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Abstract

To deploy and operate deep neural models in production, the quality of their predic-
tions, which might be contaminated benignly or manipulated maliciously by input
distributional deviations, must be monitored and assessed. Specifically, we study
the case of monitoring the healthy operation of a deep neural network (DNN) receiv-
ing a stream of data, with the aim of detecting input distributional deviations over
which the quality of the network’s predictions is potentially damaged. Using selec-
tive prediction principles, we propose a distribution deviation detection method for
DNNs. The proposed method is derived from a tight coverage generalization bound
computed over a sample of instances drawn from the true underlying distribution.
Based on this bound, our detector continuously monitors the operation of the net-
work over a test window and fires off an alarm whenever a deviation is detected. Our
novel detection method performs on-par or better than the state-of-the-art, while
consuming substantially lower computation time (five orders of magnitude reduc-
tion) and space complexity. Unlike previous methods, which require at least linear
dependence on the size of the source distribution for each detection, rendering them
inapplicable to “Google-Scale” datasets, our approach eliminates this dependence,
making it suitable for real-world applications. Code is available at https://
github.com/BarSGuy/Window-Based-Distribution-Shift-Detection.

1 Introduction

A wide range of artificial intelligence applications and services rely on deep neural models because of
their remarkable accuracy. When a trained model is deployed in production, its operation should be
monitored for abnormal behavior, and a flag should be raised if such is detected. Corrective measures
can be taken if the underlying cause of the abnormal behavior is identified. For example, simple
distributional changes may only require retraining with fresh data, while more severe cases may
require redesigning the model (e.g., when new classes emerge).

In this paper we focus on distribution shift detection in the context of deep neural models and consider
the following setting. Pretrained model f is given, and we presume it was trained with data sampled
from some distribution P . In addition to the dataset used in training f , we are also given an additional
unlabeled sample of data from the same distribution, which is used to train a detector D (we refer to
this as the detection-training set or source set). While f is used in production to process a stream of
emerging input data, we continually feed D with the most recent window Wk of k input elements.
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The detector also has access to the final layers of the model f and should be able to determine
whether the data contained in Wk came from a distribution different from P . We emphasize that in
this paper we are not considering the problem of identifying single-instance out-of-distribution or
outlier instances [28, 21, 22, 16, 38, 35, 34, 11], but rather the information residing in a population
of k instances. While it may seem straightforward to apply single-instance detectors to a window
(by applying the detector to each instance in the window), this approach can be computationally
expensive since such methods are not designed for window-based tasks; see discussion in Section 3.
Moreover, we demonstrate here that computationally feasible single-instance methods can fail to
detect population-based deviations. We emphasize that we are not concerned in characterizing types
of distribution shifts, nor do we tackle at all the complementary topic of out-of-distribution robustness.

Distribution shift detection has been scarcely considered in the context of deep neural networks
(DNNs), however, it is a fundamental topic in machine learning and statistics. The standard method for
tackling it is by performing a dimensionality reduction over both the detection-training (source) and
test (target) samples, and then applying a two-sample statistical test over these reduced representations
to detect a deviation. This is further discussed in Section 3. In particular, deep models can benefit from
the semantic representation created by the model itself, which provides meaningful dimensionality
reduction, that is readily available at the last layers of the model. Using the embedding layer (or
softmax) along with statistical two-sample tests was recently proposed by Lipton et al. [29] and
Rabanser et al. [37] who termed solutions of this structure black-box shift detection (BBSD). Using
both the univariate Kolmogorov-Smirnov (KS) test and the maximum mean discrepancy (MMD)
method, see details below, Rabanser et al. [37] achieve impressive detection results when using
MNIST and CIFAR-10 as proxies for the distribution P . As shown here, the KS test is also very
effective over ImageNet when a stronger model is used (ResNet50 vs ResNet18). However, BBSD
methods have the disadvantage of being computationally intensive (and probably inapplicable to
read-world datasets) due to the use of two-sample tests between the detection-training set (which can,
and is preferred to be the largest possible) and the window Wk; a complexity analysis is provided in
Section 5.

We propose a different approach termed Coverage-Based Detection (CBD), which builds upon
selective prediction principles [9, 14]. In this approach, a model quantifies its prediction uncertainty
and abstains from predicting uncertain instances. First, we develop a method for selective prediction
with guaranteed coverage. This method identifies the best abstaining threshold and coverage bound
for a given pretrained classifier f , such that the resulting empirical coverage will not violate the
bound with high probability (when abstention is determined using the threshold). The guaranteed
coverage method is of independent interest, and it is analogous to selective prediction with guaranteed
risk [14]. Because the empirical coverage of such a classifier is highly unlikely to violate the bound
if the underlying distribution remains the same, a systematic violation indicates a distribution shift.
To be more specific, given a detection-training sample Sm, our coverage-based detection algorithm
computes a fixed number of tight generalization coverage bounds, which are then used to detect a
distribution shift in a window Wk of test data. The proposed detection algorithm exhibits remarkable
computational efficiency due to its ability to operate independently of the size of Sm during detection,
which is crucial when considering “Google-Scale” datasets, such as the JFT-3B dataset. In contrast,
the currently available distribution shift detectors rely on a framework that requires significantly
higher computational requirements (this framework is illustrated in Figure 3 in Appendix A). A
run-time comparison of those baselines w.r.t. our CBD method is provided in Figure 1.

In a comprehensive empirical study, we compared our CBD algorithm with the best-performing
baselines, including the KS approach of [37]. Additionally, we investigated the suitability of single-
instance detection methods for identifying distribution shifts. For a fair comparison, all methods
used the same (publicly available) underlying models: ResNet50, MobileNetV3-S, and ViT-T. To
evaluate the effectiveness of our approach, we employed the ImageNet dataset to simulate the source
distribution. We then introduced distribution shifts using a range of methods, starting with simple
noise and progressing to more sophisticated techniques such as adversarial examples. Based on these
experiments, it is evident that CBD is overall significantly more powerful than the baselines across a
wide range of test window sizes.

To summarize, the contributions of this paper are: (1) A theoretically justified algorithm (Algo-
rithm 1), that produces a coverage bound, which is of independent interest, and allows for the creation
of selective classifiers with guaranteed coverage. (2) A theoretically motivated “windowed” detection
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algorithm, CBD (Algorithm 2), which detects a distribution shift over a window; this proposed
algorithm exhibits remarkable efficiency compared to state-of-the-art methods (five orders of magni-
tude better than the best method). (3) A comprehensive empirical study demonstrating significant
improvements relative to existing baselines, and introducing the use of single-instance methods for
detecting distribution shifts.

2 Problem Formulation

We consider the problem of detecting distribution shifts in input streams provided to pretrained deep
neural models. Let P ≜ PX denote a probability distribution over an input space X , and assume
that a model f has been trained on a set of instances drawn from P . Consider a setting where the
model f is deployed and while being used in production its input distribution might change or even
be attacked by an adversary. Our goal is to detect such events to allow for appropriate action, e.g.,
retraining the model with respect to the revised distribution.

Inspired by Rabanser et al. [37], we formulate this problem as follows. We are given a pretrained
model f , and a detection-training set, Sm ∼ Pm. Then we would like to train a detection model to be
able to detect a distribution shift; namely, discriminate between windows containing in-distribution
(ID) data, and alternative-distribution (AD) data. Thus, given an unlabeled test sample window
Wk ∼ Qk, where Q is a possibly different distribution, the objective is to determine whether P ̸= Q.
We also ask what is the smallest test sample size k required to determine that P ̸= Q. Since typically
the detection-training set Sm can be quite large, we further ask whether it is possible to devise an
effective detection procedure whose time complexity is o(m).

