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Abstract001

Vision-Language-Action (VLA) models have002
made substantial progress by leveraging the003
robust capabilities of Visual Language Mod-004
els (VLMs). However, VLMs’ significant pa-005
rameter size and autoregressive (AR) decoding006
nature impose considerable computational de-007
mands on VLA models. While Speculative De-008
coding (SD) has shown efficacy in accelerating009
Large Language Models (LLMs) by incorporat-010
ing efficient drafting and parallel verification,011
allowing multiple tokens to be generated in one012
forward pass, its application to VLA models re-013
mains unexplored. This work introduces Spec-014
VLA, an SD framework designed to accelerate015
VLA models. Due to the difficulty of the action016
prediction task and the greedy decoding mecha-017
nism of the VLA models, the direct application018
of the advanced SD framework to the VLA pre-019
diction task yields a minor speed improvement.020
To boost the generation speed, we propose an021
effective mechanism to relax acceptance uti-022
lizing the relative distances represented by the023
action tokens of the VLA model. Empirical024
results across diverse test scenarios affirm the025
effectiveness of the Spec-VLA framework, and026
further analysis substantiates the impact of our027
proposed strategies, which enhance the accep-028
tance length by 44%, achieving 1.42× speedup029
compared with the OpenVLA baseline, without030
compromising the success rate. The success of031
the Spec-VLA framework highlights the po-032
tential for broader application of speculative033
execution in VLA prediction scenarios.034

1 Introduction035

The Vision-Language-Action (VLA) models (Bro-036

han et al., 2022, 2023; Mees et al., 2024; Wu037

et al.; Cheang et al., 2024; Vuong et al., 2023)038

have achieved significant progress by leveraging039

the rich understanding and generation capabilities040

from pre-trained visual encoders or Visual Lan-041

guage Models (VLMs). These models can gener-042

ate robot actions following language instructions.043

With the development of large-scale robot predic- 044

tion datasets, recently proposed VLA models such 045

as OpenVLA (Kim et al., 2024) demonstrate high 046

generalizability across diverse tasks and environ- 047

ments (Li et al., 2024b). 048

To achieve the goals above, the parameter size 049

of backbone VLMs is substantial, increasing the 050

computational demand for robot control systems. 051

Meanwhile, the VLMs’ Autoregressive (AR) next- 052

token-prediction strategy further increases the de- 053

coding latency of VLA models. A series of stud- 054

ies address the efficiency issue through model ar- 055

chitecture redesign (Wen et al., 2025; Liu et al., 056

2024) or task-specific optimizations (Kim et al., 057

2025). Other efforts incorporate Large Language 058

Model (LLM) inference acceleration methods such 059

as Early-Exit (Schuster et al., 2022) and Jacobi- 060

Decoding (Kou et al., 2024) into VLA infer- 061

ence (Yue et al., 2024; Song et al., 2025). How- 062

ever, incorporating such methods requires resource- 063

intensive fine-tuning of the backbone VLM for 064

Early-Exit (Yue et al., 2024) or pretraining for 065

Jacobi-Decoding (Song et al., 2025). Moreover, 066

in Jacobi-Decoding, enabling parallel decoding de- 067

grades the model performance compared to AR 068

decoding (Song et al., 2025). 069

Speculative Decoding (SD) (Leviathan et al., 070

2023) provides a lossless solution and also allows 071

for the parallel generation of LLMs. A typical 072

SD architecture, such as Eagle (Li et al., 2024d), 073

employs a draft model to generate draft tokens effi- 074

ciently, with the LLMs serving as the verification 075

model to ensure the correctness of these tokens. As 076

the parameters of the draft model are decoupled, 077

additional fine-tuning of the verification model is 078

not required. 079

Recent works have applied the SD framework 080

in visual generation (Jang et al., 2024; Park et al., 081

2025), designing a task-specific methodology to 082

relax the acceptance for the verification model. 083

The application of SD architecture to accelerate 084
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Spec-VLA framework enables parallel generation with-
out tuning or retraining for target VLA model.

