Under review as submission to TMLR

ViT-EBoT: Vision Transformer for Encrypted Botnet
Detection in Resource-Constrained Edge Devices

Anonymous authors
Paper under double-blind review

Abstract

With the advent of lightweight cryptography in edge devices, attackers can hide malicious
code under encrypted network communications to perform malware attacks. This makes
IoT botnet attacks extremely challenging to detect by means of traditional signature-based
techniques. In this paper, we propose a novel IoT botnet detection framework that uses
vision transformers to detect malicious communications captured in encrypted network flow
images. Our approach achieved ~98% accuracy and around 94% reduced inference latency
compared to state-of-the-art approaches. Further, we have validated the practicality of our
approach by testing it on Jetson Orin Nano acting as an edge gateway and achieved reduced
inference latency of 25.16 ms and area overhead of 88.13 MB.

1 Introduction

With the advancement in embedded technologies and the improved availability of Internet connectivity,
there has been a rapid integration of smaller and smarter IoT devices in several domains of daily life, such
as smart home appliances, smart cities, and logistics. According to IoT Analytics (Christian, 2025), the
number of connected IoT devices reported an increase of approximately 13% year-over-year, exceeding 18
billion in 2024. However, the resource-constrained nature and heterogeneous architecture of these devices
and the huge competition to release new IoT products to the market limit the adoption of unified security
solutions for IoT (Dange & Chatterjee, |2019)). This results in many security flaws, such as open ports and
default credentials that increases vulnerability for malware attacks. Among the various types of IoT malware
attacks, botnets are the most serious and large-scale attack that can even bring down a secure and critical
infrastructure. For instance, in October 2016 Mirai caused the biggest Distributed Denial of Service (DDoS)
attack against the Dyn service provider which disabled the websites including Twitter, Netflix, and GitHub
for several hours (Dange & Chatterjee, |2019).

Botnets are a collection of compromised machines known as bots that run malicious code under the command
and control of a botmaster. When the compromised machines are IoT devices, it becomes an IoT botnet. The
botnet lifecycle consists of 3 phases; scanning, propagation, and attack. In the scanning phase, botmaster
scans for vulnerable IoT devices and, once found, compromises it (Negera et al., |2022). The propagation
phase proceeds by installing malware on these systems, and this chain continues by the new bots finding
new victim bots. In the attack phase, botmaster instructs the bots through a command and control server
to initiate attacks such as DDoS, spam, and cryptocurrency mining, etc. According to Zscaler ThreatLabz
Enterprise IoT and OT Threat Report (Blog, [2023), there is a 400% surge in IoT malware attacks in past
few years, with botnets such as Mirai and Gafgyt dominating the attack space, as indicated in Figure
Evidently, there is an urgent need for IoT botnet detection solutions that are quick with low computation
overheads suitable for IoT/edge devices.

Furthermore, IoTNOW (Nelson, [2020) reported that 98% of IoT traffic was unencrypted in 2020 due to
its resource-constrained nature, transforming IoT into Internet of Threats, and many leading companies
were planning to improve the security posture of IoT devices by means of encryption. With lightweight
cryptography gaining popularity (Rl [2022), there has been a significant interest among the researchers
(Abutaha et al., 2022} |Suzaki et al.;2012), and industries (AVNET}2023) in the area of developing lightweight

Under review as submission to TMLR

Shikitega

Silex

1.7%
Vpnfilter

1.4%
Botenago
6.6%

HiatusRAT
2.7%
loTReaper

45.9%

20.3%

Figure 1: Top IoT malware families 1, 2023)).

encryption algorithms for IoT networks. Encryption in communication can play a critical role as it may
allow malicious actors to hide malware codes in the payload which may force the existing botnet detection
techniques to fail.

State-of-the-art botnet detection techniques majorly deploy network based monitoring system to analyze
the traffic for abnormalities by either matching against a signature database or using machine learning
techniques. These approaches can be further categorized into two broad groups: Network Flow analysis and
Deep Packet Inspection (DPI) (Koroniotis et al.,|2019al). Botnets typically generate large amounts of network
traffic in bursts in all phases of its lifecycle and can thus be modeled as a series of network flows. Here,
the network flow group together different packets that share Source IP and Port, Destination IP and Port,
and Protocol and collect metrics such as bytes per packet, flows per hour, flows per address, etc. (Dange
[& Chatterjee, [2019)). The benefit of this approach is that privacy is not a concern, as the actual payload is
not investigated and works well on encrypted communication if the header is unencrypted
. The disadvantage is that the information in the payload will be lost. DPI investigates the content
of each packet, which yields more complete results. However, it adds considerable overhead, breaches the
privacy of users, and fails in case of encrypted communications and zero-day attacks (Koroniotis et al.,2019a)).
Most of the works available in the literature utilize either of these two approaches for IoT botnet detection.
However, to the best of our knowledge, there is no work that analyzes both the header and payload in a
timely manner without compromising on the accuracy. Additionally, when it comes to resource-constrained
systems, inference time plays an important factor. Thus, an accurate approach with reduced memory and
time utilization is of critical importance.

Therefore, we propose a novel and efficient IoT botnet detection approach that works well in detecting
encrypted botnet communications with minimal computational overhead and latency. Our framework uses
RGB image representations of network flow PCAP files as the input to predict the botnet attack category,
and hence does not breach the privacy of users. In this work, we are focusing on the attack phase of the
botnet life cycle, which is the most destructive by inspecting the network traffic emanating from the IoT
bots.

1.1 Contributions

Our novel contributions include

e Designed a novel IoT botnet detection framework ViT-EBoT which examines the bidirectional net-
work flows/sessions by converting them to images and processing them using advanced deep learning
techniques.