3 Related Work

Distribution shift detection methods often comprise the following two steps: dimensionality reduction,
and a two-sample test between the detection-training sample and test samples. In most cases, these
methods are “lazy” in the sense that for each test sample, they make a detection decision based on a
computation over the entire detection-training sample. Their performance will be sub-optimal if only
a subset of the train sample is used. Figure 3 in Appendix A illustrates this general framework.

The use of dimensionality reduction is optional. It can often improve performance by focusing on
a less noisy representation of the data. Dimensionality reduction techniques include no reduction,
principal components analysis [1], sparse random projection [2], autoencoders [39, 36], domain
classifiers, [37] and more. In this work we focus on black box shift detection (BBSD) methods
[29], that rely on deep neural representations of the data generated by a pretrained model. The
representation extracted from the model will typically utilize either the softmax outputs, acronymed
BBSD-Softmax, or the embeddings, acronymed BBSD-Embeddings; for simplicity, we may omit
the BBSD acronym. Due to the dimensionality of the final representation, multivariate or multiple
univariate two-sample tests can be conducted.

By combining BBSD-Softmax with a Kolmogorov-Smirnov (KS) statistical test [33] and using the
Bonferroni correction [3], Rabanser et al. [37] achieved state-of-the-art results in distribution shift
detection in the context of image classification (MNIST and CIFAR-10). We acronym their method
as BBSD-KS-Softmax (or KS-Softmax). The univariate KS test processes individual dimensions
separately; its statistic is calculated by computing the largest difference Z of the cumulative density
functions (CDFs) across all dimensions as follows: Z = supz|FP(z) − FQ(z)|, where FQ and
FP are the empirical CDFs of the detection-training and test data (which are sampled from P
and Q, respectively; see Section 2). The Bonferroni correction rejects the null hypothesis when
the minimal p-value among all tests is less than α

d , where α is the significance level and d is the
number of dimensions. Although less conservative approaches to aggregation exist [20, 30], they
usually assume some dependencies among the tests. The maximum mean discrepancy (MMD)
method [18] is a kernel-based multivariate test that can be used to distinguish between probability
distributions P and Q. Formally, MMD2(F ,P, Q) = ||µP − µQ||2F2 , where µP and µQ are
the mean embeddings of P and Q in a reproducing kernel Hilbert space F . Given a kernel K,
and samples, {x1, x2, . . . , xm} ∼ Pm and {x′

1, x
′
2, . . . , x

′
k} ∼ Qk, an unbiased estimator for

MMD2 can be found in [18, 42]. Sutherland et al. [43] and Gretton et al. [18] used the RBF
kernel K(x, x′) = e−

1
2σ2 ||x−x′||22 , where 2σ2 is set to the median of the pairwise Euclidean distances
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between all samples. By performing a permutation test on the kernel matrix, the p-value is obtained.
In our experiments (see Section 6.4), we thus use four population based baselines: KS-Softmax,
KS-Embeddings, MMD-Softmax, and MMD-Embeddings.

As mentioned in the introduction, our work is complementary to the topic of single-instance out-of-
distribution (OOD) detection [28, 21, 22, 16, 38, 35, 34, 11]. Although these methods can be applied
to each instance in a window, they often fail to capture population statistics within the window, making
them inadequate for detecting population-based changes. Additionally, many of these methods are
computationally expensive and cannot be applied efficiently to large windows. For example, methods
such as those described in [41, 27] extract values from each layer in the network, while others
such as [28] require gradient calculations. We note that the application of the best single-instance
methods such as [41, 27, 28] in our (large scale) empirical setting is computationally challenging
and preclude empirical comparison to our method. Therefore, we consider (in Section 6.4) the
detection performance of two computationally efficient single-instance baselines: Softmax-Response
(abbreviated as Single-instance SR or Single-SR) and Entropy-based (abbreviated as Single-instance
Ent or Single-Ent), as described in [4, 6, 21]. Specifically, we apply each single-instance OOD
detector to every instance in the window and in the detection-training set. We then use a two-sample
t-test to determine the p-value between the uncertainty estimators of each sample.

Finally, we mention [14] who developed a risk generalization bound for selective classifiers [9].
The bound presented in that paper is analogous to the coverage generalization bound we present in
Theorem 4.2. The risk bound in [14] can also be used for shift-detection. To apply their risk bound
to this task, however, labels, which are not available, are required. CBD detects distribution shifts
without using any labels.

4 Proposed Method – Coverage-Based Detection

In this section we present Coverage-Based Detection (CBD), a novel technique for detecting a
distribution shift based on selective prediction principles (definitions follow). We develop a tight
generalization coverage bound that holds with high probability for ID data, sampled from the source
distribution. The main idea is that violations of this coverage bound indicate a distribution shift with
high probability. In Section 6.2, we offer an intuitive demonstration that aids in understanding our
approach.

4.1 Selection with Guaranteed Coverage

We begin by introducing basic selective prediction terminology and definitions that are required
to describe our method. Consider a standard multiclass classification problem, where X is some
feature space (e.g., raw image data) and Y is a finite label set, Y = {1, 2, 3, ..., C}, representing C
classes. Let P (X,Y ) be a probability distribution over X × Y , and define a classifier as a function
f : X → Y . We refer to P as the source distribution. A selective classifier [9] is a pair (f, g), where
f is a classifier and g : X → {0, 1} is a selection function [9], which serves as a binary qualifier for
f as follows,

(f, g)(x) ≜

{
f(x), if g(x) = 1;

don’t know, if g(x) = 0.

A general approach for constructing a selection function based on a given classifier f is to work in
terms of a confidence-rate function [15], κf : X → R+, referred to as CF. The CF κf should quantify
confidence in predicting the label of x based on signals extracted from f . The most common and
well-known CF for a classification model f (with softmax at its last layer) is its softmax response
(SR) value [4, 6, 21]. A given CF κf can be straightforwardly used to define a selection function:
gθ(x) ≜ gθ(x|κf ) = 1[κf (x) ≥ θ], where θ is a user-defined constant. For any selection function, we
define its coverage w.r.t. a distribution P (recall, P ≜ PX , see Section 2), and its empirical coverage
w.r.t. a sample Sk ≜ {x1, x2, . . . xk}, as c(θ,P) ≜ EP [gθ(x)], and ĉ(θ, Sk) ≜ 1

k

∑k
i=1 gθ(xi),

respectively.

Given a bound on the expected coverage for a given selection function, we can use it to detect a
distribution shift via violations of the bound. We will now formally state the problem, develop the
bound, and demonstrate its use in detecting distribution shifts.
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Problem statement. For a classifier f , a detection-training sample Sm ∼ Pm, a confidence
parameter δ > 0, and a desired coverage c∗ > 0, our goal is to use Sm to find a θ value (which
implies a selection function gθ) that guarantees the desired coverage, with probability 1− δ, namely,

PrSm
{c(θ,P) < c∗} < δ. (1)

This means that under coverage should occur with probability of at most δ.

Algorithm 1: Selection with guaranteed coverage (SGC)
1 Input: detection-training set: Sm, confidence-rate function: κf ,

confidence parameter δ, target coverage: c∗.
2 Sort Sm according to κf (xi), xi ∈ Sm (and now assume w.l.o.g. that

indices reflect this ordering).
3 zmin = 1, zmax = m
4 for i = 1 to k = ⌈log2 m⌉ do
5 z = ⌈(zmin + zmax)/2⌉
6 θi = κf (xz)
7 Calculate ĉi(θi, Sm)

8 Solve for b∗i (m,m · ĉi(θi, Sm), δ
k
) {see Lemma 4.1}

9 if b∗i (m,m · ĉi(θi, Sm), δ
k
) ≤ c∗ then

10 zmax = z
11 else
12 zmin = z
13 end if
14 end for
15 Output: bound: b∗k(m,m · ĉk(θk, Sm), δ

k
), threshold: θk.