the VLA prediction task is intuitive, enabling ef-085

ficient adaptation to speed up the generation of086

downstream tasks while retaining the knowledge of087

the VLA backbone model. However, its application088

to the VLA model has not yet been explored.089

This work introduces the speculative decoding090

framework to the AR robot action generation. We091

propose the Spec-VLA, the first SD framework092

designed for VLA inference acceleration, which093

applies the advanced features of the speculative094

decoding to the robot action generation scenarios.095

Surprisingly, the direct application of the SD frame-096

work yields minor speed improvements due to the097

intricate difficulty of VLA prediction for the draft098

model and the greedy decoding strategy. To further099

boost the generation speed, we propose utilizing100

VLA models’ token representation to relax the ac-101

ceptance based on the action distance between draft102

tokens and ground-truth tokens. Empirical results103

across various test scenarios demonstrate the ef-104

fectiveness of the Spec-VLA framework, enabling105

an acceptance length from 2.10 to 2.94. Analy-106

sis confirms that our proposed relaxation of ac-107

ceptance strategy significantly enhances the accep-108

tance length by 26% to 44%, enhances the gener-109

ation speed by 1.22× to 1.42× while maintaining110

the success rate of the VLA models. Our findings111

validate the robustness of the VLA models, demon-112

strating the potential of SD frameworks in the VLA113

prediction domain.114

2 Related Works 115

2.1 Acceleration for VLA Models 116

Recent advances in accelerating VLA models can 117

be broadly categorized into multiple directions. 118

Token-level optimization methods reduce computa- 119

tional redundancy through vision-language token 120

selection. The FastV (Pertsch et al., 2025) distills 121

task-relevant visual features using auxiliary trans- 122

formers, while SparseVLM (Zhang et al., 2024c) 123

dynamically prunes tokens via spatial attention 124

thresholds. Though efficient without architectural 125

changes, these approaches rely heavily on heuristic 126

token selection, risking generalization failures in 127

novel scenarios. 128

Conventional LLM acceleration techniques like 129

quantization, pruning, and early-exit strategies 130

have also been adapted for VLA scenarios. 131

QAIL (Park et al., 2024) employs quantization- 132

aware fine-tuning but suffers from precision loss. 133

Mope-CLIP (Lin et al., 2024) explores modality- 134

specific pruning for vision-language models, and 135

DeeR (Yue et al., 2024) implements early-exit 136

mechanisms that compromise action trajectory co- 137

herence. While effective in constrained settings, 138

such methods often degrade cross-modal interac- 139

tion quality and require task-specific tuning. 140

Structural modifications, such as Robo- 141

mamba (Liu et al., 2024) and TinyVLA (Wen 142

et al., 2025), redesign model backbones using 143

lightweight SSM or distilled vision encoders, 144

achieving latency reduction through structural 145

simplification. The Kim et al. (2025) propose 146

temporal consistency losses to regularize action 147

smoothness, and Song et al. (2025) reformulate 148

decoding via Jacobi iteration for parallel trajectory 149

generation. The aforementioned methodologies 150

not only require domain-specific data fine-tuning 151

or retraining but also introduce augmented system 152

complexity through model architectural redesign. 153

2.2 Speculative Decoding for LLMs 154

The SD has emerged as an effective paradigm for 155

inference acceleration in AR generative models, 156

such as machine translation models (Stern et al., 157

2018) and decoder-only LLMs (Chen et al., 2023). 158

The evolutionary trajectory of SD frameworks re- 159

veals three distinct development phases. Pioneer- 160

ing SD frameworks exemplified by Medusa (Cai 161

et al., 2024) and Medusa-CTC (Wen et al., 2024) 162

introduced parallel generation capabilities through 163

multi-head decoding architectures coupled with 164
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tree-attention verification mechanisms. Subsequent165

