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Abstract

Topological autoencoders (TopoAE) have demonstrated their capabilities for per-
forming dimensionality reduction while at the same time preserving topological
information of the input space. In its original formulation, this method relies on a
Vietoris–Rips filtration of the data space, using the Euclidean metric as the base
distance. It is commonly assumed that this distance is not sufficiently powerful
to capture salient features of image data sets. We therefore investigate alterna-
tive choices of distances in the data space, which are generally considered to be
more faithful for image data in comparison to the pixel distance. In our exper-
iments on real-world image datasets, we find that the Euclidean formulation of
TopoAE is surprisingly competitive with more elaborate, perceptually-inspired
image distances.

1 Introduction

Topological autoencoders [6] were recently introduced as a novel dimensionality reduction method
that satisfies topological constraints. Briefly put, their underlying concept is a loss term that aims
to harmonise the topology of the input space and the topology of the learnt latent space. The loss
term requires information about the topological features of each batch, provided in the form of
persistence diagrams, calculated from a Vietoris–Rips complex [9]. Figure 1 provides an overview of
the architecture.

In their experiments, Moor et al. [6] discussed the benefits of topology-constrained latent visual-
isations by means of various examples. While their method exhibits good performance on some
datasets, large-scale image datasets such as CIFAR-10 do not result in directly-interpretable latent
embeddings, even though quality metrics indicate that the quality of the topologically-constrained
latent embeddings is higher than for other embedding methods.

The choice of a pixel-based Euclidean distance, which is unable to gauge the perceived similarity
between images [2], might not be ideal. The goal of this paper is therefore to assess how changing the
distance metric in the data space impacts the quality of the latent embeddings, measured using various
dimensionality reduction quality metrics. In particular, we will investigate alternative formulations of
topological autoencoders by employing distances that are assumed to be more faithful for the analysis
of image data.
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Figure 1: A schematic overview of the topological autoencoder calculation process. Using a mini-
batch X of the data space X , an autoencoder is trained to reconstruct X , resulting in a reconstructed
mini-batch X̃ . The crucial novel ingredient is a topological loss, which is calculated based on
the topological differences between persistence diagrams (obtained from a mini-batch X and its
corresponding latent code Z). The objective of the topological loss term is to impose a constraint on
the autoencoder so that it is incentivised to preserve topological features of the data space within the
respective latent representations. We refer the reader to Moor et al. [6] for more details.

2 Background

Given a point cloud X := {x1, . . . , xn} ⊆ Rd and a distance d : X ×X → R, let A∈ Rn×n refer
to the distance matrix of X with Aij = d(xi, xj). For 0 ≤ ε < ∞, the Vietoris–Rips complex of
X , denoted as R(A), at scale ε contains all simplices of X whose elements {x1, x2, . . . } satisfy
d(xi, xj) ≤ ε for all i, j. Moor et al. [6] treat each mini-batch as a point cloud X paired with an
encoded mini-batch Z. On top of the autoencoder architecture, which is illustrated in Figure 1,
both point clouds X,Z are separately subjected to a Vietoris–Rips filtration to compute persistence
diagrams. These diagrams approximate topological features of both the data and the latent spaces,
which are then aggregated in a differentiable loss term. Even though it is common practice to use the
Euclidean distance as base distance for the Vietoris–Rips complex, it has been previously shown that
other distances may be used alternatively, and they do not necessarily have to satisfy the requirements
of a metric [10].

3 Methods

While TopoAE employs the Euclidean distance d(xi, xj) = ||xi − xj ||2 in both the data and latent
spaces, we investigate two alternative approaches for measuring distance in the data space, which are
based on (i) random convolutions, and (ii) perceptual similarity . We note that there are alternative
options of handling image data in practice, including specialised variants of convolutional neural
networks [1, 4]. In this paper, we are primarily interested in performing an ablation study of the
method proposed by Moor et al. [6], so we defer the comparison with computationally more involved
architectures to future work.

3.1 Random Convolutions

Convolutional neural networks (CNNs) exhibit an inductive bias which is advantageous for the feature
extraction and classification of images [5]. Notably, even randomly initialised convolutional layers
can be used as rich feature extractors [7, 11]. We hypothesise that basing the distance of the data
space on feature maps of untrained CNNs could preserve topological features of the input space. For
this, let

d(xi, xj) = ||vec(F(xi))− vec(F(xj))||1, (1)

where F denotes the output (feature maps) of a CNN employing 3 convolutional layers with ReLU
activations, vec(·) the vectorisation operation, and || · ||1 the `1 norm, which is used to deal with
potentially high-dimensional feature spaces.
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3.2 Perceptual Similarity

In their work, Zhang et al. [12] showed that the feature representations of deep neural networks are
well-suited to quantify the similarity of images similarly to human perception. Furthermore, their
work shows that the derived similarity scores outperform (in terms of being aligned with human
judgement) hand-engineered counterparts that rely on low-level features of the image or random
projections using untrained neural networks. We thus also consider a learnt similarity score based on
deep neural network features called Learned Perceptual Image Patch Similarity (LPIPS) [12]. The
LPIPS distance is derived by training a deep neural network, such that the difference of its features is
in line with human perceptual scores. In the dataset used to train LPIPS, humans were asked to judge
which of two distorted images is closer to a reference image, and the neural network was trained to
match these estimates. In particular, the distance between two images xi and xj was computed via
their features ŷi and ŷj

d (xi, xj) :=
∑
l

1

HlWl

∑
h,w

∥∥wl �
(
ŷlihw − ŷljhw

)∥∥2
2
, (2)

which corresponds to a per-channel scaled squared `2 distance (with wl being the scale factor) of the
features averaged over all spatial locations. Here, Hl and Wl denote the number of elements in the
height direction and width direction, respectively. For details on how the distances were calibrated to
match human perception, we refer to Zhang et al. [12]. In our experiments, we relied on the weights
of the VGG deep convolutional neural network architecture [8] and the implementation of LPIPS
provided with the publication, both of which are publicly available [13].

