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ABSTRACT

Learning policies from fixed offline datasets is a key challenge to scale up rein-
forcement learning (RL) algorithms towards practical applications. This is often
because off-policy RL algorithms suffer from distributional shift, due to mismatch
between dataset and the target policy, leading to high variance and over-estimation
of value functions. In this work, we propose variance regularization for offline
RL algorithms, using stationary distribution corrections. We show that by using
Fenchel duality, we can avoid double sampling issues for computing the gradient
of the variance regularizer. The proposed algorithm for offline variance regular-
ization (OVR) can be used to augment any existing offline policy optimization
algorithms. We show that the regularizer leads to a lower bound to the offline
policy optimization objective, which can help avoid over-estimation errors, and
explains the benefits of our approach across a range of continuous control domains
when compared to existing algorithms.

1 INTRODUCTION

Offline batch reinforcement learning (RL) algoithms are key towards scaling up RL for real world
applications, such as robotics (Levine et al., 2016) and medical problems . This is because offline
RL provides the appealing ability for agents to learn from fixed datasets, similar to supervised
learning, avoiding continual interaction with the environment, which could be problematic for safety
and feasibility reasons. However, significant mismatch between the fixed collected data and the
policy that the agent is considering can lead to high variance of value function estimates, a problem
encountered by most off-policy RL algorithms (Precup et al., 2000). A complementary problem is
that the value function can become overly optimistic in areas of state space that are outside the visited
batch, leading the agent in data regions where its behavior is poor Fujimoto et al. (2019). Recently
there has been some progress in offline RL (Kumar et al., 2019; Wu et al., 2019b; Fujimoto et al.,
2019), trying to tackle both of these problems.

In this work, we study the problem of offline policy optimization with variance minimization. To
avoid overly optimistic value function estimates, we propose to learn value functions under variance
constraints, leading to a pessimistic estimation, which can significantly help offline RL algorithms,
especially under large distribution mismatch. We propose a framework for variance minimization in
offline RL, such that the obtained estimates can be used to regularize the value function and enable
more stable learning under different off-policy distributions.

We develop a novel approach for variance regularized offline actor-critic algorithms, which we call
Offline Variance Regularizer (OVR). The key idea of OVR is to constrain the policy
improvement step via variance regularized value function estimates. Our algorithmic framework
avoids the double sampling issue that arises when computing gradients of variance estimates, by
instead considering the variance of stationary distribution corrections with per-step rewards, and
using the Fenchel transformation (Boyd & Vandenberghe, 2004) to formulate a minimax optimization
objective. This allows minimizing variance constraints by instead optimizing dual variables, resulting
in simply an augmented reward objective for variance regularized value functions.

We show that even with variance constraints, we can ensure policy improvement guarantees, where the
regularized value function leads to a lower bound on the true value function, which mitigates the usual
overestimation problems in batch RL The use of Fenchel duality in computing the variance allows
us to avoid double sampling, which has been a major bottleneck in scaling up variance-constrained
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actor-critic algorithms in prior work A. & Ghavamzadeh (2016); A. & Fu (2018). Practically, our
algorithm is easy to implement, since it simply involves augmenting the rewards with the dual
variables only, such that the regularized value function can be implemented on top of any existing
offline policy optimization algorithms. We evaluate our algorithm on existing offline benchmark tasks
based on continuous control domains. Our empirical results demonstrate that the proposed variance
regularization approach is particularly useful when the batch dataset is gathered at random, or when
it is very different from the data distributions encountered during training.

2 PRELIMINARIES AND BACKGROUND

We consider an infinite horizon MDP as (S,A,P, γ) where S is the set of states, A is the set
of actions, P is the transition dynamics and γ is the discount factor. The goal of reinforcement
learning is to maximize the expected return J (π) = Es∼dβ [V π(s)], where V π(s) is the value
function V π(s) = E[

∑∞
t=0 γ

tr(st, at) | s0 = s], and β is the initial state distribution. Considering
parameterized policies πθ(a|s), the goal is maximize the returns by following the policy gradient
(Sutton et al., 1999), based on the performance metric defined as :

J(πθ) = Es0∼ρ,a0∼π(s0)
[
Qπθ (s0, a0)

]
= E(s,a)∼dπθ (s,a)

[
r(s, a)

]
(1)

where Qπ(s, a) is the state-action value function, since V π(s) =
∑
a π(a|s)Qπ(s, a). The policy

optimization objective can be equivalently written in terms of the normalized discounted occu-
pancy measure under the current policy πθ, where dπ(s, a) is the state-action occupancy mea-
sure, such that the normalized state-action visitation distribution under policy π is defined as :
dπ(s, a) = (1 − γ)

∑∞
t=0 γ

tP (st = s, at = a|s0 ∼ β, a ∼ π(s0)). The equality in equation
1 holds and can be equivalently written based on the linear programming (LP) formulation in
RL (see (Puterman, 1994; Nachum & Dai, 2020) for more details). In this work, we consider
the off-policy learning problem under a fixed dataset D which contains s, a, r, s′ tuples under
a known behaviour policy µ(a|s). Under the off-policy setting, importance sampling (Precup
et al., 2000) is often used to reweight the trajectory under the behaviour data collecting policy,
such as to get unbiased estimates of the expected returns. At each time step, the importance
sampling correction π(at|st)

µ(at|st) is used to compute the expected return under the entire trajectory as

J(π) = (1 − γ)E(s,a)∼dµ(s,a)[
∑T
t=0 γ

tr(st, at)
(∏T

t=1
π(at|st)
µ(at|st

)
]. Recent works (Fujimoto et al.,

2019) have demonstrated that instead of importance sampling corrections, maximizing value func-
tions directly for deterministic or reparameterized policy gradients (Lillicrap et al., 2016; Fujimoto
et al., 2018) allows learning under fixed datasets, by addressing the over-estimation problem, by
maximizing the objectives of the form maxθ Es∼D

[
Qπθ (s, πθ(s)

]
.

3 VARIANCE REGULARIZATION VIA DUALITY IN OFFLINE POLICY
OPTIMIZATION

In this section, we first present our approach based on variance of stationary distribution corrections,
compared to importance re-weighting of episodic returns in section 3.1. We then present a derivation
of our approach based on Fenchel duality on the variance, to avoid the double sampling issue,
leading to a variance regularized offline optimization objective in section 3.2. Finally, we present our
algorithm in 1, where the proposed regularizer can be used in any existing offline RL algorithm.

3.1 VARIANCE OF REWARDS WITH STATIONARY DISTRIBUTION CORRECTIONS

In this work, we consider the variance of rewards under occupancy measures in offline policy
optimization. Let us denote the returns as Dπ =

∑T
t=0 γ

tr(st, at), such that the value function is
V π = Eπ[Dπ]. The 1-step importance sampling ratio is ρt =

π(at|st)
µ(at|st) , and the T-steps ratio can

be denoted ρ1:T =
∏T
t=1 ρt. Considering per-decision importance sampling (PDIS) (Precup et al.,

2000), the returns can be similarly written as Dπ =
∑T
t=0 γ

trtρ0:t. The variance of episodic returns,
which we denote by VP(π), with off-policy importance sampling corrections can be written as :

VP(π) = Es∼β,a∼µ(·|s),s′∼P(·|s,a)
[(
Dπ(s, a)− J(π)

)2]
.
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Instead of importance sampling, several recent works have instead proposed for marginalized impor-
tance sampling with stationary state-action distribution corrections (Liu et al., 2018; Nachum et al.,
2019a; Zhang et al., 2020; Uehara & Jiang, 2019), which can lead to lower variance estimators at the
cost of introducing bias. Denoting the stationary distribution ratios as ω(s, a) = dπ(s,a)

dµ(s,a)
, the returns

can be written as Wπ(s, a) = ω(s, a)r(s, a). The variance of marginalized IS is :

VD(π) = E(s,a)∼dµ(s,a)

[(
Wπ(s, a)− J(π)

)2]
= E(s,a)∼dµ(s,a)

[
Wπ(s, a)2

]
− E(s,a)∼dµ(s,a)

[
Wπ(s, a)

]2
(2)

Our key contribution is to first consider the variance of marginalized IS VD(π) itself a as risk
constraints, in the offline batch optimization setting. We show that constraining the offline policy opti-
mization objective with variance of marginalized IS, and using the Fenchel-Legendre transformation
on VD(π) can help avoid the well-known double sampling issue in variance risk constrained RL (for
more details on how to compute the gradient of the variance term, see appendix B). We emphasize
that the variance here is solely based on returns with occupancy measures, and we do not consider
the variance due to the inherent stochasticity of the MDP dynamics.

3.2 VARIANCE REGULARIZED OFFLINE MAX-RETURN OBJECTIVE

We consider the variance regularized off-policy max return objective with stationary distribution
corrections ωπ/D (which we denote ω for short for clarity) in the offline fixed dataset D setting:

max
πθ

J(πθ) := Es∼D
[
Qπθ (s, πθ(s))

]
− λVD(ω, πθ) (3)

where λ ≥ 0 allows for the trade-off between offline policy optimization and variance regularization
(or equivalently variance risk minimization). The max-return objective under Qπθ (s, a) has been
considered in prior works in offline policy optimization (Fujimoto et al., 2019; Kumar et al., 2019).
We show that this form of regularizer encourages variance minimization in offline policy optimization,
especially when there is a large data distribution mismatch between the fixed dataset D and induced
data distribution under policy πθ.

