
QueST: Self-Supervised Skill Abstractions for
Learning Continuous Control

Atharva Mete1, Haotian Xue1, Albert Wilcox1, Yongxin Chen1,2, Animesh Garg1,2

1Georgia Institute of Technology, 2NVIDIA

Abstract

Generalization capabilities, or rather a lack thereof, is one of the most important
unsolved problems in the field of robot learning, and while several large scale
efforts have set out to tackle this problem, unsolved it remains. In this paper, we
hypothesize that learning temporal action abstractions using latent variable models
(LVMs), which learn to map data to a compressed latent space and back, is a
promising direction towards low-level skills that can readily be used for new tasks.
Although several works have attempted to show this, they have generally been
limited by architectures that do not faithfully capture sharable representations. To
address this we present Quantized Skill Transformer (QueST), which learns a larger
and more flexible latent encoding that is more capable of modeling the breadth of
low-level skills necessary for a variety of tasks. To make use of this extra flexibility,
QueST imparts causal inductive bias from the action sequence data into the latent
space, leading to more semantically useful and transferable representations. We
compare to state-of-the-art imitation learning and LVM baselines and see that
QueST’s architecture leads to strong performance on several multitask and few-
shot learning benchmarks. Further results and videos are available at https:
//quest-model.github.io.

1 Introduction

One of the grand goals of robotic learning is a general-purpose model that can learn from complex
multitask demonstration data and generalize to new tasks in a zero-shot or few-shot manner. While
such general-purpose models have become ubiquitous in natural language (NLP) [66, 72, 52, 53, 63]
and computer vision (CV) [77, 33, 7], they have eluded robotics researchers. Whereas CV and NLP
can achieve positive transfer by scaling up models trained on internet scale datasets [33, 72, 56, 62, 39],
even large scale robot data collection efforts [10, 11, 47, 20, 31] have been insufficient for this
approach. To that end, we posit that in order to achieve positive transfer in robotics, it is important to
design architectures that specifically lend themselves to efficient cross-task transfer.

There has recently been a surge of work towards the goal of learning generalist policies from large,
diverse datasets. Several papers have used techniques such as action discretization [57, 16, 35, 10,
11, 47, 55] and implicit models [23, 15, 25] to model multimodal action distributions. In particular,
the behavior transformer line of work shows that a carefully discretized action space combined with a
GPT-style transformer leads to impressive capabilities modeling multimodal behavior distributions
[57, 16, 35]. In another vein, several works have attempted to scale demonstration data and achieve
positive transfer of low-level skills between high-level tasks [10, 11, 47, 46, 18, 12, 55, 3]. While
these works have shown some transfer, for example applying policies for known tasks to unfamiliar
objects, they have generally failed to achieve transfer of low-level skills to novel tasks [4]. We

1Correspondence to: amete7@gatech.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://quest-model.github.io
https://quest-model.github.io

hypothesize that in the relatively low-data regime of robot learning, it is promising to explicitly force
the model to learn sharable representations. To that end we study latent variable models (LVMs),
which learn to map data to a compressed latent space and back, introducing an information bottleneck
which encourages the model to learn shared representations across the training data. Specifically we
consider the application of LVMs to learn low-dimensional representations of action sequences. Such
representations are termed temporal action abstractions or motion primitives – in this paper we refer
to these abstractions as ‘skills’.

A wide body of work has considered the application of LVMs to robotics. One line of work learns
temporal action abstractions (skills) in continuous latent space with a Gaussian prior [41, 50, 59].
While this line of work showed some initial promise of learning latent plans, it has failed to scale
to difficult multitask settings due to the loose nature of the latent structure and posterior collapse
issues that inhibit the learning of shared representations. On the other hand, recent work in CV and
NLP has shown that vector-quantized discrete latent spaces are capable of learning semantically
meaningful representations from data like phonetics in speech [9, 6] or melody in music [17, 2].
This insight, along with prior work showing that discretized action spaces can help to address the
multimodality problem in when learning from large datasets [57, 16, 35, 14], motivates methods
learning temporal action abstractions with discrete latent spaces. Several recent works have set out
to do this [35, 74, 76, 30], showing some degree of positive transfer between tasks in multi-task
and few-shot settings. However, they are generally limited by architectures that do not faithfully
capture transferable representations [35, 74], or depend on state prediction and state-based objective
functions which are impractical for many real robot tasks [76, 30].

In this paper, we present Quantized Skill Transformer (QueST), a simple yet novel architecture
for learning generalizable low-level skills within a discrete latent space. The key insight behind
QueST is its ability to flexibly capture variable length motion primitives by representing them with a
sequence of discrete codebook entries. We achieve this through a unique encoder-decoder architecture
primarily designed to impart causal inductive bias in action sequence data into the latent space. Such
formulation enables us to employ powerful sequence modeling approaches to plan and composably
reason within the space of low-level skills. Through our experiments, we show that autoregressive
modeling of these latent skills with a GPT-like transformer outperforms state-of-the-art baselines on
challenging robotic manipulation benchmarks, where QueST shows an 8% improvement in multitask
and 14% improvement in few-shot imitation learning over the next best baselines. We also conduct a
detailed ablation and sensitivity study to validate our key architectural design decisions.

2 Related Works

The proposed framework in this paper introduces a methodology for self-supervised skill abstraction,
followed by decision-making within this skill space. Several related works have explored similar
sub-directions such as decision-making in the latent space and decision making with a transformer:

2.1 Learning from Offline Data

Behavior cloning (BC) [51] aims to learn a policy by directly mapping observations to actions, and is
typically trained end-to-end using pre-collected pairs of observation and behavior data. While this on
its surface is a simple supervised learning problem, there are several properties of robot demonstration
data that should be considered when building BC systems. First, large BC datasets collected from
a variety of human demonstrators tend to contain data sampled from multimodal distributions. To
address this, some works opt to sample actions from Gaussian Mixture Models (GMM) [43], while
others explore implicit models including those derived from energy-based models [23, 29] or diffusion
models [15, 71, 14, 68, 28]. The Behavior Transformer (BeT) line of work [57, 16, 35] shows that
transformer-based categorical policies in carefully discretized action spaces do a good job handling
multimodal demonstrator distributions and QueST builds upon this by contributing a more capable
discrete latent skill model.

Another key property of robot demonstration data is that sequential actions are often highly correlated
with one another, and exploiting this can lead to stronger performance while ignoring it can lead to
policies which are susceptible to temporally correlated confounders [61]. Recently several works have
set out to handle this by predicting action chunks. For example, the Action Chunking Transformer
(ACT) line of work [73, 24] shows that a transformer trained as a CVAE [60] to output chunks of

2

actions performs well for a wide variety of manipulation tasks, and diffusion policy [15] shows across
the board improvements when predicting action chunks. As discussed in detail in Section 2.3, QueST
builds on a long line of work which handles sequential correlations through temporally-extended
action abstractions [41, 50, 59, 35, 74, 76, 30].

2.2 Multi-task and Few-shot Imitation Learning

In the past, robot learning researchers have approached multi-task decision making settings using
a wide variety of methods such as supervised pre-training and fine-tuning [20, 42], meta-learning
[22, 19] and action retrieval [48, 44]. There has recently been a large focus on multi-task language-
conditioned imitation learning for robotics with several papers attempting to address the problem
by training large models on large demonstration datasets [10, 11, 47, 46, 18, 12, 1]. While these
papers achieve impressive multitask results, they mostly rely on sufficient data coverage and fail to
generalize beyond their training distribution [4]. Thus, they lack abstractions that can readily be
applied to learn new tasks, especially in a low-data regime. On the other hand LVMs like QueST are
designed to learn sharable representations that can be applied to new tasks.

2.3 Decision Making in Learned Latent Spaces

LVMs, modeled by a paired encoder-decoder, have found extensive applications in computer vi-
sion [65, 32, 8] and generative models [56, 21, 13]. Recent studies also demonstrate the utility of
latent space representations in robot decision-making, spanning offline RL [58, 50, 40], imitation
learning [14, 67, 37, 35], and temporal action abstraction [57, 74, 75]. Most similar to our work
are those that learn temporally abstracted discrete latent skill spaces. PRISE [74] learns single-step
state-action abstractions within a discrete space and then does temporal abstraction by applying BPE
tokenization. While this method shows promise in learning multi-task and few-shot policies, BPE is
well suited for text and is known to suffer in domains with highly dynamic vocabularies, in robotics
its equivalent to varying action distributions across unseen tasks. TAP [76] and H-GAP [30] utilize a
self-supervised auto-encoder to learn skill codes, but their functionality relies on Model Predictive
Control (MPC) using state prediction with ground-truth state-conditioned objective functions, which
make it difficult to apply to real-world manipulation tasks. VQ-BeT [35] bears the strongest resem-
blance to QueST, also using a pre-trained discrete latent skill space to discretize the action space for
a transformer-based policy prior. However, their quantization approach does not leverage the inherent
structure in action sequences, limiting the representational capabilities of the latent space. Thus it’s
shown to heavily rely on an continuous offset predictor for best performance. Unlike these works,
QueST’s learned latent space is highly flexible yet structured and expressive, allowing it to effectively
model action distribution across many distinct tasks in a meaningful shared representation.

