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ABSTRACT

Data poisoning attacks that inject malicious samples into training data pose a seri-
ous threat to the reliability of machine learning. Existing defense approaches focus
on the fully automated detection and removal of poisoned samples; the inherent
limitation of automated detection is that effective cleaning also removes a signifi-
cant portion of benign samples. In contrast, we consider the forensic investigation
of poisoned data, which relies on the verification of each sample through manual
inspection, comparison with alternative data source, or some other method. The
key challenge of such a forensic investigation is that the verification of each sam-
ple is expensive, but there is a limited budget for the investigation. Therefore, the
investigation must strategically select, one-by-one, which samples to verify—and
possibly remove—to minimize the impact of the remaining poisons. We frame
this as a non-myopic sequential search problem and introduce an influence-guided
active search approach. Our approach integrates (i) a label-free influence score
that identifies training samples with disproportionate impact on test-time predic-
tions, and (ii) an adaptive query strategy that propagates information from verified
samples to focus on regions of the dataset that are both influential and likely to be
poisoned. We demonstrate the efficiency and efficacy of our approach on CIFAR-
10 and Tiny ImageNet against state-of-the-art attack methods, Feature Collision,
Bullseye Polytope, and Gradient Matching. We show that our approach removes
poisoned samples more effectively than fully automated cleaning methods and
baseline active-search methods. This establishes our approach as a practical tool
for guiding forensic investigations of poisoned training data.

1 INTRODUCTION

Data poisoning attacks pose a serious threat to the reliability of machine learning systems. By inject-
ing carefully crafted malicious samples into the training data, an adversary can cause a model that
is trained on the poisoned data to misclassify targeted test inputs or degrade overall performance.
Clean-label poisoning attacks pose a particular challenge because they are difficult to detect: poi-
soned samples retain their correct labels and appear visually indistinguishable from benign ones,
but they are engineered to subtly but harmfully shift decision boundaries (Fan et al., 2022). Since
poisoned samples blend into the benign data, they often evade detection methods based on input
anomalies, label inconsistencies, or training loss statistics (Shafahi et al., 2018; Tran et al., 2018;
Jagielski et al., 2018; Turner et al., 2018).

Despite progress in defenses such as De-Pois (Chen et al., 2021), which uses model mimicry to
be attack-agnostic, Deep Partition Aggregation (Levine & Feizi, 2020), which offers provable ro-
bustness, and Healthy Influential-Noise-based Training (Van et al., 2023), which reduces poison
influence by adding noisy but beneficial training signals, poisoning remains difficult to detect. Most
automated defenses can be bypassed by sophisticated adversarial strategies. For instance, instead of
producing obvious outliers, some attacks manipulate the model into discarding innocent yet infor-
mative boundary samples, undermining the integrity of the remaining dataset (Koh et al., 2022).

Given these limitations, defending against data poisoning attacks requires more than automated data
cleaning or detection. When a dataset is suspected of contamination, the defender must act as a
forensic investigator. The goal is to verify the integrity of the training data and recover a trustworthy
subset. Unlike automated cleaning, a forensic investigation is grounded in verification, such as
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manual inspection or comparison with an alternative data source, which provides definitive evidence
of whether a particular sample is poisoned or not. However, such verification steps incur a significant
cost (e.g., manual effort from an expert), and in practice, the budget dedicated to an investigation
(e.g., amount of effort of resource that can be spent) is limited. Therefore, a key question is how to
design an investigation strategy that maximizes the utility of a limited number of verification steps,
so that the limited budget yields the highest-quality dataset at the end of the investigation.

Addressing this question, however, requires more than just prioritizing which samples to verify. The
defender also faces practical constraints: poisoned samples are rare and stealthy, and existing de-
tection methods are often computationally expensive. For example, some methods rely on repeated
retraining or costly gradient-Hessian calculation (Yang et al., 2022; Chhabra et al., 2024; Ham-
moudeh & Lowd, 2024), which are difficult at the scale of modern datasets. Thus, the challenge is
twofold: the investigation must be budget-efficient while also remaining computationally tractable.