A threshold θ that guaran-
tees Equation (1) provides
a probabilistic lower bound,
guaranteeing that coverage
c of ID unseen population
(sampled from P) satisfies
c > c∗ with probability
of at least 1 − δ. For
the remaining of this sec-
tion, we introduce the se-
lection with guaranteed cov-
erage (SGC) algorithm (Al-
gorithm 1), which outputs
a bound (b∗) and its corre-
sponding threshold (θ).

The SGC algorithm receives
as input a classifier f , a CF
κf , a confidence parameter
δ, a target coverage c∗, and
a detection-training set Sm.
The algorithm performs a

binary search to find the optimal coverage lower bound with confidence δ, and outputs a cover-
age bound b∗ and the corresponding threshold θ, defining the selection function. A pseudo code of
the SGC algorithm appears in Algorithm 1.

Our analysis of the SGC algorithm makes use of Lemma 4.1, which gives a tight numerical (general-
ization) bound on the expected coverage, based on a test over a sample. The proof of Lemma 4.1 is
nearly identical to Langford’s proof of Theorem 3.3 in [26], p. 278, where instead of the empirical
error used in [26], we use the empirical coverage, which is also a Bernoulli random variable.

Lemma 4.1. Let P be any distribution and consider a selection function gθ with a threshold θ whose
coverage is c(θ,P). Let 0 < δ < 1 be given and let ĉ(θ, Sm) be the empirical coverage w.r.t. the set
Sm, sampled i.i.d. from P . Let b∗(m,m · ĉ(θ, Sm), δ) be the solution of the following equation:

argmin
b

m·ĉ(θ,Sm)∑
j=0

(
m

j

)
bj(1− b)m−j ≤ 1− δ

 . (2)

Then,

PrSm
{c(θ,P) < b∗(m,m · ĉ(θ, Sm), δ)} < δ. (3)

The following is a uniform convergence theorem for the SGC procedure stating that all the calculated
bounds are valid simultaneously with a probability of at least 1− δ.

Theorem 4.2. (SGC – Uniform convergence) Assume Sm is sampled i.i.d. from P , and consider
an application of Algorithm 1. For k = ⌈log2 m⌉, let b∗i (m,m · ĉi(θi, Sm), δ

k ) and θi be the values
obtained in the ith iteration of Algorithm 1. Then,

PrSm
{∃i : c(θi,P) < b∗i (m,m · ĉi(θi, Sm), δ

k )} < δ.
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Proof (sketch - see full proof in the Appendix B.1). Define,
Bθi ≜ b∗i (m,m · ĉi(θi, Sm), δ

k ), Cθi ≜ c(θi,P), then,

PrSm{∃i : Cθi < Bθi} =

k∑
i=1

∫ 1

0

dθ′PrSm{Cθ′ < Bθ′} · PrSm{θi = θ′}

<

k∑
i=1

∫ 1

0

dθ′
δ

k
· PrSm

{θi = θ′} =

k∑
i=1

δ

k
= δ.

We would like to note that in addition to Algorithm 1, we also provide a complementary algorithm
that returns a tight coverage upper (rather than lower) bound, along with the corresponding threshold.
Details about this algorithm and its application for detecting distribution shifts are discussed in
Appendix F.

4.2 Coverage-Based Detection Algorithm

Our coverage-based detection (CBD) algorithm applies SGC to Ctarget target coverages uniformly
spread between the interval [0.1, 1], excluding the coverage of 1. We set Ctarget = 10, δ = 0.01,
and κf (x) = 1 − Entropy(x) for all our experiments; our method appears to be robust to those
hyper-parameters, as we demonstrate in Appendix E. Each application j of SGC on the same sample
Sm ∼ Pm with a target coverage of c∗j produces a pair: (b∗j , θj), which represent a bound and a
threshold, respectively. We define δ(ĉ|b∗) to be a binary function that indicates a bound violation,
where ĉ is the empirical coverage (of a sample) and b∗ is a bound, δ(ĉ|b∗) = 1[ĉ ≤ b∗]. Thus, given
a window of k samples from an alternative distribution, Wk ∼ Qk, we define the sum of bound
violations, V , as follows,

V =
1

Ctarget

Ctarget∑
j=1

(b∗j − ĉ(θj ,Wk)) · δ(ĉ(θj ,Wk)|b∗j ) =
1

k · Ctarget

Ctarget∑
j=1

k∑
i=1

(b∗j − gθj (xi)) · δ(ĉj |b∗j ), (4)

where we obtain the last equality by using ĉj ≜ ĉ(θj ,Wk) = 1
k

∑k
i=1 gθj (xi). Considering Figure 2b

in Section 6.2, the quantity V is the sum of distances from the violations (red dots) to the linear diagonal
representing the coverage bounds (black line).

Algorithm 2: Coverage-Based Detection
1 // Fit
2 Input Training: Sm , δ, κf , Ctarget
3 Generate Ctarget uniformly spread coverages c∗

4 for j = 1 to Ctarget do
5 b∗j , θj = SGC(Sm , δ, c∗j , κf )
6 end for

7 Output Training: {(b∗j , θj)}
Ctarget
j=1

8 // Detect
9 Input Detection: {(b∗j , θj)}

Ctarget
j=1 , κf , α, k

10 while True do
11 Receive window Wk = {x1, x2, . . . , xk}
12 Calculate V {see Equation (4)}
13 Obtain p-value from t-test, H0 : V = 0, H1 : V > 0
14 if pvalue < α then
15 Shift_detected← True
16 Output Detection: Shift_detected, pvalue
17 end if
18 end while

When Q equals P , which implies that
there is no distribution shift, we expect
that all the bounds (computed by SGC
over Sm) will hold over Wk, namely
δ(ĉj |b∗j ) = 0 for every iteration j; in this
case, V = 0. Otherwise, V will indicate
the violation magnitude.

Since V represents the average of k ·Ctarget
values (if at least one bound violation oc-
curs), for cases where k · Ctarget ≫ 30 (as
in all our experiments), we can assume
that V follows a nearly normal distribu-
tion [25] and perform a t-test1 to test the
null hypothesis, H0 : V = 0, against the
alternative hypothesis, H1 : V > 0. The
null hypothesis is rejected if the p-value is
less than the specified significance level α.
A pseudocode of our coverage-based de-
tection algorithm appears in Algorithm 2.

To fit our detector, we apply SGC (Algo-
rithm 1) on the detection-training set, Sm, for Ctarget times, in order to construct the pairs {(b∗j , θj)}

Ctarget
j=1 . Our

detection model utilizes these pairs to monitor a given model, receiving at each time instant a test sample window
of size k (user defined), Wk = {x1, x2, . . . , xk}, which is inspected to see if its content is distributionally
shifted from the underlying distribution reflected by the detection-training set Sm.

1In our experiments, we use SciPy’s stats.ttest_1samp implementation [44] for the t-test.
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Our approach encodes all necessary information for detecting distribution shifts using only Ctarget scalars (in our
experiments, we set Ctarget = 10), which is independent of the size of Sm. In contrast, the baselines process the
detection-training set, Sm, which is typically very large, for every detection they make. This makes our method
significantly more efficient than the baselines, see Figure 1 and Table 1 in Section 5.