Under review as submission to TMLR

e ViT-EBoT leverages vision transformers to detect whether the network communication belongs to 11
classes such as Benign, DoS, DDoS, Scan, and Data Exfiltration attacks using the BoT-IoT dataset.

o Investigates the entire packet, i.e., header and payload to ensure that analysis is complete and no
information is lost.

o To the best of our knowledge, this is the first work for IoT botnet detection that works well on
encrypted IoT communications.

e Achieved an accuracy of ~98% for both unencrypted and encrypted communications with 94%
reduced latency compared to state-of-the-art approaches.

e Optimized the ViT-EBoT model using TensorRT, implemented it on the Jetson Orin Nano to sim-
ulate practical deployment, and achieved 98% reduction in latency.

2 Related Work

With the number of botnet attacks increasing at an alarming rate, researchers and industry experts are
designing novel and efficient techniques for detecting them. These techniques can be broadly classified
into host-based and network-based (Dange & Chatterjee), |2019). Host-based solutions generally suffer from
high computational requirements and scalability challenges. For instance, [Nguyen et al.| (2020) proposed a
solution that extracts high-level features from function call graphs, called Printable String Information (PSI)
for each executable file to detect botnets. Although it achieves decent accuracy of 98.7%, it fails to scale
with increasing number of bots.

Network-based approaches are more preferred considering the resource-constrained nature and volume of the
IoT devices (Dange & Chatterjee}, |2019). Moreover, botnets are not an individual attack, but a consolidated
attack by different devices. Most of the works belonging to the network-based category use popular IoT
botnet datasets such as BoT-IoT (Koroniotis et al., 2019b) and N-BaloT (Meidan et al.l |2018]) to extract
network flow features and apply different dimensionality reduction, feature selection, and dataset balancing
techniques along with machine and deep learning models for prediction. For example, [Popoola et al.| (2020))
utilized a long-short-term memory autoencoder (LAE) for dimensionality reduction and deep bidirectional
long short-term memory (BLSTM) for classification. |Alshamkhany et al.|(2020) applied Principal Component
Analysis (PCA) for dimensionality reduction and tried different machine learning models with decision tree,
attaining the better accuracy of 99.89%.

All the above mentioned network-based works used the extracted features in the dataset and did not consider
the actual complexities involved in extracting those features. However, the work by Hasan et al.| (2022)
employ the features from the conn.log of Zeek network analysis framework and proposed a botnet detection
framework by modeling the bot network connections as a Markov Chain and applied Class-specific Cost
Regulation ELM (CCRELM) for detection. The framework achieved 97.7% accuracy. However, these works
focused on improving the accuracy of the model and did not consider the real-time performance of their
approaches in terms of throughput and resource utilization that is imperative when it comes to IoT devices.
For instance, tools like Zeek require at least 64GB memory (Documentation)) to perform that is not possible
on a resource-constrained system. Further, these techniques fail to extract any information from the payload,
and hence are less robust. On the other hand, DPI approaches mostly require a signature database against
which it will match the payload signatures and hence fail in the case of encrypted and zero-day attacks
(Koroniotis et al., [2019a)).

All of the above works assume that the IoT communications are unencrypted. However, with the lightweight
cryptography gaining momentum in the recent years, works which statically analyze the encrypted IoT
network traffic for IoT device identification such as the work by [Pinheiro et al| (2019)) and network traffic
classification into mail, chat, video streaming, etc. (Wang et al.,2017; [Ma et al., [2021) are on the rise. Thus,
we need an approach to detect IoT botnet attacks that applies a resource efficient feature extraction phase
and at the same time achieving better performance on encrypted communications as well.

Under review as submission to TMLR

3 Proposed Methodology

In this section, we discuss our novel IoT botnet detection framework in detail. Our proposed framework
consists of two phases, as shown in Figure [2}

1. Feature Extraction phase

2. Detection phase

/ E Feature Extraction Phase

d u
topdump L — 118
™ - o :

% 01110110 .
8 01100101 -
N _ I Il
: Capture the loT PCAP Network Flows/ RGB
K‘°T Network network traffic File Sessions Images

e
ﬁetection Phase ! Encoder \
Multi-Layer

' |
: |
U i [Multi-Layer Perceptron] :- Perceptron
Network : T 1 Head
Flow PCAP 1 :
Image + : [Layer Normalization] 1 ‘
1 SR, A
= ! ! DDoS_HTTP
L —! p 1 DDoS_TCP
q: - . .] DDoS_UDP
— Multi-Head Attention] ! T
TensorRT gl [' DoS_HTTP
LF S [Ye) K v] DoS_TCP
i [DoS_UDP
| [Layer Normalization] 1 os
1
-~ ——— — ! Service
Image E[:j Eg E Data Exfiltration
Patches Keylogging
[Linear Projection of Flattened] L

E | Paltches |
i — [Patch 1][Pateh 2| .- [Patchn | ViT-EBOJ

Figure 2: Proposed Architecture ViT-EBoT

The feature extraction phase preprocesses the input to make it compatible with the ViT-EBoT botnet
detection model. The detection phase will utilize these inputs to predict the botnet attack category. Since
we are focusing on a network-based framework, the input required for our system is the network traffic.
Therefore, in the feature extraction phase, we capture the IoT network traffic in the form of Packet Capture
(PCAP) files using tcpdump, a data-network packet analyzer. This PCAP file will contain the network
packets that flow between different source-destination pairs. However, we are interested in bidirectional
network flows. We have used SplitCap (NETRESEC], 2010) tool to split the captured PCAP file into several
small PCAP files corresponding to each session. In contrast to state-of-the-art botnet detection approaches
that analyze flow summary statistics or packet payload, we convert each extracted network flow PCAP file
to an RGB image with square dimensions following the procedure shown in Figure |3l Here, we encode each
24 bits (8 bits per channel) of the PCAP file as one pixel. The RGB image comprises both the packet
header and payload information, making the analysis more complete and robust. Figure[4shows that clearly
distinguishable patterns can be extracted from these images that correspond to each class. At the same
time, we are not actually parsing the packet payload and extracting signatures from it, thereby safeguarding
the privacy of users. However, DPI fails terribly when faced with encrypted communications due to the
unavailability of signatures in clear text (Koroniotis et al., [2019a). The experimental results in Section
corroborates that our approach works well in the case of encrypted communications.