In our forensic setting, the defender’s task is inherently sequential. Each verification step yields
both the ground truth for a single sample as well as information that can guide the selection of
subsequent samples to verify. This sequential nature suggests that the problem should be framed
as a search process rather than as static filtering. However, existing nonmyopic active search algo-
rithms (Jiang et al., 2017) are designed for tabular, low-dimensional data and become infeasible in
high-dimensional settings. Further, these existing algorithms do not consider the potential impact of
the verified samples; they simply maximize the total number of samples found by the search. The
challenge, therefore, is to design a forensic strategy that (i) retains the benefits of nonmyopic active
search while remaining computationally tractable for large-scale, high-dimensional poisoned data
and (ii) considers the quality of the dataset remaining at the end of the investigation as its objective.

To address these challenges, we introduce a forensic formulation of active search, which is the first
such formulation in the context of data poisoning to the best of our knowledge. Our setting differs
from standard active search in that data samples vary significantly in importance. Some samples
strongly shape the model’s predictions and determine the success of an attack. Merely estimating
the likelihood of a sample being poison, as the standard active search would do, overlooks this
critical dimension. To address this gap, we implement an influence-guided active search framework
for data poisoning forensics. Our method integrates two key ideas: (i) estimating the influence of
training samples on model predictions to capture their potential impact, and (ii) adaptively directing
queries toward regions of the data that are both highly influential and likely to contain poisons, based
on verification feedback. By prioritizing samples with high expected poison impact, our framework
efficiently allocates the scarce verification budget to maximize the discovery of poisoned data.

We demonstrate our approach on CIFAR-10 and Tiny ImageNet against three state-of-the-art poi-
soning attacks, Feature Collision (Shafahi et al., 2018), Bullseye Polytope (Aghakhani et al., 2021),
and Gradient Matching (Geiping et al., 2020). Our approach differs from a fully automated cleaning
method by assuming access to an expert oracle for verification. Although this introduces a human in
the loop, it enables the investigation to retain all benign data. Existing methods for cleaning poison
data, which do not consider forensic verification (e.g., EPIC (Yang et al., 2022) and Meta-Sift (Zeng
et al., 2023)), must filter out a significant portion of the clean samples to effectively remove the poi-
soned ones. By removing only those samples that are verified to be poisoned, our method neutralizes
attacks by reducing Attack Success Rate to below 5%. Our method achieves this by querying as few
as 0.5% of the training data to uncover poisons, while remaining computationally tractable.

The remainder of this paper is organized as follows. Section 2 reviews related work on data poi-
soning and cleaning and existing methods necessary for understanding our approach. Section 3 for-
malizes the forensic problem setting and underlying assumptions. Section 4 presents our influence-
guided active search framework. Section 5 describes our experimental setup, and Section 6 presents
our numerical results. Finally, Section 7 concludes the paper and discusses future directions.

2 RELATED WORKS AND BACKGROUND

2.1 RELATED WORKS

Data Poisoning Attacks Data poisoning attacks compromise machine learning systems by in-
jecting malicious samples into training datasets, disrupting model performance (Fan et al., 2022).
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Unlike evasion attacks, which manipulate test-phase inputs without corrupting the model itself, poi-
soning attacks occur during the training phase (Wang et al., 2024; Kostyumov, 2022; Biggio et al.,
2013). Even a minimal injection of poisoned samples—just 0.01%—cause the model to misbehave
in poisoning attacks (Carlini & Terzis, 2021). Especially, targeted attacks cause specific test in-
stances to be misclassified into incorrect classes (Guo & Liu, 2020). Moreover, unlike label-flipping
attacks (Xiao et al., 2012), clean-label attacks poison data without modifying the original labels (Peri
et al., 2020; Chen et al., 2021; Goldblum et al., 2022; Tian et al., 2022; Ramirez et al., 2022) which
allows long-lasting effects on the model’s behavior.

Defense Strategies against Data Poisoning Defense strategies against data poisoning attacks can
be grouped into several main approaches. One of the most common strategies is data sanitization,
which aims to identify and remove suspicious samples from the training set before training (Stein-
hardt et al., 2017; Koh et al., 2022). This category includes a range of methods, from unsupervised
anomaly detection (Tran et al., 2018; Chen et al., 2018; Yang et al., 2022) to supervised (Zeng et al.,
2023), neighborhood-based filtering like Deep k-NN (Peri et al., 2020). While these methods can
be effective when clean and poisoned data are clearly separable, they can incur significant computa-
tional costs, particularly in high-dimensional datasets like images (Qi et al., 2023).

