Bounds on the metric entropy of bounded
Lipschitz convex functions have been computed and used before (Balazs et al., 2015; Guntuboyina &
Sen, 2013), but in Lp and supremum norms, not in our pseudo-norm.

Next, we see that the surrogate CT distance defined in (6) does enjoy parametric estimation rates.
Theorem 6. Suppose that for all 1 ≤ ℓ ≤ L, the widths mℓ satisfy mℓ ≤ m. We have that

E[dCT,FL,M,k,+(1)(µ, µn)] ≤ 256
√

(L−1)km(m+1)
n

(√
(L+ 1) log(2) + log(L2+1)

2 +
√
π
2

)
,

In short, we have that E[dCT,FL,M,k,+(1)(µ, µn)] = O(Lm
√

k
n ). Hence, if we take the number of

samples n larger than k times the squared product of width and depth, we can make the surrogate
CT distance small. Theorem 6, proven in App. D, is based on a Rademacher complexity bound for
the space FL,M,k(1) of maxout networks which may be of independent interest; to our knowledge,
existing Rademacher complexity bounds for maxout networks are restricted to depth-two networks
(Balazs et al., 2015; Kontorovich, 2018).

Theorems 5 and 6 show the advantages of the surrogate CT distance over the CT distance are not
only computational but also statistical; the CT distance is such a strong metric that moderate-size
empirical versions of a distribution are always very far from it. Hence, it is not a good criterion to
compare how close an empirical distribution is to a population distribution. In contrast, the surrogate
CT distance between a distribution and its empirical version is small for samples of moderate size.
An analogous observation for the Wasserstein distance versus the neural net distance was made by
Arora et al. (2017).

If µn, νn are empirical versions of µ, ν, it is also interesting to bound |dCT,FL,M,k,+(1)(µn, νn) −
dCT,A(µ, ν)| ≤ |dCT,FL,M,k,+(1)(µn, νn) − dCT,FL,M,k,+(1)(µ, ν)| + |dCT,FL,M,k,+(1)(µ, ν) −
dCT,A(µ, ν)|. The first term has aO(

√
k/n) bound following from Theorem 6, while the second term

is upper-bounded by 2 supf∈A inf f̃∈FL,M,k(1)
∥f − f̃∥∞, which is (twice) the approximation error

6
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of the class A by the class FL,M,k(1). Such bounds have only been derived in L = 2: Balazs et al.
(2015) shows that supf∈A inf f̃∈F2,(d,1),k(1)

∥f − f̃∥∞ = O(dk−2/d). Hence, we need k exponential
in d to make the second term small, and thus n≫ k exponential in d to make the first term small.

6 LEARNING DISTRIBUTIONS WITH THE SURROGATE VDC AND CT DISTANCE

We provide a min-max framework to learn distributions with stochastic orders. As in the genera-
tive adversarial network (GAN, Goodfellow et al. (2014); Arjovsky et al. (2017)) framework, we
parametrize probability measures implicitly as the pushforward µ = g#µ0 of a base measure µ0 by a
generator function g in a parametric class G and we optimize over g. The loss functions involve a
maximization over ICMNs corresponding to the computation of a surrogate VDC or CT distance
(and possibly additional maximization problems), yielding a min-max problem analogous to GANs.

Enforcing dominance constraints with the surrogate VDC. In some applications, we want to
optimize a loss L : P(Ω)→ R under the constraint that µ = g#µ0 dominates a baseline measure ν.
We can enforce, or at least, bias µ towards the dominance constraint by adding a penalization term
proportional to the surrogate VDC between µ and ν, in application of Proposition 2.

A first instance of this approach appears in portfolio optimization (Xue et al., 2020; Post et al., 2018).
Let ξ = (ξ1, . . . , ξp) be a random vector of return rates of p assets and let Y1 := G1(ξ), Y2 := G2(ξ)
be real-valued functions of ξ which represent the return rates of two different asset allocations or
portfolios, e.g. Gi(ξ) = ⟨ωi, ξ⟩ with ωi ∈ Rp. The goal is to find a portfolio G2 that enhances
a benchmark portfolio G1 in a certain way. For a portfolio G with return rate Y := G(ξ), we let
F

(1)
Y (x) = Pξ(Y ≤ x) be the CDF of its return rate, and F (2)

Y (x) =
∫ x
−∞ F

(1)
Y (x′) dx′. If Y1, Y2 are

the return rates of G1, G2, we say that Y2 dominates Y1 in second order, or Y2 ⪰2 Y1 if for all x ∈ R,
F

(2)
Y2

(x) ≤ F (2)
Y1

(x), which intuitively means that the return rates Y2 are less spread out than those Y1,
i.e. the risk is smaller. Formally, the portfolio optimization problem can be written as:

maxG2 E[Y2 := G2(ξ)], s.t. Y2 ⪰2 Y1 := G1(ξ). (9)
It turns out that Y2 ⪰2 Y1 if and only if E[(η − Y2)+] ≤ E[(η − Y1)+] for any η ∈ R, or yet
equivalently, if E[u(Y2)] ≥ E[u(Y1)] for all concave non-decreasing u : R → R (Dentcheva &
Ruszczyński, 2004). Although different, note that the second order is intimately connected to the
Choquet order for 1-dimensional distributions, and it can be handled with similar tools. Define
FL,M,k,−+(1) as the subset of FL,M,k,+(1) such that the first m1 components of the weights w(1)

i,j

are non-positive for all 1 ≤ i ≤ m2, 1 ≤ j ≤ k. If we set the input width m1 = 1, we can
encode the condition Y2 ⪰2 Y1 as VDCFL,M,k,−+(1)(ν||µ), where ν = L(Y1) and µ = L(Y2) are
the distributions of Y1, Y2, resp. Hence, with the appropriate Lagrange multiplier we convert problem
(9) into a min-max problem between µ and the potential u of VDC

minµ:µ=L(⟨ξ,ω2⟩) −
∫
R x dµ(x) + λVDCFL,M,k,−+(1)(ν||µ). (10)

A second instance of this approach is in GAN training. Assuming that we have a baseline generator
g0 that can be obtained via regular training, we consider the problem:

ming∈G

{
maxf∈F{EX∼νn [f(X)]− EY∼µ0

[f(g(Y ))]}+ λVDCFL,M,k,+(1)(g#µ0||(g0)#µ0)
}
.

(11)
The first term in the objective function is the usual WGAN loss (Arjovsky et al., 2017), although
it can be replaced by any other standard GAN loss. The second term, which is proportional to
VDCFL,M,k,+(1)(g#µ0||(g0)#µ0) = maxu∈FL,M,k,+(1){EY∼µ0 [u(g0(Y ))] − EY∼µ0 [u(g(Y ))]},
enforces that g#µ0 ⪰ (g0)#µ0 in the Choquet order, and thus u acts as a second ‘Choquet’ critic.
Tuning λ appropriately, the rationale is that we want a generator that optimizes the standard GAN
loss, with the condition that the generated distribution dominates the baseline distribution. As stated
by Proposition 1, dominance in the Choquet order translates to g#µ0 being more spread out than
(g0)#µ0, which should help avoid mode collapse and improve the diversity of generated samples. In
practice, this min-max game is solved via Algorithm 1 given in App. F. For the Choquet critic, this
amounts to an SGD step followed by a projection step to impose non-negativity of hidden to hidden
weights.
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Generative modeling with the surrogate CT distance. The surrogate Choquet-Toland dis-
tance is well-suited for generative modeling, as it can used in GANs in place of the usual dis-
criminator. Namely, if ν is a target distribution, νn is its empirical distribution, and D =
{µ = g#µ0|g ∈ G} is a class of distributions that can be realized as the push-forward
of a base measure µ0 ∈ P(Rd0) by a function g : Rd0 → Rd, the problem to solve is
g∗ = argming∈G dCT,FL,M,k,+(1)(g#µ0, νn) = argming∈G{maxu∈FL,M,k,+(1){EX∼νn [u(X)] −
EY∼µ0 [u(g(Y ))]}+maxu∈FL,M,k,+(1){EY∼µ0 [u(g(Y ))]−EX∼νn [u(X)]}}. Algorithm 2 given in
App. F summarizes learning with the surrogate CT distance.

7 EXPERIMENTS

Portfolio optimization under dominance constraints In this experiment, we use the VDC to
optimize an illustrative example from Xue et al. (2020) (Example 1) that follows the paradigm laid
out in Sec. 6. In this example, ξ ∈ R ∼ P is drawn uniformly from [0, 1], we define the benchmark
portfolio as:

G1(ξ) =

{
i
20 ξ ∈ [0.05× i, 0.05× (i+ 1)) i = 0, . . . , 19

1 ξ = 1

and the optimization is over the parameterized portfolio G2(ξ) := G(ξ; z) = zξ.

The constrained optimization problem is thus specified as:

min
z
−EP [G(ξ; z)] s.t. G(ξ; z) ⪰2 G1(ξ), 1 ≤ z ≤ 2

As stated in Xue et al. (2020), this example has a known solution at z = 2 where EP [G2(ξ; 2)] = 1
outperforms the benchmark EP [G1(ξ)] = 0.5. We relax the constrained optimization by including it
in the objective function, thus creating min-max game (10) introduced in Sec. 6. We parameterize
FL,M,k,−+(1) with a 3-layer, fully-connected, decreasing ICMN with hidden dimension 32 and
maxout kernel size of 4. After 5000 steps of stochastic gradient descent on z (learning rate 1e−3) and
the parameters of the ICMN (learning rate 1e−3), using a batch size of 512 and λ = 1, we are able to
attain accurate approximate values of the known solution: z = 2, 1

512

∑512
j=1[Gz(ξj)] = 1.042, and

1
512

∑512
j=1[G1(ξj)] = 0.496.