4 Experiments

4.1 Experimental Setup

In our experiments, we consider three image datasets MNIST, FASHION-MNIST (abbreviated in
the tables as F-MNIST), and CIFAR-10. We compare three variations of TopoAE by adapting
the distance function used for the Vietoris–Rips filtration of the data space: (i) Euclidean (original
formulation of Moor et al. [6]), (ii) RandomConv, which employs random convolutions, and (iii) VGG
which uses the LPIPS distance with a pre-trained VGG network. In preliminary experiments, we
identified that a strong topological regularisation parameter λ (see also Equation 1 of Moor et al. [6])
is essential for achieving good performance with TopoAE. Therefore, and also to ensure maximal
comparability between the assessed methods, we used a fixed λ = 2, a mini-batch size of 64, a
learning rate of 10−3 together with Adam, and a weight decay of 10−5. Furthermore, we conform
with the same MLP autoencoder architecture as used in Moor et al. [6] with (1000−500−250) hidden
units for the encoder, a two-dimensional bottleneck, and finally (250 − 500 − 1000) hidden units
for the decoder, which was inspired by DeepAE [3]. As for evaluation strategies, we follow Moor
et al. [6] by visualising the low-dimensional embeddings as coloured by the class labels (which were
not used for training, though), and report the same set of quantitative measures for dimensionality
reduction, both evaluated on the predefined testing split. We make our code publicly available under
https://github.com/BorgwardtLab/topo-ae-distances.

4.2 Results

Table 1 lists the quantitative results of our experiments. We observe that the standard Euclidean
approach performs surprisingly well over various measures, foremost in terms of KL1, `-Cont and
`-RMSE. Overall, we find that VGG shows competitive performance with the Euclidean approach on
MNIST and FASHION-MNIST, whereas RandomConv competes with the Euclidean formulation on
CIFAR. We included `-RMSE for the sake of completeness, but acknowledge that it serves foremost
as a sanity check, since it computes a mean squared error of the Euclidean distance matrices of
both spaces (which the Euclidean TopoAE is predisposed to minimise). Figure 2 shows the latent
embeddings for all methods and datasets. Here, we observe a better separability of the classes for
the two alternative approaches, in particular for MNIST and FASHION-MNIST, whereas CIFAR
remains challenging for all investigated approaches.

3

https://github.com/BorgwardtLab/topo-ae-distances


Table 1: A summary of our quantitative evaluations. Please refer to Moor et al. [6] for details on the
metrics.

DATASET METRIC KL0.01 KL0.1 KL1 `-Cont `-MRRE `-Trust `-RMSE Data MSE
MODEL

CIFAR
RandomConv 0.573000 0.026776 0.000519 0.884307 0.116578 0.865882 37.986596 0.13567
VGG 0.747940 0.035598 0.000545 0.852621 0.134274 0.857791 38.790536 0.18757
Euclidean 0.589208 0.021210 0.000324 0.919586 0.107334 0.851644 37.628791 0.14111

F-MNIST
RandomConv 0.421326 0.066843 0.001259 0.973635 0.025571 0.970463 22.048758 0.10510
VGG 0.380293 0.055905 0.001052 0.977465 0.023314 0.973091 22.813647 0.10957
Euclidean 0.391267 0.060878 0.000981 0.980441 0.025026 0.967511 21.436654 0.10919

MNIST
RandomConv 0.355687 0.130055 0.001506 0.921422 0.060333 0.930401 19.791551 0.14990
VGG 0.674952 0.187962 0.001844 0.920575 0.059505 0.931545 20.174628 0.14978
Euclidean 0.343812 0.098164 0.000797 0.926969 0.069833 0.906727 18.976329 0.15464

FASHION-MNIST MNIST CIFAR-10

euclidean

RandomConv

VGG

Figure 2: Latent representations of the FASHION-MNIST (left column), MNIST (middle column),
CIFAR-10 (right column) data sets. All methods used a fixed batch size of 64.
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5 Conclusion

In this paper, we challenged the common assumption that Euclidean distances are ill-suited for
measuring distances on image datasets. We found that even the use of elaborate distances based on
perceptual similarity [12] does not result in marked improvements in terms of quality metrics—in
fact, the Euclidean distance was competitive with all of these approaches. The resulting visualisations,
however, appear to exhibit an improved separation when employing the alternative distances specific
to the image domain.

For future work, we envision extending similar considerations to other domains, i.e. choosing domain-
specific distance metrics for graphs, times series, and others. In the graph domain, for instance,
it might be worthwhile to experiment with variants of the graph edit distance or other similarity
measures.
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