developments in the Eagle series, including Ea-166

gle (Zhang et al., 2024a) and Eagle-2 (Li et al.,167

2024c), advanced the paradigm through architec-168

tural innovations in draft modeling, achieving su-169

perior speedup ratios via high-quality draft token170

generation. Recently, the Eagle-3 (Li et al., 2025)171

and HASS (Zhang et al., 2024b) have further im-172

proved the generation capabilities by employing a173

training-time testing strategy.174

Recent works have further extended SD appli-175

cations to emerging scenarios, including retrieval-176

argumented generation (Wang et al., 2024) and177

long-context generation (Yang et al., 2025). How-178

ever, empirical validation remains insufficient for179

multimodal generation contexts. Initial investiga-180

tions by (Jang et al., 2024) demonstrated signifi-181

cant performance degradation when applying exist-182

ing SD frameworks to visual AR generation tasks.183

Gagrani et al. (2024) conducted systematic analy-184

ses of visual feature utilization in multimodal ap-185

plications such as visual question answering and186

image captioning. Despite these advances, the ap-187

plication of SD methodologies within the VLA188

generation scenario remains unexplored.189

Relaxed acceptance proves effective in the SD190

framework, demonstrating particular promise for191

extending efficiency gains to novel application192

scenarios. It boosts throughput by loosening the193

criteria for accepting proposed tokens, striking194

a balance between efficiency and fidelity. Spec-195

Dec (Xia et al., 2022) replaces the strict greedy196

check by accepting any drafted token appearing197

in the AR model’s top-k candidates, significantly198

raising token acceptance rates and overall through-199

put without degrading output quality. Meanwhile,200

the Lantern framework (Jang et al., 2024) accepts201

the top-k similar tokens in the dictionary, which202

significantly boosts the generation speed for vi-203

sual generation. (Further improvements (Li et al.,204

2024a; Zhang et al., 2023)). These advancements205

proves the potential of relaxed acceptance in en-206

hancing the efficiency of multimodal models, such207

as VLA models.208

3 Background209

3.1 Decoding of VLA Models210

Large VLA models (Ma et al., 2024), such as Open-211

VLA (Kim et al., 2024) and RT-2 (Brohan et al.,212

2023) series, predict action sequences to control213

robots. They employ a sequence of action tokens214

A = {a0, ..., aL} which represent the actions at 215

each timestep. using VLM inference, the model 216

autoregressively predicts seven action tokens to de- 217

fine a control action, including “∆posx”, “∆posy” 218

,“∆posz”, “∆rotx” , “∆roty”, “∆rotz” and “grip- 219

per_extension”. Specifically, they utilize greedy 220

decoding, predicting the most probable action to- 221

ken ai based on the previously predicted tokens 222

a0:i−1, visual observations o, language instruction 223

prompts p, and the learnable model parameters θ. 224

ai = argmax
ai

[P (ai | a0:i−1, o, p, θ)] (1) 225

Due to the substantial parameter size of contempo- 226

rary VLA models and their AR prediction strategy, 227

the action speed of robot is inherently limited. 228

3.2 Speculative Decoding Framework 229

The SD framework utilizes an efficient draft 230

model MD to produce initial draft tokens and 231

concurrently verifies these tokens using a veri- 232

fication model MV . The Eagle framework (Li 233

et al., 2024c) incorporates a Llama layer as the 234

draft model, which predicts multiple draft tokens 235

ai autoregressively, conditioned on the previous 236

draft token states ât+1:i−1, hidden states and token 237

embeddings from verification model f1:t and e0:t. 238

It is noteworthy that the output states of the draft to- 239

kens also assist in calculations, and for the sake of 240

simplicity, we use the notation ât+1:i−1 to denote 241

both embeddings and hidden features. 242

âi = MD(f1:t, e0:t, ât+1:i−1) (2) 243

During the verification phase, the verification 244

model MV ensures the generation quality of the 245

draft tokens by correcting the mispredicted tokens 246

from the draft model. When conducting a greedy 247

search, the draft token ȧi will be accepted only if 248

it strictly matches the token ai predicted by the 249

verification model. 250

ai = MV

(
a1 ∼ âi−1, p, θ

)
, 251{

Accept, ai == âi,

Resample âi = ai, ai ̸= âi.
(3) 252

Noticeably, the tokens subsequent to the first re- 253

jected token a(i+1:L) will be abandoned. Thus, the 254

acceptance length is critical for the SD system as it 255

determines the number of tokens to be predicted in 256

a single forward pass. 257
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Figure 2: The overall Spec-VLA framework. The draft model predicts action tokens through AR decoding with the
fused textual and visual features. During verification, a relaxed acceptance mechanism is adopted to broadly retain
high-quality outputs. This mechanism allows synonym to be accepted, while maintaining the success rate of action
generation, achieving optimal balance between caption accuracy and efficiency.