5 Complexity Analysis

This section provides a complexity analysis of our method as well as the baselines mentioned in Section 3.
Table 1 summarizes the complexities of each approach. Figure 1 shows the population-based approaches run-time
(in seconds) as a function of the detection-training set size, denoted as m.

All population-based baselines are lazy learners (analogous to nearest neighbors) in the sense that they require
the entire source (detection-training) set for each detection decision they make. Using only a subset will result in
sub-optimal performance, since it might not capture all the necessary information within the source distribution,
P .

Detection Method Space Time

MMD O(m2 + k2 +mk) O(d(m2 + k2 +mk))
KS O(d(m+ k)) O(d(m logm+ k log k))
Single-instance O(k) O(k)

CBD (Ours) O(k) O(k)

Table 1: Complexity comparison. bold entries indicate the
best detection complexity. m, k refers to the detection-
training size (or source size), and window size, respectively.
d refers to the number of dimensions after dimensionality
reduction.

In particular, MMD is a permutation test
[18] that also employs a kernel. The com-
plexity of kernel methods is dominated
by the number of instances and, there-
fore, the time and space complexities of
MMD are O(d(m2 + k2 + mk)) and
O(m2 + k2 +mk), respectively 2, where
in the case of DNNs, d is the dimension of
the embedding or softmax layer used for
computing the kernel, and k is the window
size. The KS test [33] is a univariate test,
which is applied on each dimension sepa-
rately and then aggregates the results via a
Bonferroni correction. Its time and space
complexities areO(d(m logm+k log k))
and O(d(m+ k)), respectively.

The single-instance baselines simply con-
duct a t-test on the heuristic uncertainty estimators (SR or Entropy-based) between the detection-training set and
the window data. By initially determining the mean and standard deviation of the detection-training set, we can
efficiently perform the t-test with a time and space complexity of O(k).

The fitting procedure of our coverage-based detection algorithm incurs time and space complexities of
O(m logm) and O(m), respectively. Each subsequent detection round incurs time and space complexi-
ties of O(k), which is independent of the size of the detection-training (or source) set. Our method’s superior
efficiency is demonstrated both theoretically and empirically, as shown in Table 1 and Figure 1, respectively.
Figure 1 shows the run-time (in seconds) for each population-based detection method3 as a function of the
detection-training set size, using a ResNet50 and a fixed window size of k = 10 samples. Our detection time
remains constant regardless of the size of the detection-training set, as opposed to the baseline methods, which
exhibit a run-time that grows as a function of the detection-training set size. In particular, our method achieves
a five orders of magnitude improvement in run-time over the best performing baseline, KS-Softmax, when
the detection-training set size is 1,000,0004. Specifically, our detection time is 5.19 · 10−4 seconds, while
KS-Softmax’s detection time is 97.1 seconds, rendering it inapplicable for real-world applications.

6 Experiments - Detecting Distribution Shifts

In this section we showcase the effectiveness of our method, along with the considered baselines, in detecting
distribution shifts. All experiments were conducted using PyTorch, and the corresponding code is publicly
available for replicating our results5.

2With preprocessing in the fitting stage, this reduces to O(d(k2 +mk)) per detection decision.
3MMD detection-training set is capped at 1,000 due to kernel method’s unfavorable size dependence.
4This specific experiment is simulated synthetically (since the ImageNet validation set size is 50,000).
5 https://github.com/BarSGuy/Window-Based-Distribution-Shift-Detection.
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Figure 1: Our method outperforms the baselines in terms of scalability, with a significant five orders
of magnitude improvement in run-time compared to the best baseline, KS-Softmax, when using a
detection-training set of m = 1, 000, 000 samples. One-σ error-bars are shadowed.

6.1 Setup

Our experiments are conducted on the ImageNet dataset [7], using its validation dataset as proxies for the source
distribution, P . We utilized three well-known architectures, ResNet50 [19], MobileNetV3-S [24], and ViT-T [8],
all of which are publicly available in timm’s repository [45], as our pre-trained models. To train our detectors,
we randomly split the ImageNet validation data (50,000) into two sets, a detection-training or source set, which
is used to fit the detectors3 (49,000) and a validation set (1,000) for applying the shift. To ensure the reliability
of our results, we repeated the shift detection performance evaluation on 15 random splits, applying the same
type of shift to different subsets of the data. Inspired by [37], we evaluated the models using various window
sizes, |Wk|∈ {10, 20, 50, 100, 200, 500, 1000}.

6.1.1 Distribution Shift Datasets

At test time, the 1,000 validation images obtained via our split can be viewed as the in-distribution (positive)
examples. For out-of-distribution (negative) examples, we follow the common setting for detecting OOD samples
or distribution shifts [37, 21, 28], and test on several different natural image datasets and synthetic noise datasets.
More specifically, we investigate the following types of shifts:

(1) Adversarial via FGSM: We transform samples into adversarial ones using the Fast Gradient Sign Method
(FGSM) [17], with ϵ ∈ {7 · 10−5, 1 · 10−4, 3 · 10−4, 5 · 10−4}. (2) Adversarial via PGD: We convert samples
into adversarial examples using Projected Gradient Descent (PGD) [31], with ϵ = 1 · 10−4; we use 10 steps,
α = 1 · 10−4, and random initialization. (3) Gaussian noise: We corrupt test samples with Gaussian noise using
standard deviations of σ ∈ {0.1, 0.3, 0.5, 1}. (4) Rotation: We apply image rotations, θ ∈ {5◦, 10◦, 20◦, 25◦}.
(5) Zoom: We corrupt test samples by applying zoom-out percentages of {90%, 70%, 50%}. (6) ImageNet-O:
We use the ImageNet-O dataset [23], consisting of natural out-of-distribution samples. (7) ImageNet-A: We use
the ImageNet-A dataset [23], consisting of natural adversarial samples. (8) No-shift: We include the no-shift
case to check for false positives. To determine the severity of the distribution shift, we refer the reader to Table 3
in Appendix C.

6.2 Maximizing Detection Power Through Lower Coverages

In this section, we provide an intuitive understanding of our proposed method, as well as a demonstration of
the importance of considering lower coverages, when detecting population-based distribution shifts. For all
experiments in this section, we employed a ResNet50 [19] and used a detection-training set which was randomly
sampled from the ImageNet validation set.

We validate the effectiveness of our CBD method (Algorithm 2) by demonstrating its performance on two distinct
scenarios, the no-shift case and the shift case. In the no-shift scenario, as depicted in Figure 2a, we randomly
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(a) No-shift case. (b) Shift case.

Figure 2: Visualization of our detection algorithm, Algorithm 2.

selected a 1,000 sample window from the ImageNet dataset that did not overlap with the detection-training
set. We then tested whether this window was distributionally shifted using our method. The shift scenario,
as depicted in Figure 2b, involved simulating a distributional shift by randomly selecting 1,000 images from
the ImageNet-O dataset. Each figure showcases the target coverages of each application, the coverage bounds
provided by SGC, the empirical coverage of each sample (for each threshold), and the bound violations (indicated
by the red circles), when they occur.

Both figures show that the target coverages and the bounds returned by SGC are essentially identical. Consider
the empirical coverage of each threshold returned by SGC for each sample. In the no-shift case, illustrated in
Figure 2a, it is apparent that all bounds are tightly held; demonstrated by the fact that each empirical coverage
is slightly above its corresponding bound. In contrast, the shift case, depicted in Figure 2b, exhibits bound
violations, indicating a noticeable distribution shift. Specifically, the bound holds at a coverage of 0.9, but
violations occur at lower coverages, with the maximum violation magnitude occurring around a coverage of 0.4.
This underscores the significance of using coverages lower than 1, and suggests that the detection power might
lay within lower coverages.