(a) g∗ CIFAR-10 samples (b) Initialisation (c) 5k iterations (d) 80k iterations

Figure 2: Training generative models by enforcing dominance with surrogate VDC on pre-trained
CIFAR-10 WGAN-GP (Left) and with surrogate CT distance on 2D point clouds (Right). Ground
truth point cloud distributions (blue) consist of swiss roll (Top), circle of eight Gaussians (Middle),
and Github icon converted to a point cloud (Bottom).
Image generation with baseline model dominance Another application of learning with the VDC
is in the high-dimensional setting of CIFAR-10 (Krizhevsky & Hinton, 2009) image generation. As
detailed in Sec. 6, we start by training a baseline generator g0 using the regularized Wasserstein-
GAN paradigm (WGAN-GP) introduced in Arjovsky et al. (2017); Gulrajani et al. (2017), where
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gradient regularization is computed for the discriminator with respect to interpolates between real and
generated data. When training g∗ and g0, we used the same WGAN-GP hyperparameter configuration.
We set λ in Equation (11) to 10 (see App. F and App. H for more details). Training runs for g∗ and g0

Table 1: FID scores for WGAN-GP and WGAN-GP with VDC surrogate for convex functions
approximated by either ICNNs with softplus activations or ICMNs. ICMNs improve upon the
baseline g0 and outperform ICNNs with softplus. FID score for WGAN-GP + VDC includes mean
values ± one standard deviation for 5 repeated runs with different random initialization seeds.

FID

g0: WGAN-GP 69.67
g∗: WGAN-GP + VDC CP-Flow ICNN 83.470 ± 3.732
g∗: WGAN-GP + VDC ICMN (Ours) 67.317 ± 0.776

were performed in computational environments that contained 1 CPU and 1 A100 GPU. To evaluate
performance of g∗ vs. g0, we rely on the Fréchet Inception Distance (FID) introduced in Heusel et al.
(2017). Note that when training a WGAN-GP baseline from scratch we used hyperparameters that
potentially differ from those used in state-of-the-art implementations. Additionally, for computing
FIDs we use a pytorch-lightning implementation of the inception network, which is different
from the widely used Tensorflow implementation (Salimans et al., 2016), resulting in potential
discrepancies in our reported baseline FID and those in the literature. FID results are reported in
Table 1, where we see improved image quality from g∗ (as measured by lower FID) relative to the
pre-trained baseline g0. We therefore find that the VDC surrogate improves upon g0 by providing g∗
with larger support, preventing mode collapse. Samples generated from g∗ are displayed in Figure 2a.

In order to highlight the representation power of ICMNs, we replace them in the VDC estimation by
the ICNN implementation of Huang et al. (2021). Instead of maxout activation, Huang et al. (2021)
uses a Softplus activation and instead of a projection step it also uses a Softplus operation to impose
the non-negativity of hidden to hidden weights to enforce convexity. We see in Table 1 that VDC’s
estimation with ICMN outperforms Huang et al. (2021) ICNNs. While ICMNs have maximum of
affine functions as a building block, ICNN’s proof of universality in Huang et al. (2021) relies on
approximating the latter, this could be one of the reason behind ICMN superiority.

Probing mode collapse To investigate how training with the surrogate VDC regularizer helps alleviate
mode collapse in GAN training, we implemented GANs trained with the IPM objective alone and
compared this to training with the surrogate VDC regularizer for a mixture of 8 Gaussians target
distribution. In Figure 3 given in App. G we quantify mode collapse by looking at two scores: 1) the
entropy of the discrete assignment of generated points to the means of the mixture 2) the negative log
likelihood (NLL) of the Gaussian mixture. When training with the VDC regularizer to improve upon
the collapsed generator g0 (which is taken from step 55k from the unregularized GAN training), we
see more stable training and better mode coverage as quantified by our scores.

2D point cloud generation with dCT We apply learning with the CT distance in a 2D generative
modeling setting. Both the generator and CT critic architectures are comprised of fully-connected
neural networks with maxout non-linearities of kernel size 2. Progression of the generated samples
can be found in the right-hand panel of Figure 2, where we see the trained generator accurately learn
the ground truth distribution. All experiments were performed in a single-CPU compute environment.

8 CONCLUSION

In this paper, we introduced learning with stochastic order in high dimensions via surrogate Variational
Dominance Criterion and Choquet-Toland distance. These surrogates leverage input convex maxout
networks, a new variant of input convex neural networks. Our surrogates have parametric statistical
rates and lead to new learning paradigms by incorporating dominance constraints that improve upon
a baseline. Experiments on synthetic and real image generation yield promising results. Finally, our
work, although theoretical in nature, can be subject to misuse, similar to any generative method.
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A PROOFS OF SEC. 3

Proof of Proposition 2. Since A is included in the set of convex functions, the implication from right
to left is straightforward.

For the other implication, we prove the contrapositive. Suppose that u is a convex function on Ω such
that

∫
Ω
u d(µ−−µ+) > 0. Then we show that we can construct ũ ∈ A such that

∫
Ω
ũ d(µ−−µ+) > 0,

which shows that the supremum over A is strictly positive. Denote by C the set of convex functions
f : Rd → R which are the point-wise supremum of finitely many affine functions, i.e. f(x) =
maxi∈I{⟨yi, x⟩ − ai} for some finite family (yi, ai) ∈ Rd × R. For any convex function g, there
is an increasing sequence (gn)n ⊆ C such that g = supn gn pointwise (Ekeland & Schachermayer
(2014), p. 3). Applying this to u, we know there exists an increasing sequence (un)n ⊆ C such that
u = limn→∞ un. By the dominated convergence theorem,

limn→∞
∫
Ω
un d(µ− − µ+) =

∫
Ω
u d(µ− − µ+) > 0,

which means that for some N large enough,
∫
Ω
uN d(µ− − µ+) > 0 as well. Since uN admits a

representation f(x) = maxi∈I{⟨yi, x⟩ − ai} for some finite family I , it may be trivially extended to
a convex function on Rd.

Let (ηϵ)ϵ be a family of non-negative radially symmetric functions in C2(Rd) supported on the ball
Bϵ(0) of radius ϵ centered at zero, and such that

∫
Rd ηϵ(x) dx = 1. Let Ωϵ = {x ∈ Ω | dist(x, ∂Ω) ≥

ϵ}. For any x ∈ Rd, we have that

(uN ∗ ηϵ)(x) =
∫
Rd ηϵ(x− y)u(y) dy =

∫
Rd ηϵ(y

′)uN (x− y′) dy′. (12)

By the convexity of uN , we have that uN (λx+(1−λ)x′−y′) ≤ λuN (x−y′)+(1−λ)uN (x′−y′)
for any x, x′, y′ ∈ Rd. Thus, (12) implies that (uN ∗ ηϵ)(λx+ (1− λ)x′) ≤ λ(uN ∗ ηϵ)(x) + (1−
λ)(uN ∗ ηϵ)(x′), which means that uN ∗ ηϵ is convex. Also, by the dominated convergence theorem,

limϵ→0

∫
Ω
(uN ∗ ηϵ) d(µ− − µ+) =

∫
Ω
uN d(µ− − µ+) > 0

Hence, there exists ϵ0 > 0 such that
∫
Ω
(uN ∗ ηϵ) d(µ− − µ+) > 0. Since uN ∗ ηϵ0 is in C2(Rd) by

the properties of convolutions, its gradient is continuous. Since the closure Ω̄ is compact because Ω
is bounded, by the Weierstrass theorem we have that

supx∈Ω ∥∇(uN ∗ ηϵ0)(x)∥2 < +∞

Let r > 0 be such that the ball Br(0) is included in K. Rescaling uN ∗ ηϵ0 by an appropriate constant,
we have that supx∈Ω ∥∇(uN ∗ ηϵ0)(x)∥2 < r, and that means that ∇(uN ∗ ηϵ0)(x) ∈ K for any
x ∈ Ω. Thus, uN ∗ ηϵ0 ∈ A, and that means that supu∈A{

∫
Ω
u d(µ− − µ+)} > 0, concluding the

proof.

13



Published as a conference paper at ICLR 2023

Lemma 1. Let Ω = [−1, 1]d and K = {x ∈ Rd | ∥x∥2 ≤ C}. The function class A = {u : Ω →
R, u convex and ∇u a.e. ∈ K} is equal to the space Fd(M,C) of convex functions on [−1, 1]d such
that |f(x)| ≤ M and |f(x) − f(y)| ≤ C∥x − y∥ for any x, y ∈ [−1, 1]d, up to a constant term.
Here, M = C

√
d.

Proof. Looking at problem (1), note that adding a constant to a function u ∈ A does not change
the value of the objective function. Thus, we can add the restriction that u(0) = 0, and since
Ω is compact and has Lipschitz constant upper-bounded by supx∈K ∥x∥, any such function u
must fulfill M := supu∈A supx∈Ω |u(x)| < +∞. Thus, we have that functions in A belong to
{u : Ω → R, u convex and ∇u a.e. ∈ K, supx∈Ω |u(x)| ≤ M} up to a constant term, for a well
chosen M .

Now we will use the particular form of Ω and K. First, note that we can take M = C
√
d without loss

of generality. Given u ∈ A, we have that ∥∇u(x)∥2 ≤ C for a.e. x ∈ [−1, 1]d. By the mean value
theorem, we have that |u(x)− u(y)| = |

∫ 1

0
⟨∇f(tx+ (1− t)y), x− y⟩ dt| ≤ C∥x− y∥, implying

that u is C-Lipschitz. This shows thatA ⊆ Fd(M,C). Rademacher’s theorem states that C-Lipschitz
functions are a.e. differentiable, and gradient norms must be upper-bounded by C wherever gradients
exist as otherwise one reaches a contradiction. Hence, Fd(M,C) ⊆ A, concluding the proof.