Dataset
AR Spec-VLA Spec-VLA (relaxed)

SR Length Speedup SR Length Speedup SR

LIBERO-Goal 78.0% 2.04 1.09× 74.2% 2.94 1.42× 74.4%
LIBERO-Object 89.0% 1.75 1.15× 89.0% 2.38 1.38× 85.0%
LIBERO-Spatial 85.0% 1.59 1.08× 83.8% 2.14 1.28× 85.8%
LIBERO-Long 52.0% 1.67 1.13× 50.8% 2.10 1.22× 55.0%

Table 1: Experimental results of the Spec-VLA framework on the LIBERO-Goal, Object, Spatial, Long dataset.
’SR’ denotes the Success Rate of the control policy, ’Length’ indicates the number of tokens predicted in each
forward pass, and ’Speedup’ reflects the generation speed as compared to the AR baseline.

∆𝑥

∆𝑦

∆𝑧

∆R𝑜𝑡 𝑥∆R𝑜𝑡 𝑧

∆R𝑜𝑡 𝑦 Expanded	
Acceptance	Area

𝑏
𝑏 + 𝑟

𝑏 − 𝑟

Figure 3: Illustration of relaxation of the acceptance
criteria. Instead of strictly accepting the predicted ver-
ify token ai, the verification model MV accept action
tokens within a predefined margin.

4 Spec-VLA Framework258

In this section, we provide a detailed description259

of the Spec-VLA framework and our exploration260

of the adaptation of speculative execution for VLA261

prediction tasks.262

4.1 Overall Framework 263

The Spec-VLA framework incorporates a Llama 264

decoder layer (Touvron et al., 2023) as its draft 265

generator model. It incorporates a linear layer to 266

integrate feature-level and token-level loss data ef- 267

fectively. During the prefill stage, the draft gen- 268

erator receives hidden states from the verification 269

model, alongside textual and visual embeddings 270

from the textual tokenizer and visual encoder, re- 271

spectively. Mirroring the OpenVLA model, the 272

visual embeddings ev and textual embeddings eT 273

are concatenated, collectively providing the feature- 274

level information for the draft model. 275

âi = MD(f1:t, concat(ev, ep), ât+1:i−1)) (4) 276

In the draft prediction phase, the draft generator 277

model predicts the action token ai conditioned on 278

previous hidden states, embeddings, and action to- 279
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kens. We employ the dynamic draft tree strategy of280