6.3 Evaluation Metrics

In order to benchmark our results against the baselines, we adopt the following metrics to measure the effective-
ness in distinguishing between in- and out-of-distribution windows: (1) Area Under the Receiver Operating
Characteristic ↑ (AUROC) is a threshold-independent metric [5]. The ROC curve illustrates the relationship
between the true positive rate (TPR) and the false positive rate (FPR), and the AUROC score represents the
probability that a positive example will receive a higher detection score than a negative example [10]. A perfect
detector would achieve an AUROC of 100%. (2) Area Under the Precision-Recall ↑ (AUPR) is another
threshold-independent metric [32, 40]. The PR curve is a graph that depicts the relationship between precision
(TP / (TP + FP)) and recall (TP / (TP + FN)). AUPR-In and AUPR-Out in Table 2 represent the area under
the precision-recall curve where in-distribution and out-of-distribution images are considered as positives,
respectively. (3) False positive rate (FPR) at 95% true positive rate (TPR) ↓, denoted as FPR@95TPR, is
a performance metric that measures the FPR at a specific TPR threshold of 95%. This metric is calculated by
finding the FPR when the TPR is 95%. (4) Detection Error ↓ is the probability of misclassification when TPR is
fixed at 95%. It’s a weighted average of FPR and complement of TPR, given by Pe = 0.5(1−TPR)+0.5FPR.
Assuming equal probability of positive and negative examples in the test set. We note that ↑ indicates larger
value is better, and ↓ indicates lower values is better.

6.4 Experimental Results

In this section we demonstrate the effectiveness of our CBD method, as well as the considered baselines. To
ensure a fair comparison, as mentioned in Section 6.1 ,we utilize the ResNet50, MobileNetV3-S, and ViT-T
architectures, which are pretrained on ImageNet and their open-sourced code appear at timm [45]. We provide
code for reproducing our experiments5.

Table 2 presents a comprehensive summary of our main results, which clearly demonstrate that CBD outperforms
all baseline methods in the majority of cases (combinations of model architecture, window size, and metrics
considered), thus providing a clear indication of the effectiveness of our approach. Our method demonstrates
the highest effectiveness in the low to mid window size regime. Specifically, for window sizes of 50 samples,
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our method outperforms all baselines across all architectures, with statistical significance for all considered
metrics, by a large margin. This observation is true for window sizes of 100 samples as well, except for the
MobileNet architecture, where KS-Softmax shows slightly better performance in the metrics of Detection Error
and FPR@95TPR. The second-best performing method overall appears to be KS-Softmax (consistent with the
findings of [37]), which seems to be particularly effective in large window sizes, such as 500 or more. CBD
stands out for its consistent performance across different architectures. In particular, our method achieves an
AUROC score of over 90% across all architectures tested when using a window size of 50+, while the second
best performing method (KS-Softmax), fails to achieve such a score even with a window size of 100 samples,
when using the ResNet50 architecture.

It is evident from Table 2, that as far as population-based detection tasks are concerned, neither of the single-
instance baselines (SR and Entropy) offers an effective solution. These baselines show inconsistent performance
across the various architectures considered. For instance, when ResNet50 is used over a window size of 1,000
samples, the baselines scarcely achieve a score of 90% for the threshold-independent metrics (AUROC, AUPR-In,
and AUPR-Out), while other methods achieve near-perfect scores. Moreover, even in the low sample regime
(e.g., window size of 10), these baselines fail to demonstrate any superiority over population-based methods.

Finally, based on our experiments, ResNet50 appears to be the best model for achieving low Detection Error and
FPR@95TPR; and a large window size is essential for achieving these results. In particular, our method and
KS-Softmax both produced impressive outcomes, with Detection Error and FPR@95TPR scores under 0.5 and
1, respectively, when a window size of 1,000 samples was employed. Moreover, we observe that when small
window sizes are desired, ViT-T is the best architecture choice. In particular, our method applied with ViT-T,
achieves a phenomenal 86%+ score in all threshold independent metrics (i.e., AUROC, AUPR-In, AUPR-Out),
over a window size of 10 samples, strongly out-preforming the contenders (around 20% margin). Appendix D
presents the detection performance on a representative selection of distribution shifts, analyzed individually.

Architecture Method
Window size

AUROC ↑ / AUPR-In ↑ / AUPR-Out ↑ / DetectionError ↓ / FPR@95TPR ↓
10 20 50 100 200 500 1000

ResNet50

KS Softmax 61/67/62/34/67 73/74/74/31/64 87/90/85/13/27 89/89/89/15/29 94/95/92/7/14 99/99/99/2/4∗ 100/100/100/0.4/0.9
Embeddings 72/74/73/28∗/56∗ 68/73/74/24/48 81/84/79/18/37 75/76/79/22/44 76/79/79/20/40 84/87/84/13/26 86/88/84/13/26

MMD Softmax 54/61/56/36/72 62/65/62/37/72 73/76/72/29/56 73/73/78/33/59 79/79/79/35/54 83/85/83/15/30 85/85/85/22/37
Embeddings 75/72/77/38/70 79/78/79/29/57 87/87/86/18/37 83/86/81/15/30 83/85/82/14/29 83/85/83/17/32 83/86/82/13/26

Single-instance SR 56/65/55/34/68 72/73/72/32/63 71/75/72/28/56 77/78/79/25/50 84/85/83/19/40 87/88/87/14/28 88/88/89/15/30
Entropy 64/69/63/32/64 73/73/73/32/63 74/78/73/26/52 80/80/81/23/47 84/85/84/17/35 87/87/87/15/31 90/90/91/13/26

CBD (Ours) 78/70/82∗/42/84 88∗/91∗/87∗/15∗/30∗ 95∗/95∗/93∗/9∗/17∗ 93∗/93∗/92∗/10∗/20∗ 97∗/97∗/97∗/5/10 98/98/98/4/7 100/100/100/0.4/0.9

MobileNetV3-S

KS Softmax 71/72/75/32∗/63∗ 84∗/84/83/21/43 89/91/88/13/27 92/93/91/10/20 95/97/94/5/11 96/96/97/6/11 100/100/100/1/2
Embeddings 63/67/63/37/75 65/66/67/37/75 77/78/76/27/54 72/73/76/27/53 84/83/86/22/43 86/87/86/15/30 79/81/81/18/36

MMD Softmax 75/73/75/38/72 78/78/78/30/59 86/89/82/17/32 86/89/84/14/26 87/88/86/14/28 89/90/88/12/24 90/91/88/11/22
Embeddings 67/67/68/39/75 66/67/68/37/74 72/77/71/23/47 75/75/79/28/53 89/87/87/20/39 81/82/81/21/40 82/86/80/15/30

Single-instance SR 58/62/60/37/74 65/70/66/30/60 86/87/86/19/39 86/88/84/15/30 93/93/93/11/22 96/97/95/5/10 98/98/97/3/7
Entropy 52/61/57/36/72 64/70/65/29/57 85/86/86/17/33 87/88/85/15/29 93/93/94/11/22 96/96/96/6/12 98/99/98/3/7

CBD (Ours) 80∗/73/82∗/40/80 80/85/76/20/40 94∗/95∗/93∗/8∗/15∗ 94/94/94∗/11/21 95/96/95/6/13 97/98/96/4/8 99/99/99/1/2