Under review as submission to TMLR

- R R 01101100 (108)

01101100) | G 01101111 (111) -—)

01101111
B 00001011 (11)

01110110
01100101

\(Filesize/3)

100 KB V(Filesize/3)

Figure 3: Network Flow PCAP to RGB image conversion

Figure 4: Patterns observed in network flow PCAP images belonging to different classes. (a) Benign. (b)
DDoS_HTTP. (¢) DDoS_TCP. (d) DDoS_UDP. (e) DoS_HTTP. (f) DoS_TCP. (g) DoS_UDP. (h) OS.
(i) Service. (j) Data Exfiltration. (k) Keylogging.

In the detection phase, these RGB images will be fed to ViT-EBoT, a vision transformer-based model for
predicting the IoT botnet attack category. For our approach, we have used the ViT model pre-trained on
ImageNet-21k at resolution 224x224 and a patch size of 16x16 and fine-tuned the pretrained
model on our BoT-IoT (Koroniotis et al., |2019b) dataset. Dataset details are given in Section The
input images will be resized to 224x224 and normalized across the channels with a mean and standard
deviation of [0.5, 0.5, 0.5]. A learnable class token is prepended to the embedded patches to capture the
entire image representation. ViT consists of alternating multi-head attention and multi-layer perceptron
layers with a layer normalization before and skip connection after it 2020). Finally, ViT-EBoT
performs multiclass classification using the learned class token and predicts the botnet attack category.

Next, we will see how our proposed framework ensures privacy. Encrypted network communications protect
the privacy of communicating parties. Approaches like deep packet inspection need to analyze the payload,
and hence need to find the encryption key and decrypt the encrypted traffic. This will breach the privacy
of users. However, our approach can work with encrypted traffic for botnet attack detection and does not
need to decrypt it thereby safeguarding user privacy. We assume that even if the payload is encrypted,
botnet communications share some patterns which can be identified by our ViT-EBoT framework as shown
in Figure It is true that since our approach reencodes the data from linear to graphical format, the
obtained images can be directly converted back to the PCAP format. However, whatever we retrieve will be
encrypted traffic, and we are not going to decrypt it. On the other hand, if the network traffic is unencrypted,
already data is transmitting in clear text, and hence there are no privacy concerns. In the next sections, we
will discuss the dataset and encryption methodology used in our work.

3.1 Dataset

We have used the BoT-IoT dataset, a popular dataset generated by the Cyber Range Lab of UNSW Canberra
with more than 72,000,000 records of normal and botnet traffic and 69.3 GB in size. This dataset provided the
original PCAP files corresponding to the botnet attack phase, which can be used to extract network flows and
create images. For ease of handling and to reduce the training time of our model, we have extracted only 10%
network flows from the dataset (6.6 GB). The dataset includes the 11 classes such as Benign, DDoS_HTTP
(DDoS attack using the HTTP protocol), DDoS_TCP, DDoS_UDP, DoS_HTTP, DoS_TCP, DoS_UDP,

Under review as submission to TMLR

Figure 5: Original and encrypted network flow images. (a) DoS_HTTP (b) Keylogging

Scan, Service, Data Exfiltration, and Keylogging. All the classes, except Data Exfiltration and Keylogging,
consist of 1500 images. Data Exfiltration and Keylogging classes have 239 and 1638 images, respectively.

3.2 Encryption Procedure

We have extracted 15,377 network flow images corresponding to 11 classes from the BoT-IoT dataset. How-
ever, there are no datasets available in the literature that consists of encrypted IoT botnet communications.
Thus, we are the first to design and implement an IoT botnet detection framework on a resource-constrained
setup which can even detect botnets hiding under encrypted communications with better accuracy. Hence, we
extended our dataset with synthetic encrypted PCAP files. We have chosen Advanced Encryption Standard
(AES), the most popular symmetric encryption algorithm, and a lightweight encryption algorithm TWINE
(Suzaki et al. 2012)) for encrypting the TCP/UDP payload of the network flow PCAP files. The pseudocode
for the encryption procedure is shown in Algorithm

Algorithm 1 Encryption Procedure

1: procedure ENCRYPTION
2: NetFlow PCAP + Read PCAP file using Scapy

rdpcap()

3: New_PCAP < Empty

4: for curr_packet in PCAP file do

5: if TCP/UDP packet and nonempty payload then
6: payload < Extract TCP/UDP payload

7: encrypted__payload < AES/TWINE (payload)
8: Delete packet length and checksum

9: New PCAP <+ Rebuild packets

10: else

11: New_ PCAP + curr_packet

12: end if

13: end for

14: end procedure

Figure [6] shows the original and encrypted versions of a PCAP file. Here, the payload "Hello" in Figure
is encrypted in Figure [6D] and the payload length has increased to 16 bytes. This is the reason for re-
calculating the payload length and checksum of the packet. Finally, we randomly encrypted the original
15,377 samples using AES or TWINE and created 15,377 encrypted samples. Here, we are encrypting only
the packet payload, and thus our trained neural network depends on both unencrypted packet headers and
unencrypted/encrypted payload for botnet detection.