Another line of work leverages influence functions to quantify the impact of individual training
points on model behavior. This enables defenses that can filter or down-weight samples predicted
to be harmful, sometimes after an initial outlier removal step (Seetharaman et al., 2022; Steinhardt
et al., 2017). A related technique, HINT, perturbs influential points with “healthy noise” to reinforce
beneficial patterns instead of removing them (Van et al., 2023). However, their standard formulation
necessitates the approximation techniques that require a labeled test or validation set against which
the influence of training data is measured.

Finally, forensic approaches offer a complementary strategy, designed to retroactively identify the
source of an attack. Techniques such as iterative clustering and data unlearning can trace model
misbehavior back to specific malicious training samples (Shan et al., 2022). The applicability of
these methods often presumes that the specific misclassified input-output pairs that serve as a starting
point for the analysis are available.

2.2 BACKGROUND

Influence Scores Understanding the effect of individual training samples on the predictions of
a complex, over-parameterized model is crucial for improving model transparency and debugging
datasets. The most direct method to measure a sample’s effect is to remove it from the training set,
retrain the model from scratch, and measure the difference in performance. However, this leave-
one-out retraining approach is computationally prohibitive for modern deep learning models.

To address this challenge, Influence Functions (Koh & Liang, 2017) were introduced as an efficient
method to approximate the effect of a single training sample on a model’s parameters and predic-
tions, without the need to perform costly retraining. The core idea is to estimate the change in the
model parameters, denoted as ∆θi, that would occur if a training sample xj were to be removed from
the training data. This change in parameters can be estimated using a second-order approximation:

∆θi ≈ −H−1
θ ∇θL(xi, θ) (1)

Here, Hθ is the Hessian matrix of the total training loss with respect to the model parameters θ,
which captures the curvature of the loss landscape. L(xi, θ) is the loss for training sample xi. The
inverse Hessian H−1

θ scales this gradient to approximate the complete effect on the parameters.

The traditional influence function then quantifies the influence of training sample xi with respect to
a specific objective, typically the impact on the loss of a labeled test sample xj . This is calculated
by taking the dot product of the estimated parameter change ∆θi and the gradient of the test loss for
sample xj . This measures how much the loss for test sample xj would increase if sample xi were
removed from the training data:

I(xi, xj) = ∇θL(xj , θ)
⊤∆θi ≈ −∇θL(xj , θ)

⊤H−1
θ ∇θL(xi, θ) (2)

A key limitation of this traditional approach is its reliance on a clean, labeled test dataset. The
calculation of the test loss, L(xj , θ), requires the label yj of the test sample xj . In a practical
deployment, where the test samples are unlabeled, this method cannot be applied directly.
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Active Search Active search is a subfield of active learning designed to identify as many members
of a specific target class as possible from a large dataset, Dtrain, under a limited labeling budget, B.
The process is sequential: at each step, a policy selects a single sample, xi, to be evaluated by a costly
oracle, returning a binary label zi ∈ {0, 1} indicating whether xi belongs to the target class (Jiang
et al., 2017). The objective is to design a selection policy that maximizes the total number of target
samples discovered.

To guide the search, these policies rely on a probabilistic model that, given the set of queried sample
S, estimates the target probability pi for each unqueried sample xi ∈ U . This is a myopic (or
greedy) policy, which only considers immediate reward. At each step t, it queries the sample with
the highest current estimated target probability:

x∗
i = argmax

xi∈U
Pr(zi = 1|xi, S) (3)

While computationally efficient, this strategy does not account for how the current selection could
reveal information that influences the value of subsequent queries, and thus could fail to adequately
explore the search space.

Efficient Nonmyopic Search (ENS) policies (Jiang et al., 2017) accounts for the entire remaining
budget, m, at each step. To remain computationally tractable, it approximates the expected future
reward by assuming the remaining m queries are made as a single, simultaneous batch. It selects
the candidate xi that maximizes a score combining its immediate value with its expected impact on
future rewards.

x∗
i = argmax

xi∈U

Pr(zi = 1|xi, S) + Ezi

 ∑
xj∈Top-m(U\{xi})

Pr(zj = 1|xj , S ∪ {(xi, zi)})

 (4)

The second term represents the expected future reward. The unknown status (zi) for the candidate xi

is treated as a random variable. The expectation is taken because the policy must evaluate the poten-
tial of xi before its true status is known, computing a weighted average over all possible outcomes.
S ∪ {(xi, zi)} represents how the knowledge of xi’s status updates the model and recalculates the
target probabilities for the remaining samples, thus quantifying the exploratory value of the query.