ViT-T

KS Softmax 62/68/66/30/59 85/86/83/19/41 82/82/83/21/42 90/91/91/11/22 88/89/90/11/22 95/96/95/5/11 98/98/98/3/6
Embeddings 68/66/71/38/76 76/83/73/19/38 82/86/80/17/34 81/82/81/20/39 81/84/80/17/34 76/75/82/22/44 84/83/86/19/38

MMD Softmax 58/59/64/44/82 69/70/73/38/69 77/80/77/22/44 75/80/76/20/40 80/86/78/15/29 89/91/90/12/23 93/94/92/7/15
Embeddings 61/59/68/46/85 74/77/74/26/53 82/84/80/20/40 80/82/83/21/39 82/81/82/20/40 78/76/81/22/44 77/78/79/24/45

Single-instance SR 67/70/70/31/61 78/76/77/29/58 76/79/76/23/45 89/90/86/14/29 91/93/91/9/20 97/97/97/5/11 99/99/98/2/5
Entropy 69/74/69/27/53 79/78/78/27/55 75/78/74/22/44 89/89/90/15/31 86/87/87/14/28 93/94/93/7/14 97/97/97/4/9

CBD (Ours) 89∗/86∗/90∗/28/56 91∗/87/92∗/24/47 94∗/93∗/95∗/13∗/25∗ 95∗/96∗/96∗/8∗/15∗ 97∗/96∗/97∗/8/16 98∗/98/98/4/9 99/99/99/3/6

Table 2: Comparison of different evaluation metrics over ResNet50, MobileNetV3-S, ViT-T with
the discussed baselines methods. The best performing method is highlighted in bold; we add the
superscript ∗ to the bolded result when it is statistically significant.

7 Concluding Remarks

We presented a novel and powerful method for the detection of distribution shifts within a given window of
samples. This coverage-based detection algorithm is theoretically motivated and can be applied to any pretrained
model. Due to its low computational complexity, our method, unlike typical baselines, which are order-of-
magnitude slower, is practicable. Our comprehensive empirical studies demonstrate that the proposed method
works very well, and overall significantly outperforms the baselines on the ImageNet dataset, across a number of
neural architectures and a variety of distribution shifts, including adversarial examples. In addition, our coverage
bound is of independent interest and allows for the creation of selective classifiers with guaranteed coverage.

Several directions for future research are left open. Although we only considered classification, our method
can be extended to regression using an appropriate confidence-rate function such as the MC-dropout [12].
Extensions to other tasks, such as object detection and segmentation, would be very interesting. In our method,
the information from the multiple coverage bounds was aggregated by averaging, but it is plausible that other
statistics or weighted averages could provide more effective detections. Finally, an interesting open question is
whether one can benefit from using single-instance or outlier/adversarial detection techniques combined with
population-based detection techniques (as discussed here).
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A Shift-Detection General Framework

The general framework for shift-detection can be found in the following figure, Figure 3.

Figure 3: The procedure of detecting a dataset shift using dimensionality reduction and then a
two-sample statistical test. The dimensionality reduction is applied to both the detection-training
(source) and test (target) data, prior to being analyzed using statistical hypothesis testing. This figure
is taken from [37].

B Proofs

B.1 Proof for Theorem 4.2

Proof. Define

Bθi ≜ b∗i (m,m · ĉi(θi, Sm),
δ

k
),

Cθi ≜ c(θi,P).

Consider the i-th iteration of SGR over a detection-training set Sm, and recall that, θi = κf (xz), xz ∈ Sm (see
Algorithm 1). Therefore, θi is a random variable (between zero and one), since it is a function of a random
variable (x ∈ Sm). Let PrSm{θi = θ′} be the probability that θi = θ′.

Therefore,
PrSm{Cθi < Bθi}

=

∫ 1

0

dθ′PrSm{Cθi < Bθi |θi = θ′} · PrSm{θi = θ′}

=

∫ 1

0

dθ′PrSm{Cθ′ < Bθ′} · PrSm{θi = θ′}.

Given that at the i-th iteration θi = θ′, and considering thatBθ′ is derived using Lemma 4.1 (refer to Algorithm 1),
we obtain,

PrSm{Cθ′ < Bθ′} <
δ

k
.

Thus,
PrSm{Cθi < Bθi}

=

∫ 1

0

dθ′PrSm{Cθ′ < Bθ′} · PrSm{θi = θ′}

<

∫ 1

0

dθ′
δ

k
· PrSm{θi = θ′}

=
δ

k
·
(∫ 1

0

dθ′PrSm{θi = θ′}
)

=
δ

k
. (5)

The following application of the union bound completes the proof,

PrSm{∃i : Cθi < Bθi} ≤
k∑

i=1

PrSm{Cθi < Bθi} <
k∑

i=1

δ

k
= δ.
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C Exploring Model Sensitivity: Evaluating Accuracy on Shifted Datasets

In this section, we present Table 3, which displays the accuracy (when applicable) as well as the degradation
from the original accuracy over the ImageNet dataset, of the considered models on each of the simulated shifts
mentioned in Section 6.1.1.

Shift Dataset ResNet50 MovileNetV3 ViT-T
Acc. ImageNet Degradation Acc. ImageNet Degradation Acc. ImageNet Degradation

FGSM ϵ = 7 · 10−5 76.68% -3.7% 62.09% -3.15% 72.51% -2.95%

FGSM ϵ = 1 · 10−4 75.19% -5.19% 60.72% -4.52% 71.49% -3.97%

FGSM ϵ = 3 · 10−4 66.15% -14.23% 52.09% -13.15% 65.06% -10.4%

FGSM ϵ = 5 · 10−4 59.23% -21.15% 44.45% -20.79% 58.9% -16.56%

PGD ϵ = 1 · 10−4 74.64% -5.74% 60.63% -4.61% 71.35% -4.11%

GAUSSIAN σ = 0.1 79.02% -1.36% 62.82% -2.42% 71.79% -3.67%

GAUSSIAN σ = 0.3 74.63% -5.75% 55.06% -10.18% 50.86% -24.6%

GAUSSIAN σ = 0.5 68.56% -11.82% 42.55% -22.69% 22.25% -53.21%

GAUSSIAN σ = 1 46.1% -34.28% 13.82% -51.42% 0.56% -74.9%

ZOOM 50% 65.55% -14.83% 36.96% -28.28% 46.04% -29.42%

ZOOM 70% 74.31% -6.07% 53.53% -11.71% 62.69% -12.77%

ZOOM 90% 78.6% -1.78% 61.28% -3.96% 72.08% -3.38%

ROTATION θ = 5◦ 76.7% -3.68% 62.42% -2.82% 71.27% -4.19%

ROTATION θ = 10◦ 72.4% -7.98% 58.22% -7.02% 67.29% -8.17%

ROTATION θ = 20◦ 68.29% -12.09% 49.96% -15.28% 62.38% -13.08%

ROTATION θ = 25◦ 70.08% -10.3% 50.95% -14.29% 60.97% -14.49%

Table 3: Shifted dataset accuracy and comparison with ImageNet. We display the accuracy for each
shifted dataset and model combination, along with the accuracy degradation when compared to the
original ImageNet dataset.
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D Extended Empirical Results

In this section, we present a detailed analysis of our empirical findings on the ResNet50 architecture. We report
the results for each window size, |Wk|∈ {10, 20, 50, 100, 200, 500, 1000}, and for several shift cases discussed
in Section 6.1.1. In particular, we show the detection performance of all the discussed methods, for the following
shifts: FGSM (Table 4), ImageNet-O (Table 5), ImageNet-A (Table 6), and the Zoom out shift, 90% (Table 7).