Lemma 2 (Metric entropy of convex functions, Bronshtein (1976), Thm. 6). Let Fd(M,C) be the
compact space of convex functions on [−1, 1]d such that |f(x)| ≤M and |f(x)−f(y)| ≤ C∥x−y∥
for any x, y ∈ [−1, 1]d. The metric entropy of this space with respect to the uniform norm topology
satisfies

logN(δ;Fd(M,C), ∥ · ∥∞) ≤ Kδ− d
2 ,

for some constant K that depend on C, M and d.
Lemma 3 (Dudley’s entropy integral bound, Wainwright (2019), Thm. 5.22, Dudley (1967)).
Let {Xθ | θ ∈ T} be a zero-mean sub-Gaussian process with respect the metric ρX on T. Let
D = supθ,θ′∈T ρX(θ, θ′). Then for any δ ∈ [0, D] such that N(δ;T, ρX) ≥ 10, we have

E[supθ,θ′∈T(Xθ −Xθ′)] ≤ E
[
sup γ,γ′∈T

ρX(γ,γ′)≤δ
(Xγ −Xγ′)

]
+ 32

∫D
δ

√
logN(t;T, ρX) dt.

Proposition 4. For any family of n points (Xi)
n
i=1 ⊆ [−1, 1]d, the empirical Rademacher complexity

of the function class Fd(M,C) satisfies

Eϵ[∥Sn∥Fd(M,C)] ≤ Kn−
2
d ,

where K is a constant depending on M , C and d.

Proof. We choose Tn = {(f(Xi))
n
i=1 ∈ Rn | f ∈ Fd(M,C)}, we define the Rademacher

process Xf =
∑n
i=1 ϵif(Xi), which is sub-Gaussian with respect to the metric ρn(f, f ′) =√∑n

i=1(f(Xi)− f ′(Xi))2. Remark that D ≤ 2M
√
n. For any δ ∈ [0, D], we apply Lemma 3

setting f ′ ≡ 0 and we get

Eϵ[∥Sn∥Fd(M,C)] =
1
nE

[
supf∈Tn

Xf ′

]
≤ 1

n

(
E
[
sup f,f ′∈Tn

ρn(f,f
′)≤δ

(Xf −Xf ′)

]
+ 32

∫D
δ

√
logN(t;Fd(M,C), ρn) dt

)
.

(13)

Note that for any f, f ′ ∈ Fd(M,C), ρn(f, f
′) ≤

√
n∥f − f ′∥∞, which means that

logN(δ;Fd(M,C), ρn) ≤ logN(δ/
√
n;Fd(M,C), ∥ · ∥∞). Thus, Lemma 2 implies that

logN(δ;Fd(M,C), ρn) ≤ K
(

δ√
n

)− d
2

= Kδ−
d
2 n

d
4 ,

Hence, ∫D
δ

√
logN(t;Fd(M,C), ρn) dt ≤

∫D
δ

√
Kn

d
8 t−

d
4 dt =

[√
Kn

d
8

− d
4+1

t−
d
4+1

]D
δ

(14)

≤
√
Kn

d
8

d
4+1

(δ−
d
4+1 − (2M

√
n)−

d
4+1)
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We set δ = n
1
2−

2
d , and we get that δ−

d
4+1 = n(

1
2−

2
d )(−

d
4+1) = n−

d
8+1− 2

d . Hence, the right-hand
side of (14) is upper-bounded by

√
K

d
4+1

n1−
2
d . And since

∑n
i=1 ϵi(f(Xi)−f ′(Xi)) ≤

∑n
i=1 |f(Xi)−

f ′(Xi)| ≤
√
nρn(f, f

′), we have

E
[
sup γ,γ′∈T

ρX(γ,γ′)≤δ
(Xγ −Xγ′)

]
≤
√
nδ =

√
nn

1
2−

2
d = n1−

2
d .

Plugging these bounds back into (13), we obtain

Eϵ[∥Sn∥Fd(M,C)] ≤
( √

K
d
4+1

+ 1

)
n−

2
d .

Since K already depends on d, we rename it as K ←
√
K

d
4+1

+ 1, concluding the proof.

Proof of Theorem 2. Let Fd(C) be the space of convex functions on [−1, 1]d such that |f(x)| ≤ C
√
d

and |f(x)−f(y)| ≤ C∥x−y∥ for any x, y ∈ [−1, 1]d. Lemma 1 shows that when Ω = [−1, 1]d and
K = {x ∈ Rd | ∥x∥2 ≤ C}, functions in A belong to Fd(C) up to a constant term, which means that
VDCA(µ||µ) = supu∈Fd(C)

∫
Ω
u d(µ− − µ+). Theorem 11 of Sriperumbudur et al. (2009) shows

that for any function class F on Ω such that r := supf∈F,x∈Ω |f(x)| < +∞, with probability at
least 1− δ we have

| supf∈F{Eµf(x)− Eµf(x)} − supf∈F{Eµn
f(x)− Eµn

f(x)}|

≤
√
18r2 log( δ4 )(

1√
m

+ 1√
n
) + 2R̂n(F , (xi)ni=1) + 2R̂n(F , (yi)ni=1),

where R̂n denotes the empirical Rademacher complexity. Proposition 4 shows that
R̂n(Fd(C), (xi)ni=1) ≤ Kn−

2
d for any (xi)

n
i=1 ∈ Ω ⊆ [−1, 1]d, where K depends on C and d.

This concludes the proof.

B PROOFS OF SEC. 4

Proposition 5. Input convex maxout networks (Definition 3) are convex with respect to their input.

Proof. The proof is by finite induction. We show that for any 2 ≤ ℓ ≤ L−1 and 1 ≤ i ≤ mℓ, the func-
tion x 7→ x

(ℓ)
i is convex. The base case ℓ = 2 holds because x 7→ x

(2)
i = 1√

m2
maxj∈[k]⟨w

(1)
i,j , (x, 1)⟩

is a pointwise supremum of convex (affine) functions, which is convex. For the induction case,
we have that x 7→ x

(ℓ−1)
i is convex for any 1 ≤ i ≤ mℓ−1 by the induction hypothesis.

Since a linear combination of convex functions with non-negative coefficients is convex, we
have that for any 1 ≤ i ≤ mℓ, 1 ≤ j ≤ k, x 7→ ⟨w(ℓ−1)

i,j , (x(ℓ−1), 1)⟩ is convex. Finally,

x 7→ x
(ℓ)
i = 1√

mℓ
maxj∈[k]⟨w

(ℓ−1)
i,j , (x(ℓ−1), 1)⟩ is convex because it is the pointwise supremum of

convex functions.

Proof of Proposition 3. We can reexpress f(x) as:

f(x) =
1
√
mL

mL∑
i=1

ai⟨w(L−1)
i,j∗L−1,i

, (x(L−1), 1)⟩, j∗L−1,i = argmax
j∈[k]

⟨w(L−1)
i,j , (x(L−1), 1)⟩ (15)

x
(ℓ)
i =

1
√
mℓ
⟨w(ℓ−1)

i,j∗ℓ−1,i
, (x(ℓ−1), 1)⟩, j∗ℓ−1,i = argmax

j∈[k]

⟨w(ℓ−1)
i,j∗ℓ−1,i

, (x(ℓ−1), 1)⟩.

For 1 ≤ ℓ ≤ L − 1, we define the matrices W ∗
ℓ ∈ Rmℓ+1,mℓ such that their i-th row is the vector

[ 1√
mℓ+1

w
(ℓ)
i,j∗ℓ,i

]1:mℓ
, i.e. the vector containing the first mℓ components of 1√

mℓ+1
w

(ℓ)
i,j∗ℓ,i

. Iterating the

chain rule, one can see that for almost every x ∈ Rd, 1

∇f(x) = (W ∗
1 )

⊤(W ∗
2 )

⊤ . . . (W ∗
L−1)

⊤a

1The gradient of f is well defined when there exists a neighborhood of x for which f is an affine function.
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Since the spectral norm ∥ · ∥2 is sub-multiplicative and ∥A∥2 = ∥A⊤∥2, we have that ∥∇f(x)∥ =
∥(W ∗

1 )
⊤(W ∗

2 )
⊤ . . . (W ∗

L−1)
⊤∥2∥a∥ = ∥W ∗

1 ∥2∥W ∗
2 ∥2 . . . ∥W ∗

L−1∥2∥a∥. We compute the Frobenius
norm of W ∗

ℓ :

∥W ∗
ℓ ∥2F = 1

mℓ

∑mℓ

i=1

∥∥∥[w(ℓ)
i,j∗ℓ,i

]1:mℓ

∥∥∥2 ≤ 1
mℓ

∑mℓ

i=1

∥∥∥w(ℓ)
i,j∗ℓ,i

∥∥∥2 ≤ 1.

Since for any matrix A, ∥A∥2 ≤ ∥A∥F , and the vector a satisfies ∥a∥ ≤ 1, we obtain that
∥∇f(x)∥ ≤ 1. To obtain the bound on |f(x)|, we use again the expression (15). For 1 ≤ ℓ ≤ L− 1,
we let bℓ ∈ Rmℓ+1 be the vector such that the i-th component is [ 1√

mℓ+1
w

(ℓ)
i,j∗ℓ,i

]mℓ+1. Since

|[ 1√
mℓ+1

w
(ℓ)
i,j∗ℓ,i

]mℓ+1| ≤ 1√
mℓ+1

, ∥bℓ∥ ≤ 1. It is easy to see that

f(x) = a⊤W ∗
L−1 · · ·W ∗

1 x+
∑L−1
ℓ=1 a

⊤W ∗
L−1 · · ·W ∗

ℓ+1bℓ.