3 Preliminary

3.1 Problem Setting

We consider a dataset D = {{(O1, a1), . . . , (OTi
, aTi

)}Nk
i=0, Lk}Mk=0 consisting of M robot inter-

action trajectories where at is a continuous-valued action and Ot is a tuple consisting of a high-
dimensional sensory observation. The data is collected via either human teleoperation or scripted
policies for M different task each with a label Lk. In our setting, Ot consist of RGB image observa-
tions from the front camera and gripper camera (if available) along with proprioceptive state of the
agent. Lk is a natural language description of the kth task but can also be a one-hot encoding.

3.2 Finite Scalar Quantization

We build on Finite Scalar Quantization (FSQ) [45] as a discrete bottleneck in our model. It’s a drop-in
replacement for Vector Quantization (VQ) layers in VAEs with a simple scalar quantization scheme.
Here the input representation e is projected to very few dimensions (typically 3 to 5) which are then
bounded and rounded, creating an implicit codebook.

z = round_ste(f(e)), where f is the bounding function (1)

Given a feature vector e ∈ Rd to quantize, instead of learning a parameterized codebook [65] and
quantizing e by matching the nearest neighbor in the codebook, FSQ quantizes e by first bounding

3

Inference

ResNetMLP ResNetMLP ResNetMLP

...

...

...

12 23 72 14

<start> 12 23 72

Autoregressive Transformer

ProprioceptionProprioceptionProprioception

Observation
history

Task
CLIP/one-hot

z1 z2 z3 zn

Causal Conv-1D

Masked Self-Attn
FSQ Quantization

at at+1 at+2 at+T-1
sampled action sequence

12 1723 14

1 2 3 T

at at+1 at+2 at+T-1

Fixed Positional Encodings
4

at+3

Transformer Decoder

predicted action sequence

X-
At

tn

Skill Tokens:

stage 1
training

Stage I: Self-supervised Skill Abstraction Stage II: Decision Making with Skill Tokens

corresponding
FSQ embeddings

Figure 1: Overview of Quantized Skill Transformer: we factorize the policy that outputs action based on
task descriptions e and observations o encoding into two parts: π(A|o, e) = ψθ(A|Z)πφ(Z|o, e), where Z is a
sequence of skill tokens for the action sequence A. In Stage I, we learn skill abstraction in a self-supervised way
with a quantized autoencoder. In Stage II, we learn skill-based policy in the style of next-token prediction using
a multi-modal transformer.

it into certain range with f (e.g. f = ⌊α/2⌋ ⊙ tanh(e)) and then rounding each dimension into
integer numbers directly with straight-through gradients (round_ste). α ∈ Zd defines the width of
the codebook for each dimension (e.g. α = [8, 5, 5, 5], d = 4). Finally, it is easy to see that the size
of the quantization space is Πd

i=1αi. An MLP can be used to transform z into continuous space of
required dimension further.

A common problem with vector-quantized codebooks (VQ) [65] is the under-utilization of the
codebook. Recent works have attempted to address by heuristics like reinitializing the codebook,
stochastic formulations, or some regularization [34, 69]. In contrast, FSQ achieves much better
codebook utilization for large codebook sizes with much fewer parameters and simplified training
without any auxiliary losses or aforementioned tricks. Due to its simplicity and proven benefits, we
use FSQ in our main experiments, but since many prior works in this space use VQ we also perform
an ablation with it (see section 5.6).

4 Method

In this section, we describe the key ideas behind Quantized Skill Transformer. In Section 4.1 we
present our encoder-decoder architecture, which is designed to provide the flexibility to learn a wide
range of skills with inductive biases to ensure that the learned skills are useful. In Section 4.2, we
detail our skill prior, which we train to autoregressively predict codebook skills. Our full pipeline is
shown in Figure 1.

4.1 Stage I: Learning the Skill Codebook

As a motivating example, consider the task of lifting a pot and placing it on a stove beside. This
consist of primitives like reaching the pot, grasping it, lifting it to a certain height, reaching the stove
and finally placing it on the stove. Each of these primitives are of variable lengths, and to properly
model these skills it is important to learn a latent skill space with the flexibility to model all of them.
At the same time, it is important that the learned skills are semantically meaningful so that they
can be reused for new tasks, for example reusing the reaching skill for an object lifting task. In
order to address these desiderata, we introduce the novel autoencoder architecture shown in Figure 1
consisting of an encoder ϕθ and decoder ψθ.

The input to the encoder ϕθ is an action sequence at:t+T−1 sampled from the dataset, which we pass
through several 1D causal strided-convolution layers [64]. This step reduces the sequence length to
achieve the desired temporal abstraction depending on the stride lengths and the number of layers.

4

We follow the convolutional layers with masked self-attention layers for sequence modeling. With
a downsampling factor of F , the encoder outputs in total n = T/F embeddings. The embeddings
are then quantized using FSQ as per the equation 1 into n discrete latent codes {zi} termed as skill
tokens:

(z1, . . . , zn) = FSQ(ϕθ(at, . . . , at+T−1)). (2)

Having an input sequence of actions mapped to multiple skill tokens gives this architecture more
flexibility to model complex sequences of actions. At the same time, each component of the encoder
is causal, meaning that an output representation at a position t cannot depend on input from any
future timesteps. We found this inductive bias to encourage the model to learn semantically useful
action representations by modeling the inherent causality in the action data. We validate this design
choice in the ablations. (see section 5.6)

Typical autoencoder decoders are simply mirrored versions of the encoders, but this would prevent
the decoder from attending to all quantized codes. This is important because individual codes do not
represent anything meaningful but a sequence of codes represents a particular meaningful motion [45].
In order to maintain causality while attending to all codes, the decoder ψθ cross attends between fixed
sinusoidal positional embedding inputs and the skill tokens, similarly with [73]. The architecture is a
transformer decoder block consisting of alternate masked self-attention and cross-attention layers,
after which the output embeddings are projected back to the original action dimension using an MLP
layer. Thus, given a sequence Z of skill codes, ψθ reconstructs the original action

(ât, . . . , ât+T−1) = ψθ(z
1, . . . , zn) (3)

As in [35], the autoencoder is trained by minimizing the ℓ1 reconstruction loss:

Lrecon(θ) = ∥ψθ(FSQ(ϕθ(at:t+T−1)))− at:t+T−1∥1. (4)

Unlike prior work which often conditions on the state as well as the actions [30, 5, 74, 37], we choose
to learn state-independent abstractions that solely capture motion primitives irrespective of the current
scene or task. Through our experiments we show that our model learns generalizable abstractions
that are shared and can be transferred across tasks.

4.2 Stage II: Learning the Skill Prior

After training the encoder ϕθ and decoder ψθ, we train a skill prior πφ(Z|e, o) to predict skills
Z = z1:n corresponding to the demonstrator action distribution conditioned on a task embedding e and
a length h sequence of image observations and proprioception inputs, o = (it−h, pt−h), . . . , (it, pt).
We encode image observations with a separate learned vision encoder for each camera view and
encode proprioception using an MLP encoder, all of which are trained end-to-end with the rest of the
skill prior. The observation token T o

t for a timestep t is obtained by concatenating outputs from all
the aforementioned encoders. Task embeddings are designed specifically for each environment suite,
as discussed in more detail in Section 5. See Appendix B for more details about the encoders.

Because skill tokens are highly dependent on one another according to the complex nonlinear
representations learned by the autoencoder, it is important that the skill prior has the modeling
capacity to reason about these dependencies. To achieve this, we employ a decoder-only transformer
to model the distribution of skill tokens πφ(Z|T o

t−h:t, e) autoregressively as:

πφ(Z|T o
t−h:t, e) =

n∏
i=1

πφ(z
i|<s>, z1:i−1, T o

t−h:t, e) (5)

where <s> is a learnable start token that marks the start of skill tokens. We add sinusoidal positional
embeddings only to the skill tokens. To optimize the skill prior, we sample a sequence of demonstrator
actions at:t+T−1 and use the trained encoder ϕθ to extract a latent skill vector Zt = z1:n according
to Equation 2. Then, we optimize πφ using the following negative log-likelihood loss:

Ltask(φ) = − log πφ(Zt|T o
t−h:t, e). (6)

The full skill prior pipeline is shown in Figure 1.