Eagle-2 (Li et al., 2024c), where the Top-K predic-281

tions from the draft generator MD are recorded and282

subsequently form a tree structure with multiple283

paths. These paths are then verified in parallel by284

the verification model.285

4.2 Problem by Direct Application286

However, directly implementing the SD frame-287

work yields only minor speed improvements, from288

1.08× to 1.15× (as shown in Table 1). Surpris-289

ingly, in the VLA prediction task, the draft genera-290

tor models fail to predict the initial draft tokens in291

about half of the samples (refer to Table 2).292

In natural language generation tasks, the draft293

generator of the SD framework typically produces294

common words and punctuation. Conversely, the295

VLA draft model must understand multiple modali-296

ties and predict robotic motions in VLA prediction297

tasks. Intuitively, the VLA prediction task poses298

a greater complexity for the draft generator than299

language generation.300

Moreover, VLA models such as OpenVLA and301

RT-2 incorporate greedy decoding during the draft-302

ing phase. This setup requires an exact match be-303

tween draft tokens ȧi and the verification model’s304

predictions ai. Often, allowing for synonym tokens305

could improve generation speed without compro-306

mising quality. Building upon prior research, we307

propose relaxing the acceptance criteria within the308

Spec-VLA framework by allowing the acceptance309

of top-k similar tokens in the action space.310

4.3 Relaxation of Acceptance311

We introduce the Relaxation Threshold r to facili-312

tate acceptance relaxation, quantifying the permis-313

sible distance between the draft action token âi and314

the predicted action token ai. The draft token âi315

will be accepted if the distance D between âi and316

ai is not larger than threshold r.317

ai = MV

(
a1 ∼ âi−1, p, θ

)
,318 {

Accept, D(ai, âi) ≤ r

Resample âi = ai, D(ai, âi) > r.
(5)319

VLA models, notably OpenVLA and RT-2, dis-320

cretize continuous dimensions into 256 bins and321

map them to 256 action tokens to predict action se-322

quences. The VLA token representation inherently323

provides information on token similarity, where the324

distance between tokens can be directly inferred325

from the absolute difference between bin IDs. For326

instance, the token a represents bin b and the token 327

â represents bin b̂, the distance between a and â can 328

be directly determined by the absolute difference 329

between bin IDs b and b̂. The token acceptance area 330

will be widened from strictly b to b̂ ∈ (b− r, b+ r), 331

enabling the acceptance of the top 2 × r similar 332

tokens. 333

By utilizing this characteristic, our proposed 334

method eliminates the need for additional token 335

similarity calculations from token embeddings, in- 336

troducing virtually no computational overhead. 337

5 Experiment 338

5.1 Main Result 339

Following OpenVLA, we evaluated the Spec-VLA 340

framework on the LIBERO simulation bench- 341

mark (Liu et al., 2023). We utilized four task suites: 342

LIBERO-Object, LIBERO-Spatial, LIBERO-Goal, 343

and LIBERO-Long, each providing 10 tasks and 344

500 expert demonstrations. We employed the fine- 345

tuned OpenVLA as the verification model and used 346

this model to regenerate the dataset for training the 347

draft model. We conducted 50 trials on each task 348

with our SD frameworks for testing scenarios. The 349

training was completed in 6 hours using 4× Tesla 350

A100 (80G) GPU, with a batch size of 16. We in- 351

herent the implementation of draft model structure 352

and tree decoding mechenism from Eagle-2 (Li 353

et al., 2024c). For tree-decoding, we set the max- 354

imum nodes to 50, tree depth to 4, and used the 355

top 8 tokens to construct the draft tree. Drawing on 356

prior works in SD (Jang et al., 2024), we report the 357

number of tokens predicted in each forward pass 358

and speedup compared to AR decoding. 359

The main results are reported in Table 1. Firstly, 360

the results validate the effectiveness of the SD 361

framework in VLA prediction scenarios. Apply- 362

ing the Eagle framework achieves an acceleration 363

ratio ranging from 1.08× to 1.15× without sac- 364

rificing generation quality. Secondly, the relaxed 365

acceptance mechanism further enhances the gen- 366

eration speed of the SD framework, increasing the 367

acceptance length by 25% to 44%, demonstrating 368

the potential for developing specialized SD mecha- 369

nisms in the VLA scenario. 370

5.2 Ablations on Relaxation Threshold 371

This section further analyzes the relationship 372

between the relaxation threshold, success rate, 373

and acceptance length (as shown in Figure 4). 374

We conducted analyses on the LIBERO-Goal, 375
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Figure 4: Acceptance Length and Success Rate of the Spec-VLA framework on the LIBERO-Goal, LIBERO-Spatial,
LIBERO-Object, and LIBERO-Long datasets. An increase in the Relaxation Threshold shows a minor impact on
the Success Rate while significantly boosting the Acceptance Length.