3 PROBLEM STATEMENT

We address the data poisoning defense problem from a forensic perspective. We have a model
fθ trained on dataset Dtrain = {(xi, yi)}Ni=1 that contains a small, unknown number of poisoned
samples. The defender has access to a clean, unlabeled test set Dtest = {xj}Mj=1 and operates under
constrains: there is no clean training data, and computationally expensive methods like extensive
iterative retraining cannot be afforded. The only available tool is a verification oracle that can, for a
limited budget of B queries, verify the true poison status zi ∈ {0, 1} of a training sample xi.

3.1 OBJECTIVE

The goal is to obtain a filtered training set that, when used to train a model, minimizes the loss of the
clean test set. This filtered dataset is constructed by querying a subset of samples S ⊆ Dtrain (with
|S| ≤ B) and removing the identified poisons. The objective is therefore to select an optimal set of
samples S∗ to be investigated, which solves the following problem:

S∗ = argmin
S⊆Dtrain,|S|≤B

L(fθ(Dtrain \ {xi ∈ S|zi = 1}), Dtest) (5)

However, this formulation cannot be directly solved for multiple reasons. First and foremost, we can
query the verification oracle for only one set S, sequentially. Second, searching over all possible
subsets is computationally infeasible, and each evaluation of the objective function for a given set
S would require retraining the model. Lastly, since we do not have labels for the test dataset, we
cannot compute the actual test loss.

Given the infeasibility of directly minimizing test loss through exhaustive retraining, we introduce
a computationally feasible surrogate objective. The core assumption of our forensic approach is

4
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that removing highly influential poisoned samples contributes most to reducing the final test loss.
Therefore, instead of maximizing the count of identified poisons, we design a query strategy that
prioritizes those with the greatest expected impact on model predictions. This reduces the problem
to finding the set S∗ maximizes the total expected poison impact at each step:

S∗ = argmax
S⊆Dtrain,|S|≤B

∑
xi∈S

pi · Ii, (6)

where pi is the estimated probability that xi is poisoned based on oracle feedback and neighborhood
consistency, and Ii is the influence score of xi.

4 INFLUENCE-GUIDED ACTIVE SEARCH

Our proposed approach adapts the standard active search described in Section 2.2 to the specific
challenges of data poisoning forensics. We integrate a problem-specific reward function, expected
poison impact, designed to guide the search toward data samples that are both likely to be poisoned
and are maximally detrimental to the model.

4.1 FEATURE SPACE CONSTRUCTION

We start with training a deep neural network in the entire potentially contaminated training set Dtrain.
The trained network, fθ, is then employed as a fixed feature extractor, mapping each training sample
xi ∈ Dtrain to a feature vector used to construct the pairwise Euclidean distance matrix D. In
addition, fθ is used to calculate the influence scores, as described in the following section.

4.2 LABEL-FREE INFLUENCE FORMULATION

Since traditional influence functions are inapplicable in our setting without a labeled test set, we
replace the test sample loss with a proposed test impact vector, Vtest. We consider the model’s pre-
softmax output (logit vector) for each test sample and compute the average L1-norm of these vectors
to quantify the overall magnitude of the predictions. The resulting Vtest represents the direction of
highest sensitivity for the model’s predictions on the unlabeled test set.

Vtest = ∇θ

 1

|Dtest|
∑

xj∈Dtest

∥f(xj , θ)∥1

 (7)

Finally, the influence score of a training sample xi on the vulnerability of the entire unlabeled test
set is calculated as follows. This is equivalent to measuring how the model parameters would shift
(∆θi) in the direction of Vtest if xi were removed.

I(xi) = (∆θi)
⊤Vtest ≈ − (∇θL(xi, θ))

⊤
H−1

θ Vtest. (8)

We compute the test impact vector Vtest and the corresponding H−1
θ Vtest only once for the entire

dataset. Then, for each training sample, the influence score is calculated by simply computing its
gradient and performing a single dot product. This approach quantifies how each training point’s
gradient aligns with parameter shifts that affect the model’s logit outputs. By eliminating the need
for test labels, it directly captures the directional effects of poisoned sample, which are often crafted
to manipulate decision boundaries in ways not easily detected by simple loss metrics.