5

Few-Shot Finetuning: For few-shot finetuning on new tasks, we use a model pre-trained on large
set of tasks and finetune it on a small number of demonstrations (5 in our experiments) from the
held-out task. Although finetuning only stage-2 is enough, we empirically found that finetuning the
decoder on the predicted skill tokens gives a boost in the performance. Specifically, we finetune the
decoder using following decoder loss:

Ldecoder(θ) = ∥ψθ(sg(Ẑt))− at:t+T−1∥1 (7)

where sg is the stop gradient operator. We present the results with and without decoder finetuning
both. Additionally, we note that the encoder is still frozen in this setting.

4.3 Inference with Quantized Skill Transformer

At inference time, QueST uses the skill prior πφ alongside the decoder ψθ to sample actions.
Conditioned on the encoded observation history T o

t−h:t and task embedding e, we use top-k sampling
with a temperature of τ to autoregressively sample a skill vector Ẑ ∼ πφ(·|T o

t−h:t, e) from the skill
prior. In practice, we find k = 5 and τ = 1 to work well across all environments. Then, we use
the decoder to map the skill vector back to the action space, producing a sequence of predicted
actions ât:t+T−1 = ψθ(Ẑ). In a receding horizon fashion, we execute the first Ta ≤ T actions before
replanning.

5 Experiments

We design the experiments to empirically evaluate the performance of Quantized Skill Transformer
in three practical settings: (1) Multitask IL, (2) Few-shot transfer, and (3) Long-horizon IL. Lastly,
we perform some ablations to empirically justify our model design choices.

5.1 Benchmarks and Baselines

We use the following benchmark suites to evaluate in the settings discussed above:

LIBERO [38] is a lifelong learning benchmark featuring several task suites consisting of a variety of
language-labeled rigid- and articulated-body manipulation tasks. Specifically, we evaluate on the
LIBERO-90 suite, which consists of 90 manipulation tasks, and the LIBERO-LONG suite, which
consists of 10 long-horizon tasks composed of two tasks from the LIBERO-90 suite. As described
in more detail below, we use the LIBERO benchmark to study the multitask IL, few-shot transfer
and long-horizon IL settings. Because tasks from this benchmark are language-annotated, we use the
output of a frozen CLIP [54] encoder for the task conditioning input e.

MetaWorld [70] features a wide range of manipulation tasks designed to test few-shot learning
algorithms. We use the Meta-Learning 45 (ML45) suite which consists of 45 training tasks and 5
difficult held-out tasks which are structurally similar to the training tasks. We use this benchmark to
test multi-task and few-shot learning. Because this benchmark does not include language labels, we
use learned task embeddings e for task conditioning.

Baselines: We compare to the following baselines, which include similar discrete LVM pipelines
as well as state of the art imitation learning algorithms:

1. The ResNet-T model from [38], which encodes observation and task instructions using ResNet-18
with FiLM [49], applies a transformer sequence model, and uses a GMM head to predict actions.

2. The UNet-based diffusion policy from [15], which uses a 1D convolutional UNet to map samples
from a Gaussian prior to action samples from the demonstrator distribution according to a learned
denoising process.

3. ACT [73], which trains a transformer as a CVAE [60] to predict action chunks.

4. VQ-BeT [35], which learns a discrete latent space using a VQ-VAE [65] and uses a transformer
to predict discrete latent codes.

5. PRISE [74], which first quantizes observation-action pairs and performs temporal abstraction
using byte pair encoding (BPE) to learn a skill token vocabulary, which it uses as an action space for
few-shot learning.

6

ResNet-T ACT Diffusion
Policy

PRISE VQ-BeT QueST0

20

40

60

80

100

M
ea

n
Su

cc
es

s R
at

e
(%

)

84.4

46.6

75.1

54.4

81.4
89.8

(a) Multitask on LIBERO-90.

ResNet-T ACT Diffusion
Policy

PRISE VQ-BeT QueST

QueST0

10

20

30

40

50

60

70

80

53.4

42.6 45.9
52.7

41.8

65.2 66.7

(b) Few-shot on LIBERO-LONG.

ResNet-T ACT Diffusion
Policy

VQ-BeT QueST0

10

20

30

40

50

60

70

80

90

74.8

54.8

34.1
38.3

61.8

(c) Multitask on LIBERO-LONG

Figure 2: Multitask performance on LIBERO-90 (a) and LIBERO-LONG (c), and few shot performance on
LIBERO-LONG (b). For (a) and (c) we train on the datasets described in Sections 5.2 and 5.4. For (b) we
finetune the model from (a) on a condensed dataset as described in Section 5.3. Results show the mean and error
bar represents standard error across four random seeds for multitask experiments and nine random seeds for
fewshot experiments. Results for PRISE are taken from Zheng et al. [74], and the others we reimplemented and
ran ourselves.

For a detailed discussion between QueST and the baseline methods, please refer to Appendix B.5.

5.2 Performance on Multitask BC

We evaluate the goal-conditioned multi-task imitation learning capabilities of QueST and the baselines
using the LIBERO-90 and ML45 benchmark suites. For LIBERO-90, the learner receives 50 expert
demonstrations per task from the author-provided dataset. For ML45, we use the scripted policies
provided in the official Metaworld codebase to collect 100 demonstrations per task. We evaluate the
model at the end of training and for each task run 40 evaluation rollouts (50 for MetaWorld) starting
from the initial states selected sequentially from a predefined set. We report the aggregated results
across 4 seeds (5 seeds for MetaWorld).

In Figure 2a, we present the average success rate across 90 tasks in LIBERO-90 against the afore-
mentioned baselines. Quantized Skill Transformer achieves state-of-the-art results on LIBERO-90
benchmark, outperforming the baseline VQ-BeT and Diffusion Policy by a margin of 8 and 13%
respectively. We attribute its performance to its learned latent space that enables effective knowledge
sharing across tasks. While VQ-BeT also shows strong performance, we see that QueST’s architecture
lends itself better to sharing representations across tasks. Our implementation of ResNet-T achieves
significantly better performance than the reported number (16.8%) in [38] but is still lower than
QueST. Figure 3a shows the average success rate across 45 tasks in ML45 benchmark. Being a
simpler benchmark, all methods perform almost similar in Multitask-IL setting which is consistent
with the trend observed in [74].

We attribute the reasonably good performance of the diffusion policy to its nature as a latent variable
model, which employs a continuous latent variable with the same dimensionality as the actions.
However, the consistent outperformance of QueST over the diffusion policy provides compelling
evidence for the benefits of using a bottlenecked latent variable. This bottleneck encourages the
model to learn shared representations, resulting in enhanced performance. While both VQ-BeT and
PRISE employ a latent bottleneck, VQ-BeT’s architecture neglects the inherent inductive biases in
the action data, which we believe results in a less well-structured latent space. PRISE incorporates
this using a latent forward transition model, but is bottlenecked by the use of BPE which we posit is
not suitable for such a dynamic latent space.

5.3 Few-shot Transfer to Unseen Tasks

In this setting we take the pretrained model from section 5.2 and test its 5-shot performance on unseen
tasks from LIBERO-LONG and held-out set in ML45. We sample only five demonstrations for each
task, generate the skill tokens using pretrained encoder and use them to finetune the skill prior and
the decoder as described in Section 4.2. We also present the results without finetuning the decoder
(frozen ψθ in figure 2b & 3b) to validate its generalization to unseen skill tokens sequences.

Figure 2b shows the average success rate for 5-shot IL across 8 unseen tasks in LIBERO-LONG.
QueST achieves SOTA performance, surpassing all other baselines by an absolute margin of 14%.

7

ResNet-T ACT Diffusion
Policy

PRISE VQ-BeT QueST0

20

40

60

80

100

M
ea

n
Su

cc
es

s R
at

e
(%

)

88.4 90.8 90.3
80.4

87.6 91.7

(a) Multitask on ML45

ResNet-T ACT Diffusion
Policy

PRISE VQ-BeT QueST

0

10

20

30

40

50

60

70

80

M
ea

n
Su

cc
es

s R
at

e
(%

)

54.0

70.8
66.1 66.8 68.7 71.9

(b) Few-shot on ML45

Figure 3: Multitask and few-shot success rate on the Metaworld ML45 task suite. In (a) we train on the dataset
described in Section 5.2, and in (b) we finetune the model from (a) using 5 demonstrations each from a set of
held out tasks. Results show the mean and error bar represents standard error across five random seeds. Results
for PRISE are taken from Zheng et al. [74], and the others we reimplemented and ran ourselves.

VQ Obs. Cond. Mirror Dec. Ours
LIBERO-90 81.2± 0.6 81.9± 1.1 86.3± 0.9 88.6± 0.4
Few Shot 62.5± 2.0 61.3± 2.2 45.4± 2.0 68.8± 1.7

Table 1: Success rates after ablating design details of QueST. We present the mean across four random seeds
and error tolerances show the standard error.