4 Experiments and Results

In this section, we will first compare the performance of our approach against state-of-the-art techniques
such as flow header analysis and deep packet inspection. Next, we have explored the performance of different

Under review as submission to TMLR

5 0.008690 10.128.2.35 10.128.
6 0.019083 10.128.1.8

.8 TCP 66 5001 — 41956 [ACK] Seq=1 Ack=21 Win=65152 Len=0 TSval
72 41956 — 5001 ACK] Seq=21 Ack=1 Win=64256 Len=6

[N o I

8 0.021705 10.128.2.35 66 5001 — 41956 Seq=1 Ack=27 Win=65152 Len=0 TSval

10 0.021728 10.128.1.8 10.128.2.35 TCP 66 41956 —~ 5001 [ACK] Seq=28 Ack=2 Win=64256 Len=0 TSval
Frame 6: 72 bytes on wire (576 bits), 72 bytes captured (576 bits)

Ethernet II, Src: Chongqin_8f:45:cf (c0:b5:d7:8f:45:cf), Dst: bc:e9:2f:a6:40:fd (bc:e9:2f:a6:40:fd)

Internet Protocol Version 4, Src: 10.128.1.8, Dst: 10.128.2.35

Transmission Control Protocol, Src Port: 41956, Dst Port: 5001, Seq: 21, Ack: 1, Len: 6

Data (6 bytes)

Data: 48656c6c6f0a

»
»
»
»

[Length: 6]
) bc e9 2f a6 40 fd co b5 d7 8f 45 cf 08 00 45 00 /-@ E--E
)01 00 3a 05 f7 40 00 40 06 1c 9d Ga 80 01 08 Oa 80 @0 .
)02 02 23 a3 e4 13 89 9a 46 63 00 18 54 5d a3 80 18 # Fc T]
o] 01 f6 18 57 00 00 01 61 ©8 6a bd Se 02 7d 29 c8 W AY)
o040 ed 17

(a) Unencrypted PCAP file with 6-byte payload

10.128.1.8 TCP 66 5001 — 41956 [ACK] Seq=1 Ack=21 Win=65152 Len=0
10.128.2.35 82 [TCP Retransmission] 41956 — 5001 [PSH, ACK] Se{

8 0.021705 2N 10.128.1.8 66 5001 — 41956 [ACK] Seq=1 Ack=27 Win=65152 Len=0

10 0.021728 10.128. 10.128.2.35 66 41956 — 5001 [ACK] Seq=28 Ack=2 Win=64256 Len=0

Checksum: ©0x5721 [unverified]

[Checksum Status: Unverified]

Urgent pointer: @
» Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
» [SEQ/ACK analysis]
» [Timestamps]

TCP payload (16 bytes)

bc e9 2f a6 40 fd cO b5 d7 8f 45 cf 08 00 45 00

) 00 44 05 f7 40 00 40 06 1c 93 Oa 80 01 08 Oa 80

6626 02 23 a3 e4 13 89 9a 46 63 00 18 54 5d a3 80 18

0030 01 f6 57 21 00 00 01 01 08 @a bd 5e 02 7d 29 c8

0040 ea 17
0050

(b) Encrypted PCAP file with 16-byte payload

Figure 6: Original and encrypted versions of a PCAP file.

deep learning models for encrypted botnet detection in terms of accuracy to emphasize our choice of vision
transformer-based model. Then, we will analyze whether all the packets in the network flow are actually
necessary for botnet detection. Finally, we will discuss the implementation details on the Jetson Orin Nano
device and visualize the accuracy, inference latency, and throughput metrics.

Our dataset consists of 15,377 samples from the BoT-IoT dataset and their synthetically encrypted variants.
We have used the "google/vit-base-patch16-224-in21k" Hugging Face pretrained model and fine-tuned it on
our 30K dataset for 10 epochs. We have trained our models on NVIDIA RTX A4500 GPU with 12" Gen
Intel® Core™ i9-12900K x 24 processor. The inference part was deployed on a Jetson Orin Nano.

4.1 Comparison with Flow Header Analysis and Deep Packet Inspection

We have compared our network flow PCAP image-based approach using vision transformers with two state-
of-the-art approaches such as flow headers and deep packet inspection (Koroniotis et al. [2019a). We have
used Python CICFlowMeter, a network traffic flow generator and analyzer to extract more than 80 statistical
network traffic features such as duration, number of packets, number of bytes, length of packets, etc. Then,
we have trained several machine learning models such as Random Forest, Decision Tree, and Naive Bayes
on these features for botnet attack detection. Next, we have used nnDPI (Bahaa et all [2020)), a deep
packet inspection module using word embedding, convolutional, and recurrent neural networks. Results for
unencrypted and encrypted flows are shown in Figure[7a] and [Tb] respectively. Table[I]summarizes the overall
Fl-score and average feature extraction time for the state-of-the-art approaches.

Here, the PCAP image-based approach achieved marginally better Fl-score of 98.39% compared to flow
header analysis. However, the feature extraction time of just 61.71 ms stands out for our approach, which
is extremely useful for resource-constrained edge devices. Note that the feature extraction time in Table [I]
includes the pre-processing time required to convert the network flows to the expected input format of
the state-of-the-art models alone and does not include the prediction time that is almost similar for all.
Splitting network traffic into flows takes some time depending on the size of the captured network traffic
and the number of flows in it. For example, it takes 2.34 seconds to split a PCAP file of size 243.7 MB

Under review as submission to TMLR

B Precision M Recall @ Accuracy B Precision M Recall 1 Accuracy
100 100
° 97.9 98.37| 97.9 97.89
= 75 75
=
o 50 § 50
= 49.11 g
25 25 37.93
0 0
Flow header DPI NetFlow-Image Flow header DPI NetFlow-Image
Approach Approach

(a) (b)

Figure 7: Performance of the state-of-the-art models on (a) Unencrypted and (b) Encrypted network traffic.

Table 1: Comparison with state-of-the-art models in terms of F1l-score and feature extraction time

Approach F1l-score Feature Extraction
Unencrypted | Encrypted | Time (ms)
Flow header 97.9 97.9 471.35
DPI 42.4 35.58 46.76
NetFlow-Image 98.39 97.9 61.71

comprising 10,087 flows on average. Network flow header-based approach maintained the same F1l-score
over encrypted samples due to the fact that we have only encrypted the payload and the header information
remains untouched. The reduced feature extraction time of nnDPI is due to the fact that it considers only the
first 1500 bytes of each packet for analysis. This per-packet analysis is not feasible on a resource-constrained
setup, and 1500 bytes are not sufficient to predict whether a botnet attack is in progress because it is a
collective effort by different infected bots. This resulted in an extremely low F1l-score for nnDPI. Thus, our
approach proves to be faster with almost 87% reduced latency compared to the flow header-based approach.
Hence, it works efficiently when faced with large network traffic volume on resource-constrained systems.