LIBERO-Spatial, LIBERO-Object, and LIBERO-376

Long benchmarks, each containing 10 tasks, with377

10 trials performed for each task. We tested starting378

from a relaxation threshold of 0, which corresponds379

to strict matching acceptance.380

First, Relaxation of acceptance criteria effec-381

tively enhances the acceptance length, boosting382

the generation speed of the VLA models. The383

increase in relaxation distance can enhance the384

acceptance length by 50% to 70% across various385

datasets. Moreover, we surprisingly found that386

the OpenVLA model displays high robustness on387

the LIBERO-Goal, LIBERO-Object, and LIBERO-388

Spatial datasets. The relaxation threshold could be389

relaxed from 5 to 9 without sacrificing the success390

rate of the VLA model.391

Additionally, the better a model performs in a392

scenario, the larger the relaxation threshold it can393

tolerate. In the LIBERO-Long dataset, the suc-394

cess rate drops significantly when the relaxation395

threshold exceeds 5. However, in LIBERO-Goal,396

the success rate remains stable even with the relax-397

ation threshold set to 15. This analysis verifies the398

effectiveness of our proposed relaxed acceptance399

strategy and also highlights the high potential for400

speculative execution within the VLA framework.401

6 Analysis 402

This section provides an analysis of the Spec- 403

VLA framework under non-relaxed and relaxed 404

acceptance conditions, focusing on acceptance 405

length distribution patterns and prediction perfor- 406

mance across distinct action tokens on four bench- 407

mark datasets(Libero-Goal, Libero-Object, Libero- 408

Spatial, and Libero-Long). Consider that the ver- 409

ification model invariably emits an accept length 410

of 1, which carries no discriminative information; 411

our analysis here considers only the accept lengths 412

produced by the draft model. Once verification 413

outputs are excluded, the minimum accept length 414

becomes 0 (indicating no speculative tokens were 415

accepted), so the average accept length on each 416

position can legitimately fall below 1. 417

6.1 Acceptance Length Proportion 418

Table 2 quantifies the distribution of acceptance 419

lengths (0–5) under the Spec-VLA framework, 420

comparing non-relaxed and relaxed conditions 421

across four datasets. The data reveals a dis- 422

tinct trend: non-relaxed acceptance dispropor- 423

tionately favors shorter sequences (lengths 0–1), 424

with proportions sharply declining for longer 425

lengths (2–5), whereas relaxed acceptance exhibits 426
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Dataset Relaxed
Acceptance Length

0 1 2 3 4 5

Libero-Goal
× 50.24% 33.28% 13.96% 2.23% 0.19% 0.00%
✓ 23.01% 18.98% 39.99% 15.41% 2.53% 0.08%

Libero-Object
× 47.93% 34.72% 12.72% 4.07% 0.56% 0.00%
✓ 28.23% 37.62% 17.29% 10.11% 6.22% 0.53%

Libero-Spatial
× 55.96% 31.52% 9.90% 2.46% 0.16% 0.00%
✓ 37.07% 33.52% 19.15% 8.23% 1.99% 0.03%

Libero-Long
× 55.08% 28.77% 11.30% 4.30% 0.50% 0.05%
✓ 42.39% 28.57% 16.65% 8.84% 3.35% 0.20%

Table 2: Acceptance length distribution on the LIBERO-Goal, LIBERO-Object, LIBERO-Spatial, and LIBERO-
Long datasets under non-relaxed and relaxed settings. Each row reports the proportion of trials that succeeded
with a specific acceptance length. The threshold for relaxation is 9 for LIBERO-Goal, LIBERO-Object, and
LIBERO-Spatial, and 5 for LIBERO-Long.

Dataset Relaxed
Position

0 1 2 3 4 5

Libero-Goal
× 0.47 0.30 0.73 0.78 1.13 0.98
✓ 1.44 1.36 2.18 2.13 1.76 0.98

Libero-Object
× 0.60 0.64 1.02 0.67 0.88 0.99
✓ 1.39 2.09 1.66 1.46 1.40 0.99

Libero-Spatial
× 0.36 0.50 0.88 0.72 0.70 0.96
✓ 0.89 1.39 1.55 1.56 1.20 0.98

Libero-Long
× 0.79 0.42 1.19 0.87 0.65 0.64
✓ 1.27 0.94 1.70 1.35 1.12 0.72

Table 3: Average acceptance lengths at each position (0–5) on the LIBERO-Goal, LIBERO-Object, LIBERO-Spatial,
and LIBERO-Long datasets under non-relaxed and relaxed conditions. Each entry reports the average acceptance
length observed at the given token position. The relaxed setting is consistent with Table 2.