3.3 VARIANCE REGULARIZATION VIA FENCHEL DUALITY

At first, equation 3 seems to be difficult to optimize, especially for minimizing the variance regular-
ization w.r.t θ. This is because finding the gradient of V(ω, πθ) would lead to the double sampling
issue since it contains the squared of the expectation term. The key contribution of OVR is to use the
Fenchel duality trick on the second term of the variance expression in equation 2, for regularizing
policy optimization objective with variance of marginalized importance sampling. Applying Fenchel
duality, x2 = maxy(2xy − y2), to the second term of variance expression, we can transform the
variance minimization problem into an equivalent maximization problem, by introducing the dual
variables ν(s, a). We have the Fenchel conjugate of the variance term as :

V(ω, πθ) = max
ν

{
− 1

2
ν(s, a)2 + ν(s, a)ω(s, a)r(s, a) + E(s,a)∼dD

[
ω(s, a)r(s, a)2

]}
= max

ν
E(s,a)∼dD

[
− 1

2
ν(s, a)2 + ν(s, a)ω(s, a)r(s, a) + ω(s, a)r(s, a)2

] (4)

Regularizing the policy optimization objective with variance under the Fenchel transformation, we
therefore have the overall max-min optimization objective, explicitly written as :

max
θ

min
ν
J(πθ, ν) := Es∼D

[
Qπθ (s, πθ(s))

]
−λE(s,a)∼dD

[(
− 1

2
ν2+ν ·ω ·r+ω ·r2

)
(s, a)

]
(5)

3.4 AUGMENTED REWARD OBJECTIVE WITH VARIANCE REGULARIZATION

In this section, we explain the key steps that leads to the policy improvement step being an augmented
variance regularized reward objective. The variance minimization step involves estimating the
stationary distribution ration (Nachum et al., 2019a), and then simply computing the closed form
solution for the dual variables. Fixing dual variables ν, to update πθ, note that this leads to a standard
maximum return objective in the dual form, which can be equivalently solved in the primal form,
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using augmented rewards. This is because we can write the above above in the dual form as :

J(πθ, ν, ω) := E(s,a)∼dD(s,a)

[
ω(s, a) · r(s, a)− λ

(
− 1

2
ν2 + ν · ω · r + ω · r2

)
(s, a)

]
= E(s,a)∼dD(s,a)

[
ω(s, a) ·

(
r − λ · ν · r − λ · r2

)
(s, a) +

λ

2
ν(s, a)2

]
= E(s,a)∼dD(s,a)

[
ω(s, a) · r̃(s, a) + λ

2
ν(s, a)2

]
(6)

where we denote the augmented rewards as :
r̃(s, a) ≡ [r − λ · ν · r − λ · r2](s, a) (7)

The policy improvement step can either be achieved by directly solving equation 6 or by considering
the primal form of the objective with respect to Qπθ (s, πθ) as in (Fujimoto et al., 2019; Kumar et al.,
2019). However, solving equation 6 directly can be troublesome, since the policy gradient step
involves findinding the gradient w.r.t ω(s, a) = dπθ (s,a)

dD(s,a) too, where the distribution ratio depends
on dπθ (s, a). This means that the gradient w.r.t θ would require finding the gradient w.r.t to the
normalized discounted occupancy measure, ie,∇θdπθ (s). Instead, it is therefore easier to consider the
augmented reward objective, using r̃(s, a) as in equation 7 in any existing offline policy optimization
algorithm, where we have the variance regularized value function Q̃πθ (s, a).

Note that as highlighted in (Sobel, 1982), the variance of returns follows a Bellman-like equation.
Following this, (Bisi et al., 2019) also pointed to a Bellman-like solution for variance w.r.t occupancy
measures. Considering variance of the form in equation 2, and the Bellman-like equation for variance,
we can write the variance recursively as a Bellman equation:

VπD(s, a) =
(
r(s, a)− J(π)

)2
+ γEs′∼P,a′∼π′(·|s′)

[
VπD(s′, a′)

]
(8)

Since in our objective, we augment the policy improvement step with the variance regularization term,
we can write the augmented value function as Qπλ(s, a) := Qπ(s, a)− λVπD(s, a). This suggests we
can modify existing policy optimization algorithms with augmented rewards on value function.

Remark : Applying Fenchel transformation to the variance regularized objective, however, at first
glance, seems to make the augmented rewards dependent on the policy itself, since r̃(s, a) depends
on the dual variables ν(s, a) as well. This can make the rewards non-stationary, thereby the policy
maximization step cannot be solved directly via the maximum return objective. However, as we
discuss next, the dual variables for minimizing the variance term has a closed form solution ν(s, a),
and thereby does not lead to any non-stationarity in the rewards, due to the alternating minimization
and maximization steps.

Variance Minimization Step : Fixing the policy πθ, the dual variables ν can be obtained using
closed form solution given by ν(s, a) = ω(s, a) · r̃(s, a). Note that directly optimizing for the target
policies using batch data, however, requires a fixed point estimate of the stationary distribution
corrections, which can be achieved using existing algorithms (Nachum et al., 2019a; Liu et al., 2018).
Solving the optimization objective additionally requires estimating the state-action distribution ratio,
ω(s, a) = dπ(s,a)

dD(s,a) . Recently, several works have proposed estimating the stationary distribution ratio,
mostly for the off-policy evaluation case in infinite horizon setting (Zhang et al., 2020; Uehara &
Jiang, 2019). We include a detailed discussion of this in appendix E.4.

Algorithm : Our proposed variance regularization approach with returns under stationary distribution
corrections for offline optimization can be built on top of any existing batch off-policy optimization
algorithms. We summarize our contributions in Algorithm 1. Implementing our algorithm requires
estimating the state-action distribution ratio, followed by the closed form estimate of the dual variable
ν. The augmented stationary reward with the dual variables can then be used to compute the
regularized value function Qπλ(s, a). The policy improvement step involves maximizing the variance
regularized value function, e.g with BCQ (Fujimoto et al., 2019).

4 THEORETICAL ANALYSIS

In this section, we provide theoretical analysis of offline policy optimization algorithms in terms of
policy improvement guarantees under fixed dataset D. Following then, we demonstrate that using the
variance regularizer leads to a lower bound for our policy optimization objective, which leads to a
pessimistic exploitation approach for offline algorithms.
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Algorithm 1 Offline Variance Regularizer

Initialize critic Qφ, policy πθ, network ωψ and regularization weighting λ; learning rate η
for t = 1 to T do

Estimate distribution ratio ωψ(s, a) using any existing DICE algorithm
Estimate the dual variable ν(s, a) = ωψ(s, a) · r̃(s, a)
Calculate augmented rewards r̃(s, a) using equation 7
Policy improvement step using any offline policy optimization algorithm with augmented
rewards r̃(s, a) : θt = θt−1 + η∇θJ(θ, φ, ψ, ν)

end for

4.1 VARIANCE OF MARGINALIZED IMPORTANCE SAMPLING AND IMPORTANCE SAMPLING

We first show in lemma 1 that the variance of rewards under stationary distribution corrections can
similarly be upper bounded based on the variance of importance sampling corrections. We emphasize
that in the off-policy setting under distribution corrections, the variance is due to the estimation of the
density ratio compared to the importance sampling corrections.
Lemma 1. The following inequality holds between the variance of per-step rewards under stationary
distribution corrections, denoted by VD(π) and the variance of episodic returns with importance
sampling corrections VP(π)

VP(π) ≤
VD(π)
(1− γ)2

(9)

The proof for this and discussions on the variance of episodic returns compared to per-step rewards
under occupancy measures is provided in the appendix B.1.

4.2 POLICY IMPROVEMENT BOUND UNDER VARIANCE REGULARIZATION

In this section, we establish performance improvement guarantees (Kakade & Langford, 2002) for
variance regularized value function for policy optimization. Let us first recall that the performance
improvement can be written in terms of the total variation DTV divergence between state distributions
(Touati et al., 2020) (for more discussions on the performance bounds, see appendix C)
Lemma 2. For all policies π′ and π, we have the performance improvement bound based on the
total variation of the state-action distributions dπ′ and dπ

J(π′) ≥ Lπ(π′)− επDTV(dπ′ ||dπ) (10)

where επ = maxs |Ea∼π′(·|s)[Aπ(s, a)]|, and Lπ(π′) = J(π) + Es∼dπ,a∼π′ [Aπ(s, a)]. For detailed
proof and discussions, see appendix C. Instead of considering the divergence between state visitation
distributions, consider having access to both state-action samples generated from the environment.
To avoid importance sampling corrections we can further considers the bound on the objective based
on state-action visitation distributions, where we have an upper bound following from (Nguyen et al.,
2010) : DTV(dπ′(s)||dπ(s)) ≤ DTV(dπ′(s, a)||dπ(s, a)). Following Pinsker’s inequality, we have:

J(π′) ≥ J(π)+Es∼dπ(s),a∼π′(|s)
[
Aπ(s, a)

]
−επE(s,a)∼dπ(s,a)

[√
DKL(dπ′(s, a)||dπ(s, a))

]
(11)

Furthermore, we can exploit the relation between KL, total variation (TV) and variance through the
variational representation of divergence measures. Recall that the total divergence between P and Q
distributions is given by : DTV(p, q) =

1
2

∑
x |p(x)−q(x)|. We can use the variational representation

of the divergence measure. Denoting dπ(s, a) = βπ′(s, a), we have

DTV(βπ′ ||βπ) = supf :S×A→R

[
E(s,a)∼βπ′ [f(s, a)]− E(s,a)∼β(s,a)[φ

∗ ◦ f(s, a)]
]

(12)

where φ∗ is the convex conjugate of φ and f is the dual function class based on the variational
representation of the divergence. Similar relations with the variational representations of f-divergences
have also been considered in (Nachum et al., 2019b; Touati et al., 2020). We can finally obtain a
bound for the policy improvement following this relation, in terms of the per-step variance:
Theorem 1. For all policies π and π′, and the corresponding state-action visitation distributions
dπ′ and dπ , we can obtain the performance improvement bound in terms of the variance of rewards
under state-action occupancy measures.