Thus,

|f(x)| ≤ ∥a∥
(
∥W ∗

L−1 · · ·W ∗
1 x∥+

∑L−1
ℓ=1 ∥W ∗

L−1 · · ·W ∗
ℓ+1bℓ∥

)
≤ L.

The bound on ∥x(ℓ)∥ follows similarly, as xℓ =W ∗
ℓ−1 · · ·W ∗

1 x+
∑ℓ−1
ℓ′=1 a

⊤W ∗
ℓ−1 · · ·W ∗

ℓ+1bℓ.

Proposition 6. Let FL,M,k(1) be the subset of FL,M,k such that for all 1 ≤ ℓ ≤ L− 1, 1 ≤ i ≤ mℓ,
1 ≤ j ≤ k, ∥w(ℓ)

i,j ∥2 ≤ 1, and ∥a∥2 =
∑mL

i=1 a
2
i ≤ 1. For any f ∈ FL,M,k(1) and x ∈ B1(Rd), we

have that |f(x)| ≤ 1. The metric entropy of FL,M,k(1) with respect to ρ̃n admits the upper bound:

logN
(
δ;FL,M,k(1), ρ̃n

)
≤

∑L
ℓ=2 kmℓ(mℓ−1 + 1) log

(
1 + 23+L−ℓ

δ

)
+mL log

(
1 + 4

δ

)

Proof. We define the function class GL,M,k that contains the functions from Rd to RmL of the form

g(x) =

(
1√
mL

maxj∈[k]⟨w
(L−1)
i,j , (x(L−1), 1)⟩

)mL

i=1

,

∀2 ≤ ℓ ≤ L− 1, x
(ℓ)
i = 1√

mℓ
maxj∈[k]⟨w

(ℓ−1)
i,j , (x(ℓ−1), 1)⟩, x(1) = x,

∀1 ≤ ℓ ≤ L− 1, 1 ≤ i ≤ mℓ, 1 ≤ j ≤ k, ∥w(ℓ)
i,j ∥2 ≤ 1.

Given {Xi}ni=1 ⊆ B1(Rd) we define the pseudo-metric ρ̃n between functions from Rd to RmL as

ρ̃n(f, f
′) =

√
1
n

∑mL

i=1

∑n
j=1(fi(Xj)− f ′i(Xj))2.

We prove by induction that

logN(δ;GL,M,k, ρ̃n) ≤
∑L
ℓ=2 kmℓ(mℓ−1 + 1) log

(
1 +

22+L−ℓ
√

(ℓ−1)2+1

δ

)
To show the induction case, note that for L ≥ 3, any g ∈ GL,M,k can be written as

g(x) =

(
1√
mL

maxj∈[k]⟨w
(L−1)
i,j , (h(x), 1)⟩

)mL

i=1

,

where h ∈ GL−1,M,k. Remark that given a δ

2
√

(L−1)2+1
-cover C′ of B1(RmL−1+1), there exist

w̃
(L−1)
i,j ∈ C′ such that ∥w̃(L−1)

i,j − w(L−1)
i,j ∥ ≤ δ

2
√

(L−1)2+1
. Hence, if h̃ is such that ρ̃n(h̃, h) ≤ δ

2 ,
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and we define g̃(x) = ( 1√
2mL

maxj∈[k]⟨w̃
(L−1)
i,j , (h̃(x), 1)⟩)mL

i=1, we obtain

ρ̃n(g̃, g)
2

= 1
nmL

∑mL

i=1

∑n
k=1

(
maxj∈[k]⟨w̃

(L−1)
i,j , (h̃(Xk), 1)⟩ −maxj∈[k]⟨w

(L−1)
i,j , (h(Xk), 1)⟩

)2

≤ 1
nmL

∑mL

i=1

∑n
k=1 maxj∈[k]

(
⟨w̃(L−1)

i,j − w(L−1)
i,j , (h̃(Xk), 1)⟩ − ⟨w(L−1)

i,j , (h(Xk)− h̃(Xk), 0)⟩
)2

≤ 2
nmL

∑mL

i=1

∑n
k=1 maxj∈[k]

(
⟨w̃(L−1)

i,j − w(L−1)
i,j , (h̃(Xk), 1)⟩

)2

+

(
⟨w(L−1)

i,j , (h(Xk)− h̃(Xk), 0)⟩
)2

≤ 2
nmL

∑mL

i=1

∑n
k=1 maxj∈[k] ∥w̃

(L−1)
i,j − w(L−1)

i,j ∥2∥(h̃(Xk), 1)∥2 + ∥w(L−1)
i,j ∥2∥h(Xk)− h̃(Xk)∥2

≤ 2
nmL

∑mL

i=1

∑n
k=1 maxj∈[k] ∥w̃

(L−1)
i,j − w(L−1)

i,j ∥2∥(h̃(Xk), 1)∥2 + ∥w(L−1)
i,j ∥2∥h(Xk)− h̃(Xk)∥2

≤ 1
nmL

∑mL

i=1

∑n
k=1

(
δ2

4(L2+1) (L
2 + 1) + ∥h(Xk)− h̃(Xk)∥2

)
≤ 1

nmL

∑mL

i=1

∑n
k=1

δ2

2 + 1
n

∑n
k=1 ∥h(Xk)− h̃(Xk)∥2 ≤ δ2.

In the second-to-last inequality we used that if h ∈ Gℓ,M,k, ∥h(x)∥ ≤ ℓ. This is equivalent to
the bound ∥x(ℓ)∥ ≤ ℓ shown in Proposition 3. Hence, we can build a δ-cover of GL,M,k in the
pseudo-metric ρ̃n from the Cartesian product of a δ

2 -cover of GL−1,M,k in ρ̃n and kmL copies of a
δ

2
√

(L−1)2+1
-cover of B1(RmL−1+1) in the ∥ · ∥2 norm. Thus,

N(δ;GL,M,k, ρ̃n) ≤ N
(
δ
2 ;GL−1,M,k, ρ̃n

)
·N

(
δ

2
√

(L−1)2+1
;B1(RmL−1+1), ∥ · ∥2

)kmL

.

The metric entropy of the unit ball admits the upper bound logN(δ;B1(Rd), ∥ · ∥2) ≤ d log(1 + 2
δ )

(Wainwright (2019), Example 5.8). Consequently,

logN(δ;GL,M,k, ρ̃n)

≤ logN
(
δ
2 ;GL−1,M,k, ρ̃n

)
+ kmL logN

(
δ

2
√

(L−1)2+1
;B1(RmL−1+1), ∥ · ∥2

)
≤

∑L−1
ℓ=2 kmℓ(mℓ−1 + 1) log

(
1 +

22+L−ℓ
√

(ℓ−1)2+1

δ

)
+ kmL(mL−1 + 1) log

(
1 + 4

√
L2+1
δ

)
=

∑L
ℓ=2 kmℓ(mℓ−1 + 1) log

(
1 +

22+L−ℓ
√

(ℓ−1)2+1

δ

)
In the second inequality we used the induction hypothesis.

To conclude the proof, note that an arbitrary function f ∈ FL,M,k(1) can be written as f(x) =
⟨a, g(x)⟩, where a ∈ B1(RmL) and g ∈ GL,M,k. Applying an analogous argument, we see that a

δ
2
√
L2+1

-cover of B1(RmL) and a δ
2 -cover of GL,M,k give rise to a δ-cover of FL,M,k(1). Hence,

logN
(
δ;FL,M,k(1), ρ̃n

)
≤ logN

(
δ
2 ;GL,M,k, ρ̃n

)
+ logN

(
δ
2 ;B1(R

mL), ∥ · ∥2
)

≤
∑L
ℓ=2 kmℓ(mℓ−1 + 1) log

(
1 +

23+L−ℓ
√

(ℓ−1)2+1

δ

)
+mL log

(
1 + 4

√
L2+1
δ

)
.

Finally, to show the bound |f(x)| ≤ 1 for all f ∈ FL,M,k(1) and x ∈ B1(Rd), we use that
|f(x)| ≤ |⟨a, g(x)⟩| ≤ ∥a∥∥g(x)∥ ≤ 1 and that if g ∈ Gℓ,M,k and x ∈ B1(Rd), then ∥g(x)∥ ≤ 1,
as shown before.
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Proposition 7. Suppose that for all 1 ≤ ℓ ≤ L, the widthsmℓ satisfymℓ ≤ m. Then, the Rademacher
complexity of the class FL,M,k(1) satisfies:

Eϵ[∥Sn∥FL,M,k(1)] ≤ 64
√

(L−1)km(m+1)
n

(√
(L+ 1) log(2) + 1

2 log(L
2 + 1) +

√
π
2

)
. (16)

Proof. We apply Dudley’s entropy integral bound (Lemma 3). We choose Tn = {(f(Xi))
n
i=1 ∈

Rn | f ∈ FL,M,k(1)}, we define the Rademacher process Xf = 1√
n

∑n
i=1 ϵif(Xi), which is sub-

Gaussian with respect to the metric ρ̃n(f, f ′) =
√

1
n

∑n
i=1(f(Xi)− f ′(Xi))2. Remark that D ≤ 2.

Setting f ′ ≡ 0 and δ = 0 in Lemma 3, we obtain that

Eϵ[∥Sn∥FL,M,k(1)] =
1√
n
E
[
supf∈Tn

Xf ′

]
≤ 32√

n

∫ 2

0

√
logN(t;FL,M,k(1), ρ̃n) dt.