a more balanced distribution. The dominance of427

short sequences under non-relaxed conditions (e.g.,428

50.24% at length 0) highlights a critical ineffi-429

ciency: models prioritize "safe" short predictions430

to avoid constraint violations. This artificially low431

conversion rate for longer sequences implies that432

strict constraints act as a bottleneck preventing the433

model from predicting longer action sequence. The434

most pronounced contrast occurs in Libero-Object435

at length 4: non-relaxed acceptance plummets to436

0.56% versus 6.22% under relaxed conditions—an437

11-fold relative increase. Similarly, Libero-Long438

exhibits dramatic divergence at length 4 (0.50% vs.439

3.35%, 6.7× improvement) and Libero-Spatial at440

length 3 (2.46% vs. 8.23%, 3.3× improvement).441

Even at maximum length 5, relaxed acceptance442

achieves non-zero proportions (e.g., 0.53% for re- 443

laxed in Libero-Object vs. 0% non-relaxed). These 444

disparities highlight a critical limitation of strict 445

constraints: they disproportionately penalize longer 446

sequences. Relaxation alleviates this by allow- 447

ing semantically compatible draft tokens to be ac- 448

cepted, thereby increasing sequence diversity with- 449

out compromising task success rates. 450

6.2 Acceptance Length on Multiple Positions 451

We perform further analysis to evaluate the accep- 452

tance length in each starting position. As shown in 453

Table 3, relaxed acceptance consistently achieves 454

longer average lengths than non-relaxed acceptance 455

across all positions. For Libero-Object, acceptance 456

length at position 1 surges from 0.64 (non-relaxed) 457
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Language Instruction

“Push the plate 
to the front of 
the stove”

Iteration 1:[137]

Iteration 2:[137,128,128,109]

Iteration 3:[137,128,128,109,98]

Iteration 4:[137,128,128,109,98,82,256]

Non-Relaxed Relaxed

Iteration 1:[137,119,121,109]

Iteration 2:[137,119,121,109,98,77,256]

A
ct

io
n 

#1
A

ct
io

n 
#2 Iteration 1:[191]

Iteration 2:[191,128,128,109]

Iteration 3:[137,128,128,109,84,69,256]

Iteration 1:[146,116,123,109]

Iteration 2:[146,116,123,109,98,69,256]
A

ct
io

n 
#3

Iteration 1:[205]

Iteration 2:[205,128,128]

Iteration 3:[205,128,128,107]

Iteration 4:[205,128,128,107,103]

Iteration 5:[205,128,128,107,103,52,256]

Iteration 1:[191,121,123]

Iteration 2:[191,121,123,109,79,69]

Iteration 3:[191,121,123,109,79,69,256]

Figure 5: Illustration of action sequence generation cases under non-relaxed and relaxed acceptance conditions in
the Spec-VLA framework. Three representative action trajectories are juxtaposed for systematic comparison across
both conditions. Gray denotes context tokens. Blue represents verification model outputs. Green indicates draft
model outputs.