Method
Window size

AUROC ↑ / AUPR-In ↑ / AUPR-Out ↑ / DetectionError ↓ / FPR@95TPR ↓
10 20 50 100 200 500 1000

KS Softmax 32/45/40/47/92 47/55/46/44/91 64/72/59/34/69 72/72/75/38/77 80/87/69/18/36 100/100/100/2/4 100/100/100/0/0
Embeddings 54/58/55/43/86 32/39/48/49/100 54/64/49/39/80 41/44/48/50/99 37/48/45/47/92 60/70/59/30/60 71/77/61/33/68

MMD Softmax 36/48/42/45/90 44/56/44/42/82 51/53/51/48/93 41/44/54/49/97 50/52/50/48/94 48/52/51/45/93 55/55/55/47/94
Embeddings 61/56/60/48/95 57/57/59/45/93 72/73/67/36/73 63/70/56/38/71 63/69/55/37/75 67/70/61/39/74 70/79/59/28/54

Single-instance SR 34/45/40/47/93 69/68/72/42/82 43/52/50/45/90 54/54/61/47/93 62/64/58/42/86 66/73/59/35/72 72/69/73/43/86
Entropy 42/49/44/47/94 65/60/65/47/92 49/55/49/45/89 59/53/63/49/98 60/66/58/39/77 59/59/56/45/90 64/61/63/46/90

CBD (Ours) 71/64/75/45/92 77/82/75/25/51∗ 88/90/85/20/39 84/86/84/25/49 99∗/99∗/99∗/3∗/5∗ 98/98/98/5/10 100/100/100/2/2

Table 4: Comparison of different evaluation metrics over ResNet50 with the discussed baselines
methods, over the FGSM shift with ϵ = 0.0001. The best performing method is highlighted in bold;
we add the superscript ∗ to the bolded result when it is statistically significant.

Method
Window size

AUROC ↑ / AUPR-In ↑ / AUPR-Out ↑ / DetectionError ↓ / FPR@95TPR ↓
10 20 50 100 200 500 1000

KS Softmax 62/59/60/46/94 70/61/75/48/94 98/98/98/6/11 99/99/99/5/10 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0
Embeddings 85/89/76/18/35 97/98/97/6∗/12∗ 99/99/99/5/9 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0

MMD Softmax 43/53/47/44/87 74/75/73/39/72 94/92/96/33/51 97/97/98/31/27 97/97/98/32/26 100/100/100/0/0 100/100/100/0/0
Embeddings 96/97/97∗/10/20 95/94/97/33/39 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 94/95/97/31/46 100/100/100/0/0

Single-instance SR 62/63/60/43/87 31/41/38/48/98 47/56/44/41/86 56/57/63/45/85 51/51/53/48/97 37/41/42/50/100 42/44/47/49/100
Entropy 64/66/68/40/81 39/42/53/50/99 41/52/45/44/90 58/66/52/37/75 54/51/55/49/99 52/55/53/48/90 84/85/84/26/52

CBD (Ours) 61/61/61/47/92 84/89/77/18/37 99/99/99/5/8 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0

Table 5: Comparison of different evaluation metrics over ResNet50 with the discussed baselines
methods, over the ImageNet-O shift. The best performing method is highlighted in bold; we add the
superscript ∗ to the bolded result when it is statistically significant.

Method
Window size

AUROC ↑ / AUPR-In ↑ / AUPR-Out ↑ / DetectionError ↓ / FPR@95TPR ↓
10 20 50 100 200 500 1000

KS Softmax 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0
Embeddings 98/98/98/7/14 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0

MMD Softmax 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0
Embeddings 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0

Single-instance SR 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0
Entropy 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0

CBD (Ours) 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0 100/100/100/0/0

Table 6: Comparison of different evaluation metrics over ResNet50 with the discussed baselines
methods, over the ImageNet-A shift. The best performing method is highlighted in bold; we add the
superscript ∗ to the bolded result when it is statistically significant.
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Method
Window size

AUROC ↑ / AUPR-In ↑ / AUPR-Out ↑ / DetectionError ↓ / FPR@95TPR ↓
10 20 50 100 200 500 1000

KS Softmax 42/49/48/47/93 53/52/54/47/97 61/69/57/37/74 71/72/69/39/77 91/92/91∗/15/30 100∗/100∗/100∗/2∗/3∗ 100/100/100/0/0
Embeddings 46/51/52/46/92 25/45/38/44/87 56/58/54/44/86 46/46/53/49/98 35/44/42/49/97 27/38/38/50/99 41/46/46/47/97

MMD Softmax 48/51/50/46/93 46/44/52/50/100 51/57/52/45/88 50/56/52/46/88 52/57/49/46/88 51/57/47/44/90 53/53/54/49/96
Embeddings 57/56/61/48/91 54/63/49/41/83 68/67/73/40/82 37/53/41/43/83 28/41/38/49/97 31/38/41/50/100 18/35/34/49/100

Single-instance SR 28/38/38/50/100 45/45/48/51/99 44/53/53/43/87 52/59/53/42/84 65/68/59/41/85 74/73/78/38/78 84/84/83/31/62
Entropy 29/38/39/50/100 50/47/56/51/100 51/53/58/46/91 61/63/66/41/83 71/74/61/36/72 76/73/81/39/77 87/86/87/29/58

CBD (Ours) 70/61/77/47/95 69/73/68/35/70 81/86/75/22/43 72/75/71/34/67 76/82/71/23/46 94/94/94/15/31 100/100/100/0/0

Table 7: Comparison of different evaluation metrics over ResNet50 with the discussed baselines
methods, over the Zoom out (90%) shift. The best performing method is highlighted in bold; we add
the superscript ∗ to the bolded result when it is statistically significant.

E Ablation Study

In this section, we conduct multiple experiments to analyze the various components of our framework; all those
experiments are conducted using a ResNet50. We explore several hyper-parameter choices, including Ctarget,
δ, and κf . More specifically, we consider Ctarget ∈ {1, 10, 100}, and δ ∈ {0.1, 0.01, 0.001, 0.0001}, and two
different CFs κf , namely SR and Entropy-based.

To evaluate the performance of our detectors under varying hyper-parameters, we have selected a single metric
that we believe to be the most important, namely, AUROC [13]. Additionally, since performance may vary
depending on window size, we display the average AUROC across all window sizes that we have considered in
our experiments. These window sizes include: {10, 20, 50, 100, 200, 500, 1000}. In Figure 4, we summarize
our findings by displaying the average AUROC value as a function of the chosen hyper-parameters. These results
are presented as heatmaps.

(a) κf = (1− Entropy). (b) κf = SR.

Figure 4: AUROC performance of our detector under different choices of hyper-parameters.

Figure 4a, displays our AUROC detector’s performance when we use Entropy-based as our CF. We observe
that the optimal choice of hyper-parameters is δ = 0.01 and Ctarget = 10, resulting in the highest performance.
However, increasing the value of Ctarget leads to a more consistent and robust detector, as changes in the value
of δ do not significantly affect the detector’s performance. Additionally, we note that using Ctarget = 1 yields
relatively poor performance, indicating that a single coverage choice is insufficient to capture the characteristics
of the distribution represented by the sample Sm. Similar results are obtained when using SR as the CF, as
shown in Figure 4b. These results suggest that selecting a high value of Ctarget and a low value of δ is the most
effective approach for ensuring a robust detector. Finally, the heatmaps demonstrate that Entropy-based CF
outperforms (by a low margin) SR, in terms of detection performance.