Applying the metric entropy bound from Proposition 6, we get√
logN(δ;FL,M,k(1), ρ̃n)

≤

√∑L
ℓ=2 kmℓ(mℓ−1 + 1) log

(
1 +

23+L−ℓ
√

(ℓ−1)2+1

δ

)
+mL log

(
1 + 4

√
L2+1
δ

)
≤

√
(L− 1)km(m+ 1) log

(
1 + 2L+1

√
L2+1
δ

)
≤

√
(L− 1)km(m+ 1) log

(
2L+2

√
L2+1
δ

)
In the last equality we used that for δ ∈ [0, 2], 1 + 2L+1

√
L2+1
δ ≤ 2L+2

√
L2+1
δ . We compute the

integral ∫ 2

0

√
log

(
2L+2

√
L2+1
t

)
dt = 2L+2

√
L2 + 1

∫ 2−(L+1) 1√
L2+1

0

√
− log(t′) dt′.

Applying Lemma 4 with z = 2−(L+1) 1√
L2+1

1√
L2+1

, we obtain that

∫ 2−(L+1) 1√
L2+1

0

√
− log(t′) dt′ ≤ 2−(L+1)

(√
(L+ 1) log(2) + 1

2 log(L
2 + 1) +

√
π
2

)
.

Putting everything together yields equation (16).

Lemma 4. For any z ∈ (0, 1], we have that∫ z
0

√
− log(x) dx = z

√
− log(z) +

√
π
2 erfc(

√
− log(z)) ≤ z

(√
− log(z) +

√
π
2

)
.

Here, erfc denotes the complementary error function, defined as erfc(x) = 2√
π

∫ +∞
x

e−t
2

dt.

Proof. We rewrite the integral as:∫ z
0

∫ − log(x)

0
1

2
√
y dy dx =

∫ − log(z)

0
1

2
√
y

∫ z
0
dx dy +

∫ +∞
− log(z)

1
2
√
y

∫ e−y

0
dx dy

= z
∫ − log(z)

0
1

2
√
y dy +

∫ +∞
− log(z)

e−y

2
√
y dy

= z
√
− log(z) +

∫ +∞√
− log(z)

e−t
2

dt

= z
√
− log(z) +

√
π
2 erfc(

√
− log(z))

The complementary error function satisfies the bound erfc(x) ≤ e−x2

for any x > 0, which implies
the final inequality.

18



Published as a conference paper at ICLR 2023

Proof of Theorem 3. Proposition 7 proves that under the condition mℓ ≤ m, the
empirical Rademacher complexity of the class FL,M,k(1) satisfies R̂n(FL,M,k(1)) ≤
64
√

(L−1)km(m+1)
n (

√
(L+ 1) log(2) + 1

2 log(L
2 + 1) +

√
π
2 ). Applying Theorem 11 of Sriperum-

budur et al. (2009) as in the proof of Theorem 2, and that for any f ∈ FL,M,k(1) and x ∈ Br(Rd),
we have that |f(x)| ≤ r (see Proposition 6), we obtain the result.

C PROOFS OF SEC. 5

Proof of Theorem 4. To show (i), we have that for any ν′ ∈ P(K),

0 =
1

2
W 2

2 (µ+, ν
′)− 1

2
W 2

2 (µ−, ν
′) +

1

2
W 2

2 (µ−, ν
′)− 1

2
W 2

2 (µ+, ν
′)

≤ sup
ν∈P(K)

{
1

2
W 2

2 (µ+, ν)−
1

2
W 2

2 (µ−, ν)

}
+ sup
ν∈P(K)

{
1

2
W 2

2 (µ−, ν)−
1

2
W 2

2 (µ+, ν)

}
= dCT,A(µ+, µ−).

The right-to-left implication of (ii) is straight-forward. To show the left-to-right one, we use the
definition for the CT distance, rewriting VDCA(µ+||µ−) and VDCA(µ−||µ+) in terms of their
definitions:

dCT,A(µ+, µ−) = sup
u∈A

{∫
Ω

u d(µ+ − µ−)

}
+ sup
u∈A

{∫
Ω

u d(µ+ − µ−)

}
. (17)

Since the two terms in the right-hand side are non-negative, dCT,A(µ+, µ−) = 0 implies that they are
both zero. Then, applying Proposition 2, we obtain that µ− ⪯ µ+ and µ+ ⪯ µ− according to the
Choquet order. The antisymmetry property of partial orders then implies that µ+ = µ−. To show
(iii), we use equation (17) again. The result follows from

supu∈A

{∫
Ω
u d(µ1 − µ2)

}
≤ supu∈A

{∫
Ω
u d(µ1 − µ3)

}
+ supu∈A

{∫
Ω
u d(µ3 − µ2)

}
,

supu∈A

{∫
Ω
u d(µ2 − µ1)

}
≤ supu∈A

{∫
Ω
u d(µ2 − µ3)

}
+ supu∈A

{∫
Ω
u d(µ3 − µ1)

}
.

D PROOFS OF SUBSEC. 5.1

Lemma 5. For a function class F that contains the zero function, define ∥Sn∥F =
supf∈F | 1n

∑n
i=1 ϵif(Xi)|, where ϵi are Rademacher variables. EX,ϵ[∥Sn∥F ] is known as the

Rademacher complexity. Suppose that 0 belongs to the compact set K. We have that

1
2EX,ϵ[∥Sn∥Ā] ≤ E[dCT,A(µ, µn)] ≤ 4EX,ϵ[∥Sn∥A],

where Ā = {f − Eµ[f ] | f ∈ A} is the centered version of the class A.

Proof. We will use an argument similar to the proof of Prop. 4.11 of Wainwright (2019) (with the
appropriate modifications) to obtain the Rademacher complexity upper and lower bounds. We start
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with the lower bound:

EX,ϵ[∥Sn∥Ā] = EX,ϵ

sup
f∈A

∣∣∣∣ 1n
n∑
i=1

ϵi(f(Xi)− EYi
[f(Yi)])

∣∣∣∣


≤ EX,Y,ϵ

sup
f∈A

∣∣∣∣ 1n
n∑
i=1

ϵi(f(Xi)− f(Yi))
∣∣∣∣
 = EX,Y

sup
f∈A

∣∣∣∣ 1n
n∑
i=1

(f(Xi)− f(Yi))
∣∣∣∣


≤ EX

sup
f∈A

∣∣∣∣ 1n
n∑
i=1

(f(Xi)− E[f ])
∣∣∣∣
+ EY

sup
f∈A

∣∣∣∣ 1n
n∑
i=1

(f(Yi)− E[f ])
∣∣∣∣


≤ 2EX

sup
f∈A

1

n

n∑
i=1

(f(Xi)− E[f ])

+ 2EX

sup
f∈A

1

n

n∑
i=1

(E[f ]− f(Xi))


= 2E[VDCA(µn||µ) + VDCA(µ||µn)].

The last inequality follows from the fact that supf∈A | 1n
∑n
i=1(f(Xi) − E[f ])| ≤

supf∈A
1
n

∑n
i=1(f(Xi) − E[f ]) + supf∈A

1
n

∑n
i=1(E[f ] − f(Xi)), which holds as long as the

two terms in the right-hand side are non-negative. This happens when f ≡ 0 belongs to A as a
consequence of 0 ∈ K.

The upper bound follows essentially from the classical symmetrization argument:

E[dCT,A(µ, µn)] ≤ 2EX

[
supf∈A

∣∣∣∣ 1n ∑n
i=1(f(Xi)− E[f ])

∣∣∣∣
]
≤ 4EX,ϵ

[
supf∈A

∣∣∣∣ 1n ∑n
i=1 ϵif(Xi)

∣∣∣∣
]
.

Lemma 6 (Relation between Rademacher and Gaussian complexities, Exercise 5.5, Wainwright
(2019)). Let ∥Gn∥F = supf∈F | 1n

∑n
i=1 zif(Xi)|, where zi are standard Gaussian variables.

EX,z[∥Gn∥F ] is known as the Gaussian complexity. We have

EX,z [∥Gn∥F ]

2
√
logn

≤ EX,ϵ[∥Sn∥F ] ≤
√

π
2EX,z[∥Gn∥F ].

Given a set T ⊆ Rn, the family of random variables {Gθ, θ ∈ T}, where Gθ := ⟨ω, θ⟩ =
∑n
i=1 ωiθi

and ωi ∼ N(0, 1) i.i.d., defines a stochastic process is known as the canonical Gaussian process
associated with T.

D.1 RESULTS USED IN THE LOWER BOUND OF THEOREM 5

Lemma 7 (Sudakov minoration, Wainwright (2019), Thm. 5.30; Sudakov (1973)). Let {Gθ, θ ∈ T}
be a zero-mean Gaussian process defined on the non-empty set T. Then,

E
[
supθ∈TGθ

]
≥ supδ>0

δ
2

√
logMG(δ;T).

where MG(δ;T) is the δ-packing number of T in the metric ρG(θ, θ′) =
√

E[(Xθ −Xθ′)2].