4.2 Performance comparison of deep learning models on Network Flow PCAP images

Next, we will discuss the performance of different computer vision models in the IoT botnet detection area.
For this, we have used 6 pretrained models from Hugging Face on ImageNet dataset and fine-tuned it on our
three datasets which are:

(1) 15377 original network flow PCAP images

(2) images corresponding to the encrypted versions of 15377 original network flow PCAPs in dataset

(3) Combination of dataset and comprising original and encrypted PCAP images, respectively,
totaling 30,754 samples.

Figure [§ shows the training and validation F1-score for the 3 datasets. Table [2] shows the final results of the
6 models on a test dataset with 6151 images for the third dataset. ViTs work exceptionally well with an
Fl-score of 97.87% and a testing loss of 0.09 due to the attention layers that capture global features of the
input image.

Since the network flows collected correspond to 11 attack classes, we have further examined whether one
class is detected better than the other. The per-class accuracy for the 11 classes of our model on a test
dataset with 6151 images is shown in Figure [0a] Here, we could see that our framework worked equally well

on all the 11 classes with a per-class accuracy of ~99%. Confusion matrix shown in Figure [9b| corroborates
this finding.

Under review as submission to TMLR

ResNet-50 val_F1 --ResNet-50 train_F1 — ResNet-152val_F1 _ ResNet-50 val_F1 - ResNet50 train_F1 ~ — ResNet-152val F1 — ResNet-50 val_F1 --ResNet-50 train_F1 ~ — ResNet-152 val_F1
- - ResNet-152 train_F1 — MobileNet-V2-224 val_F1 - - MobileNet-V2-224 __ResNet-152 train_F1 — MobileNet-V2-224 val_F1 --MobileNet\V2-224 - - ResNet-152 train_F1 — MobileNet-V2-224 val_F1 - - MobileNet-V2-224
train_F1 — ViT-base-16-224 val_F1- - ViT-base-16-224 train_F1 train_F1 — ViT-base-16-224 val_F1- - ViT- ain._| train_F1 — ViT-base-16-224 val_F1- - ViT-base-16-224 train_F1

0.2 0.2 0.2
train/global_step 0 train/global_step o train/global_step
0
1k 2k 3k 4k 5k 6k 1k 2k 3k 4k 5k 6k 1k 2k 3k 4k 5k 6k
(a) Original network flow images (b) Encrypted network flow images (c) Original and encrypted flow images

Figure 8: Training and validation F1 score of the four pretrained models on 3 datasets

Table 2: Results of deep learning models on the test dataset (3) with 6151 images

Model Accuracy | Loss | Fl-score | Precision | Recall
Vit-base-patch16-224 97.87 0.09 97.87 97.89 97.87
MobileViT 90.42 0.29 90.32 90.74 90.42
deit-tiny-patch16-224 97.25 0.11 97.24 97.26 97.25
Mobilenet-v2 91.69 0.26 91.74 91.93 91.69
Resnet-152 88.03 0.34 87.78 88.11 88.03
Resnet-50 79.16 0.6 78.64 80.17 79.16

Benign 99.58
DDoS_HTTP 99.54
DDoS_TCP 99.9
DDoS_UDP - 99.95
T Data_Exiltrat 99.58
® DoS_HTTP 99.71
» DoS_TCP 99.89
& Dos_UDP 99.85
o Keylogging By 99.41
os + 99.17
Service -—: - 9_9.15 - | .
f : : : |
0 25 50 75 100
Accuracy
(a) Per-class accuracy (b) Confusion matrix

Figure 9: Per-class accuracy and confusion matrix of the ViT-EBoT on the test dataset (3) with 6151 images

4.3 Analysis of flow length distribution

From Table 1] we could see that generating the network flow image requires 61.71 ms on average which may
vary depending on the flow length. Flow length is the total number of packets in a network flow, and for our
dataset, it is varying significantly from 1 to 363141. Therefore, we have analyzed the flow length distribution
to select the optimal number of packets to consider for botnet detection. From Figure we can notice
that most of the flows (~90%) have less than 50 packets. Thus, we performed experiments to see the effect
of the flow length on the prediction accuracy. We first filtered the first 50 packets and reduced the number
of packets at each step to see how the accuracy of ViT-EBoT and the feature extraction time are impacted.
Results are shown in Table [3

Thus, we can see that even with the first 5 packets in a flow, we achieved 98.52% accuracy and 0.069 loss.
From Table [I] we could see that the difference between the flow header and the proposed approach was
mainly the time overhead. To maintain a fair comparison, we performed similar experiments to see how
the time overhead and accuracy are impacted for the flow header approach on fewer packets per PCAP file.
Results are shown in Table [3

Under review as submission to TMLR

7000 I flow_length

6000

\

Almost 94% of flows
have flow length < 50

5000

4000

3000

Frequency

2000

1000

0 10 20 30 40 50

Figure 10: Flow length distribution of the original dataset

Table 3: Effect of flow length on the performance of ViT-EBoT and flow header-based approach

Number ViT-EBoT Flow Header approach
of Fl-score Feature Extraction Fl-score Feature Extraction
packets Time (ms) Time (ms)
5 98.52 0.22 97.97 370.46
10 97.91 0.28 97.49 369.97
20 97.89 0.33 97.6 370.26
30 97.81 0.37 97.61 372.93
40 97.85 0.40 97.7 372.73
50 98.02 0.44 97.75 371.37
ALL 97.75 61.71 97.86 471.35

From Table (3] we could see that the feature extraction time manifested a significant reduction of 99.64%
while reducing the number of packets for the network flow image-based approach. However, for the flow
header approach, the reduction is only 21.4%. This is because even with just five packets per network flow
PCAP file, computations required to summarize the flow statistics remain almost the same. Moreover, there
is not much impact on the accuracy in both scenarios. In short, the conversion time for network flow to
image reduced significantly upon extracting only the first few packets, and thus we can detect a botnet
attack effectively by analyzing only these packets in most scenarios at a faster pace. The first five packets
are sufficient since most PCAPs will contain both the header information, i.e., TCP handshake in the case
of TCP as the transport protocol, and some initial payload in these first packets. In contrast, the work
by Wang et al| (2017) and Ma et al| (2021) fixes the number of bytes extracted from each network flow or
session PCAP file. The former uses the first 784 bytes of each flow or session, while the latter extracts the
first 500 bytes of the payload as key data. However, here we are completely analyzing the first 5 packets.

