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Abstract001

Large-scale pretrained language models002
(LLMs) have achieved significant advances003
in natural language tasks, yet challenges004
persist in legal applications that demand high005
precision. Current approaches enhance model006
performance through long-chain reasoning007
and tool invocation, but often struggle008
with excessive resource consumption and009
suboptimal tool integration. To address these010
issues, this paper proposes a reinforcement011
learning-based framework for multi-tool012
collaborative invocation. The framework dy-013
namically optimizes tool usage across multiple014
iterations, selecting tools and refining search015
terms based on marginal benefits, ensuring016
the execution of the most effective analysis017
strategy. Experimental results show that the018
proposed method improves both the accuracy019
of legal question answering and resource020
utilization, demonstrating the potential of021
multi-tool collaboration and adaptive strategy022
adjustment in the legal domain.023

1 Introduction024

Recent advancements in large-scale pretrained lan-025

guage models (LLMs) have led to significant break-026

throughs in reasoning and natural language tasks.027

However, complex legal tasks, due to their spe-028

cialized nature and high accuracy demands, still029

present substantial challenges. While existing030

methods enhance model performance through long-031

chain reasoning, self-reflection (Koa et al., 2024),032

and external knowledge integration (Jeong et al.,033

2024), they face key limitations. These include034

high resource consumption and cognitive load from035

lengthy reasoning processes, as well as ineffective036

integration of tool results, especially when trans-037

forming legal knowledge. This is particularly evi-038

dent in the legal domain, where complex reasoning039

across statutes and judicial practices is required.040

To address these challenges, enhancing LLM041

performance on legal tasks requires not only ac-042

curate reasoning but also a balance between ef- 043

ficiency and resource consumption (Wang et al., 044

2025). We propose MARCO-Law (Marginal- 045

Aware Reinforcement Collaboration), a reinforce- 046

ment learning-based framework that enables multi- 047

tool collaboration and dynamic reasoning strate- 048

gies. The framework integrates specialized tools 049

and modules tailored to the legal domain, allow- 050

ing it to flexibly handle a broad spectrum of legal 051

tasks—from straightforward queries to complex, 052

multi-step problems. 053

First, upon receiving a legal question, the system 054

initially determines whether external tools should 055

be invoked based on the task’s complexity. This 056

process involves: (1) modeling external legal re- 057

sources (e.g., Caselaw, Google Search) as environ- 058

mental tools (Jin et al., 2025) to support trajectory 059

sampling; and (2) enabling the policy model to en- 060

gage in multi-round interactions with these tools, 061

dynamically refining its invocation strategies to en- 062

hance the quality and diversity of tool use while ju- 063

diciously managing cost and frequency constraints. 064

This framework supports both single-turn RL (e.g., 065

GRPO(Shao et al., 2024)) and multi-turn RL (e.g., 066

Archer(Zhou et al., 2024)), providing flexible ap- 067

plicability. 068

Second, in each turn, marginal benefits, defined 069

as the accuracy improvement resulting from tool 070

invocation compared to no invocation, are used to 071

guide strategy learning. Based on this signal, we 072

introduce a multi-round dynamic adjustment algo- 073

rithm that decides whether to modify tool usage 074

and retrieval parameters. When the marginal bene- 075

fit is positive, it directs the reinforcement learning 076

model to refine tool selection and retrieval terms, 077

thereby enabling adaptive and effective strategy 078

learning in each round. 079

Our contributions can be summarized as: 080

1. We address the challenge of balancing reason- 081

ing accuracy and resource efficiency in legal 082
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Figure 1: MARCO-Law Framework