Proposition 8. Let C0, C1 be universal constants independent of the dimension d, and suppose that
n ≥ C1 log(d). Recall that Fd(M,C) is the set of convex functions on [−1, 1]d such that |f(x)| ≤M
and |f(x) − f(y)| ≤ C∥x − y∥ for any x, y ∈ [−1, 1]d, and that ¯Fd(M,C) = {f − Eµ[f ] | f ∈
Fd(M,C)}. The Gaussian complexity of the set Fd(M,C) satisfies

EX,z[∥Gn∥Fd(M,C)
] ≥ C0

√
C

d(1+C)n
− 2

d .
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Proof. Given (Xi)
n
i=1 ⊆ Rd, let Tn = {(f(Xi))

n
i=1 ∈ Rn | f ∈ Fd(M,C)}. Let Xi be sampled

i.i.d. from the uniform measure on [−1, 1]d. We have that with probability at least 1/2 on the
instantiation of (Xi)

n
i=1,

Ez[∥Gn∥Fd(M,C)
] = 1

nE
[
supθ∈Tn

Xθ

]
≥ 1

2n

√
Cn

128d(1+C)n
− 2

d

(
logM

(√
Cn

128d(1+C)n
− 2

d ;Fd(M,C), ρn

))1/2

≳ 1
2n

√
Cn

128d(1+C)n
− 2

d

(
log

(
2

n
16

32n
2
d
√

2d(1+C)Cn+1

))1/2

≈ 1
2n

√
Cn

128d(1+C)n
− 2

d

(
n
16 log(2)− log(32

√
2d(1 + C)C)−

(
1
2 + 2

d

)
log(n)

)1/2

≥ C0

√
C

d(1+C)n
− 2

d .

The first inequality follows from Sudakov minoration (Lemma 7) by setting δ =
√

Cn
128d(1+C)n

− 2
d .

The second inequality follows from the lower bound on the packing number of Ā given by Corollary 1.
In the following approximation we neglected the term 1 in the numerator inside of the logarithm. In
the last inequality, C0 is a universal constant independent of the dimension d. The inequality holds
as long as log(32

√
2d(1 + C)C) + ( 12 + 2

d ) log(n) ≤
n
32 log(2), which is true when n ≥ C1 log(d)

for some universal constant C1.

Proposition 9. With probability at least (around) 1/2 on the instantiation of (Xi)
n
i=1 as i.i.d. samples

from the uniform distribution on Sd−1, the packing number of the set Fd(M,C) with respect to the
metric ρn(f, f ′) =

√∑n
i=1(f(Xi)− f ′(Xi))2 satisfies

M

(√
Cn

32d(1+C)n
− 2

d ;Fd(M,C), ρn

)
≳ 2n/16.

Proof. This proof uses the same construction of Thm. 6 of Bronshtein (1976), which shows a lower
bound on the metric entropy of Fd(M,C) in the L∞ norm. His result follows from associating a
subset of convex functions in Fd(M,C) to a subset of convex polyhedrons, and then lower-bounding
the metric entropy of this second set. Note that the pseudo-metric ρn is weaker than the L∞ norm,
which means that our result does not follow from his. Instead, we need to use a more intricate
construction for the set of convex polyhedrons, and rely on the Varshamov-Gilbert lemma (Lemma 8).

First, we show that if we sample n points (Xi)
n
i=1 i.i.d. from the uniform distribution over the unit

ball of Rd, with constant probability (around 1
2 ) there exists a δ-packing of the unit ball of Rd with

k ≈ δ−d/2

2 points. For any n ∈ Z+, we define the set-valued random variable

Sn = {i ∈ {1, . . . , n} | ∀1 ≤ j < i, ∥Xi −Xj∥2 ≥ δ},

and the random variable An = |Sn|. That is, An is the number of points Xi that are at least epsilon
away of any point with a lower index; clearly the set of such points constitutes a δ-packing of the unit
ball of Rd. We have that E[An|(Xi)

n−1
i=1 ] = An−1 + Pr(∀1 ≤ i ≤ n− 1, ∥Xn −Xi∥2 ≥ δ). Since

for a fixed Xi and uniformly distributed Xn, Pr(∥Xn −Xi∥2 ≤ δ) ≤ δd, a union bound shows that
Pr(∀1 ≤ i ≤ n− 1, ∥Xn −Xi∥2 ≥ δ) ≥ 1− (k − 1)δd. Thus, by the tower property of conditional
expectations:

E[An] ≥ E[An−1] + 1− (n− 1)δd.

A simple induction shows that E[An] ≥ n−
∑n−1
i=0 iδ

d = n− n(n−1)δd

2 . This is a quadratic function
of n. For a given δ > 0, we choose n that maximizes this expression, which results in

1− (2n−1)δd

2 ∼ 0 =⇒ n ∼ δ−d + 1
2 (18)

=⇒ E[An] ≳ δ−d + 1
2 +

(δ−d+ 1
2 )(δ

−d− 1
2 )δ

d

2 = δ−d + 1
2 +

δ−d− 1
4 δ

d

2 = δ−d

2 + 1
2 −

δd

8 .
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where we used ∼ instead of = to remark that n must be an integer. Since An is lower-bounded by 1
and upper-bounded by n ∼ δ−d + 1

2 , Markov’s inequality shows that

P (An ≥ E[An]) ≳
δ−d

2 + 1
2−

δd

8 −1

δ−d− 1
2

≈ 1
2 ,

where the approximation works for δ ≪ 1. Taking k = An, this shows the existence of a δ-packing
of the unit ball of size ≈ δ−d/2

2 with probability at least (around) 1
2 .

Next, we use a construction similar to the proof of the lower bound in Thm. 6 of Bronshtein (1976).
That is, we consider the set S̃n = {(x, g(x)) |x ∈ Sn} ⊆ Rd+1, where g : [−1, 1]d → R is the map
that parameterizes part of the surface of the (d− 1)-dimensional hypersphere Sd−1(R, t) centered at
(0, . . . , 0, t) of radius R for well chosen t, R.

As in the proof of Thm. 6 of Bronshtein (1976), if x ∈ S̃n ⊆ Sd−1(R, t) and we let Sd−1(R, t)x
denote the tangent space at x, we construct a hyperplane P that is parallel to Sd−1(R, t)x at a distance
ϵ < R from the latter and that intersects the sphere. A simple trigonometry exercise involving the
lengths of the chord and the sagitta of a two-dimensional circular segment shows that any point in
Sd−1(R, t) that is at least

√
2Rϵ away from x will be separated from x by the hyperplane P . Thus,

the convex hull of S̃n \ {x} is at least ϵ away from x.

For any subset S′ ⊆ S̃n, we define the function gS′ as the function whose epigraph (the set of
points on or above the graph of a convex function) is equal to the convex hull of S′. Note that gS′ is
convex and piecewise affine. Let us set δ =

√
2Rϵ. If x is a point in S̃n \ S′, by the argument in the

previous paragraph the convex hull of S′ is at least ϵ away from x. Thus, |gS′(x) − gS′∪{x}| ≥ ϵ.
The functions gS′ and gS′′ will differ by at least ϵ at each point in the symmetric difference S′∆S′′.

By the Varshamov-Gilbert lemma (Lemma 8), there is a set of 2k/8 different subsets S′ such that gS′

differ pairwise at at least k/4 points in S̃n by at least ϵ. Thus, for any S′ ̸= S′′ in this set, we have
that

ρn(gS′ , gS′′) =
√∑n

i=1(gS′(Xi)− gS′(Xi))2 ≥
√

k
4 ϵ.

We have to make sure that all the functions gS′ belong to the set Fd(M,C). Since | ddx
√
R2 − x2| =

|x|√
R2−x2

, the function g will be C-Lipschitz on [−1, 1]d if we take R2 ≥ d(1+C)
C , and in that case

gS′ will be Lipschitz as well for any S′ ⊆ S̃n. To make sure that the uniform bound ∥gS′∥∞ ≤M
holds, we adjust the parameter t.

To obtain the statement of the proposition we start from a certain n and set δ such that (18) holds:
δ = n−

1
d , and we set k ≈ n

2 . Since δ =
√
2Rϵ, we have that ϵ = 1

2Rδ
2 ≈ 1

2

√
C

d(1+C)n
− 2

d , which
means that

2k/8 ≈ 2n/16,
√

k
4 ϵ ≈

√
Cn

32d(1+C)n
− 2

d .

Lemma 8 (Varshamov-Gilbert). LetN ≥ 8. There exists a subset Ω ⊆ {0, 1}N such that |Ω| ≥ 2N/8

and for any x, x′ ∈ Ω such that x ̸= x′, at least N/4 of the components differ.

Lemma 9. For any ϵ > 0, the packing number of the centered function class Fd(M,C) = {f −
Eµ[f ]| f ∈ Fd(M,C)} with respect to the metric ρn fulfills

M(ϵ/2;Fd(M,C), ρn) ≥M(ϵ;Fd(M,C), ρn)/(4nC/ϵ+ 1),

Proof. Let S be an ϵ-packing of Fd(M,C) with respect to ρn (i.e. |S| =M(ϵ;Fd(M,C), ρn)). Let
Fd(M,C, t, δ) = {f ∈ Fd(M,C) | |Eµ[f ] − t| ≤ δ}. If we let (ti)

m
i=1 be a δ packing of [−C,C],

we can write Fd(M,C) = ∪mi=1Fd(M,C, ti, δ).
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By the pigeonhole principle, there exists an index i ∈ {1, . . . ,m} such that |S ∩ Fd(M,C, ti, δ)| ≥
|S|/m. Let Fd(M,C, ti) = {f ∈ Fd(M,C) |Eµ[f ] = ti}, and let P : Fd(M,C) → Fd(M,C, ti)
be the projection operator defined as f 7→ f − Eµ[f ] + ti.

If we take δ = ϵ/(4n), we have that ρn(Pf, Pf ′) ≥ ϵ/2 for any f ̸= f ′ ∈ S ∩ Fd(M,C, ti, δ),
as ρn(Pf, Pf ′) ≤ ρn(Pf, f) + ρn(f, f

′) + ρn(f
′, Pf ′), and ρn(f, Pf) ≤ n|Eµ[f ]− ti| ≤ nδ =

ϵ/4, while ρn(f, f ′) ≥ ϵ. Thus, the ϵ/2-packing number of Fd(M,C, ti) is lower-bounded by
|S ∩ Fd(M,C, ti, δ)| ≥ |S|/m. Since m = ⌊(2C + 2δ)/(2δ)⌋ ≤ 4nC/ϵ+ 1, this is lower-bounded
by |S|/(4nC/ϵ+ 1).