4.3 EXPECTED POISON IMPACT FOR SEARCH AND IMPLEMENTATION

Each training sample is mapped to a feature vector using the extractor fθ and pairwise Euclidean
distances (D) are computed in this feature space as described in Section 4.1. These distances define
neighborhoods that are used to estimate the probability of poisoning. At step t, for each unqueried
sample xi (where i ∈ Ut), we estimate its probability of being poison, pi. The probability is
computed as the proportion of verified poisons among its K nearest neighbors, where neighbors are
determined using D. If St denotes the set of samples verified up to step t, then

pi =
1

K

∑
j∈Ni∩St

zj (9)
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where zj ∈ {0, 1} is the oracle-provided poison status for sample xj . The expected poison impact
(EPI), si, of a sample xi is then defined as the product of its estimated poison probability and its
influence score.

si = pi · Ii (10)

This metric strategically directs the search toward samples that are both likely to be poisoned (pi)
and have strong influence on the model (Ii).
We describe two versions of our framework: myopic and non-myopic. The myopic influence-guided
active search instantiates the myopic search algorithm (Section 2.2) by using our expected poison
impact score si as the greedy reward function. Our non-myopic algorithm adapts the ENS frame-
work (Jiang et al., 2017) by using the EPI score si as the fundamental unit of reward. The total score
Ti for a candidate xi is calculated as its immediate reward plus the expected future reward:

Ti = si + piRpoison + (1− pi)Rclean (11)

Here, Rclean and Rpoison represent the total EPI expected to be collected over the remaining m =
B − t queries, after simulating the label for xi being in the corresponding state. Following the ENS
framework, they are approximated by the sum of the top-m EPI scores in the subsequent state:

Let state ∈ {poison, clean}. Rstate =

{
maxj∈U\{i} s

′
j , m = 1,∑

Topm
(
{s′j : j ∈ U \ {i}}

)
, m > 1 .

(12)

where s′j are the updated EPI scores after the simulation. To make this search tractable, ENS em-
ploys a pruning strategy based on an optimistic upper bound on future rewards. We adapt this by
defining global upper bounds for the clean and poison simulations:

UBclean =
∑

Top-m
(
{sj : j ∈ U}

)
, UBpoison =

∑
Top-m

(
{sj + Ij

K : j ∈ U}
)

(13)

The term Ij

K in UBpoison represents the maximum possible increase to a sample’s EPI score if a single
new poison is discovered in its neighborhood. These bounds allow the algorithm to efficiently prune
candidates that cannot possibly be optimal. The complete implementation is detailed in Algorithm 1.

5 EXPERIMENTS

5.1 POISON GENERATION

We evaluate our proposed method on two standard benchmarks in adversarial machine learning and
computer vision: CIFAR-10 and Tiny ImageNet. CIFAR-10 consists of 50,000 training images
across 10 classes, while the Tiny ImageNet dataset contains 100,000 training images distributed
among 200 classes. We generate 500 poisoned images for CIFAR-10 and 250 for Tiny ImageNet
across three standard perturbation budgets (ϵ = 8, 16, and 22). The main results in Section 6
are averaged over 20 trials with distinct base–target pairs. Our poison generation process strictly
follows the benchmark setup (Schwarzschild et al., 2021), adapting all original hyperparameters and
optimizer configurations to ensure reproducibility.

We evaluate three data poisoning attacks: Feature Collision (FC) (Shafahi et al., 2018), Bullseye
Polytope (BP) (Aghakhani et al., 2021), and Gradient Matching (GM) (Geiping et al., 2020). Fea-
ture Collision (FC) (Shafahi et al., 2018) crafts poisons designed to collide with a target’s fea-
tures in the model’s embedding space, causing a misclassification. Similarly, Bullseye Polytope
(BP) (Aghakhani et al., 2021) places poisons on the surface of a hypersphere centered on the target
image in feature space, effectively surrounding it to enhance the attack’s influence. For both the FC
and BP attacks on CIFAR-10, we adapt a transfer learning setting, where a model with a pre-trained
ResNet-18 is poisoned and trained for 40 epochs, starting with a learning rate of 0.1 that decays by
a factor of 10 at epochs 25 and 35. For Tiny ImageNet, poisons are generated using the BP attack
(ϵ = 8) with a VGG-16 model trained from scratch. In contrast, Gradient Matching (GM) (Geip-
ing et al., 2020) synthesizes poisons by aligning the gradients of a poisoned batch with the gradients
of the target sample. As required by this method, the model is trained from scratch for 200 epochs,
with a starting learning rate of 0.1 that decays by a factor of 10 at epochs 100 and 150. All three
attacks are trained using SGD, with hyperparameters adapted from their original configurations.
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Algorithm 1 Influence-Guided Nonmyopic Active Search
Require: Training data Dtrain, budget B, neighborhood size K
1: Train Feature Extractor: Train a DNN fθ on Dtrain
2: Compute Distances: Use the fθ to compute pairwise distance matrix D ∈ RN×N