Though we see a marginal drop of 1.5% without decoder finetuning, it still outperforms all the
baselines. These results highlight the superiority of QueST in learning transferable representations
of action abstractions and effectively leveraging them for downstream decision making. For a fair
comparison, we also tried fine-tuning the decoder of VQ-BeT but did not observe any gains from
it. VQ-BeT struggles in this setting as it heavily relies on offset head to output continuous action
corrections which requires more data-samples for sufficient coverage in the continuous action space.
Figure 3b shows the average success rate for 5-shot IL across 5 unseen tasks in MetaWorld. Similar
to multitask results, all methods perform comparably, with QueST showing a slight improvement
over the others. QueST leverages its learned skill tokens to compositionally model their distribution
for an unseen task in just 5 demonstration examples. For few-shot evaluation protocol please refer
Appendix D.1.

5.4 Long-horizon BC

In this setting, we aim to purely study and compare the performance of our model on long-horizon
tasks. We train the model (both stages) solely on LIBERO-LONG complete dataset (50 demonstra-
tions per task) and evaluate with the same scheme as described earlier.

Figure 2c shows the average success rate across 10 LIBERO-LONG tasks. All LVMs perform
significantly worse than the ResNet-T model. We attribute this to the relatively small size of LIBERO-
LONG dataset which is just not enough to learn a good latent space in LVMs. QueST still outperforms
all LVM baselines by a large margin demonstrating its long-horizon modeling capabilities.

Overall, we see that our model outperforms baselines like VQ-BeT in multitask settings, showing
stronger modelling capacity. At the same time, it has the correct latent structure to outperform
baselines like diffusion in few shot settings, especially even with frozen decoder, indicating strong
generalization capabilities of learned skill-space.

5.5 Latency

Our pipeline runs at 33Hz, which is more than suffcient for vision-based real-robot control where
most camera systems run at 30 fps. For comparison, our implementation of Resnet-T, VQ-BeT, ACT
and Diffusion Policy run at 100Hz, 100Hz, 50Hz, and 12Hz respectively.

Non Causal ϕθ Non Causal ψθ Fully Non Causal Ours
LIBERO-90 82.0± 1.6 85.1± 1.8 78.5± 0.5 88.6± 0.4
Few Shot 58.8± 3.0 61.6± 2.5 56.1± 1.8 68.8± 1.7

Table 2: Success rates after ablating the causality in QueST. We present the mean across four random seeds and
error tolerances show the standard error.

8

1 2 4 8 16
Downsample factor F

40

50

60

70

80

90

Su
cc

es
s r

at
e

(a) Downsampling factor sensitivity.

16 64 256 512 1024 2048 4096
Codebook size

0

20

40

60

80

Su
cc

es
s r

at
e

LIBERO-90
Few Shot

(b) Codebook size sensitivity.

Figure 4: We conduct a sensitivity experiment across downsampling factors (a) and codebook sizes (b) on the
LIBERO benchmark. For (a) we fix a sequence length of T = 32. Overall, we see that the few-shot version is
more sensitive to hyperparameters and that F = 4 with 1024 codebook vectors are good choices.

5.6 Ablations

We validate the proposed architecture by ablating some of its key design decisions. All the ablations
are performed on LIBERO studying their effects on both multitask and fewshot IL settings.

1. Vector Quantization: We replace the FSQ layer with a Vector Quantization layer of nearly the
same codebook size, shown in the VQ column of Table 1. We see that FSQ’s superior codebook
utilization leads to an improvement in performance.

2. Observation Conditioned Decoder: Many prior condition the action decoder with current
observation [76, 30]. We experiment with this by appending observation tokens to the skill tokens
and allowing the transformer decoder to jointly cross-attend to both, shown in Table 1. We see that
conditioning on observations leads to a deterioration in performance.

3. Mirrored Decoder: Following a typical autoencoder design, we use a decoder that mirrors the
encoder, using transposed convolutions instead of strided convolutions, and with the strides in reverse
order as in the encoder. This decoder directly takes skill-token embeddings as input and outputs
the continuous actions, and results are shown in Table 1. We see that this method performs worse,
suggesting attending to all quantized codes in z, as our decoder does, is important for faithfully
predicting actions.

4. Causality: We ablate the use of causal layers in various parts of our network in Table 2. We see
that removing causality from any part of our architecture leads to worse performance, suggesting that
causal masking imparts the model with a helpful inductive bias for modeling robot action data.

We also perform a sensitivity experiment over several hyperparameters including downsampling
factor and codebook size in Figure 4. Across the board we see that the hyperparameters are more
important in the difficult few-shot learning setting. In Figure 4a we see that both algorithms have the
best performance with a modest downsampling factor of F = 4, and in Figure 4b we see that QueST
does well with a 1024 codebook vectors. For more discussion on ablations please refer Appendix C.

5.7 Latent Skill-Space Analysis

We present a t-SNE visualization (Figure 5) illustrating the learned skill-space across multiple set of
similar tasks. We consider four different combinations of similar tasks to effectively examine the
z-embeddings corresponding to their trajectories. Each data point in the plot represents a vector of
n z-embeddings at a specific timestep throughout the entire episode, with decreasing transparency
indicating temporal progression. We show that the QueST encoder learns a semantically meaningful
skill-space that encodes shared representations of similar motion primitives across different tasks.
This analysis includes the first 11 tasks from LIBERO-90. For better comprehension, we encourage
readers to review the corresponding rollouts on the website. Notably, the skill-space learning happens
in the first stage training which does not make use of any task labels.

6 Conclusion

We present Quantized Skill Transformer, a novel LVM architecture for learning sharable skills in
a discrete latent space. The key idea behind QueST is to represent action sequences as a series

9

closing
top drawer

approaching top drawer

approaching
the bowl

picking up
the bowl

placing
the bowl

time

time

time

time

placing the
bowl

approaching top
drawer

approaching
bottom drawer

pull out
the drawer

timetim
e

tim
e

picking up
the bowl

approaching
the cabinet on left

approaching the
plate on right

placing the
bowl

tim
e

time

picking butter
on the right

picking
chocolate
on left

approaching
the drawer

closing
the drawer

placing
the item

time

tim
e

Figure 5: t-SNE visualization of skill-token embeddings. Here, the transparency decreases as the
episode progresses. The overall patterns clearly shows how similar motion primitives like approaching,
picking and placing from different tasks are aligned with one another.

of codebook vectors, and we demonstrate that using causal convolutions and masked transformers
provides an inductive bias that encourages the model to learn useful shared representations. We
evaluate QueST across 145 robot manipulation tasks, and show that it outperforms several state-of-
the-art baselines in multitask and few-shot learning settings. Our results highlight the usefulness
of QueST’s encoder (decoder) as semantically-sound, task-agnostic tokenizer (detokenizer) for
continuous actions, and its potential to leverage Large Multi-modal Language Models in stage-2.

Limitations: While the benchmarks we consider encompass a wide variety of tasks, the held-out
tasks are still structurally similar to the pretraining set, which makes few-shot transfer feasible. In
scenarios with a more diverse task, current model may struggle to solve new tasks solely within
the learned skill space. A promising direction is to train stage-1 on larger datasets, such as Open
X-Embodiment [47], with an expanded codebook that could capture more diverse motion primitives.
Additionally, our current architecture only accounts for causality. Future work should explore other
inductive biases, like geometric invariance and dynamic consistency, to enhance abstraction learning.

A statement on societal impact: This paper works towards the broader goal of automating a
wide range of manipulation tasks. While this can have positive impacts, such as helping people
with mobility impairments or performing menial tasks humans would rather not do, it can also have
negative impacts such as automating peoples’ jobs away and further concentrating wealth in the
hands of a handful of companies. It is important that we in the machine learning community advocate
for equitable use of the technology we develop.

10

References
[1] Q-transformer: Scalable offline reinforcement learning via autoregressive q-functions. In 7th Annual

Conference on Robot Learning, 2023.

[2] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Caillon, Q. Huang, A. Jansen, A. Roberts,
M. Tagliasacchi, M. Sharifi, N. Zeghidour, and C. Frank. Musiclm: Generating music from text, 2023.

[3] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan,
K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey,
S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu,
C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng. Do as i can, not as i say:
Grounding language in robotic affordances, 2022.

[4] M. Ahn, D. Dwibedi, C. Finn, M. G. Arenas, K. Gopalakrishnan, K. Hausman, B. Ichter, A. Irpan, N. Joshi,
R. Julian, S. Kirmani, I. Leal, E. Lee, S. Levine, Y. Lu, I. Leal, S. Maddineni, K. Rao, D. Sadigh, P. Sanketi,
P. Sermanet, Q. Vuong, S. Welker, F. Xia, T. Xiao, P. Xu, S. Xu, and Z. Xu. Autort: Embodied foundation
models for large scale orchestration of robotic agents, 2024.

[5] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. Opal: Offline primitive discovery for
accelerating offline reinforcement learning, 2021.