The proof concludes using the observation that the map Fd(M,C, ti) → ¯Fd(M,C) defined as
f 7→ f − ti is an isometric bijection with respect to ρn.

Corollary 1. With probability at least 1/2, the packing number of the set Fd(M,C) with respect to
the metric ρn satisfies

M

(√
Cn

128d(1+C)n
− 2

d ;Fd(M,C), ρn

)
≥ 2

n
16

1

32n
2
d
√

2d(1+C)Cn+1

Proof of Theorem 5. Lemma 5 provides upper and lower bounds to E[dCT,A(µ, µn)] in terms
of the Rademacher complexities of A and its centered version, Ā. Lemma 1 in App. A states
that A is equal to the space Fd(M,C) of convex functions on [−1, 1]d such that |f(x)| ≤ M
and |f(x) − f(y)| ≤ C∥x − y∥ for any x, y ∈ [−1, 1]d. Let EX,ϵ[∥Sn∥F ], EX,ϵ[∥Gn∥F ] be the
Rademacher and Gaussian complexities of a function class F (see definitions in Lemma 5 and
Lemma 6). We can write

EX,ϵ[∥Sn∥Ā] ≥
EX,z [∥Gn∥Ā]

2
√
logn

≥ C0

√
C

2d(1+C) log(n)n
− 2

d ,

where the first inequality holds by Lemma 6, and the second inequality follows from Proposition 8.
This gives rise to (7) upon redefining C0 ← C0/

√
8. Equation (8) follows from the Rademacher

complexity upper bound in Lemma 5, and the upper bound on the empirical Rademacher complexity
of Fd(M,C) given by Proposition 4.

Proof of Theorem 6. We upper-bound E[dCT,FL,M,k,+(1)(µ, µn)] as in the upper bound of
E[dCT,A(µ, µn)] in Lemma 5:

E[dCT,FL,M,k,+(1)(µ, µn)] ≤ 2EX

[
supf∈FL,M,k,+(1)

∣∣∣∣ 1n ∑n
i=1(f(Xi)− E[f ])

∣∣∣∣
]

≤ 4EX,ϵ

[
supf∈FL,M,k,+(1)

∣∣∣∣ 1n ∑n
i=1 ϵif(Xi)

∣∣∣∣
]
= 4Eϵ[∥Sn∥FL,M,k,+(1)].

Likewise, we get that E[VDCFL,M,k,+(1)(µ, µn)] ≤ 2Eϵ[∥Sn∥FL,M,k,+(1)]. Since FL,M,k,+(1) ⊂
FL,M,k(1), we have that Eϵ[∥Sn∥FL,M,k,+(1)] ≤ Eϵ[∥Sn∥FL,M,k(1)]. Then, the result follows from
the Rademacher complexity upper bound from Proposition 7.

E SIMPLE EXAMPLES IN DIMENSION 1 FOR VDC AND dCT

For simple distributions over compact sets of R, we can compute the CT discrepancy exactly. Let
η : R→ R be a non-negative bump-like function, supported on [−1, 1], symmetric w.r.t 0, increasing
on (−1, 0], and such that

∫
R η = 1. Clearly η is the density of some probability measure with respect

to the Lebesgue measure.

Same variance, different mean. Let µ+ ∈ P(R) with density η(x− a) for some a > 0, and let
µ− ∈ P(R) with density η(x+ a). We let K = [−C,C] for any C > 0.
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Proposition 10. Let F (x) =
∫ x
−∞(η(y+a)−η(y−a)) dy, andG(x) =

∫ x
0
F (y) dy. We obtain that

VDCK(µ+||µ−) = 2CG(+∞). The optimum of (P2) is equal to the Dirac delta at −C: ν = δ−C ,
while an optimum of (P1) is u = −Cx. We have that VDCK(µ+||µ−) = 2CG(+∞) as well, and
thus, dCT,A(µ−, µ+) = 4CG(+∞).

Proof. Suppose that first that a > 0. We have that F (−∞) = F (−a − 1) = 0, F (+∞) =
F (a+ 1) = 0. F is even, and supx |F (x)| = 1. We have that G is odd (in particular G(−a− 1) =
−G(a+ 1)) and non-decreasing on R. Also, 0 < G(+∞) = G(a+ 1) ≤ a+ 1. Let K = [−C,C]
where C > 0, and let Ω = [−a − 1, a + 1]. For any twice-differentiable2 convex function u on Ω
such that u′ ∈ K, we have∫
Ω
u(x) d(µ− − µ+)(y) =

∫
Ω
u(x)(η(y + a)− η(y − a)) dy = [u(x)F (x)]a+1

−a−1 −
∫
Ω
u′(x)F (x) dy

= −
∫
Ω
u′(x)F (x) dy = [−u′(x)G(x)]a+1

−a−1 +
∫
Ω
u′′(x)G(x) dy

= −G(a+ 1)(u′(a+ 1) + u′(−a− 1)) +
∫
Ω
u′′(x)G(x) dy

If we reexpress u(a+ 1) = u′(−a− 1) +
∫ a+1

−a−1
u′′(x) dx, the right-hand side becomes

−2G(a+ 1)u′(−a− 1) +
∫
Ω
u′′(x)(G(x)−G(a+ 1)) dy (19)

Since G is increasing, for any x ∈ [−a− 1, a+ 1), G(x) < G(a+ 1). The convexity assumption
on u implies that u′′ ≥ 0 on Ω, and the condition u′ ∈ K means that u′ ∈ [−C,C]. Thus, the
function u that maximizes (19) fulfills u′ ≡ −C, u′′ ≡ 0. Thus, we can take u = −Cx. The measure
ν = (∇u)#µ− = (∇u)#µ+ is equal to the Dirac delta at −C: ν = δ−C . Hence,

supu∈A
∫
Ω
u d(µ− − µ+) = 2CG(a+ 1).

Thus, VDCK(µ+||µ−) = 2CG(a+ 1). Reproducing the same argument yields VDCK(µ−||µ+) =
2CG(a+ 1), and hence the CT distance is equal to dCT,A(µ−, µ+) = 4CG(a+ 1).

Same mean, different variance. Let µ+ ∈ P(R) with density 1
aη(

x
a ) for some a > 0, and let

µ− ∈ P(R) with density η(x). Note that µ+ has support [−a, a], and standard deviation equal to a
times the standard deviation of µ−. We let K = [−C,C] for any C > 0 as before.

Proposition 11. Let F (x) =
∫ x
−∞(η(y) − 1

aη(
y
a )) dy, and G(x) =

∫ x
−∞ F (y) dy. When a < 1,

we have that VDCK(µ+||µ−) = 2CG(0). The optimum of (P2) is equal to ν = 1
2δ−C + 1

2δC ,
while an optimum of (P1) is u = C|x|. When a > 1, VDCK(µ+||µ−) = 0. For any a > 0,
dCT,A(µ−, µ+) = 2CG(0).

Proof. We define Ω = [−max{a, 1},max{a, 1}] and K = [−C,C]. We have that F (−∞) =
F (−max{a, 1}) = 0, F (+∞) = F (max{a, 1}) = 0, and F (0) = 0. F is odd. When a < 1
it is non-positive on [0,+∞) and non-negative on (−∞, 0]. When a > 1, it is non-negative
on [0,+∞) and non-positive on (−∞, 0]. We have that G(−∞) = G(−max{a, 1}) = 0 and
G(+∞) = G(max{a, 1}) = 0. G is even. When a < 1, G is non-negative, non-decreasing on
(−∞, 0] and non-increasing on [0,+∞): it has a global maximum at 0. When a > 1, G is non-
positive, non-increasing on (−∞, 0] and non-decreasing on [0,+∞): it has a global minimum at 0.
We have that∫

Ω
u(x) d(µ− − µ+)y =

∫
Ω
u(x)

(
η(y)− 1

aη

(
y
a

))
dy = [u(x)F (x)]a+1

−a−1 −
∫
Ω
u′(x)F (x) dy

= −
∫
Ω
u′(x)F (x) dy = [−u′(x)G(x)]a+1

−a−1 +
∫
Ω
u′′(x)G(x) dy =

∫
Ω
u′′(x)G(x) dy.

(20)

Thus, when a < 1 this expression is maximized when u′′ ∝ δ0. Taking into account the constraints
u′ ∈ [−C,C], the optimal u′ is u′(x) = Csign(x), which means that an optimal u is u(x) = C|x|.

2Using a mollifier sequence, any convex function can be approximated arbitrarily well by a twice-
differentiable convex function.
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Thus, the measure ν = (∇u)#µ− = (∇u)#µ+ is equal to the average of Dirac deltas at −C and C:
ν = 1

2δ−C + 1
2δC . We obtain that

supu∈A
∫
Ω
u d(µ− − µ+) = 2CG(0).

When a > 1, the expression (20) is maximized when u′′ = 0, which means that any u′ constant
and any u affine work. Any measure ν concentrated at a point in [−C,C] is optimal. Thus,
supu∈A

∫
Ω
u d(µ− − µ+) = 0. We conclude that dCT,A(µ+, µ−) = 2CG(0).

F ALGORITHMS FOR LEARNING DISTRIBUTIONS WITH SURROGATE VDC AND
CT DISTANCE

In Algorithms 1 and 2, we present the steps for learning with the VDC and the CT distance,
respectively. In order to enforce convexity of the ICMNs, we leverage the projected gradient
descent algorithm after updating hidden neural network parameters. Additionally, to regularize the u
networks in Algorithm 1, we include a term that penalizes the square of the outputs of the Choquet
critic on the baseline and generated samples (Mroueh & Sercu, 2017).