3: Compute Influence Scores: Compute the influence score vector I ∈ RN

4: Initialize Seeds: Sort indices by descending I; S ← top-K indices.
5: if i ∈ S : zi = 1 = ∅ then append next highest I samples to S until a poison is included.
6: Query oracle for {zi}i∈S . Set unqueried samples U ← [N ] \ S.
7: Initialize Scores: For each j ∈ U , find its neighbors Nj ⊆ S. Compute pj ← 1

K

∑
i∈Nj

zi and
sj ← pj · Ij .

8: Precompute Impact Sets: For each i ∈ U , compute Imp(i)← {j ∈ U : Dij < maxl∈Nj Dlj}.
9: for t = |S| to B − 1 do

10: m← B − t− 1 {Number of future steps remaining}
11: Compute Global Upper Bounds for Pruning:
12: UBclean ←

∑
Top-m({sj : j ∈ U})

13: UBpoison ←
∑

Top-m({sj + Ij/K : j ∈ U})
14: for each candidate i ∈ U do
15: Pruning Check:
16: UB(i)← si + pi ·UBpoison + (1− pi) ·UBclean
17: if UB(i) < best score then
18: continue
19: end if
20: Clean Simulation (zi = 0): Simulate updating scores and compute Rclean.
21: Poison Simulation (zi = 1): Simulate updating scores and compute Rpoison.
22: Ti ← si + piRpoison + (1− pi)Rclean {Compute total expected score}
23: if Ti > best score or (Ti = best score and Ii > Ij⋆ ) then
24: best score← Ti; j⋆ ← i
25: end if
26: end for
27: Commit Selection: Query oracle for label zj⋆ .
28: Update State: S ← S ∪ {j⋆}; U ← U \ {j⋆}. UpdateN and EPI for all affected points in U .
29: end for
30: return S∗ = {i ∈ S : zi = 1}

5.2 EVALUATION METRICS

We evaluate the performance of our forensic framework using two primary metrics: Attack Success
Rate and test accuracy. First, Attack Success Rate (ASR) measures the percentage of targeted
test images that the poisoned model misclassifies into the attacker’s chosen class. Second, test
accuracy (Acc.) reflects the overall performance of the trained model after the defense is applied.
After removing the samples identified as poison, we measure the model’s accuracy on the original
clean test set. An effective defense should minimize ASR while maximizing test accuracy.

5.3 BASELINES

To evaluate the effectiveness of our proposed methods, we compare their performance against two
state-of-the-art defense models, Meta-Sift and EPIC. Note that there is a fundamental difference in
strategy: whereas our approach performs a forensic investigation to precisely identify and remove
only the malicious samples after an attack is suspected, these baselines operate as data cleaning
mechanisms. Their goal is to sanitize the training set by removing a subset of suspicious data
samples, which can inadvertently include benign samples.

Meta-Sift (Zeng et al., 2023) is a defense mechanism that empowers users to specify the number
of images to sift from the training process. For our experiments, we configured Meta-Sift to sift
out a thousand images from the dataset. This parameter was selected by considering the size of the
dataset and the number of poisoned images included in the dataset. On the other hand, EPIC (Yang
et al., 2022) is another defense strategy against data poisoning attacks. It uses a clustering approach
to detect examples that are not close to other examples in the gradient space and omits these isolated
examples during training. In this way, it can prevent the misclassifications of the target image at
inference time.

7
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6 RESULTS AND ANALYSIS

6.1 OVERALL PERFORMANCE

The results demonstrate the effectiveness of our proposed forensic approach. As shown in Table 1
and Table 2, our method consistently outperforms in reducing the Attack Success Rate (ASR) while
maintaining or improving test accuracy across different datasets, attack types, and perturbation sizes.