J(π′)− J(π) ≥ Es∼dπ(s),a∼π′(a|s)[A
π(s, a)]− Var(s,a)∼dπ(s,a)

[
f(s, a)

]
(13)
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where f(s, a) is the dual function class from the variational representation of variance.

Proof. For detailed proof, see appendix C.1.

4.3 LOWER BOUND OBJECTIVE WITH VARIANCE REGULARIZATION

In this section, we show that augmenting the policy optimization objective with a variance regularizer
leads to a lower bound to the original optimization objectiven J(πθ). Following from (Metelli
et al., 2018), we first note that the variance of marginalized importance weighting with distribution
corrections can be written in terms of the α−Renyi divergence. Let p and q be two probability

measures, such that the Renyi divergence is Fα = 1
α log

∑
x q(x)

(
p(x)
q(x)

)α
. When α = 1, this leads

to the well-known KL divergence F1(p||q) = FKL(p||q).
Let us denote the state-action occupancy measures under π and dataset D as dπ and dD. The
variance of state-action distribution ratios is Var(s,a)∼dD(s,a)[ωπ/D(s, a)]. When α = 2 for the Renyi
divergence, we have :

Var(s,a)∼dD(s,a)[ωπ/D(s, a)] = F2(dπ||dD)− 1 (14)
Following from (Metelli et al., 2018), and extending results from importance sampling ρ to marginal-
ized importance sampling ωπ/D, we provide the following result that bounds the variance of the
approximated density ratio ω̂π/D in terms of the Renyi divergence :

Lemma 3. Assuming that the rewards of the MDP are bounded by a finite constant, ||r||∞ ≤ Rmax.
Given random variable samples (s, a) ∼ dD(s, a) from dataset D, for any N > 0, the variance of
marginalized importance weighting can be upper bounded as :

Var(s,a)∼dD(s,a)

[
ω̂π/D(s, a)

]
≤ 1

N
||r||2∞F2(dπ||dD) (15)

See appendix D.1 for more details. Following this, our goal is to derive a lower bound objective to
our off-policy optimization problem. Concentration inequalities has previously been studied for both
off-policy evaluation (Thomas et al., 2015a) and optimization (Thomas et al., 2015b). In our case, we
can adapt the concentration bound derived from Cantelli’s ineqaulity and derive the following result
based on variance of marginalized importance sampling. Under state-action distribution corrections,
we have the following lower bound to the off-policy policy optimization objective with stationary
state-action distribution corrections

Theorem 2. Given state-action occupancy measures dπ and dD, and assuming bounded reward
functions, for any 0 < δ ≤ 1 and N > 0, we have with probability at least 1− δ that :

J(π) ≥ E(s,a)∼dD(s,a)

[
ωπ/D(s, a) · r(s, a)

]
−
√

1− δ
δ

Var(s,a)∼dD(s,a)[ωπ/D(s, a) · r(s, a)] (16)

Equation 16 shows the lower bound policy optimization objective under risk-sensitive variance
constraints. The key to our derivation in equation 16 of theorem 2 shows that given off-policy batch
data collected with behaviour policy µ(a|s), we are indeed optimizing a lower bound to the policy
optimization objective, which is regularized with a variance term to minimize the variance in batch
off-policy learning.

5 EXPERIMENTAL RESULTS ON BENCHMARK OFFLINE CONTROL TASKS

Experimental Setup : We demonstrate the significance of variance regularizer on a range of continuous
control domains (Todorov et al., 2012) based on fixed offline datasets from (Fu et al., 2020), which is a
standard benchmark for offline algorithms. To demonstrate the significance of our variance regularizer
OVR, we mainly use it on top of the BCQ algorithm and compare it with other existing baselines, using
the benchmark D4RL (Fu et al., 2020) offline datasets for different tasks and off-policy distributions.
Experimental results are given in table 1

Performance on Optimal and Medium Quality Datasets : We first evaluate the performance of
OVR when the dataset consists of optimal and mediocre logging policy data. We collected the dataset
using a fully (expert) or partially (medium) trained SAC policy. We build our algorithm OVR on top of
BCQ, denoted by BCQ + VAR. Note that the OVR algorithm can be agnostic to the behaviour policy
too for computing the distribution ratio (Nachum et al., 2019a) and the variance. We observe that even
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Domain Task Name BCQ+OVR BCQ BEAR BRAC-p aDICE SAC-off

Gym

halfcheetah-random 0.00 0.00 25.1 24.1 -0.3 30.5
hopper-random 9.51 9.65 11.4 11 0.9 11.3
walker-random 5.16 0.48 7.3 -0.2 0.5 4.1
halfcheetah-medium 35.6 34.9 41.7 43.8 -2.2 -4.3
hopper-medium 71.24 57.76 52.1 32.7 1.2 0.9
walker-medium 33.90 27.13 59.1 77.5 0.3 0.8
halfcheetah-expert 100.02 97.99 - - - -
hopper-expert 108.41 98.36 - - - -
walker-expert 71.77 72.93 - - - -
halfcheetah-medium-expert 59.52 54.12 53.4 44.2 -0.8 1.8
hopper-medium-expert 44.68 37.20 96.3 1.9 1.1 -0.1
walker-medium-expert 34.53 29.00 40.1 76.9 0.4 1.6
halfcheetah-mixed 29.95 29.91 - - - -
hopper-mixed 16.36 10.88 - - - -
walker-mixed 14.74 10.23 - - - -

FrankaKitchen
kitchen-complete 4.48 3.38 0 0 0 15
kitchen-partial 25.65 19.11 13.1 0 0 0
kitchen-mixed 30.59 23.55 47.2 0 2.5 2.5

Table 1: The results on D4RL tasks compare BCQ (Fujimoto et al., 2019) with and without OVR, bootstrapping
error reduction (BEAR) (Kumar et al., 2019), behavior-regularized actor critic with policy (BRAC-p) (Wu et al.,
2019a), AlgeaDICE (aDICE) (Nachum et al., 2019b) and offline SAC (SAC-off) (Haarnoja et al., 2018). The
results presented are the normalized returns on the task as per Fu et al. (2020) (see Table 3 in Fu et al. (2020) for
the unnormalized scores on each task). We see that in most tasks we are able to significant gains using OVR. Our
algorithm can be applied to any policy optimization baseline algorithm that trains the policy by maximizing the
expected rewards. Unlike BCQ, BEAR (Kumar et al., 2019) does not have the same objective, as they train the
policy using and MMD objective.

though performance is marginally improved with OVR under expert settings, since the demonstrations
are optimal itself, we can achieve significant improvements under medium dataset regime. This is
because OVR plays a more important role when there is larger variance due to distribution mismatch
between the data logging and target policy distributions. Experimental results are shown in first two
columns of figure 1.

Performance on Random and Mixed Datasets : We then evaluate the performance on random
datasets, i.e, the worst-case setup when the data logging policy is a random policy, as shown in the
last two columns of figure 1. As expected, we observe no improvements at all, and even existing
baselines such as BCQ (Fujimoto et al., 2019) can work poorly under random dataset setting. When
we collect data using a mixture of random and mediocre policy, denoted by mixed, the performance
is again improved for OVR on top of BCQ, especially for the Hopper and Walker control domains.
We provide additional experimental results and ablation studies in appendix E.1.

6 RELATED WORKS

We now discuss related works in offline RL, for evaluation and opimization, and its relations to
variance and risk sensitive algorithms. We include more discussions of related works in appendix A.1.
In off-policy evaluation, per-step importance sampling (Precup et al., 2000; 2001) have previously
been used for off-policy evaluation function estimators. However, this leads to high variance
estimators, and recent works proposed using marginalized importance sampling, for estimating
stationary state-action distribution ratios (Liu et al., 2018; Nachum et al., 2019a; Zhang et al., 2019),
to reduce variance but with additional bias. In this work, we build on the variance of marginalized
IS, to develop variance risk sensitive offline policy optimization algorithm. This is in contrast to
prior works on variance constrained online actor-critic (A. & Ghavamzadeh, 2016; Chow et al., 2017;
Castro et al., 2012) and relates to constrained policy optimization methods (Achiam et al., 2017;
Tessler et al., 2019).