tasks through effective multi-tool collabora-083

tion.084

2. We introduce MARCO-Law, a reinforce-085

ment learning framework that dynamically086

optimizes tool invocation. MARCO-Law087

enhances both single-turn (via diversified088

tool/term selection) and multi-turn (via min-089

imized usage) strategies by incorporating090

Marginal Benefit Optimization, which091

adapts tool use based on their round-specific092

effectiveness.093

3. We experimentally validate MARCO-Law,094

showing significant improvements in legal QA095

accuracy and resource efficiency.096

2 Literature Review097

2.1 LLM Reasoning with Tools098

LLMs have significantly advanced reasoning by099

integrating external tools(Shi et al., 2025). Early100

works demonstrated LLMs learning to use tools101

via APIs(Schick et al., 2023), with subsequent102

efforts fine-tuning models on extensive API col-103

lections for enhanced tool proficiency. To im-104

prove tool invocation efficiency, frameworks like105

SelfDC(Wang et al., 2024) leverage LLM self-106

awareness, especially in Retrieval-Augmented Gen-107

eration (RAG)(Lewis et al., 2020). However, many108

tool integration methods still rely on complex109

prompting or extensive annotated data, likely limit-110

ing adaptability.111

2.2 Reinforcement Learning for LLMs 112

Offline and Online RL. Reinforcement learning 113

(RL) is widely applied to LLM training. Of- 114

fline RL(Ghosh et al., 2022) learns cost-effectively 115

from static datasets but faces distributional shift 116

and reliance on high-quality reward annotations. 117

Attempts to bridge offline and online methods, 118

such as Archer(Zhou et al., 2024), still en- 119

counter challenges with advantage estimation from 120

static data. Conversely, online RL methods like 121

PPO(Schulman et al., 2017) and GRPO(Shao et al., 122

2024) offer greater adaptability via direct environ- 123

mental interaction, but often at the cost of sam- 124

ple inefficiency, high computational demands, and 125

training instability. 126

Single-turn and Multi-turn RL. Many LLM 127

RL approaches, including PPO(Schulman et al., 128

2017), primarily optimize single-step preferences, 129

excelling at response refinement but lacking the 130

multi-step interactive learning crucial for complex, 131

long-horizon reasoning. While multi-round RL 132

holds promise for such tasks(Yu et al., 2024), its 133

significant computational and resource overhead 134

frequently limits practical large-scale deployment. 135

3 Method 136

3.1 Task Definition 137

Given a legal question q, which is represented in the 138

form of multiple-choice questions. A set of candi- 139

date tools T={T1, T2, . . . , Tn}, the task is to learn 140

a multi-round invocation policy Π(o, r, a, o′)that 141

generates tool-calling actions at at each step t. At 142

each round, the state ot comprises the question and 143
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historical context. The policy Π(ot) outputs an ac-144

tion at specifying whether to invoke a tool, which145

tool to call, and with which search term.146

Specifically, we optimize the strategy model by147

designing rewards from the perspective of marginal148

revenue reward. The marginal gain reward rt ∈149

{0, 1} at step t is defined as a binary indicator of150

positive marginal benefit.151

∆rt = rtool − rnon−tool, rt = 1{∆rt>0} (1)152

where the marginal benefit ∆rt is computed as the153

difference between the accuracy with tool invoca-154

tion and the accuracy without tool invocation. rtool155

denotes the accuracy of the generated answer after156

invoking the tool, and rnon−tool denotes the accu-157

racy without invoking the tool.158

3.2 MARCO-Law Framework159

As shown in Figure 1, through multi-turn interac-160

tions with the physical world, the tool-integrated161

LLM aims to learn the optimal times for reasoning162

and receives marginal revenue rewards in each turn.163

Specifically, our objectives are understood at two164

levels: Overall Invocation Strategy and Per-Round165

Specific Invocation Strategy.166

3.3 ArCHer-based MARCO167

ArCHer with Tool Calls. ArCHer is a hierarchical168

reinforcement learning framework, well-suited for169

learning invocation strategies over extended inter-170

actions. It is particularly effective for optimizing171

the number of tool calls across multiple rounds of172

reasoning. In this study, we leverage this frame-173

work to guide the lower-level model effectively in174

each round, enabling the optimization of both tool175

selection and retrieval term adjustments at each176

turn. The actor: Policy function πθ(a|s) with pa-177

rameters θ.178

∇θJ1(θ) = Es∼dπ

[ ∑
a1∈A1

∇θ log π
1
θ(a1|s)

·
(
Q1

ϕ(s, a1)− V 1
ϕ (s)

)] (2)179

where A1: tool/retrieval args selection space; Q1
ϕ:180

Critic evaluating tool choices.181

Enhanced Action Policy182

∇θJ2(θ) = Es,m∼dπ

[
∇θ log π

2
θ(a2|s,m)

·
(
Q2

ϕ(s,m, a2)− V 2
ϕ (s,m)

)]
(3)

183

where m = Tool(a1, s) is tool-recall results. 184

The critic Value function Vϕ(s) or Qϕ(s, a) 185

with parameters ϕ. The critic minimizes the tem- 186

poral difference (TD) error: 187

L(ϕ) = E(s,a,∆r,s′)

[(
∆r + γVϕ(s

′)− Vϕ(s)
)2]