5 Implementation

The following subsections will discuss how our framework will be deployed in practical scenarios, optimiza-
tions applied to fit the model on Jetson Orin Nano, and finally the results achieved.

5.1 Practical Deployment

IoT devices are increasingly becoming compact and energy efficient with high performance owing to the
widespread adoption of SoCs in IoT development. SoCs provide better performance at an affordable price
and are integrated with embedded GPUs/NPUs for accelerating AI applications. We have optimized and
implemented our ViT-EBoT framework on Jetson Orin Nano that is built around a low-power version of the
NVIDIA Orin SoC with an embedded GPU. It is the most computationally powerful SoC with 8 GB 128-bit
LPDDR5 RAM and NVIDIA Ampere architecture with 1024 CUDA cores and 32 tensor cores

10

Under review as submission to TMLR

. For testing the practical feasibility of our framework, we have performed our inference on Jetson
Orin Nano to ensure that, in practical scenarios, we can deploy this model on the other SoCs available in
resource-constrained IoT devices such as Qualcomm SoCs in IP cameras for large-scale integration. Further,
we have reduced the inference latency on the board by using TensorRT, which includes a deep learning
inference optimizer and runtime that delivers low latency and high throughput for inference applications on

NVIDIA GPUs (NVIDIAL 2023c|). Figure |[11|illustrates the scenario of practical deployment of ViT-EBoT.

\ Edge Gateway

/ J Jetson Orin Nano as

Edge Gateway

Jetson Software for Al Edge Devices

City Factory Logistics Healthcare Agriculture
% -
Y W

V8 Ll = M A "

Ecosystem Ecosystem Ecosystem

Al Software and Services Machine Vision Cameras & Sensors System Software & Developer Tools

Computer Vision Sensors.

0 [)
TensorRT libargus CuBLAS nd Q Drivers
o | R/ videosrt % CWFFT V'5‘°"W°"‘5v QB Ecosystem

CUDA « Linux « RTOS
Jetson

Figure 11: Practical deployment scenario (NVIDIA|[2023b)): ViT-EBoT deployed on Jetson Orin Nano acting
as edge gateway

Here, we assume some of the IoT nodes connected to the edge gateway to be bots. Jetson Orin Nano acts
as an edge gateway and monitors all the traffic passing through it to identify if a device connected to it
has become a zombie/bot and performing a botnet attack on a critical server in the internet. In practical
scenarios, our ViT-EBoT framework will be deployed on the edge gateways that will inspect the network
traffic targeted for the IoT nodes connected to that gateway. Once the gateway captures the network traffic
using tepdump utility, Splitcap utility will split each PCAP into multiple network flow sessions and finally
convert these PCAP files to network flow images for inference purposes on the gateway, as shown in the
feature extraction phase of Figure[2] This flow image analysis will act as a defense mechanism and block any
botnet traffic. For simulation purposes, we have stored the network PCAP files from BoT-IoT test dataset
on the Jetson board. Then, we have split each PCAP into multiple network flows, converted to RGB images,
and finally performed inference on these test images.

5.2 Optimization workflow on Jetson Orin Nano

The overall implementation workflow is shown in Figure First, we will load the trained ViT-EBoT and
feature extractor that will preprocess the images for inference task on the Jetson board. Next, we will export
the 32 bit floating point model to a format that TensorRT can use, such as Open Neural Network Exchange
(ONNX). Then, we used TensorRT’s trtexec tool to parse the ONNX model and generate an optimized
TensorRT engine file which can be used to perform the final inference on the Jetson board. We have chosen
a batch size of 64 and an input shape of (3, 224, 224).

In order to optimize the model to improve performance and reduce latency, we have applied Post Training
Quantization (PTQ) using pytorch-quantization toolkit for our framework. PT'Q is applied
over a trained full-precision model. Per channel quantization is applied to the weight tensors using the
weight distribution of the trained model. Thus, as shown in Figure we have separate scale S and zero
point Z for each channel. For calculating the interlayer activation distributions, we have applied histogram
calibration using a small calibration dataset (Neta Zmora & Rodgel [2021)). INT8 quantization is applied to

11

Under review as submission to TMLR

/ Pytorch-Quantization \

Per channel quantization
S3,z3 weights
- .
ViT-EBOT — S— s2, 22 Linear
——
Pytorch INT8 S1,Z1
FP32 Model . D
B Em—— s
activations
\ Per tensor quantization /
Unquapslzed _______ Quantized
N FP32 &X Jetson Orin Nano
~ Developer Kit
FP16 NVIDIA, P&V !
_ INT8
—| Mixed
Original Precision

Figure 12: Optimization workflow of ViT-EBoT on Jetson

the weights and activations of the linear and 2D convolution layers in Figure [[3a] to better utilize the integer
tensor cores of NVIDIA as shown by the QuantizeLinear/DequantizeLinear ONNX operations in Figure
Visualization of the neural network is provided by the Netron tool. The TensorRT will import
the fake quantized model exported to ONNX and execute it for inference in an optimized manner.