For offline policy optimization, several works have recently addressed the overestimation problem in
batch RL (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019b), including the very recently
proposed Conservative Q-Learning (CQL) algorithm (Kumar et al., 2020). Our work is done in
parallel to CQL, due to which we do not include it as a baseline in our experiments. CQL learns a
value function which is guaranteed to lower-bound the true value function. This helps prevent value
over-estimation for out-of-distribution (OOD) actions, which is an important issue in offline RL. We

7
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(a) Cheetah Expert (b) Cheetah Medium (c) Cheetah Random (d) Cheetah Mixed

(e) Hopper Expert (f) Hopper Medium (g) Hopper Random (h) Hopper Mixed

(i) Walker Expert (j) Walker Medium (k) Walker Random (l) Walker Mixed

Figure 1: Evaluation of the proposed approach and the baseline BCQ (Fujimoto et al., 2019) on a suite of three
OpenAI Gym environments. Details about the type of offline dataset used for training, namely random, medium,
mixed, and expert are included in Appendix. Results are averaged over 5 random seeds (Henderson et al., 2018).
We evaluate the agent using standard procedures, as in Kumar et al. (2019); Fujimoto et al. (2019)

.

note that our approach is orthogonal to CQL in that CQL introduces a regularizer on the state action
value function Qπ(s, a) based on the Bellman error (the first two terms in equation 2 of CQL), while
we introduce a variance regularizer on the stationary state distribution dπ(s). Since the value of a
policy can be expressed in two ways - either through Qπ(s, a) or occupancy measures dπ(s), both
CQL and our paper are essentially motivated by the same objective of optimizing a lower bound
on J(θ), but through different regularizers. Our work can also be considered similar to AlgaeDICE
(Nachum et al., 2019b), since we introduce a variance regularizer based on the distribution corrections,
instead of minimizing the f-divergence between stationary distributions in AlgaeDICE. Both our
work and AlgaeDICE considers the dual form of the policy optimization objective in the batch
setting, where similar to the Fenchel duality trick on our variance term, AlgaeDICE instead uses the
variational form, followed by the change of variables tricks, inspired from (Nachum et al., 2019a) to
handle their divergence measure.

7 DISCUSSION AND CONCLUSION

We proposed a new framework for offline policy optimization with variance regularization called OVR,
to tackle high variance issues due to distribution mismatch in offline policy optimization. Our work
provides a practically feasible variance constrained actor-critic algorithm that avoids double sampling
issues in prior variance risk sensitive algorithms (Castro et al., 2012; A. & Ghavamzadeh, 2016).
The presented variance regularizer leads to a lower bound to the true offline optimization objective,
thus leading to pessimistic value function estimates, avoiding both high variance and overestimation
problems in offline RL. Experimentally, we evaluate the significance of OVR on standard benchmark
offline datasets, with different data logging off-policy distributions, and show that OVR plays a more
significant role when there is large variance due to distribution mismatch. While we only provide
a variance related risk sensitive approach for offline RL, for future work, it would be interesting
other risk sensitive approaches (Chow & Ghavamzadeh, 2014; Chow et al., 2017) and examine its
significance in batch RL. We hope our proposed variance regularization framework would provide
new opportunities for developing practically robust risk sensitive offline algorithms.

8
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ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 1582–1591, 2018.

9

https://doi.org/10.1007/s10994-016-5569-5
http://proceedings.mlr.press/v70/achiam17a.html
http://proceedings.mlr.press/v70/achiam17a.html
https://arxiv.org/abs/1907.04543
https://arxiv.org/abs/1907.04543
http://arxiv.org/abs/1912.03193
http://icml.cc/2012/papers/489.pdf
http://icml.cc/2012/papers/489.pdf
http://papers.nips.cc/paper/5246-algorithms-for-cvar-optimization-in-mdps
http://papers.nips.cc/paper/5246-algorithms-for-cvar-optimization-in-mdps
http://jmlr.org/papers/v18/15-636.html
http://proceedings.mlr.press/v80/dai18c.html
http://proceedings.mlr.press/v80/dai18c.html
https://arxiv.org/abs/2003.00534
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219


Under review as a conference paper at ICLR 2021

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, pp. 2052–2062, 2019. URL http://
proceedings.mlr.press/v97/fujimoto19a.html.

Javier Garcı́a, Fern, and o Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(42):1437–1480, 2015. URL http://jmlr.org/
papers/v16/garcia15a.html.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. CoRR, abs/1406.2661,
2014. URL http://arxiv.org/abs/1406.2661.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
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A APPENDIX : ADDITIONAL DISCUSSIONS

A.1 EXTENDED RELATED WORK

Other related works : Several other prior works have previously considered the batch RL setting
(Lange et al., 2012) for off-policy evaluation, counterfactual risk minimization (Swaminathan &
Joachims, 2015a;b), learning value based methods such as DQN (Agarwal et al., 2019), and others
(Kumar et al., 2019; Wu et al., 2019b). Recently, batch off-policy optimization has also been
introduced to reduce the exploitation error (Fujimoto et al., 2019) and for regularizing with arbitrary
behaviour policies (Wu et al., 2019b). However, due to the per-step importance sampling corrections
on episodic returns (Precup et al., 2000), off-policy batch RL methods is challenging. In this work,
we instead consider marginalized importance sampling corrections and correct for the stationary state-
action distributions (Nachum et al., 2019a; Uehara & Jiang, 2019; Zhang et al., 2020). Additionally,
under the framework of Constrained MDPs (Altman & Asingleutility, 1999), risk-sensitive and
constrained actor-critic algorithms have been proposed previously (Chow et al., 2017; Chow &
Ghavamzadeh, 2014; Achiam et al., 2017). However, these works come with their own demerits, as
they mostly require minimizing the risk (ie, variance) term, where finding the gradient of the variance
term often leads a double sampling issue (Baird, 1995). We avoid this by instead using Fenchel
duality (Boyd & Vandenberghe, 2004), inspired from recent works (Nachum & Dai, 2020; Dai et al.,
2018) and cast risk constrained actor-critic as a max-min optimization problem. Our work is closely
related to (Bisi et al., 2019), which also consider per-step variance of returns, w.r.t state occupancy
measures in the on-policy setting, while we instead consider the batch off-policy optimization setting
with per-step rewards w.r.t stationary distribution corrections.

Constrained optimization has previously been studied in in reinforcement learning for batch policy
learning (Le et al., 2019), and optimization (Achiam et al., 2017), mostly under the framework of
constrained MDPs (Altman & Asingleutility, 1999). In such frameworks, the cumulative return
objective is augmented with a set of constraints, for safe exploration (Garcı́a et al., 2015; Perkins &
Barto, 2003; Ding et al., 2020), or to reduce risk measures (Chow et al., 2017; A. & Fu, 2018; Castro
et al., 2012). Batch learning algorithms (Lange et al., 2012) have been considered previously for
counterfactual risk minimization and generalization (Swaminathan & Joachims, 2015a;b) and policy
evaluation (Thomas et al., 2015a; Li et al., 2015), although little has been done for constrained offline
policy based optimization. This raises the question of how can we learn policies in RL from fixed
offline data, similar to supervised or unsupervised learning.

A.2 WHAT MAKES OFFLINE OFF-POLICY OPTIMIZATION DIFFICULT?

Offline RL optimization algorithms often suffer from distribution mismatch issues, since the under-
lying data distribution in the batch data may be quite different from the induced distribution under
target policies. Recent works (Fujimoto et al., 2019; Kumar et al., 2019; Agarwal et al., 2019; Kumar
et al., 2020) have tried to address this, by avoiding overestimation of Q-values, which leads to the
extraplation error when bootstrapping value function estimates. This leads to offline RL agents
generalizing poorly for unseen regions of the dataset. Additionally, due to the distribution mismatch,
value function estimates can also have large variance, due to which existing online off-policy algo-
rithms (Haarnoja et al., 2018; Lillicrap et al., 2016; Fujimoto et al., 2018) may fail without online
interactions with the environment. In this work, we address the later problem to minimize variance of
value function estimates through variance related risk constraints.

B APPENDIX : PER-STEP VERSUS EPISODIC VARIANCE OF RETURNS

Following from (Castro et al., 2012; A. & Ghavamzadeh, 2016), let us denote the returns with
importance sampling corrections in the off-policy learning setting as :

Dπ(s, a) =

T∑
t=0

γtr(st, at)
( T∏
t=1

π(at | st)
µ(at | st)

)
| s0 = s, a0 = a, τ ∼ µ (17)

From this definition in equation 17, the action-value function, with off-policy trajectory-wise im-
portance correction is Qπ(s, a) = E(s,a)∼dµ(s,a)[D

π(s, a)], and similarly the value function can
be defined as : V π(s) = Es∼dµ(s)[Dπ(s)]. For the trajectory-wise importance corrections, we can
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define the variance of the returns, similar to (A. & Fu, 2018) as :
VP(π) = E(s,a)∼dµ(s,a)[D

π(s, a)2]− E(s,a)∼dµ(s,a)[D
π(s, a)]2 (18)

where note that as in (Sobel, 1982), equation 18 also follows a Bellman like equation, although due to
lack of monotonocitiy as required for dynamic programming (DP), such measures cannot be directly
optimized by standard DP algorithms (A. & Fu, 2018).