F Upper Coverage Bound Development and Application

In this section, we discuss the complementary problem to that outlined in Section 4.1, which is solved by
Algorithm 3; we also show its application for detecting distribution shifts, Algorithm 4. Finally, we introduce a
unified algorithm, Algorithm 5, for detecting distribution shifts, while accounting for both under-coverage and
over-coverage, details follow.
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Problem statement. For a classifier f , a detection-training sample Sm ∼ Pm, a confidence parameter δ > 0,
and a desired coverage c∗ > 0, our goal is to use Sm to find a θ value (which implies a selection function gθ),
such that the coverage satisfies,

PrSm{c(θ,P) > c∗} < δ. (6)

This means that over coverage should occur with probability of at most δ.

The pseudo code of the algorithm that finds the optimal coverage upper bound (with confidence δ) – SGC-UP,
appears in Algorithm 3.

Algorithm 3: Selection with guaranteed coverage - Upper bound (SGC-UP)
1 Input: train set: Sm, confidence-rate function: κf , confidence parameter δ, target coverage: c∗.
2 Sort Sm according to κf (xi), xi ∈ Sm (and now assume w.l.o.g. that indices reflect this

ordering).
3 zmin = 1, zmax = m
4 for i = 1 to k = ⌈log2 m⌉ do
5 z = ⌈(zmin + zmax)/2⌉
6 θi = κf (xz)
7 Calculate ĉi(θi, Sm)

8 Solve for b∗i (m,m · ĉi(θi, Sm), δ
k ) {see Lemma F.1}

9 if b∗i (m,m · ĉi(θi, Sm), δ
k ) ≥ c∗ then

10 zmin = z
11 else
12 zmax = z
13 end if
14 end for
15 Output: bound: b∗k(m,m · ĉk(θk, Sm), δ

k ), threshold: θk.

To deduce Equation (6) we make use of Lemma F.1, which is nearly identical to Lemma 4.1.

Lemma F.1. Let P be any distribution and consider a CF threshold θ with a coverage of c(θ,P). Let
0 < δ < 1 be given and let ĉ(θ, Sm) be the empirical coverage w.r.t. the set Sm, sampled i.i.d. from P . Let
b∗(m,m · ĉ(θ, Sm), δ) be the solution of the following equation:

argmin
b

m·ĉ(θ,Sm)∑
j=0

(
m

j

)
bj(1− b)m−j ≤ δ

 . (7)

Then,
PrSm{c(θ,P) > b∗(m, ĉ(θ, Sm), δ)} < δ. (8)

The following is a uniform convergence theorem for SGC-UP (Algorithm 3) procedure stating that all the
calculated bounds are valid simultaneously with a probability of at least 1− δ.

Theorem F.2. Assume Sm is sampled i.i.d. from P , and consider an application of Algorithm 3. For k =
⌈log2 m⌉, let b∗i (m,m · ĉi(θi, Sm), δ

k
) and θi be the values obtained in the ith iteration of Algorithm 3. Then,

PrSm{∃i : c(θi,P) > b∗i (m,m · ĉi(θi, Sm), δ
k
)} < δ.

The proof for Theorem F.2 can be easily deduced from the proof of Theorem 4.2, given in Appendix B.1.

F.1 Application of Upper Bound Algorithm for Detecting Distribution Shifts

In this section, we demonstrate the application of Algorithm 3 for detecting shifts in distribution. Specifically,
Algorithm 3 is useful in identifying distribution shifts towards ’over-confidence,’ where the model exhibits
excessive confidence in its predictions on input data. It’s important to note that this scenario was not empirically
observed in our experiments, leading to the exclusion of this section from the main body of the paper.

Our ’over-confidence’ detection algorithm is analogous to Algorithm 2. We start by applying SGC-UP to Ctarget
target coverages uniformly spread between the interval [0.1, 1], excluding the coverage of 1. Each application j
of SGC-UP on the same sample Sm ∼ Pm with a target coverage of c∗;up

j produces a pair: (b∗;up
j , θup

j ), which
represents a threshold and a bound, respectively.
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Define, δup(ĉ|b∗) = 1[ĉ ≥ b∗], thus, given a window of k samples from an alternative distribution, Wk ∼ Qk,
we define the sum of upper bound violations, V up , as follows,

V up =
1

Ctarget

Ctarget∑
j=1

(ĉ(θup
j ,Wk)− b∗;up

j ) · δup(ĉ(θup
j ,Wk)|b∗;up

j ) (9)

=
1

k · Ctarget

Ctarget∑
j=1

k∑
i=1

(gθup
j
(xi)− b∗;up

j ) · δup(ĉup
j |b
∗;up
j ),

where we obtain the last equality by using ĉup
j ≜ ĉ(θup

j ,Wk) =
1
k

∑k
i=1 gθup

j
(xi).

Similarly to V in Equation (4), the term V up denotes the magnitude of the violation, where V up = 0 indicates an
absence of over-confidence in the predictions.

A pseudocode of our algorithm for detecting over-confidence in predictions appears in Algorithm 4.

Algorithm 4: Coverage-Based Detection - over confidence
1 // Fit
2 Input Training: Sm, δ, κf , Ctarget
3 Generate Ctarget uniformly spread coverages c∗

4 for j = 1 to Ctarget do
5 b∗;up

j , θup
j = SGC-UP(Sm, δ, c∗j , κf )

6 end for
7 Output Training: {(b∗;up

j , θup
j )}Ctarget

j=1

8 // Detect
9 Input Detection: {(b∗;up

j , θup
j )}Ctarget

j=1 , κf , α, k
10 while True do
11 Receive window Wk = {x1, x2, . . . , xk}
12 Calculate V up {see Equation (9)}
13 Obtain p-value from t-test, H0 : V up = 0, H1 : V up > 0
14 if pvalue < α then
15 Shift_detected← True
16 Output Detection: Shift_detected, pvalue

17 end if
18 end while

F.2 Unified Algorithm for Distribution Shift Detection

In this section, we introduce a unified algorithm designed to detect shifts in distribution, accommodating both
scenarios of over-confidence and under-confidence in predictions.

Define sum of violations (SOV),

SOV ≜ V + V up =
1

Ctarget

Ctarget∑
j=1

(ĉup
j − b∗;up

j ) · δup(ĉup
j |b
∗;up
j ) + (b∗j − ĉj) · δ(ĉj |b∗j ). (10)

A pseudocode of our unified algorithm for detecting both over and under confidence in predictions appears in
Algorithm 5.
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Algorithm 5: Coverage-Based Detection - Unified
1 // Fit
2 Input Training: Sm, δ, κf , Ctarget
3 Generate Ctarget uniformly spread coverages c∗

4 for j = 1 to Ctarget do
5 b∗j , θj = SGC(Sm, δ, c∗j , κf )
6 b∗;up

j , θup
j = SGC-UP(Sm, δ, c∗j , κf )

7 end for
8 Output Training: {(b∗j , θj)}

Ctarget
j=1 , {(b∗;up

j , θup
j )}Ctarget

j=1

9 // Detect
10 Input Detection: {(b∗j , θj)}

Ctarget
j=1 , {(b∗;up

j , θup
j )}Ctarget

j=1 , κf , α, k
11 while True do
12 Receive window Wk = {x1, x2, . . . , xk}
13 Calculate SOV {see Equation (10)}
14 Obtain p-value from t-test, H0 : SOV = 0, H1 : SOV > 0
15 if pvalue < α then
16 Shift_detected← True
17 Output Detection: Shift_detected, pvalue

18 end if
19 end while
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