[6] A. Baevski, H. Zhou, A. Mohamed, and M. Auli. wav2vec 2.0: A framework for self-supervised learning
of speech representations. CoRR, abs/2006.11477, 2020. URL https://arxiv.org/abs/2006.11477.

[7] Y. Bai, X. Geng, K. Mangalam, A. Bar, A. Yuille, T. Darrell, J. Malik, and A. A. Efros. Sequential
modeling enables scalable learning for large vision models. arXiv preprint arXiv:2312.00785, 2023.

[8] H. Bao, L. Dong, S. Piao, and F. Wei. Beit: Bert pre-training of image transformers. arXiv preprint
arXiv:2106.08254, 2021.

[9] Z. Borsos, R. Marinier, D. Vincent, E. Kharitonov, O. Pietquin, M. Sharifi, D. Roblek, O. Teboul,
D. Grangier, M. Tagliasacchi, and N. Zeghidour. Audiolm: a language modeling approach to audio
generation, 2023.

[10] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv preprint
arXiv:2212.06817, 2022.

[11] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess, A. Dubey,
C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. arXiv
preprint arXiv:2307.15818, 2023.

[12] A. Bucker, L. Figueredo, S. Haddadin, A. Kapoor, S. Ma, S. Vemprala, and R. Bonatti. Latte: Language
trajectory transformer. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages
7287–7294. IEEE, 2023.

[13] H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T. Freeman. Maskgit: Masked generative image transformer.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11315–
11325, 2022.

[14] L. Chen, S. Bahl, and D. Pathak. Playfusion: Skill acquisition via diffusion from language-annotated play.
In Conference on Robot Learning, pages 2012–2029. PMLR, 2023.

[15] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy: Visuomotor
policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[16] Z. J. Cui, Y. Wang, N. M. M. Shafiullah, and L. Pinto. From play to policy: Conditional behavior generation
from uncurated robot data. arXiv preprint arXiv:2210.10047, 2022.

[17] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever. Jukebox: A generative model for
music, 2020.

[18] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong,
T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

[19] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and W. Zaremba.
One-shot imitation learning, 2017.

11

https://arxiv.org/abs/2006.11477

[20] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and S. Levine. Bridge
data: Boosting generalization of robotic skills with cross-domain datasets, 2021.

[21] P. Esser, R. Rombach, and B. Ommer. Taming transformers for high-resolution image synthesis. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 12873–12883,
2021.

[22] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via meta-learning,
2017.

[23] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mordatch, and
J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning, pages 158–168. PMLR, 2022.

[24] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with low-cost
whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

[25] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill acquisition.
In Proceedings of the 2023 Conference on Robot Learning, 2023.

[26] S. Haldar, Z. Peng, and L. Pinto. Baku: An efficient transformer for multi-task policy learning, 2024. URL
https://arxiv.org/abs/2406.07539.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[28] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior synthesis.
arXiv preprint arXiv:2205.09991, 2022.

[29] D. Jarrett, I. Bica, and M. van der Schaar. Strictly batch imitation learning by energy-based distribution
matching. Advances in Neural Information Processing Systems, 33:7354–7365, 2020.

[30] Z. Jiang, Y. Xu, N. Wagener, Y. Luo, M. Janner, E. Grefenstette, T. Rocktäschel, and Y. Tian. H-gap:
Humanoid control with a generalist planner. arXiv preprint arXiv:2312.02682, 2023.

[31] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany, M. K. Srirama,
L. Y. Chen, K. Ellis, P. D. Fagan, J. Hejna, M. Itkina, M. Lepert, Y. J. Ma, P. T. Miller, J. Wu, S. Belkhale,
S. Dass, H. Ha, A. Jain, A. Lee, Y. Lee, M. Memmel, S. Park, I. Radosavovic, K. Wang, A. Zhan, K. Black,
C. Chi, K. B. Hatch, S. Lin, J. Lu, J. Mercat, A. Rehman, P. R. Sanketi, A. Sharma, C. Simpson, Q. Vuong,
H. R. Walke, B. Wulfe, T. Xiao, J. H. Yang, A. Yavary, T. Z. Zhao, C. Agia, R. Baijal, M. G. Castro,
D. Chen, Q. Chen, T. Chung, J. Drake, E. P. Foster, J. Gao, D. A. Herrera, M. Heo, K. Hsu, J. Hu,
D. Jackson, C. Le, Y. Li, K. Lin, R. Lin, Z. Ma, A. Maddukuri, S. Mirchandani, D. Morton, T. Nguyen,
A. O’Neill, R. Scalise, D. Seale, V. Son, S. Tian, E. Tran, A. E. Wang, Y. Wu, A. Xie, J. Yang, P. Yin,
Y. Zhang, O. Bastani, G. Berseth, J. Bohg, K. Goldberg, A. Gupta, A. Gupta, D. Jayaraman, J. J. Lim,
J. Malik, R. Martín-Martín, S. Ramamoorthy, D. Sadigh, S. Song, J. Wu, M. C. Yip, Y. Zhu, T. Kollar,
S. Levine, and C. Finn. Droid: A large-scale in-the-wild robot manipulation dataset. 2024.

[32] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[33] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg,
W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 4015–4026, 2023.

[34] D. Lee, C. Kim, S. Kim, M. Cho, and W.-S. Han. Autoregressive image generation using residual
quantization, 2022.

[35] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and L. Pinto. Behavior generation with latent
actions. arXiv preprint arXiv:2403.03181, 2024.

[36] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies, 2016.

[37] Z. Liang, Y. Mu, H. Ma, M. Tomizuka, M. Ding, and P. Luo. Skilldiffuser: Interpretable hierarchical
planning via skill abstractions in diffusion-based task execution. arXiv preprint arXiv:2312.11598, 2023.

[38] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowledge transfer
for lifelong robot learning. Advances in Neural Information Processing Systems, 36, 2024.

[39] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning, 2023.

[40] J. Luo, P. Dong, J. Wu, A. Kumar, X. Geng, and S. Levine. Action-quantized offline reinforcement learning
for robotic skill learning. In Conference on Robot Learning, pages 1348–1361. PMLR, 2023.

12

https://arxiv.org/abs/2406.07539

[41] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning latent plans
from play. Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1903.01973.

[42] Z. Mandi, F. Liu, K. Lee, and P. Abbeel. Towards more generalizable one-shot visual imitation learning. In
2022 International Conference on Robotics and Automation (ICRA), pages 2434–2444. IEEE, 2022.

[43] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu, and
R. Martín-Martín. What matters in learning from offline human demonstrations for robot manipulation.
arXiv preprint arXiv:2108.03298, 2021.

[44] E. Mansimov and K. Cho. Simple nearest neighbor policy method for continuous control tasks, 2018. URL
https://openreview.net/forum?id=ByL48G-AW.

[45] F. Mentzer, D. Minnen, E. Agustsson, and M. Tschannen. Finite scalar quantization: Vq-vae made simple.
arXiv preprint arXiv:2309.15505, 2023.

[46] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, C. Xu, J. Luo,
T. Kreiman, Y. Tan, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh, C. Finn, and S. Levine. Octo: An open-source
generalist robot policy. In Proceedings of Robotics: Science and Systems, Delft, Netherlands, 2024.

[47] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Singh, A. Brohan,
et al. Open x-embodiment: Robotic learning datasets and rt-x models. arXiv preprint arXiv:2310.08864,
2023.

[48] N. D. Palo and E. Johns. Dinobot: Robot manipulation via retrieval and alignment with vision foundation
models. In IEEE International Conference on Robotics and Automation (ICRA), 2024.

[49] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a general
conditioning layer. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

[50] K. Pertsch, Y. Lee, and J. Lim. Accelerating reinforcement learning with learned skill priors. In Conference
on robot learning, pages 188–204. PMLR, 2021.

[51] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural information
processing systems, 1, 1988.

[52] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

[53] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised
multitask learners. 2019.

[54] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR, 2021.

[55] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez, Y. Sulsky,
J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess, Y. Chen, R. Hadsell,
O. Vinyals, M. Bordbar, and N. de Freitas. A generalist agent, 2022.

[56] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with
latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022.

[57] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k modes with
one stone. Advances in neural information processing systems, 35:22955–22968, 2022.

[58] L. X. Shi, J. J. Lim, and Y. Lee. Skill-based model-based reinforcement learning. arXiv preprint
arXiv:2207.07560, 2022.

[59] A. Singh, H. Liu, G. Zhou, A. Yu, N. Rhinehart, and S. Levine. Parrot: Data-driven behavioral priors
for reinforcement learning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Ysuv-WOFeKR.

[60] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep condi-
tional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/
8d55a249e6baa5c06772297520da2051-Paper.pdf.