On the CIFAR-10 dataset, we evaluate our method, Nonmyopic-Influence, with a query budget of
B = 250, which is only 0.5% of the 50,000 sample training set. This small budget proves highly
effective. For instance, against the potent BP attack, which achieves an ASR of up to 19/20 on the
undefended model, our approach neutralizes its effectiveness, reducing the ASR to 0/20 for ϵ = 8
and ϵ = 16, and to just 1/20 for ϵ = 22. While EPIC also reduces ASR, our method is often more
effective, as demonstrated in the GM attack scenarios, where Nonmyopic-Influence achieves lower
ASR at higher epsilon values.

A distinct advantage of our approach is its ability to preserve or even enhance test accuracy. Across
all experiments, models defended by our method achieve higher accuracy than both the undefended
models and those protected by competing data-cleaning methods. This is because our precision-
oriented forensic technique selectively removes only the identified poisoned samples. In contrast,
other defenses like Meta-Sift and EPIC often show smaller gains or even a decline in accuracy.
Their data-cleaning mechanisms disregards a substantial number of benign samples along with the
poisons, thereby degrading the training data quality and harming overall model performance.

Table 1: Attack Success Rate (ASR) and average test accuracy (Acc.) over 20 trials on the CIFAR-
10 dataset poisoned with three perturbation sizes.

Undefended Nonmyopic-Influence Meta-Sift EPIC

ASR Acc. ASR Acc. ASR Acc. ASR Acc.

ϵ = 8

FC 2/20 0.9460 0/20 0.9497 2/20 0.9423 0/20 0.9467
BP 18/20 0.9457 0/20 0.9500 4/20 0.9455 1/20 0.9467
GM 5/20 0.9487 1/20 0.9486 4/20 0.9407 1/20 0.8899

ϵ = 16

FC 3/20 0.9456 0/20 0.9468 3/20 0.9325 0/20 0.9466
BP 19/20 0.9458 0/20 0.9475 7/20 0.9342 1/20 0.9465
GM 11/20 0.9486 3/20 0.9476 8/20 0.9352 6/20 0.8900

ϵ = 22

FC 4/20 0.9455 0/20 0.9483 3/20 0.9456 0/20 0.9466
BP 19/20 0.9458 1/20 0.9503 11/20 0.9386 1/20 0.9468
GM 4/20 0.9491 1/20 0.9465 4/20 0.9373 4/20 0.8901

We further validate our method’s scalability on the Tiny ImageNet. We also set the query budget to
B = 250, which matches the number of poisoned samples in the Tiny ImageNet training set. As
shown in Table 2, Nonmyopic-Influence again outperforms Meta-Sift and EPIC in both ASR and
accuracy. It reduces the ASR from 6/20 to 3/20 while improving accuracy from 0.6153 to 0.6218.

Table 2: Attack Success Rate (ASR) and average test accuracy (Acc.) over 20 trials on the Tiny
ImageNet dataset poisoned by BP attack with the perturbation size of 8.

Undefended Nonmyopic-Influence Meta-Sift EPIC

ASR Acc. ASR Acc. ASR Acc. ASR Acc.

6/20 0.6153 3/20 0.6218 5/20 0.6011 5/20 0.5699

6.2 ABLATION STUDY

To isolate the contributions of our key components–influence-guided search and non-myopic
lookahead–we perform an ablation study. We evaluate four variants of our method: Myopic, a
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greedy search without influence scores; Myopic-Influence, a greedy search guided by influence
scores; Two-Step, a search that looks ahead one more step without influence scores; and Two-Step-
Influence, a two-step lookahead search guided by influence scores. Unlike the full non-myopic
method, which simulates outcomes over the entire remaining budget, the “Two-Step” variant pro-
vides a lightweight approximation by looking ahead one more step. For each candidate, it simulates
both possible oracle outcomes (poison or clean) and selects the action that leads to the best achiev-
able score in the subsequent step. Table 3 reports the results of this study on the CIFAR-10 and Tiny
ImageNet datasets. The findings validate the importance of our core components.