In contrast, if we consider the variance of returns with stationary distribution corrections (Nachum
et al., 2019a; Liu et al., 2018), rather than the product of importance sampling ratios, the variance
term involves weighting the rewards with the distribution ratio ωπ/µ. Typically, the distribution ratio
is approximated using a separate function class (Uehara & Jiang, 2019), such that the variance can be
written as :

Wπ(s, a) = ωπ/D(s, a) · r(s, a) | s = s, a ∼ π(· | s), (s, a) ∼ dD(s, a) (19)
where we denote D as the data distribution in the fixed dataset, collected by either a known or
unknown behaviour policy. The variance of returns under occupancy measures is therefore given by :

VD(π) = E(s,a)∼dD(s,a)

[
Wπ(s, a)2

]
− E(s,a)∼dD(s,a)

[
Wπ(s, a)

]2
(20)

where note that the variance expression in equation 20 depends on the square of the per-step rewards
with distribution correction ratios. We denote this as the dual form of the variance of returns, in
contrast to the primal form of the variance of expected returns (Sobel, 1982).

Note that even though the variance term under episodic per-step importance sampling corrections
in equation 18 is equivalent to the variance with stationary distribution corrections in equation 20,
following from (Bisi et al., 2019), considering per-step corrections, we will show that the variance
with distribution corrections indeed upper bounds the variance of importance sampling corrections.
This is an important relationship, since constraining the policy improvement step under variance
constraints with occupancy measures therefore allows us to obtain a lower bound to the offline
optimization objective, similar to (Kumar et al., 2020).

B.1 PROOF OF LEMMA 1 : VARIANCE INEQUALITY

Following from (Bisi et al., 2019), we show that the variance of per-step rewards under occupancy
measures, denoted by VD(π) upper bounds the variance of episodic returns VP(π).

VP(π) ≤
VD(π)
(1− γ)2

(21)

Proof. Proof of Lemma 1 following from (Bisi et al., 2019) is as follows. Denoting the returns, as
above, but for the on-policy case with trajectories under π, as Dπ(s, a) =

∑∞
t=0 γ

tr(st, at), and

denoting the return objective as J(π) = Es0∼ρ,at∼π(·|st),s′∼P
[
Dπ(s, a)

]
, the variance of episodic

returns can be written as :

VP(π) = E(s,a)∼dπ(s,a)

[(
Dπ(s, a)− J(π)

(1− γ)

)2]
(22)

= E(s,a)∼dπ(s,a)

[
(Dπ(s, a))2

]
+

J(π)

(1− γ)2
− 2J(π)

(1− γ)
E(s,a)∼dπ(s,a)

[
Dπ(s, a)

]
(23)

= E(s,a)∼dπ(s,a)

[
Dπ(s, a)2

]
− J(π)2

(1− γ)2
(24)

Similarly, denoting returns under occupancy measures as Wπ(s, a) = dπ(s, a)r(s, a), and the
returns under occupancy measures, equivalently written as J(π) = E(s,a)∼dπ(s,a)[r(s, a)] based on
the primal and dual forms of the objective (Uehara & Jiang, 2019; Nachum & Dai, 2020), we can
equivalently write the variance as :

VD(π) = E(s,a)∼dπ(s,a)

[(
r(s, a)− J(π)

)2]
(25)

= E(s,a)∼dπ(s,a)

[
r(s, a)2

]
+ J(π)2 − 2J(π)E(s,a)∼dπ(s,a)[r(s, a)] (26)

= E(s,a)∼dπ(s,a)

[
r(s, a)2

]
− J(π)2 (27)
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Following from equation 22 and 25, we therefore have the following inequality :

(1− γ)2Es0∼ρ,a∼π
[
Dπ(s, a)2

]
≤ (1− γ)2Es0∼ρ,a∼π

[( ∞∑
t=0

γt
)( ∞∑

t=0

γtr(st, at)
2
)]

(28)

= (1− γ)Es0∼ρ,a∼π
[ ∞∑
t=0

γtr(st, at)
2
]

(29)

= E(s,a)∼dπ(s,a)

[
r(s, a)2

]
(30)

where the first line follows from Cauchy-Schwarz inequality. This concludes the proof.

We can further extend lemma 1, for off-policy returns under stationary distribution corrections (ie,
marginalized importance sampling) compared importance sampling. Recall that we denote the
variance under stationary distribution corrections as :

VD(π) = E(s,a)∼dD(s,a)

[(
ωπ/D(s, a) · r(s, a)− J(π)

)2]
(31)

= E(s,a)∼dD(s,a)

[
ωπ/D(s, a)

2 · r(s, a)2
]
− J(π)2 (32)

where J(π) = E(s,a)∼dD(s,a)

[
ωπ/D(s, a) · r(s, a)

]
. We denote the episodic returns with importance

sampling corrections as : Dπ =
∑T
t=0 γ

trtρ0:t. The variance, as denoted earlier is given by :

VP(π) = E(s,a)∼dπ(s,a)

[
Dπ(s, a)2

]
− J(π)2

(1− γ)2
(33)

We therefore have the following inequality

(1− γ)2Es0∼ρ,a∼π
[
Dπ(s, a)2

]
≤ (1− γ)2Es0∼ρ,a∼π

[( T∑
t=0

γt
)( T∑

t=0

γtr(st, at)
2
)( T∏

t=0

π(at|st)
µD(at|st)

)2]
= (1− γ)Es0∼ρ,a∼π

[ ∞∑
t=0

γtr(st, at)
2
( T∏
t=0

π(at|st)
µD(at|st)

)2]
(34)

= E(s,a)∼dD(s,a)

[
ωπ/D(s, a)

2 · r(s, a)2
]

(35)
which shows that lemma 1 also holds for off-policy returns with stationary distribution corrections.

B.2 DOUBLE SAMPLING FOR COMPUTING GRADIENTS OF VARIANCE

The gradient of the variance term often leads to the double sampling issue, thereby making it
impractical to use. This issue has also been pointed out by several other works (A. & Ghavamzadeh,
2016; Castro et al., 2012; Chow et al., 2017), since the variance involves the squared of the objective
function itself. Recall that we have:

VD(θ) = E(s,a)∼dD

[
ωπ/D(s, a) · r(s, a)2

]
−
{
E(s,a)∼dD

[
ωπ/D(s, a) · r(s, a)

]}2

(36)
The gradient of the variance term is therefore :

∇θVD(θ) = ∇θE(s,a)∼dD

[
ωπ/D(s, a) · r(s, a)2

]
− 2 ·

{
E(s,a)∼dD

[
ωπ/D(s, a) · r(s, a)

]}
· ∇θ

{
E(s,a)∼dD

[
ωπ/D(s, a) · r(s, a)

]}
(37)

where equation 37 requires multiple samples to compute the expectations in the second term. To see
why this is true, let us denote

J(θ) = EdD(s,a)

[
ωπ/D(s, a)︸ ︷︷ ︸ ·r(s, a)IS(ω,πθ)

]
where we have IS(ω, πθ) as the returns in short form. The variance of the returns with the stationary
state-action distribution corrections can therefore be written as :

VD(θ) = EdD(s,a)

[
IS(ω, πθ)2

]
︸ ︷︷ ︸

(a)

−EdD(s,a)

[
IS(ω, πθ)

]2
︸ ︷︷ ︸

(b)

(38)
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We derive the gradient of each of the terms in (a) and (b) in equation 38 below. First, we find the
gradient of the variance term w.r.t θ :

∇θEdD(s,a)

[
IS(ω, πθ)2

]
= ∇θ

∑
s,a

dD(s, a)IS(ω, πθ)2 =
∑
s,a

dD(s, a)∇θIS(ω, πθ)2

=
∑
s,a

dD(s, a) · 2 · IS(ω, πθ) · IS(ω, πθ) · ∇θ log πθ(a | s)

= 2 ·
∑
s,a

dD(s, a)IS(ω, πθ)2∇θ log πθ(a | s)

= 2 · EdD(s,a)

[
IS(ω, πθ)2 · ∇θ log πθ(a | s)

]
(39)

Equation 39 interestingly shows that the variance of the returns w.r.t πθ has a form similar to the policy
gradient term, except the critic estimate in this case is given by the importance corrected returns,
since IS(ω, πθ) = [ωπ/D(s, a) · r(s, a)]. We further find the gradient of term (b) from equation 38.
Finding the gradient of this second term w.r.t θ is therefore :

∇θEdD(s,a)

[
IS(ω, πθ)

]2
= ∇θJ(θ)2 = 2 · J(θ) · EdD(s,a)

[
ωπ/D · {∇θ log πθ(a | s) ·Qπ(s, a)}

]
(40)

Overall, the expression for the gradient of the variance term is therefore :

∇θVD(θ) = 2 · EdD(s,a)

[
IS(ω, πθ)2 · ∇θ log πθ(a | s)

]
− 2 · J(θ) · EdD(s,a)

[
ωπ/D · {∇θ log πθ(a | s) ·Qπ(s, a)}

]
(41)

The variance gradient in equation 41 is difficult to estimate in practice, since it involves both the
gradient of the objective and the objective J(θ) itself. This is known to have the double sampling
issue (Baird, 1995) which requires separate independent rollouts. Previously, (Castro et al., 2012)
tackled the variance of the gradient term using simultaneous perturbation stochastic approximation
(SPSA) (Spall, 1992), where we can keep running estimates of both the return and the variance
term, and use a two time scale algorithm for computing the gradient of the variance regularizer with
per-step importance sampling corrections.