13

https://arxiv.org/abs/1903.01973
https://openreview.net/forum?id=ByL48G-AW
https://openreview.net/forum?id=Ysuv-WOFeKR
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf

[61] G. Swamy, S. Choudhury, J. A. Bagnell, and Z. S. Wu. Causal imitation learning under temporally
correlated noise, 2022.

[62] G. Team. Gemini: A family of highly capable multimodal models, 2024.

[63] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava,
S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu,
B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez,
M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu,
Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta,
K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams,
J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic,
S. Edunov, and T. Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

[64] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior,
and K. Kavukcuoglu. Wavenet: A generative model for raw audio. In Arxiv, 2016. URL https:
//arxiv.org/abs/1609.03499.

[65] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. Advances in neural information
processing systems, 30, 2017.

[66] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

[67] W. Wan, Y. Zhu, R. Shah, and Y. Zhu. Lotus: Continual imitation learning for robot manipulation through
unsupervised skill discovery. arXiv preprint arXiv:2311.02058, 2023.

[68] Z. Xian, N. Gkanatsios, T. Gervet, T.-W. Ke, and K. Fragkiadaki. Chaineddiffuser: Unifying trajectory
diffusion and keypose prediction for robotic manipulation. In 7th Annual Conference on Robot Learning,
2023.

[69] J. Yu, X. Li, J. Y. Koh, H. Zhang, R. Pang, J. Qin, A. Ku, Y. Xu, J. Baldridge, and Y. Wu. Vector-quantized
image modeling with improved VQGAN. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=pfNyExj7z2.

[70] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A benchmark
and evaluation for multi-task and meta reinforcement learning. In Conference on robot learning, pages
1094–1100. PMLR, 2020.

[71] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy. arXiv preprint
arXiv:2403.03954, 2024.

[72] S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu, T. Zhang, F. Wu, et al. Instruction
tuning for large language models: A survey. arXiv preprint arXiv:2308.10792, 2023.

[73] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation with low-cost
hardware, 2023.

[74] R. Zheng, C.-A. Cheng, H. Daumé III, F. Huang, and A. Kolobov. Prise: Learning temporal action
abstractions as a sequence compression problem. arXiv preprint arXiv:2402.10450, 2024.

[75] R. Zheng, X. Wang, Y. Sun, S. Ma, J. Zhao, H. Xu, H. Daumé III, and F. Huang. Taco: Temporal
latent action-driven contrastive loss for visual reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

[76] zhengyao jiang, T. Zhang, M. Janner, Y. Li, T. Rocktäschel, E. Grefenstette, and Y. Tian. Efficient planning
in a compact latent action space. In 3rd Offline RL Workshop: Offline RL as a ”Launchpad”, 2022. URL
https://openreview.net/forum?id=pVBETTS2av.

[77] X. Zou, J. Yang, H. Zhang, F. Li, L. Li, J. Wang, L. Wang, J. Gao, and Y. J. Lee. Segment everything
everywhere all at once. Advances in Neural Information Processing Systems, 36, 2024.

14

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
https://openreview.net/forum?id=pfNyExj7z2
https://openreview.net/forum?id=pVBETTS2av

Appendix
A Website

For further results and videos please see our website. https://quest-model.github.io

B Experiment Details

B.1 Hyperparameters:

We present hyperparameters in the following tables:

Table 3: Stage 1 Parameters
Parameter Value
encoder dim 256
decoder dim 256
sequence length (T) 16/32
encoder heads 4
encoder layers 2
decoder heads 4
decoder layers 4
attention dropout 0.1
fsq level [8, 5, 5, 5]
conv layers 3
downsampling factor 2/4

Table 4: Stage 2 Parameters
Parameter Value
vocab size 1000
block size (n) 8
number of layers 6
number of heads 6
embedding dimension 384
attention dropout 0.1
beam size 5
temperature 1.0
decoder loss scale 0/10
execution horizon (Ta) 8
observation history 1

B.2 Architecture Implementation:

For vision encoder we used a shallow Convolutional Neural Network (CNN), consisting of the
first four layers of ResNet18 [27] followed by a spatial softmax [36]. In encoder, we use causal
convolution layers from [30]. For transformer blocks, we used the transformers library from hugging
face https://huggingface.co/docs/transformers/ with appropriate masking for ensuring
causality.

B.3 Baseline Implementation:

To ensure fair comparison of different model architectures, we use same input modalities and same
observation & task encoders for all baselines, for both LIBERO and Metaworld experiments. VQ-BeT
needs a goal image, we instead give it task embedding as goal. Same as QueST, we concatenate
observation embeddings for all modalities at any timestep and project them to respective model’s
hidden dimension.

Depending on the dataset, we also tune some key hyperparameters for the baselines and present the
results for best performing ones.

1. ResNet-T: Transformer trunk’s hidden dimension and number of layers determines the
model capacity. Original implementation [38] uses the hidden dimension of 64 with 4 layers.
We observed improved performance for the hidden dimension of 256 with 6 layers and
hence report all results for that. As per original implementation we use an observation
history of 10 timesteps.

2. Diffusion Policy: The model capacity is determined by hidden dimension of U-Net layers.
Most widely used implementations use [256, 512, 1024], we ablate a larger model with
[256, 256, 512, 512, 1024] but did not observe any performance gains. We also ablate
prediction (T) and execution horizon (Ta) with 16, 32 and 8, 16 respectively and observed
best performance for T = 32, Ta = 16 on LIBERO and T = 16, Ta = 8 for MetaWorld.
As per original paper ablations [15] an observation history of 1 was used.

15

https://quest-model.github.io
https://huggingface.co/docs/transformers/

3. VQ-BeT: Since LIBERO and MetaWorld are larger datasets as compared to the benchmarks
in original VQ-BeT paper, we ablate some parameters to increase the model capacity.
Specifically, the stage 1 encoder by default is a single MLP layer of dimension 128. We
ablate this with 2, 4 layers and with 256, 512 dimensions but observed worse reconstruction
loss with increase in capacity. We use residual-VQ configuration of 32/2 ≈ 1024 sized
codebook which is close to the codebook size of 1000 for QueST. We use an observation
window size of 10 and ablate the action window size (T) with 1, 5, 32. On LIBERO, the
performance was lowest for T = 1, and highest for T = 5. VQ-BeT maps the whole input
sequence to just one embedding leading to extreme compression for larger sequence length
and thus performs worse with T = 32.

B.4 Compute:

The models are implemented in PyTorch. For all our experiments we use a server consisting of 8
Nvidia RTX 1080Ti 10GB memory each. And all our models easily fit on one GPU for training.

B.5 Discussion on Baselines

Many recent works use discrete latent variable models as a mechanism to learn shared abstractions
over continuous low-level skills. QueST, VQ-BeT and PRISE all do this and perform two- staged
learning. However, in this work we propose several important architecture choices leading to QueST’s
strong performance. Specifically, QueST encodes actions to a sequence of n encodings (skill tokens)
using a novel autoencoder that captures temporal correlation within an action sequence with causal
convolution and masked self-attention layers.

Like QueST, VQ-BeT performs temporal abstraction by encoding a sequence of actions into one
state-independent latent vector. It concatenates input actions and encodes the sequence to just one
single latent encoding using an MLP which does not explicitly model any temporal correlation. A
sampled action sequence might contain multiple motion primitives of variable length and start point,
and capturing them with a single encoding is limiting as it restricts abstraction at different levels of
granularity. This is validated by the poorer (−14%) performance of VQ-BeT with a larger chunk
size of 32. QueST flexibly captures this variability within n encodings using its encoder, specifically
designed to model temporal correlation within input actions. With an effective codebook size of C,
QueST’s effective latent space is Cn while that of VQ-BeT is C. Its relatively small latent space
limits its expressive capacity, and thus limits its ability to learn sharable representations between
tasks, as evidenced by its worse few-shot performance and reliance on continuous offset prediction
(whereas QueST can achieve high success rate using only the output from its action decoder).

PRISE performs temporal abstraction by learning discrete codes for state-action pairs and using
BPE to group common token sequences into higher-level skills. However, BPE is known to suffer
with evolving language leading to a suboptimal character-level tokenization, and it might struggle
to effectively encode new action sub-sequences that the model has not seen before (eg. stitching
sequences in between two tasks in LIBERO-LONG). This is primarily why decoder finetuning is
necessary in PRISE. On the contrary, QueST is more end-to-end as it lets the encoder handle temporal
abstraction in the encoding phase itself and gracefully encodes new action-sequences as combinations
of its learned latent codes. Our few-shot results without decoder-finetuning shows that such a unified
approach learns more generalized abstractions than the baselines and can more effectively represent
new action sequences in unseen tasks.