First, incorporating influence scores consistently improves performance. Comparing the base meth-
ods to their “-Influence” counterparts (e.g., Myopic vs. Myopic-Influence) shows that influence
guidance generally reduces the ASR or improves test accuracy. In the CIFAR-10 GM attack
(ϵ = 16), adding influence scores lowers the ASR from 3/20 to 2/20 without sacrificing accuracy in
both the Myopic and Two-Step settings. Second, while the limited lookahead provides some benefit,
its impact is less pronounced. The Two-Step search offers marginal improvement over the purely
greedy Myopic search in specific scenarios, like the BP attack on Tiny ImageNet (ASR drops from
4/20 to 3/20). However, these simplified variants remain less effective than our full Nonmyopic-
Influence approach, confirming that the combination of influence guidance and a comprehensive
lookahead strategy is crucial for achieving optimal performance.

Table 3: Attack Success Rate (ASR) and average test accuracy (Acc.) over 20 trials on two different
datasets poisoned with three perturbation sizes. Myopic search with and without influence scores as
well as Two-Step search with and without influence scores are evaluated. The budget is set to 250.

CIFAR-10

Myopic Myopic-Influence Two-Step Two-Step-Influence

ASR Acc. ASR Acc. ASR Acc. ASR Acc.

ϵ = 8

FC 0/20 0.9489 0/20 0.9482 0/20 0.9473 0/20 0.9492
BP 1/20 0.9465 1/20 0.9476 1/20 0.9483 1/20 0.9495
GM 2/20 0.9401 1/20 0.9479 2/20 0.9466 2/20 0.9466

ϵ = 16

FC 1/20 0.9467 0/20 0.9479 0/20 0.9482 0/20 0.9484
BP 0/20 0.9486 0/20 0.9507 0/20 0.9484 0/20 0.9493
GM 3/20 0.9342 2/20 0.9386 3/20 0.9379 2/20 0.9379

ϵ = 22

FC 0/20 0.9461 0/20 0.9474 1/20 0.9478 1/20 0.9485
BP 1/20 0.9465 0/20 0.9477 1/20 0.9475 0/20 0.9481
GM 1/20 0.9350 1/20 0.9363 2/20 0.9349 2/20 0.9396

Tiny Imagenet

BP (ϵ = 8) 4/20 0.6176 4/20 0.6194 3/20 0.6200 4/20 0.6161

7 CONCLUSION

This work introduces an influence-guided active search framework to defend against data poisoning
in a forensic setting where oracle queries are limited. Our method strategically combines influence
scores and poisoning probability estimates to efficiently identify malicious data. Experiments on
CIFAR-10 and Tiny ImageNet show our framework effectively neutralizes state-of-the-art poison-
ing attacks, significantly reducing their success rates while maintaining or improving test accuracy.
The results confirm that treating data cleaning as an active forensic investigation yields superior
model robustness and utility compared to traditional defenses. Future work will focus on scaling the
framework to larger datasets and broader threat models.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of large language models to support the writing process, including grammar
correction and refining the flow of sentences and paragraphs.

B NOTATIONS

Table 4 summarizes the notations used throughout this paper. We distinguish between training and
test datasets, poisoned and clean samples, as well as the key variables employed in our forensic
investigation framework. The notations cover dataset indices, query budget, neighbor sets, influence
scores, and probability estimates. They are essential to formally define our problem setup and pro-
posed method. For completeness, we also include ϵ, which denotes the magnitude of the poisoning
perturbation used in our experiments. This notation table serves as a reference to ensure consistency
and clarity across the main text and supplementary materials.

Table 4: Overview of Notations

Notation Description
General Notations

Dtrain The training dataset
N Total number of samples in Dtrain
xi The i-th training sample
yi Ground-truth label of the training sample xi

zi Binary status for sample xi (1: poisoned/target, 0: clean/non-target)

Active Search Notations
B Total query budget for the active search
t Current step/iteration in the active search (0, 1, . . . , B − 1)
m Number of remaining queries at step t, m = B − t
St Set of samples selected (queried) up to step t
Ut Set of unselected (unqueried) samples at step t, Ut = Dtrain \ St

x∗
t The sample selected by the policy at step t

pi Estimated poison probability for sample xi, pi = Pr(zi = 1|xi, St)

Method-Specific Notations
D Pairwise distance matrix (N ×N ) for the training set
K Number of nearest neighbors for probability estimation
Ni Set of K-nearest neighbors of sample xi

I Vector of influence scores for all training samples
ϵ Size of the poisoning perturbation
Dtest The test dataset
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