Algorithm 1 Enforcing dominance constraints with the surrogate VDC

Input: Target distribution ν, baseline g0, latent distribution µ0, integer maxEpochs, integer
discriminatorEpochs, Choquet weight λ, GAN learning rate η, Choquet critic learning rate ηVDC,
Choquet critic regularization weight λu,reg , WGAN gradient penalty regularization weight λGP

Initialize: untrained discriminator fφ, untrained generator gθ, untrained Choquet ICMN critic uψ
ψ ← ProjectHiddenWeightsToNonNegative()
for i = 1 to maxEpochs do
LWGAN(φ, θ) = EY∼µ0 [fφ(gθ(Y ))]− EX∼ν [fφ(X)]
LGP = Et∼Unif[0,1][EX∼ν,Y∼µ0

(||∇xfφ(tgθ(Y ) + (1− t)X)|| − 1)2]
LVDC(ψ, θ) = EY∼µ0 [uψ(gθ(Y ))− uψ(g0(Y ))]
for j = 1 to discriminatorEpochs do
φ← φ− η∇φ(LWGAN + λGPLGP) {ADAM optimizer}
LVDCreg = EY∼µ0 [uψ(gθ(Y ))2 + uψ(g0(Y ))2]
ψ ← ψ − ηVDC∇ψ(LVDC + λu,regLVDCreg ) {ADAM optimizer}
ψ ← ProjectHiddenWeightsToNonNegative()

end for
θ ← θ + η∇θ(LWGAN + λLVDC) {ADAM optimizer}

end for
Return gθ

G PROBING MODE COLLAPSE

As described in Sec. 7, to investigate how training with the surrogate VDC regularizer helps alleviate
mode collapse in GAN training, we implemented GANs trained with the IPM objective alone and
compared this to training with the surrogate VDC regularizer for a mixture of 8 Gaussians target
distribution. To track mode collapse, we report two metrics: 1) The mode collapse score that we define
as follows: for each generated point, we assign it to the nearest neighbor cluster in the target mixture
and obtain a histogram over the modes computed on all generated points. The closer this histogram is
to the uniform distribution, the less mode collapsed is the generator. We quantify this with the KL
distance of this histogram to the uniform distribution on 8 modes. 2) The negative log likelihood
(NLL) of the Gaussian mixture. A converged generator needs to have a low negative likelihood
and low mode collapse score. In Figure 3, we see that in the baseline training (unregularized GAN
training), we observe mode collapse and cycling between modes, evidenced by the fluctuating mode
collapse score and NLL. In contrast, when training with the VDC regularizer to improve upon the
collapse generator g0 (which is taken from step 55k from the unregularized GAN training), we see
more stable training and better mode coverage. As the regularization weight λVDC for VDC increases,
the dominance constraint is more strongly enforced resulting in a better NLL and smaller mode
collapse score.
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Algorithm 2 Generative modeling with the surrogate CT distance

Input: Target distribution ν, latent distribution µ0, integer maxEpochs, integer criticEpochs,
learning rate η
Initialize: untrained generator gθ, untrained Choquet ICMN critics uψ1 , uψ2

ψ1 ← ProjectHiddenWeightsToNonNegative()
ψ2 ← ProjectHiddenWeightsToNonNegative()
for i = 1 to maxEpochs do
LDCT,1

(ψ1, θ) = EY∼µ0
[uψ1

(gθ(Y ))]− EX∼ν [uψ1
(X)]

LDCT,2
(ψ2, θ) = EX∼ν [uψ2

(X)]− EY∼µ0
[uψ2

(gθ(Y ))]
LdCT

(ψ1, ψ2, θ) = LDCT,1
(ψ1, θ) + LDCT,2

(ψ2, θ)
for j = 1 to discriminatorEpochs do
ψ1 ← ψ1 − η∇ψ1

LDCT,1
{ADAM optimizer}

ψ1 ← ProjectHiddenWeightsToNonNegative()
ψ2 ← ψ2 − η∇ψ2LDCT,2 {ADAM optimizer}
ψ2 ← ProjectHiddenWeightsToNonNegative()

end for
θ ← θ + η∇θLdCT {ADAM optimizer}

end for
Return gθ

Figure 3: Probing mode collapse for GAN training.

H ADDITIONAL EXPERIMENTAL DETAILS

Portfolio optimization In Figure 4 we plot the trajectory of the z parameter from the portfolio
optimization example solved in Sec. 7.

The convex decreasing u network was parameterized with a 3-layer, fully-connected, decreasing
ICMN with hidden dimension 32 and maxout kernel size of 4. See Table 2 for full architectural
details. Optimization was performed on CPU.
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Figure 4: Trajectory of z parameter from the portfolio optimization example in Sec. 7.

Table 2: Architectural details for convex decreasing u network used in portfolio optimization.

Convex decreasing u
Input dimension Output dimension Kernel Restriction

Linear 1 32 - Non-positivity
MaxOut - - 4 -
Linear 8 32 - Non-negativity
MaxOut - - 4 -
Linear 8 1 - Non-negativity

Image generation In training WGAN-GP and WGAN-GP + VDC, we use residual convolutional
neural network (CNN) for the generator and CNN for the discriminator (both with ReLU non-
linearities). See Table 3, Table 4, and Table 5 for the full architectural details. Note that in Table 3,
PixelShuffle refers to a dimension rearrangement where an input of dimension Cr2 × H ×W is
rearranged to C ×Hr ×Wr3. Our latent dimension for µ0 is 128 and λGP = 10. We use ADAM
optimizers (Kingma & Ba, 2015) for both networks, learning rates of 1e−4, and a batch size of 64.
We use the CIFAR-10 training data and split it as 95% training and 5% validation. FID is calculated
using the validation set. The generator was trained every 6th epoch, and training was executed for
about 400 epochs in total. When training g∗ we use learning rate of 1e−5 for the Choquet critic,
λ = 10, and λu,reg = 10. Training the baseline g0 and g∗ with the surrogate VDC was done on a
compute environment with 1 CPU and 1 A100 GPU.

2D point cloud generation When training with the dCT surrogate for point cloud generation, the
generator and Choquet critics are parameterized by residual maxout networks with maxout kernel
size of 2. The critics are ICMNs. Our latent dimension for µ0 is 32. Both the generator and critics
have hidden dimension of 32. The generator consists of 10 fully-connected layers and the critics
consists of 5. For all networks, we add residual connections from input-to-hidden layers (as opposed
to hidden-to-hidden). The last layer for all networks is fully-connected linear. See Table 6 for full
architectural details. We use ADAM optimizers for all networks, learning rate of 5e−4 for the
generator, learning rates of 1e−4 for the Choquet critics, and a batch size of 512. Training was done
on a single-CPU environment.

3See pytorch documentation for more details.
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Table 3: Architectural details for WGAN-GP generator gθ.

WGAN Generator gθ
Kernel size Output shape

Y ∼ µ0 - 128
ConvTranspose 4× 4 128× 4× 4
ResidualBlock 3× 3 128× 8× 8
ResidualBlock 3× 3 128× 16× 16
ResidualBlock 3× 3 128× 32× 32
BatchNorm, ReLU, Dropout - -
Conv 3× 3 3× 32× 32

Residual Block (kernel size specified above)

Main LayerNorm, ReLU
PixelShuffle 2x

Conv
LayerNorm, ReLU

Conv

Residual PixelShuffle 2x
Conv

Table 4: Architectural details for WGAN-GP discriminator fφ.

WGAN Discriminator fφ
Kernel size Stride Output shape

Input - - 3× 32× 32
Conv w/ReLU 3× 3 2× 2 128× 16× 16
Conv w/ReLU 3× 3 2× 2 256× 8× 8
Conv w/ReLU 3× 3 2× 2 512× 4× 4
Linear - - 1

Table 5: Architectural details for Choquet critic uψ in the image domain.

Choquet critic uψ
Kernel size Stride Output shape

Input - - 3× 32× 32
Conv 3× 3 2× 2 1024× 16× 16
MaxOut + Dropout 16 - 64× 16× 16
Conv 3× 3 2× 2 2048× 8× 8
MaxOut + Dropout 16 - 128× 8× 8
Conv 3× 3 2× 2 4096× 4× 4
MaxOut + Dropout 16 - 256× 4× 4
Linear - - 1
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Table 6: Architectural details for generator gθ and Choquet critics uψ1
, uψ2

in the 2D point cloud
domain.

Generator gθ and Choquet critics uψ1 , uψ2

Generator Choquet critics
Input dim 32 2
Hidden dim 32 32
Num. Layers 10 5
Output dim 2 1

Fully-connected Residual Blocks
Main Linear (hidden-to-hidden)

MaxOut kernel size 2
Dropout

Residual Linear (input-to-hidden)

I ASSETS

Libraries Our experiments rely on various open-source libraries, including pytorch (Paszke
et al., 2019) (license: BSD) and pytorch-lightning (Falcon et al., 2019) (Apache 2.0).

Code re-use For several of our generator, discriminator, and Choquet critics, we
draw inspiration and leverage code from the following public Github repositories: (1)
https://github.com/caogang/wgan-gp, (2) https://github.com/ozanciga/
gans-with-pytorch, and (3) https://github.com/CW-Huang/CP-Flow.

Data In our experiments, we use following publicly available data: (1) the CIFAR-10 (Krizhevsky &
Hinton, 2009) dataset, released under the MIT license, and (2) the Github icon silhouette, which was
copied from https://github.com/CW-Huang/CP-Flow/blob/main/imgs/github.
png. CIFAR-10 is not known to contain personally identifiable information or offensive content.
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