B.3 ALTERNATIVE DERIVATION : VARIANCE REGULARIZATION VIA FENCHEL DUALITY

In the derivation of our algorithm, we applied the Fenchel duality trick to the second term of the
variance expression 25. An alternative way to derive the proposed algorithm would be to see what
happens if we apply the Fenchel duality trick to both terms of the variance expression. This might be
useful since equation 41 requires evaluating both the gradient terms and the actual objective J(θ),
due to the analytical expression of the form ∇θJ(θ) · J(θ), hence suffering from a double sampling
issue. In general, the Fenchel duality is given by :

x2 = max
y

(2xy − y2) (42)

and applying Fenchel duality to both the terms, since they both involve squared terms, we get :

EdD(s,a)

[
IS(ω, πθ)2

]
≡ EdD(s,a)

[
max
y

{
2 · IS(ω, πθ) · y(s, a)− y(s, a)2

}]
= 2 ·max

y

{
EdD(s,a)

[
IS(ω, πθ) · y(s, a)

]
− EdD(s,a)

[
y(s, a)2

]} (43)

Similarly, applying Fenchel duality to the second (b) term we have :

EdD(s,a)

[
IS(ω, πθ)

]2
= max

ν

{
2 · EdD(s,a)

[
IS(ω, πθ) · ν(s, a)

]
− ν2

}
(44)

Overall, we therefore have the variance term, after applying Fenchel duality as follows, leading to an
overall objective in the form maxymaxν VD(θ), which we can use as our variance regularizer

VD(θ) = 2 ·max
y

{
EdD(s,a)

[
IS(ω, πθ) · y(s, a)

]
− EdD(s,a)

[
y(s, a)2

]}

−max
ν

{
2 · EdD(s,a)

[
IS(ω, πθ) · ν(s, a)

]
− ν2

}
(45)
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Using the variance of stationary distribution correction returns as a regularizer, we can find the
gradient of the variance term w.r.t θ as follows, where the gradient terms dependent on the dual
variables y and ν are 0.

∇θVD(θ) = 2 · ∇θEdD(s,a)

[
IS(ω, πθ) · y(s, a)

]
− 0− 2 · ∇θEdD(s,a)

[
IS(ω, πθ) · ν(s, a)

]
+ 0

= 2·EdD(s,a)

[
IS(ω, πθ)·y(s, a)·∇θ log πθ(a | s)

]
−2·EdD(s,a)

[
IS(ω, πθ)·ν(s, a)·∇θ log πθ(a | s)

]

= 2 · EdD(s,a)

[
IS(ω, πθ) · ∇θ log πθ(a | s) ·

{
y(s, a)− ν(s, a)

}]
(46)

Note that from equation 46, the two terms in the gradient is almost equivalent, and the difference
comes only from the difference between the two dual variables y(s, a) and ν(s, a). Note that our
variance term also requires separately maximizing the dual variables, both of which has the following
closed form updates :

∇νVD(θ) = −2 · ∇νEdD(s,a)

[
IS(ω, πθ) · ν(s, a)

]
+∇νν2 = 0 (47)

Solving which exactly, leads to the closed form solution ν(s, a) = EdD(s,a)

[
IS(ω, πθ)

]
. Similarly,

we can also solve exactly using a closed form solution for the dual variables y, such that :

∇yVD(θ) = 2 · ∇yEdD(s,a)

[
IS(ω, πθ) · y(s, a)

]
− 2 · ∇yEdD(s,a)

[
y(s, a)2

]
= 0 (48)

Solving which exactly also leads to the closed form solution, such that y(s, a) = 1
2 · IS(ω, πθ) =

1
2 ·

dπ(s,a)
dµ(s,a)

· r(s, a). Note that the exact solutions for the two dual variables are similar to each other,
where ν(s, a) is the expectation of the returns with stationary distribution corrections, whereas y(s, a)
is only the return from a single rollout.

C APPENDIX : MONOTONIC PERFORMANCE IMPROVEMENT GUARANTEES
UNDER VARIANCE REGULARIZATION

We provide theoretical analysis and performance improvements bounds for our proposed variance
constrained policy optimization approach. Following from (Kakade & Langford, 2002; Schulman
et al., 2015; Achiam et al., 2017), we extend existing performance improvement guarantees based
on the stationary state-action distributions instead of only considering the divergence between the
current policy and old policy. We show that existing conservative updates in algorithms (Schulman
et al., 2015) can be considered for both state visitation distributions and the action distributions, as
similarly pointed by (Achiam et al., 2017). We can then adapt this for the variance constraints instead
of the divergence constraints. According to the performance difference lemma (Kakade & Langford,
2002), we have that, for all policies π and π′ :

J(π′)− J(π) = Es∼dπ′ ,a∼π′ [A
π(s, a)] (49)

which implies that when we maximize 49, it will lead to an improved policy π′ with policy improve-
ment guarantees over the previous policy π. We can write the advantage function with variance
augmented value functions as :

Aπλ = Qπλ(s, a)− V πλ (s) = Es′∼P
[
r(s, a)− λ(r(s, a)− J(π))2 + γV πλ (s′)− V πλ (s)

]
However, equation 49 is often difficult to maximize directly, since it additionally requires samples
from π′ and dπ′ , and often a surrogate objective is instead proposed by (Kakade & Langford, 2002).
Following (Schulman et al., 2015), we can therefore obtain a bound for the performance difference
based on the variance regularized advantage function :

J(π′) ≥ J(π) + Es∼dπ(s),a∼π′(a|s)
[
Aπλ(s, a)

]
(50)

where we have the augmented rewards for the advantage function, and by following Fenchel duality
for the variance, can avoid policy dependent reward functions. Otherwise, we have the augmented
rewards for value functions as r̃(s, a) = r(s, a)− λ(r(s, a)− J(π))2. This however suggests that
the performance difference does not hold without proper assumptions (Bisi et al., 2019). We can
therefore obtain a monotonic improvement guarantee by considering the KL divergence between
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policies :
Lπ(π′) = J(π) + Es∼dπ,a∼π′ [Aπ(s, a)] (51)

which ignores the changes in the state distribution dπ′ due to the improved policy π′. (Schulman
et al., 2015) optimizes the surrogate objectives Lπ(π′) while ensuring that the new policy π′ stays
close to the current policy π, by imposing a KL constraint (Es∼dπ [DKL(π

′(· | s)||π(· | s)] ≤ δ). The
performance difference bound, based on the constraint between π and π′ as in TRPO (Schulman
et al., 2015) is given by :

Lemma 4. The performance difference lemma in (Schulman et al., 2015), where α = Dmax
TV =

maxsDTV(π, π
′)

J(π′) ≥ Lπ(π′)−
4εγ

(1− γ)2
(Dmax

TV (π′||π))2 (52)

where ε = maxs,a |Aπ(s, a)|, which is usually denoted with α, where

The performance improvement bxound in (Schulman et al., 2015) can further be written in terms
of the KL divergence by following the relationship between total divergence (TV) and KL, which
follows from Pinsker’s inequality, DTV(p||q)2 ≤ DKL(p||q), to get the following improvement bound
:

J(π′) ≥ Lπ(π′)−
4εγ

(1− γ)2
DKL(π

′||π) (53)

We have a performance difference bound in terms of the state distribution shift dπ′ and dπ. This
justifies that Lπ(π′) is a sensible lower bound to J(π′) as long as there is a total variation distance
between dπ′ and dπ which ensures that the policies π′ and π stay close to each other. Finally,
following from (Achiam et al., 2017), we obtain the following lower bound, which satisfies policy
improvement guarantees :

J(π′) ≥ Lπ(π′)−
2γεπ

1− γ
Es∼dπ [DTV(π

′(· | s)||π(· | s))] (54)

Equation 53 and 54 assumes that there is no state distribution shift between π′ and π. However, if we
explicitly assume state distribution changes, dπ′ and dπ due to π′ and π respectively, then we have
the following performance improvement bound :

Lemma 5. For all policies π′ and π, we have the performance improvement bound based on the
total variation of the state-action distributions dπ′ and dπ

J(π′) ≥ Lπ(π′)− επDTV(dπ′ ||dπ) (55)
where επ = maxs |Ea∼π′(·|s)[Aπ(s, a)]|

which can be further written in terms of the surrogate objective Lπ(π′) as :
J(π′) ≥ J(π) + Es∼dπ,a∼π′ [Aπ(s, a)]− επDTV(dπ′ ||dπ)
= Lπ(π′)− επDTV(dπ′ ||dπ) (56)

C.1 PROOF OF THEOREM 1 : POLICY IMPROVEMENT BOUND WITH VARIANCE
REGULARIZATION

Proof. We provide derivation for theorem 1. Recall that for all policies π′ and π, and corresponding
state visitation distributions dπ′ and dπ , we can obtain the performance improvement bound in terms
of the variance of state-action distribution corrections

J(π′)− J(π) ≥ Es∼dπ,a∼π′
[
Aπ(s, a)

]
− Vars∼dπ,a∼π

[
f(s, a)

]
(57)

where f(s, a) is the dual function class, for the divergence between dπ′(s, a) and dπ(s, a) Following
from Pinsker’s inequality, the performance difference lemma written in terms of the state visitation
distributions can be given by :