to 2.09 under relaxation (3.3× improvement), re-458

flecting reduced bias toward short-term predictions.459

Similarly, Libero-Goal shows a 3.1× increase at460

position 0 (0.47 → 1.44), highlighting the model’s461

willingness to explore initial reasoning steps when462

constraints are loosened. Libero-Spatial also ex-463

hibits a 2.2× gain at position 3 (0.72 → 1.56), re-464

vealing that relaxation mitigates premature trunca-465

tion of valid action sequences, whereas relaxation466

balances risk and exploration to unlock the poten-467

tial for longer action sequence generation. These468

results align with findings in Table 2.469

6.3 Case Study470

This section provides a representative case to show471

the effectiveness of our proposed relaxation of ac-472

ceptance method. As shown in Figure 5, under the473

strict verification model (Non-Relaxed), the series474

appends only those candidate tokens that satisfy475

a stringent acceptability threshold, resulting in a476

gradual accretion of the action sequence. For in-477

stance, Action 1 extends from a solitary context478

token [137] to the fully verified sequence [137,479

128, 128, 109, 98, 82, 256] over four iterative re-480

finement steps. In contrast, by relaxed acceptance,481

the relaxed criterion admits a broader spectrum482

of draft proposals at an earlier stage; Action 1 al-483

ready incorporates the tokens [119, 121, 109] in its484

initial iteration and further augments this set with485

[98, 77, 256] in the second iteration. The same486

pattern holds for the other cases. Action 3, for487

example, reaches the whole sequence [191, 121, 488

123, 109, 79, 69, 256] in only three iterations under 489

the relaxed acceptance, whereas the non-relaxed 490

acceptance requires five iterations. These results 491

show that relaxing the acceptance threshold sig- 492

nificantly reduces the number of iterations needed 493

for plan generation while still preserving the qual- 494

ity of the final action sequences. This relaxation 495

also accelerates the action sequence completion 496

process, reducing the number of iterations without 497

compromising functional validity. 498

7 Conclusion 499

In this study, we explore the application of the SD 500

framework in VLA prediction tasks. We propose 501

Spec-VLA, which enhances the Eagle framework 502

for VLA predictions. To further boost the gen- 503

eration speed of the framework, we introduce the 504

distance-sensitive relaxation of the acceptance strat- 505

egy, which utilizes the token representation of VLA 506

models to effectively identify the distance between 507

action tokens and relax the acceptance threshold 508

within the SD framework. Experimental results ver- 509

ify the effectiveness of the Spec-VLA framework, 510

where the relaxation of acceptance criteria further 511

boosts the acceptance length by 25% to 44% with- 512

out compromising the success rate. Our findings on 513

the relaxation of acceptance show high robustness 514

of the VLA models, demonstrating the potential of 515

speculative systems in the VLA prediction domain. 516
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Limitations517

This work explores speculative decoding in VLA518

prediction tasks. Due to time and resource con-519

straints, experiments were not conducted in real-520

world robotic settings. Additionally, due to limita-521

tions of the verification model, Action Chunking522

was not explored. Future work could incorporate523

additional methodologies into the SD framework524

for VLA models.525
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Parameter Value

Learning Rate 5e-5
Batch Size 16
Warmup Steps 2000
pw 0.1
vw 1.0
Gradiant Clipping 0.5

Top-k 8
Tree Depth 5
Max Nodes 50

Table 4: Parameter Settings of Spec-VLA Framework.

A Parameter Settings732

This section details the parameter settings of the733

Spec-VLA model. Table 4 presents the training734

and inference parameters of the Spec-VLA frame-735

work. For LIBERO-Goal, LIBERO-Spatial, and736

LIBERO-Object, the relaxation threshold is set at 9,737

while for LIBERO-Long, it is set at 5. The parame-738

ters pw and vw represent the weights of the Cross-739

Entropy loss and Regression loss, respectively, as740

implemented in the Eagle configuration (Li et al.,741

2024d).742

B Spec-VLA Decoding Algorithm743

To enhance the understanding of the decoding pro-744

cess within the Spec-VLA framework, we pro-745

vide pseudocode that illustrates Spec-VLA decod-746

ing with relaxed acceptance, as outlined in Algo-747

rithm 1.748
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Algorithm 1 Spec-VLA Decoding
1: Input: Prompt p, Observation o, Verification Model MV , Draft Model MD, Verification model

hidden states f1:t, Visual and textual embeddings e0:t, Search Depth d, Target Length L, Relaxation
Threshold r

2: init n←− t

3: while n < L do
4: for i in {1,...,d} do
5: Sample draft in AR manner âi = MD(f1:t, e0:t, ât+1:i−1)

6: end for
7: Compute the reference token set at+1:t+1+d in parallel: ai = MV (ât+1:i−1, o, p)

8: for i in {t+1,...,t+1+d} do
9: if D(ai,âi)<=r then

10: Set ai ← âi

11: else
12: ai ← ai

13: break
14: end if
15: end for
16: if all drafts accepted, sample an extra token at+d+2 = MV (at+1:t+d+1, o, p)

17: end while
18: return at+1:t+d+1 or at+1:t+d+2

12


	Introduction
	Related Works
	Acceleration for VLA Models
	Speculative Decoding for LLMs

	Background
	Decoding of VLA Models
	Speculative Decoding Framework

	Spec-VLA Framework
	Overall Framework
	Problem by Direct Application
	Relaxation of Acceptance

	Experiment
	Main Result
	Ablations on Relaxation Threshold

	Analysis
	Acceptance Length Proportion
	Acceptance Length on Multiple Positions
	Case Study

	Conclusion
	Parameter Settings
	Spec-VLA Decoding Algorithm