Gather

Unsqueeze

Concat

Reshape

Shape

Gather

QuantizeLinear

Unsqueeze

x (768x3=16x16)
y_scale {758}
y_zero_point (768}

shape (1)
QuantizeLinear

Concat

y_scale = 0.00787017...
y_zero_point = 0

Conv

W (768x3x16x16)
B (768)

DequantizeLinear DequantizeLinear

Reshape

x_scale = 0.00787017.
x_zero_point = 0

x_scale {768}
x_zero_point {768}

Conv

Shape

starts (1)
ends {1}
axes {1)

ConstantOfShape

(a) (b)

Figure 13: Original and quantized network visualizations (a) Original network (b) Quantized network

12

Under review as submission to TMLR

5.3 Results

Figure [T4HI5] demonstrates the performance metrics of the model on the Jetson board for 20 batches with
batch size 64. First, we have the unoptimized model running on NVIDIA GPU. Then, we have optimized the
32 bit floating point (FP32) model with TensorRT. Next, we have converted the FP32 model to 8 bit integer
(INTS8) representation. Finally, the linear and convolution layers in the FP32 model are fake quantized to
INTS representation, and the rest of the layers were maintained at FP32 precision. From Figure [[4a] we
could see that the quantized INT8 model achieved 98.74%, i.e., only 0.47% less accuracy than the original
unoptimized model. It also gained 3.9x savings in model size, as can be seen from Figure [[4D] Furthermore,
with the unoptimized model, the inference latency is 1.69s and a throughput of 0.59 frames per second (FPS).
However, the INT8 quantized model reduced the latency by 98.51% and achieved 41.34 FPS as shown in
Figure Thus, we were able to achieve a fast and accurate model for botnet detection with reduced model

size of 88 MB. Thus, ViT-EBoT works efficiently in a resource-constrained setup simulated on a Jetson Orin
Nano board.

Almost similar accuracy

100 i d ¥ 400
3.9x reduced
25 9921 99.21 97.34 98.74 300 mode| size
50 200
25 100
0 - 0

Unoptimized TensorRT ~ TensorRT Quantized Unoptimized TensorRT ~ TensorRT Quantized
Pytorch FP32 INT8 INT8 Pytorch FP32 INT8 INT8
Model Model

(a) (b)

[&)]

Accuracy (%)
Model Size (MB)

Figure 14: Accuracy and model size comparison on Jetson Orin Nano (a) Accuracy (b) Model Size

50
2000 ” 98.51% reduced »
latency . 40 -
. e
o 1500 41.34 p
; y 0 %
= 1000 ek a
§ 20 5
. 3
o
2 500 N 10 g
| N
0.59 4 -
0 - - - 0
Unoptimized TensorRT TensorRT Quantized
Pytorch FP32 INT8 INT8

Model
[Throughput @ Latency

Figure 15: Effect on the latency and throughput of the models

Next, we have analyzed the cost of deploying both ViT-EBoT and Flow header approaches that achieved
similar accuracy. Clearly, the cost of deploying machine learning models used in the flow header approach
will be less than our ViT-EBoT framework in terms of area. However, feature extraction time for the
flow header-based approach is almost 8 times greater than our approach. To confirm this, we have used
CICFlowMeter on the board to capture network flow statistics and it took almost 76 minutes for extracting
these features from a 1.1 GB PCAP file with 42,490 network flows i.e., 107.01 ms per network flow. Hence,
feature extraction phase of flow header-based approach is not memory effective on an edge system. Lower
feature extraction time with better accuracy ensures botnet detection at a fast pace. Moreover, we do not

13

Under review as submission to TMLR

need to deploy the ViT-EBoT model on each IoT device. Rather, it is deployed on each edge gateway device
that forwards the network traffic to individual IoT nodes, thereby reducing the cost.

6 Conclusion

In this paper, we have developed an IoT botnet detection framework ViT-EBoT that converts the bidirec-
tional network flows to RGB images and applies vision transformers to predict the botnet attack category.
Our framework achieved around 98% accuracy for both encrypted and unencrypted network samples with
94% reduced inference latency compared to state-of-the-art approaches. In addition, we have deployed the
framework on a Jetson Orin Nano board to validate its feasibility as a practical edge gateway and optimized
it through TensorRT INT8 quantization. The optimized model achieved an accuracy of 98.74% over 1280
images with a reduced latency of 25.16 ms i.e., 98% reduced latency compared to the unoptimized version
and an area overhead of 88.13 MB.

References

Mohammed Abutaha, Basil Atawneh, Layla Hammouri, and Georges Kaddoum. Secure lightweight cryp-
tosystem for iot and pervasive computing. Scientific Reports, 12(1):19649, 2022.

Dosovitskiy Alexey. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv: 2010.11929, 2020.

Mustafa Alshamkhany, Wisam Alshamkhany, Mohamed Mansour, Mueez Khan, Salam Dhou, and Fadi
Aloul. Botnet attack detection using machine learning. In 2020 14th International Conference on Inno-
vations in Information Technology (IIT), pp. 203-208. IEEE, 2020.

AVNET. Enabling fast and secure IoT communication, 2023. URL https://www.avnet.com/wps/portal/
apac/solutions/reference-solutions/iot-world/trusted-objects-solution/.

Mahmoud Bahaa, Ayman Aboulmagd, Khaled Adel, Hesham Fawzy, and Nashwa Abdelbaki. nndpi: A novel
deep packet inspection technique using word embedding, convolutional and recurrent neural networks. In
2020 2nd Nowvel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 165-170, 2020. doi:
10.1109/NILES50944.2020.9257912.

Zscaler Blog. 2023 Threatlabz Report Indicates 400% Growth in IoT Malware At-
tacks, October 2023. URL https://www.zscaler.com/blogs/security-research/
2023-threatlabz-report-indicates-400-growth-iot-malware-attacks.

Cole Christian. Iot 2024 in review: The 10 most relevant IoT developments of the year, 2025. URL
https://iot-analytics.com/iot-2024-review/|

Smita Dange and Madhumita Chatterjee. Iot botnet: The largest threat to the iot network. In Data
Communication and Networks: Proceedings of GUCON 2019, pp. 137-157. Springer, 2019.

Security Operations Centers Working Group Documentation. Hardware requirements. URL https://
wlcg-soc-wg-doc.web.cern.ch/data_sources/zeek/hardware_requirements.html.