J(π′) ≥ Lπ(π′)− επDTV(dπ′ ||dπ)
≥ J(π) + Es∼dπ,a∼π′ [Aπ(s, a)]− επDTV(dπ′ ||dπ)

≥ J(π) + Es∼dπ,a∼π′ [Aπ(s, a)]− επ
√
DKL(dπ′ ||dπ) (58)
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Following from (Schulman et al., 2015), we can alternately write this follows, where we further apply
the variational form of TV
J(π′) ≥ J(π) + Es∼dπ,a∼π′

[
Aπ(s, a)

]
− C · Es∼dπ

[
DTV(dπ′ ||dπ)2

]
= J(π) + Es∼dπ,a∼π′

[
Aπ(s, a)

]
− C · Es∼dπ

[(
max
f
{Es∼dπ′ ,a∼π[f(s, a)]− Es∼dπ,a∼π[f(s, a)]}

)2]
≥ J(π) + Es∼dπ,a∼π′

[
Aπ(s, a)

]
− C ·max

f
Es∼dπ

[(
Es∼dπ′ ,a∼π[f(s, a)]− Es∼dπ,a∼π[f(s, a)]

)2]
= J(π) + Es∼dπ,a∼π′

[
Aπ(s, a)

]
− C ·max

f

{(
Es∼dπ,a∼π[f(s, a)]− Es∼dπ,a∼π[Es∼dπ,a∼π[f(s, a)]]

)2}
= J(π) + Es∼dπ,a∼π′

[
Aπ(s, a)

]
− C ·max

f
Vars∼dπ,a∼π

[
f(s, a)

]
(59)

Therefore the policy improvement bound depends on maximizing the variational representation
f(s, a) of the f-divergence to guaranetee improvements from J(π) to J(π′). This therefore leads to
the stated result in theorem 1.

D APPENDIX : LOWER BOUND OBJECTIVE WITH VARIANCE
REGULARIZATION

D.1 PROOF OF LEMMA 3

Recalling lemma 3 which states that, the proof of this follows from (Metelli et al., 2018). We extend
this for marginalized importance weighting, and include here for completeness. Note that compared
to importance weighting, which leads to an unbiased estimator as in (Metelli et al., 2018), correcting
for the state-action occupancy measures leads to a biased estimator, due to the approximation ω̂π/D.
However, for our analysis, we only require to show a lower bound objective, and therefore do not
provide any bias variance analysis as in off-policy evaluation.

Var(s,a)∼dD(s,a)

[
ω̂π/D

]
≤ 1

N
||r||2∞F2(dπ||dD) (60)

Proof. Assuming that state action samples are drawn i.i.d from the dataset D, we can write :

Var(s,a)∼dD(s,a)

[
ω̂π/D(s, a)

]
≤ 1

N
Var(s1,a1)∼dD(s,a)

[ dπ(s1, a1
dD(s1, a1)

· r(s1, a1)
]

≤ 1

N
E(s1,a1)∼dD(s,a)

[( dπ(s1, a1)
dD(s1, a1)

· r(s1, a1)
)2]

≤ 1

N
||r||2∞E(s1,a1)∼dD(s,a)

[( dπ(s1, a1)
dD(s1, a1)

· r(s1, a1)
)2]

=
1

N
||r||2∞F2(dπ||dD) (61)

D.2 PROOF OF THEOREM 2:

First let us recall the stated theorem 2. By constraining the off-policy optimization problem with
variance constraints, we have the following lower bound to the optimization objective with stationary
state-action distribution corrections

J(π) ≥ E(s,a)∼dD(s,a)[
dπ(s, a)

dD(s, a)
r(s, a)]−

√
1− δ
δ

Var(s,a)∼dµ(s,a)[
dπ(s, a)

dD(s, a)
r(s, a)] (62)

Proof. The proof for the lower bound objective can be obtained as follows. We first define a
relationship between the variance and the α-divergence with α = 2, as also similarly noted in (Metelli
et al., 2018). Given we have batch samples D, and denoting the state-action distribution correction
with ωπ/D(s, a), we can write from lemma 3 :

Var(s,a)∼dD(s,a)

[
ω̂π/D

]
≤ 1

N
||r||2∞F2(dπ||dD) (63)

where the per-step estimator with state-action distribution corrections is given by ωπ/D(s, a) · r(s, a).
Here, the reward function r(s, a) is a bounded function, and for any N > 0 the variance of the

19



Under review as a conference paper at ICLR 2021

per-step reward estimator with distribution corrections can be upper bounded by the Renyi-divergence
(α = 2). Finally, following from (Metelli et al., 2018) and using Cantelli’s inequality, we have with
probability at least 1− δ where 0 < δ < 1 :

Pr
(
ωπ/D − J(π) ≥ λ

)
≤ 1

1 + λ2

Var(s,a)∼dD(s,a)[ωπ/D(s,a)·r(s,a)]
(64)

and by using δ = 1

1+ λ2

Var(s,a)∼dD(s,a)[ωπ/D(s,a)·r(s,a)]
we get that with probability at least 1− δ, we have:

J(π) = E(s,a)∼dπ(s,a) ≥ E(s,a)∼dD(s,a)[ωπ/D(s, a) · r(s, a)]−
√

1− δ
δ

Var(s,a)∼dD(s,a)[ωπ/D(s, a) · r(s, a)]
(65)

where we can further replace the variance term with α = 2 for the Renyi divergence to conclude
the proof for the above theorem. We can further write the lower bound for for α-Renyi divergence,
following the relation between variance and Renyi-divergence for α = 2 as :

J(π) = E(s,a)∼dπ(s,a)[r(s, a)] ≥ E(s,a)∼dD(s,a)[
dπ(s, a)

dD(s, a)
· r(s, a)]− ||r||∞

√
(1− δ)d2(dπ||dD)

δN
This hints at the similarity between our proposed variance regularized objective with that of other
related works including AlgaeDICE (Nachum et al., 2019b) which uses a f-divergence D

f (dπ||dD)

between stationary distributions.

E APPENDIX : ADDITIONAL EXPERIMENTAL RESULTS

E.1 EXPERIMENTAL ABLATION STUDIES

In this section, we present additional results using state-action experience replay weightings on
existing offline algorithms, and analysing the significance of our variance regularizer on likelihood
corrected offline algorithms. Denoting ω(s, a) for the importance weighting of state-action occupancy
measures based on samples in the experience replay buffer, we can modify existing offline algorithms
to account for state-action distribution ratios.

The ablation experimental results using the Hopper control benchmark are summarized in figure 2.
The same base BCQ algorithm is used with a modified objective for BCQ (Fujimoto et al., 2019)
where the results for applying off-policy importance weights are denoted as “BCQ+I.W.”. We employ
the same technique to obtain ω(s, a) for both the baseline and for adding variance regularization
as described. The results suggest that adding the proposed per-step variance regularization scheme
significantly outperforms just importance weighting the expected rewards for off-policy policy
learning.

(a) Hopper Expert ablation (b) Hopper Medium ablation (c) Hopper Random ablation (d) Hopper Mixed ablation

Figure 2: Ablation performed on Hopper. The mean and standard deviation are reported over 5 random seeds.
The offline datasets for these experiments are same as the corresponding ones in Fig 1 of the main paper.

E.2 EXPERIMENTAL RESULTS IN CORRUPTED NOISE SETTINGS

We additionally consider a setting where the batch data is collected from a noisy environment, i.e, in
settings with corrupted rewards, r → r + ε, where ε ∼ N (0, 1). Experimental results are presented
in figures 1, 3. From our results, we note that using OVR on top of BCQ (Fujimoto et al., 2019), we
can achieve significantly better performance with variance minimization, especially when the agent is
given sub-optimal demonstrations. We denote it as medium (when the dataset was collected by a half
trained SAC policy) or a mixed behaviour logging setting (when the data logging policy is a mixture
of random and SAC policy). This is also useful for practical scalability, since often data collection is
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Domain Task Name BCQ+OVR BCQ BEAR BRAC-p aDICE SAC-off

Adroit

pen-human 64.12 56.58 -1 8.1 -3.3 6.3
hammer-human 1.05 0.75 0.3 0.3 0.3 0.5
door-human 0.00 0.00 -0.3 -0.3 0 3.9
relocate-human -0.13 -0.08 -0.3 -0.3 -0.1 0
pen-cloned 40.84 41.09 26.5 1.6 -2.9 23.5
hammer-cloned 0.78 0.35 0.3 0.3 0.3 0.2
door-cloned 0.03 0.03 -0.1 -0.1 0 0
relocate-cloned -0.22 -0.26 -0.3 -0.3 -0.3 -0.2
pen-expert 99.32 89.42 105.9 -3.5 -3.5 6.1
hammer-expert 119.32 108.38 127.3 0.3 0.3 25.2
door-expert 100.39 101.33 103.4 -0.3 0 7.5
relocate-expert 31.31 23.55 98.6 -0.3 -0.1 -0.3

Table 2: The results on D4RL tasks compare BCQ (Fujimoto et al., 2019) with and without OVR, bootstrapping
error reduction (BEAR) (Kumar et al., 2019), behavior-regularized actor critic with policy (BRAC-p) (?),
AlgeaDICE (aDICE) (Nachum et al., 2019b) and offline SAC (SAC-off) (Haarnoja et al., 2018). The results
presented are the normalized returns on the task as per Fu et al. (2020) (see Table 3 in Fu et al. (2020) for the
unnormalized scores on each task).

expensive from an expert policy. We add noise to the dataset, to examine the significance of OVR
under a noisy corrupted dataset setting.