Despite tuning the hyperparameters, the multitask performance of ACT is very low (54%) on LIBERO.
Moreover, as per BAKU [26], ACT’s performance drastically reduces when number of demos are
reduced to 35-per-task in MetaWorld. This suggests ACT is very data-hungry and hence struggles in
low-data regime. Another major issue with ACT is tuning the action chunk size to which the method
is very sensitive (-14% in metaworld fewshot with chunk size of 32). While we report QueST results
for chunk size 32, we did observe very little variation (<1% in LIBERO) with size 16,48 and 64,
indicating robustness to this hyperparameter.

C Discussion on Ablations

For aiding this discussion we present the ablation results again in table 5 and table 6 below.

16

VQ Obs. Cond. Mirror Dec. Ours
LIBERO-90 81.2± 0.6 81.9± 1.1 86.3± 0.9 88.6± 0.4

Few Shot 62.5± 2.0 61.3± 2.2 45.4± 2.0 68.8± 1.7
Table 5: Success rates after ablating design details of QueST.

• Replacing FSQ with VQ still outperforms VQ-BeT in few-shot setting suggesting that
QueST’s superior performance is not only due to a better quantization scheme but also due
to it architecture that flexibly maps an input sequence to multiple embeddings and allows
for efficient transfer.

• It’s tempting to ground the mapping between z-tokens and actions with observation tokens
with an intuition that z-tokens will define a coarse set of actions and observation tokens will
aid finer action decoding. But we observe worse performance with this. We hypothesize
that the reconstruction objective forces encoder and decoder for most optimal quantization
at the bottleneck layer but with extra observation information the decoder might focus more
on observation tokens in turn hurting the quantization. This observation goes hand-in-hand
with a closely related prior work SPiRL[58] that tried same ablation and found that state
conditioned decoder hurts downstream RL.

• We observe a poorer performance in both multitask and few-shot settings with a conventional
stage 1 autoencoder. This validates the QueST’s cross-attention architecture that allows for
attending to all z-tokens and maintaining causality at the same time.

Non Causal ϕθ Non Causal ψθ Fully Non Causal Ours
LIBERO-90 82.0± 1.6 85.1± 1.8 78.5± 0.5 88.6± 0.4

Few Shot 58.8± 3.0 61.6± 2.5 56.1± 1.8 68.8± 1.7
Table 6: Success rates after ablating the causality in QueST.

• We observe that a fully-causal stage-1 is most optimal and a non-causal decoder does not
hurt as much as a non-causal encoder does. This can be explained with a simplistic setting
where the input to stage-1 are 2D trajectories of a point agent. Consider an anti-clockwise
circular trajectory and an S-shaped one where the first half of the later overlaps with the
first half (semi-circle) of the former. When both of these trajectory sequences are inputted
to the stage-1, a non-causal encoder will assign distinct sequences of z-tokens for both
trajectories. But a causal encoder will assign same sequence of z-tokens for the first half
of both trajectories and distinct to later parts. This allows the model to re-use the z-tokens
corresponding to a semi-circle for creating other shaped-trajectories that has semi-circle in
them for example C-shaped or infinity-shaped trajectories.

Frozen ψθ Finetuned ψθ

loss scale 10 loss scale 100
Few Shot 66.0± 3.6 68.8± 1.7 66.0± 1.0

Table 7: Success rates for decoder finetuning settings in few-shot IL.

• Table 7 illustrates the impact of decoder finetuning in LIBERO-LONG fewshot IL setting.
QueST outperforms all baselines even without finetuning the decoder. Finetuning decoder
should not be necessary in this setting, as LIBERO-LONG tasks are combination of two
tasks from LIBERO-90 (pretraining set). This highlights QueST’s effectiveness in stitching
trajectories using its learned skill-space. We report the finetuning results in the main paper,
as they exhibit better performance.

D Additional Results

D.1 Fewshot IL

Fewshot Evaluation Protocol: In finetuning phase, we finetune ResNet-T, VQ-BeT & QueST for
100 epochs and ACT & Diffusion Policy for 200 epochs. For each task in MetaWorld, we evaluate

17

each method across 10 evenly spaced checkpoints for 5 seeds on 50 distinct initial states and report the
results corresponding to the best performing checkpoint. For Libero, we found the final checkpoint to
perform best for all methods and hence report results corresponding to it across 9 seeds.

Table 8: LIBERO 5-shot IL success rates across unseen 10 tasks. Results across 9 random seeds.

Task ID ResNet-T ACT Diffusion Policy PRISE VQ-BeT QueST

1 53.8± 11.6 20.0± 6.0 32.0± 5.5 26.7± 6.4 16.5± 11.9 56.4± 5.5

2 65.7± 16.9 33.3± 13.1 57.8± 5.9 48.3± 9.4 62.2± 15.8 82.9± 4.7

3 70.2± 7.8 67.7± 6.2 76.4± 7.2 70.0± 0.0 52.7± 7.4 66.7± 6.7

4 75.8± 7.6 70.3± 6.2 98.2± 1.7 78.3± 8.8 45.3± 7.7 88.0± 3.1

5 26.7± 11.9 35.0± 4.1 44.7± 6.0 45.0± 10.8 30.3± 13.0 42.0± 7.1

6 86.9± 4.9 68.3± 6.5 37.1± 3.7 90.0± 4.1 48.7± 17.2 92.4± 4.4

7 24.4± 8.4 15.0± 0.0 14.9± 6.7 25.0± 4.1 45.5± 8.2 58.2± 6.1

8 23.7± 12.1 26.7± 7.0 6.2± 3.2 45.0± 8.1 33.3± 9.3 47.1± 8.6

9 - - 55.0± 4.0 - 15.0± 7.0 46.6± 6.2

10 - - 68.3± 6.2 - 25.0± 0.0 65.0± 12.2

Table 9: MetaWorld 5-shot IL success rates across 5 unseen tasks. Results across 5 random seeds.

Task ID ResNet-T ACT Diffusion Policy PRISE VQ-BeT QueST

box-close-v2 63.2± 5.2 67.2± 5.2 68.0± 1.6 60.8± 6.6 75.3± 9.6 84.0± 7.3

disassemble-v2 68.8± 2.0 83.2± 3.2 81.3± 3.8 74.1± 7.3 92.7± 1.9 76.4± 26.0

hand-insert-v2 37.2± 4.1 53.2± 3.7 39.3± 1.9 60.0± 5.0 48.0± 6.5 49.6± 6.4

pick-place-wall-v2 42.8± 3.7 74.4± 6.9 70.7± 5.2 71.7± 5.7 65.3± 1.9 76.8± 11.4

stick-pull-v2 58.0± 8.8 76.0± 3.6 71.3± 1.9 67.5± 5.6 62.0± 11.4 72.8± 11.1

D.2 Multitask IL

Table 10: LIBERO-90 multitask IL success rates across 90 tasks. Results across 4 random seeds.

Task ID ResNet-T ACT Diffusion Policy PRISE VQ-BeT QueST
1 1.00 0.90 0.99 0.80 1.00 1.00

2 0.96 0.30 0.98 0.35 0.94 0.97

3 0.96 0.50 0.99 0.70 0.97 0.91

4 0.74 0.22 0.91 0.50 0.99 0.94

5 0.95 0.58 0.93 0.45 0.95 0.98

6 0.91 0.39 0.99 0.65 0.98 0.98

7 0.95 0.29 0.94 0.50 0.86 0.93

8 0.96 0.72 0.90 0.95 0.80 0.99

9 0.74 0.41 0.93 0.60 0.75 0.93

10 0.97 0.65 0.91 0.35 0.83 0.90

11 0.97 0.82 0.98 0.95 0.96 0.97

12 0.90 0.73 0.94 0.95 0.80 0.94

13 0.82 0.62 0.81 0.20 0.87 0.76

14 0.86 0.72 0.94 0.40 0.49 0.71

18

Task ID ResNet-T ACT Diffusion Policy PRISE VQ-BeT QueST
15 0.87 0.49 0.95 0.35 0.46 0.58