Nasimul Hasan, Zhenxiang Chen, Chuan Zhao, Yuhui Zhu, and Cong Liu. Iot botnet detection framework
from network behavior based on extreme learning machine. In IEEE INFOCOM 2022-IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1-6. IEEE, 2022.

Hugging-Face. google/vit-base-patch16-224-in21k. URL https://huggingface.co/google/
vit-base-patchl6-224-in21k.

Nickolaos Koroniotis, Nour Moustafa, and Elena Sitnikova. Forensics and deep learning mechanisms for
botnets in internet of things: A survey of challenges and solutions. IEEE Access, 7:61764-61785, 2019a.

14

https://www.avnet.com/wps/portal/apac/solutions/reference-solutions/iot-world/trusted-objects-solution/
https://www.avnet.com/wps/portal/apac/solutions/reference-solutions/iot-world/trusted-objects-solution/
https://www.zscaler.com/blogs/security-research/2023-threatlabz-report-indicates-400-growth-iot-malware-attacks
https://www.zscaler.com/blogs/security-research/2023-threatlabz-report-indicates-400-growth-iot-malware-attacks
https://iot-analytics.com/iot-2024-review/
https://wlcg-soc-wg-doc.web.cern.ch/data_sources/zeek/hardware_requirements.html
https://wlcg-soc-wg-doc.web.cern.ch/data_sources/zeek/hardware_requirements.html
https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/google/vit-base-patch16-224-in21k

Under review as submission to TMLR

Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova, and Benjamin Turnbull. Towards the development of
realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Gen-
eration Computer Systems, 100:779-796, 2019b. ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.
2019.05.041. URL https://www.sciencedirect.com/science/article/pii/S0167739X18327687.

Qianli Ma, Wei Huang, Yanliang Jin, and Jianhua Mao. Encrypted traffic classification based on traffic
reconstruction. In 2021 jth International Conference on Artificial Intelligence and Big Data (ICAIBD),
pp. 572-576. IEEE, 2021.

Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Asaf Shabtai, Dominik Breitenbacher, and
Yuval Elovici. N-baiot—mnetwork-based detection of iot botnet attacks using deep autoencoders. IFEE
Pervasive Computing, 17(3):12-22, 2018.

Worku Gachena Negera, Friedhelm Schwenker, Taye Girma Debelee, Henock Mulugeta Melaku, and
Yehualashet Megeresa Ayano. Review of botnet attack detection in sdn-enabled iot using machine learning.
Sensors, 22(24):9837, 2022.

Mike Nelson. Why 98% of IoT traffic is unencrypted, June 2020. URL https://www.iot-now.com/2020/
06/04/103245-why-98-of-iot-traffic-is-unencrypted/.

Hao Wu Neta Zmora and Jay Rodge. Achieving FP32 Accuracy for INT8 Inference Using Quantization
Aware Training with NVIDIA TensorRT, June 2021. URL https://developer.nvidia.com/blog/
achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/.

NETRESEC. SplitCap, 2010. URL https://www.netresec.com/?page=SplitCapl

Huy-Trung Nguyen, Quoc-Dung Ngo, and Van-Hoang Le. A novel graph-based approach for iot botnet
detection. International Journal of Information Security, 19(5):567-577, 2020.

NVIDIA. pytorch-quantization, 2021. URL https://github.com/NVIDIA/TensorRT/tree/master/tools/
pytorch-quantizationl|

NVIDIA. Edge Computing, 2023a. URL https://www.nvidia.com/en-in/autonomous-machines/
embedded-systems/jetson-orin/.

NVIDIA. Jetson Software, 2023b. URL https://developer.nvidia.com/embedded/develop/softwarkE.
NVIDIA. NVIDIA TensorRT, 2023c. URL https://developer.nvidia.com/tensorrt.

Antdnio J Pinheiro, Jeandro de M Bezerra, Caio AP Burgardt, and Divanilson R, Campelo. Identifying iot
devices and events based on packet length from encrypted traffic. Computer Communications, 144:8-17,
2019.

Segun I Popoola, Bamidele Adebisi, Mohammad Hammoudeh, Guan Gui, and Haris Gacanin. Hybrid deep
learning for botnet attack detection in the internet-of-things networks. IEEFE Internet of Things Journal,
8(6):4944-4956, 2020.

Kamal R. Securing the IoT Data Landscape: IoT Encryption Algorithms, September 2022. URL https:
//www.intuz.com/blog/securing-the-iot-data-landscape-iot-encryption-algorithms.

Lutz Roeder. NETRON, 2020. URL https://netron.app/.

Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi. Twine: A lightweight block
cipher for multiple platforms. In International Conference on Selected Areas in Cryptography, pp. 339-354.
Springer, 2012.

Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. End-to-end encrypted traffic
classification with one-dimensional convolution neural networks. In 2017 IEEFE international conference
on intelligence and security informatics (ISI), pp. 43-48. IEEE, 2017.

15

https://www.sciencedirect.com/science/article/pii/S0167739X18327687
https://www.iot-now.com/2020/06/04/103245-why-98-of-iot-traffic-is-unencrypted/
https://www.iot-now.com/2020/06/04/103245-why-98-of-iot-traffic-is-unencrypted/
https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/
https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/
https://www.netresec.com/?page=SplitCap
https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization
https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization
https://www.nvidia.com/en-in/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-in/autonomous-machines/embedded-systems/jetson-orin/
https://developer.nvidia.com/embedded/develop/softwarE
https://developer.nvidia.com/tensorrt
https://www.intuz.com/blog/securing-the-iot-data-landscape-iot-encryption-algorithms
https://www.intuz.com/blog/securing-the-iot-data-landscape-iot-encryption-algorithms
https://netron.app/

	Introduction
	Contributions

	Related Work
	Proposed Methodology
	Dataset
	Encryption Procedure

	Experiments and Results
	Comparison with Flow Header Analysis and Deep Packet Inspection
	Performance comparison of deep learning models on Network Flow PCAP images
	Analysis of flow length distribution

	Implementation
	Practical Deployment
	Optimization workflow on Jetson Orin Nano
	Results

	Conclusion