(a) Hopper Expert w/ Noise (b) Hopper Medium w/ Noise (c) Hopper Random w/ Noise (d) Hopper Mixed w/ Noise

(e) Walker Expert w/ Noise (f) Walker Medium w/ Noise (g) Walker Random w/ Noise (h) Walker Mixed w/ Noise

Figure 3: Evaluation of the proposed approach and the baseline BCQ on a suite of three OpenAI Gym
environments. We consider the setting of rewards that are corrupted by a Gaussian noise. Results for the
uncorrupted version are in Fig. 1. Experiment results are averaged over 5 random seeds

E.3 EXPERIMENTAL RESULTS ON SAFETY BENCHMARK TASKS

Safety Benchmarks for Variance as Risk : We additionally consider safety benchmarks for
control tasks, to analyse the significance of variance regularizer as a risk constraint in offline policy
optimization algorithms. Our results are summarized in table 3.

E.4 DISCUSSIONS ON OFFLINE OFF-POLICY OPTIMIZATION WITH STATE-ACTION
DISTRIBUTION RATIOS

In this section, we include several alternatives by which we can compute the stationary state-action
distribution ratio, borrowing from recent works (Uehara & Jiang, 2019; Nachum et al., 2019a).

Off-Policy Optimization with Minimax Weight Learning (MWL) : We discuss other possible
ways of optimizing the batch off-policy optimization objective while also estimating the state-action
density ratio. Following from (Uehara & Jiang, 2019) we further modify the off-policy optimization
part of the objective J(θ) in L(θ, λ) as a min-max objective, consisting of weight learning ωπ/D
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Table 3: Results on
the Safety-Gym envi-
ronments Ray et al..
We report the mean
and S.D. of episodic
returns and costs over
five random seeds and
1 million timesteps.
The goal of the agent
is to maximize the
episodic return, while
minimizing the cost in-
curred.

PointGoal1 PointGoal2
Reward Cost Reward Cost

BCQ 43.1 ± 0.3 137.0 ± 3.6 32.7± 0.7 468.2 ± 9.1

BCQ+OVR 44.2 ± 0.3 127.1 ± 4.0 33.2 ± 0.7 453.9 ± 7.3

PointButton1 PointButton2
Reward Cost Reward Cost

BCQ 30.9 ± 2.2 330.8 ± 8.3 18.1 ± 1.1 321.6 ± 4.1

BCQ+OVR 30.7 ± 2.3 321.5 ± 6.8 19.6 ± 1.0 305.7 ± 6.1

and optimizing the resulting objective J(θ, ω). We further propose an overall policy optimization
objective, where a single objective can be used for estimating the distribution ratio, evaluating the
critic and optimizing the resulting objective. We can write the off-policy optimization objective with
its equivalent starting state formulation, such that we have :

EdD(s,a)

[
ωπθ/D(s, a) · r(s, a)

]
= (1− γ)Es0∼β0(s),a0∼π(·|s0)

[
Qπ(s0, a0)

]
(66)

Furthermore, following Bellman equation, we expect to have E[r(s, a)] = E[Qπ(s, a)−γQπ(s′, a′)]
EdD(s,a)

[
ωπθ/D(s, a)·{Q

π(s, a)−γQπ(s′, a′)}
]
= (1−γ)Es0∼β0(s),a0∼π(·|s0)

[
Qπ(s0, a0)

]
(67)

We can therefore write the overall objective as :

J(ω, πθ, Q) = EdD(s,a)

[
ωπθ/D(s, a) · {Q

π(s, a)− γQπ(s′, a′)}
]

− (1− γ)Es0∼β0(s),a0∼π(·|s0)

[
Qπ(s0, a0)

]
(68)

This is similar to the MWL objective in (Uehara & Jiang, 2019) except we instead consider the
bias reduced estimator, such that accurate estimates of Q or ω will lead to reduced bias of the value
function estimation. Furthermore, note that in the first part of the objective J(πθ, ω,Q)2, we can
further use entropy regularization for smoothing the objective, since instead ofQπ(s′, a′) in the target,
we can replace it with a log-sum-exp and considering the conjugate of the entropy regularization
term, similar to SBEED (Dai et al., 2018). This would therefore give the first part of the objective as
an overall min-max optimization problem :

J(ω, πθ) = Edµ(s,a)
[
ωπθ/D(s, a) · {r(s, a) + γQπ(s′, a′) + τ log π(a | s)−Qπ(s, a)}

]
+ (1− γ)Es0∼β0(s),a0∼π(·|s0)

[
Qπ(s0, a0)

]
(69)

such that from our overall constrained optimization objective for maximizing θ, we have turned it into
a min-max objective, for estimating the density ratios, estimating the value function and maximizing
the policies

ω∗π/D, Q
∗, π∗ = argmin

ω,Q
argmax

π
J(πθ, ω,Q)2 (70)

where the fixed point solution for the density ratio can be solved by minimizing the objective :

ω∗π/D = argmin
ω

L(ωπ/D, Q)2 = Edµ(s,a)
[
{γω(s, a) ·Qπ(s′, a′)− ω(s, a)Qπ(s, a)}+

(1− γ)Eβ(s,a)Qπ(s0, a0)
]

(71)

DualDICE : In contrast to MWL (Uehara & Jiang, 2019), DualDICE (Nachum et al., 2019a)
introduces dual variables through the change of variables trick, and minimizes the Bellman residual
of the dual variables ν(s, a) to estimate the ratio, such that :

ν∗(s, a)− Bπν∗(s, a) = ωπ/D(s, a) (72)
the solution to which can be achieved by optimizing the following objective

min
ν
L(ν) = 1

2
EdD

[
(ν − Bπν)(s, a)2

]
− (1− γ)Es0,a0∼β(s,a)

[
ν(s0, a0)

]
(73)

Minimizing Divergence for Density Ratio Estimation : The distribution ratio can be estimated
using an objective similar to GANs (Goodfellow et al., 2014; Ho & Ermon, 2016), as also similarly
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proposed in (Kostrikov et al., 2019).

max
h
G(h) = E(s,a)∼dD

[
log h(s, a)

]
+ E(s,a)∼dπ

[
log(1− h(s, a))

]
(74)

where h is the discriminator class, discriminating between samples from dD and dπ. The optimal
discriminator satisfies :

log h∗(s, a)− log(1− h∗(s, a)) = log
dD(s, a)

dπ(s, a)
(75)

The optimal solution of the discriminator is therefore equivalent to minimizing the divergence between
dπ and dD, since the KL divergence is given by :

−DKL(dπ||dD) = E(s,a)∼dπ

[
log

dD(s, a)

dπ(s, a)

]
(76)

Additionally, using the Donsker-Varadhan representation, we can further write the KL divergence
term as :

−DKL(dπ||dD) = min
x

logE(s,a)∼dD

[
expx(s, a)

]
− E(s,a)∼dπ

[
x(s, a)

]
(77)

such that now, instead of the discriminator class h, we learn the function class x, the optimal solution
to which is equivalent to the distribution ratio plus a constant

x∗(s, a) = log
dπ(s, a)

dD(s, a)
(78)

However, note that both the GANs like objective in equation 74 or the DV representation of the KL
divergence in equation 77 requires access to samples from both dπ and dD. In our problem setting
however, we only have access to batch samples dD. To change the dependency on having access to
both the samples, we can use the change of variables trick, such that : x(s, a) = ν(s, a)−Bπν(s, a),
to write the DV representation of the KL divergence as :

−DKL(dπ||dD) = min
ν

logE(s,a)∼dD

[
exp ν(s, a)− Bπν(s, a)

]
−E(s,a)∼dπ

[
ν(s, a)−Bπν(s, a)

]
(79)

where the second expectation can be written as an expectation over initial states, following from
DualDICE, such that we have
−DKL(dπ||dD) = min

ν
logE(s,a)∼dD

[
exp ν(s, a)− Bπν(s, a)

]
−(1−γ)E(s,a)∼β0(s,a)

[
ν(s0, a0)

]
(80)

By minimizing the above objective w.r.t ν, which requires only samples from the fixed batch data dD
and the starting state distribution. The solution to the optimal density ratio is therefore given by :

x∗(s, a) = ν∗(s, a)− Bπν∗(s, a) = log
dπ(s, a)

dD(s, a)
= logω∗(s, a) (81)

Empirical Likelihood Ratio : We can follow Sinha et al. (2020) to compute the state-action
likelihood ratio, where they use a binary a classifier to classify samples between an on-policy and
off-policy distribution. The proposed classifier, φ, is trained on the following objective, and takes
as input the state-action tuples (s, a) to return a probability score that the state-action distribution is
from the target policy. The objective for φ can be formulated as

Lcls = max
φ
−Es,a∼D[log(φ(s, a))] + Es∼D[log(φ(s, π(s))] (82)

where s, a ∼ D are samples from the behaviour policy, and s, π(s) are samples from the target policy.
The density ratio estimates for a given s, a ∼ D are simply ω(s, a) = σ(φ(s, a)) like in Sinha et al.
(2020). We then use these ω(s, a) for density ratio corrections for the target policy in equantion ??.
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