16 0.97 0.86 0.99 0.75 0.98 0.96

17 0.72 0.40 0.89 0.40 0.53 0.80

18 0.79 0.20 0.76 0.15 0.80 0.67

19 0.93 0.75 0.99 0.30 0.91 1.00

20 0.87 0.41 0.98 0.65 0.68 0.92

21 1.00 0.82 0.99 1.00 0.96 1.00

22 0.90 0.44 0.97 0.30 0.91 0.93

23 0.97 0.75 0.99 0.85 0.95 0.92

24 0.75 0.11 0.85 0.05 0.69 0.82

25 0.97 0.44 0.99 0.95 0.94 1.00

26 0.97 0.85 1.00 0.90 0.85 0.99

27 0.72 0.14 0.88 0.55 0.50 0.52

28 0.72 0.20 0.86 0.05 0.45 0.68

29 1.00 0.68 1.00 1.00 0.97 1.00

30 1.00 0.19 1.00 1.00 0.92 0.97

31 0.91 0.83 0.96 0.50 0.85 0.90

32 0.99 0.90 1.00 0.85 0.88 0.99

33 0.57 0.20 0.58 0.20 0.37 0.67

34 0.85 0.56 0.84 0.30 0.87 0.98

35 0.93 0.52 0.97 0.80 0.98 0.92

36 0.97 0.67 0.99 0.75 0.98 0.97

37 0.85 0.24 0.97 0.25 0.73 0.74

38 0.78 0.41 0.91 0.30 0.90 0.62

39 0.86 0.32 0.90 0.20 0.90 0.88

40 0.96 0.35 0.98 0.85 0.90 0.93

41 0.90 0.27 0.79 0.50 0.91 0.92

42 1.00 0.74 1.00 0.55 0.89 1.00

43 0.98 0.41 0.99 0.80 0.97 0.98

44 0.80 0.39 0.89 0.40 0.83 0.93

45 0.99 0.83 1.00 0.85 0.99 0.98

46 0.97 0.60 1.00 0.55 0.91 0.99

47 0.75 0.37 0.31 0.35 0.65 0.91

48 0.87 0.27 0.53 0.25 0.88 0.98

49 0.90 0.55 0.96 0.65 0.48 0.95

50 0.88 0.54 0.82 0.65 0.60 0.99

51 0.80 0.33 0.28 0.40 0.87 0.88

52 0.79 0.28 0.00 0.10 0.91 0.75

53 0.74 0.33 0.34 0.30 0.84 0.82

54 0.88 0.64 0.73 0.60 0.79 0.87

55 0.83 0.51 0.77 0.50 0.95 0.93

19

Task ID ResNet-T ACT Diffusion Policy PRISE VQ-BeT QueST
56 0.85 0.62 0.49 0.35 0.92 0.83

57 0.99 0.64 1.00 0.80 1.00 0.97

58 0.95 0.57 1.00 0.50 1.00 0.99

59 0.84 0.56 0.78 0.20 0.98 0.95

60 0.94 0.68 0.89 0.65 0.91 1.00

61 0.91 0.95 0.90 0.80 0.98 1.00

62 0.96 0.75 0.58 0.85 0.99 0.81

63 0.70 0.43 0.38 0.40 0.84 0.78

64 0.73 0.04 0.41 0.40 0.38 0.78

65 0.73 0.16 0.75 0.15 0.68 0.85

66 0.76 0.45 0.65 0.15 0.84 0.79

67 0.84 0.72 0.66 0.30 0.87 0.93

68 0.78 0.73 0.44 0.55 0.74 0.85

69 0.83 0.68 0.59 0.85 0.90 0.93

70 0.88 0.56 0.57 0.90 0.93 0.89

71 0.90 0.52 0.92 0.55 0.97 0.92

72 0.85 0.52 0.98 0.35 0.85 0.94

73 0.89 0.59 0.86 0.60 0.84 0.98

74 0.72 0.18 0.61 0.30 0.33 0.70

75 0.77 0.45 0.38 0.45 0.95 0.95

76 0.64 0.22 0.21 0.25 0.30 0.61

77 0.89 0.70 0.35 0.65 0.70 0.89

78 0.57 0.46 0.14 0.80 0.85 0.97

79 0.63 0.28 0.06 0.45 0.68 0.86

80 0.73 0.59 0.01 0.30 0.87 0.98

81 0.65 0.53 0.08 0.30 0.44 0.70

82 0.63 0.24 0.54 0.35 0.61 0.70

83 0.80 0.56 0.49 0.80 0.89 0.94

84 0.55 0.35 0.47 0.55 0.43 0.75

85 0.70 0.74 0.79 0.75 0.93 0.92

86 0.69 0.53 0.13 0.75 0.47 0.89

87 0.84 0.65 0.98 0.95 0.86 0.92

88 0.82 0.54 0.96 0.65 0.87 0.97

89 0.91 0.77 0.70 0.55 0.96 0.97

90 0.80 0.29 0.91 0.85 0.89 0.56

Table 11: MetaWorld multitask IL success rates across 45 tasks. Results across 5 random seeds.

Task ID ResNet-T ACT Diffusion Policy VQBeT QueST
assembly-v2 0.73 0.97 0.88 0.82 1.00

basketball-v2 0.76 0.80 0.78 0.82 0.68

20

Task ID ResNet-T ACT Diffusion Policy VQBeT QueST
bin-picking-v2 0.89 1.00 0.96 0.20 0.94

button-press-topdown-v2 1.00 1.00 1.00 1.00 1.00

button-press-topdown-wall-v2 1.00 1.00 1.00 1.00 1.00

button-press-v2 1.00 1.00 1.00 1.00 1.00

button-press-wall-v2 1.00 1.00 0.98 0.98 0.98

coffee-button-v2 1.00 1.00 1.00 1.00 1.00

coffee-pull-v2 0.90 0.92 0.96 0.82 0.98

coffee-push-v2 0.89 0.96 0.86 0.94 0.90

dial-turn-v2 0.98 0.99 1.00 1.00 1.00

door-close-v2 1.00 1.00 1.00 1.00 1.00

door-lock-v2 1.00 0.99 1.00 1.00 1.00

door-open-v2 0.96 0.95 0.96 0.94 0.94

door-unlock-v2 1.00 1.00 1.00 1.00 1.00

drawer-close-v2 1.00 1.00 1.00 1.00 1.00

drawer-open-v2 1.00 1.00 1.00 1.00 1.00

faucet-close-v2 1.00 1.00 1.00 1.00 1.00

faucet-open-v2 1.00 1.00 1.00 1.00 1.00

hammer-v2 0.95 1.00 0.98 1.00 0.94

handle-press-side-v2 1.00 1.00 1.00 1.00 1.00

handle-press-v2 1.00 1.00 1.00 1.00 1.00

handle-pull-side-v2 0.69 0.94 0.78 0.74 0.98

handle-pull-v2 1.00 1.00 1.00 1.00 1.00

lever-pull-v2 0.94 0.93 0.84 0.80 0.92

peg-insert-side-v2 0.81 0.94 0.90 0.76 0.86

peg-unplug-side-v2 0.88 0.91 0.88 0.92 0.90

pick-out-of-hole-v2 0.62 0.89 0.74 0.34 0.76

pick-place-v2 0.67 0.71 0.76 0.74 0.78

plate-slide-back-side-v2 1.00 1.00 1.00 1.00 1.00

plate-slide-back-v2 1.00 1.00 1.00 1.00 1.00

plate-slide-side-v2 0.98 1.00 0.98 0.98 1.00

plate-slide-v2 1.00 1.00 1.00 1.00 1.00

push-back-v2 0.72 0.64 0.76 0.64 0.80

push-v2 0.84 0.90 0.84 0.76 0.92

push-wall-v2 0.92 0.98 0.94 0.94 1.00

reach-v2 0.39 0.37 0.32 0.28 0.36

reach-wall-v2 0.49 0.47 0.52 0.36 0.42

shelf-place-v2 0.65 0.85 0.66 0.76 0.88

soccer-v2 0.42 0.25 0.42 0.36 0.52

stick-push-v2 0.75 1.00 0.96 0.94 0.96

sweep-into-v2 0.90 0.92 0.88 0.90 0.84

sweep-v2 0.98 1.00 0.98 1.00 1.00

21

Task ID ResNet-T ACT Diffusion Policy VQBeT QueST
window-close-v2 1.00 1.00 1.00 1.00 1.00

window-open-v2 1.00 1.00 1.00 1.00 1.00

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction are that we achieve
stronger performance than several state of the art baselines. We show several results
justifying this claim in Figures 3 and 2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We stated our limitation in the last section of the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

Answer: [NA]

Justification: We don’t have theoretical results in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We show experimental details in the paper and describe our architecture in
great detail. In the future we will release code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include codes in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have the training details in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the averaged metrics on different datasets, and the difference is
significant.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All the experiments can be run on one A6000 GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper conforms with the ethics code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impact in the main paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: all the models and datasets used in this paper are properly credited and licenses
are respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

27

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets/models are proposed in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:
answerNA
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Related Works
	Learning from Offline Data
	Multi-task and Few-shot Imitation Learning
	Decision Making in Learned Latent Spaces

	Preliminary
	Problem Setting
	Finite Scalar Quantization

	Method
	Stage I: Learning the Skill Codebook
	Stage II: Learning the Skill Prior
	Inference with Quantized Skill Transformer

	Experiments
	Benchmarks and Baselines
	Performance on Multitask BC
	Few-shot Transfer to Unseen Tasks
	Long-horizon BC
	Latency
	Ablations
	Latent Skill-Space Analysis

	Conclusion
	Website
	Experiment Details
	Hyperparameters:
	Architecture Implementation:
	Baseline Implementation:
	Compute:
	Discussion on Baselines

	Discussion on Ablations
	Additional Results
	Fewshot IL
	Multitask IL