(4) 188

3.4 GRPO-based MARCO 189

GRPO for Tool-Augmented RL. To enhance pol- 190

icy optimization and reduce reliance on value func- 191

tion approximation, we adapt GRPO to integrate 192

tool calls, which computes advantages based on 193

the relative ranking of multiple sampled outputs. 194

For an input q, a group of responses {yi}Gi=1 is sam- 195

pled from a reference policy πref, incorporating tool 196

calls.The policy πθ is provided in Appendix A. Fol- 197

lowing search-r1(Jin et al., 2025), we mask the tool 198

call’s result section before loss calculation to pre- 199

vent unintended learning dynamics from retrieved 200

tokens during training. 201

Reward Design. Our reward signals guide pol- 202

icy training, extending beyond simple correctness. 203

The Rtotal for query q and response y is: 204

Rtotal(q, y) = reff + rerr + rgain + rformat (5) 205

Components are defined as: 206

1. Tool Efficiency-Adjusted MCQ Reward (reff): 207

This reward starts with the MCQ Accuracy score 208

(SMCQ-ACC from Section 4.2, Eq. (9)) and is aug- 209

mented to favor fewer tool calls (tc) for equivalent 210

SMCQ-ACC > 0. 211

reff = SMCQ-ACC + k1 · f(tc, tcgroup) (6) 212

where f(tc, tcgroup) is a normalized efficiency term 213

(higher for lower tc within a group achieving the 214

same SMCQ-ACC). 215

2. Tool Error Penalty (rerr): A penalty discour- 216

ages erroneous tool usage (etool): 217

rerr = −k2 ·
etool

tc + ϵ0
(7) 218

It is zero if no tools are called. 219

3. Marginal Gain Reward (rgain): This rewards 220

tool use only if it significantly improves SMCQ-ACC 221

over a no-tool baseline (SMCQ-ACC,no-tool): 222

rgain =


+k3, if SMCQ-ACC − SMCQ-ACC, no-tool ≥ ∆S

−k3, if tc > 0 and improvement < ∆S

0, if tc = 0

(8) 223
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Table 1: The results of MARCO with different baselines in search.

Method ACC-EM ACC-LB ACC-MCQ P R Macro-F1 TC TP

(base) 0.1780 0.6240 0.3327 0.7711 0.6258 0.6908 - -
+SFT 0.1940 0.6200 0.3103 0.7665 0.6243 0.6879 - -
+RAG 0.1770 0.6275 0.3463 0.7845 0.6139 0.6881 1 0.3463
+GRPO 0.2410 0.6745 0.3620 0.7684 0.7375 0.7519 - -
+SFT+GRPO 0.2420 0.6695 0.3528 0.7629 0.7368 0.7492 - -
+RAG+GRPO 0.1780 0.6202 0.2665 0.7434 0.6634 0.7010 1 0.2665
Ours 0.2610 0.6923 0.3850 0.7823 0.7506 0.7638 0.67 0.4890

with k3 ≈ 0.1 and ∆S ≈ 0.25.224

4. Format Reward (rformat):This is following the225

reward of deepseek-r1(Shao et al., 2024).226

This multi-faceted reward promotes accurate, ju-227

dicious, and efficient tool-augmented reasoning.228

Hyperparameters k1, k2, k3,∆S are tuned.229

The specific algorithm detailing how ARCO Law230

implements multiple rounds of tool calls within the231

GRPO framework is provided in Appendix C.232

4 Experiments233

4.1 Dataset and Baselines234

Our experiments primarily utilize the Legal Ex-235

amination Question dataset, featuring structured236

legal MCQs, and the US-Caselaw-QA dataset,237

which provides complex English legal queries with238

gold reasoning paths reformulated into MCQs;239

both are split 80/20 for training/testing. We use240

Qwen2.5-3B-Instruct as our (base) model and241

compare it against versions augmented with Super-242

vised Fine-Tuning (+SFT), Retrieval-Augmented243

Generation (+RAG), and Group Relative Policy244

Optimization (+GRPO), as well as combinations245

thereof (+SFT+GRPO, +RAG+GRPO). These246

are benchmarked against our proposed MARCO247

approaches: ArCHer-based MARCO and GRPO-248

based MARCO.249

4.2 Evaluation Metrics250

We evaluate our model using several key metrics251

focusing on correctness in multi-choice questions252

(MCQ) and tool usage efficiency.253

Our primary metric is MCQ Accuracy254

(ACC-MCQ), which provides a fine-grained255

score for MCQs(multiple-choice questions).256

SACC-MCQ(P,G) is defined as:257

SMCQ-ACC =



0, if P \ G ̸= ∅
1.0, if R = 1.0

0.75, if 0.75 ≤ R < 1.0

0.5, if 0.5 ≤ R < 0.75

0.25, if 0.25 ≤ R < 0.5

0.0, if R < 0.25

(9)258

Table 2: Comparative results with ablation study on the
US-Caselaw-QA dataset

Method Rollout Reward

Archer -4.6875 -0.9868
MARCO w/o Margin RL -3.9688 -0.9338
MARCO w/o Tool 1.0000 0.2000
MARCO w/ Tool & Margin 0.5651 0.4521

where R = |P∩G|
|G| is the recall ratio, and the first 259

condition (no false positives) must be met for any 260

score greater than 0. The reported ACC-MCQ is 261

the average over all samples. 262

For tool usage, following the OTC(Wang et al., 263

2025), we measure Average Tool Calls (TC), the 264

mean number of tool invocations per instance. For 265

MCQs, we also define Tool Productivity (TP) in 266

appendix B 267

Additionally, we report Exact Match Ratio (EM), 268

Label-based Accuracy (Hamming Accuracy), Mi- 269

cro F1, and Macro F1. 270

4.3 Experimental Results 271

The results demonstrate the effectiveness of our 272

multi-tool and marginal benefit-guided strategy. 273

As shown in Table 1, our method achieves the 274

best overall performance on the Legal Examina- 275

tion Question dataset, surpassing baselines in ACC- 276

MCQ (0.3850), with improved precision and recall. 277

The ablation study in Table 2 further confirms 278

the contribution of each component. The full 279

MARCO model outperforms all variants, achieving 280

the highest reward (0.4521), highlighting the impor- 281

tance of both tool invocation and marginal-guided 282

learning in optimizing reasoning strategies. 283

5 Conclusion 284

Our findings validate that integrating dynamic, 285

marginal-benefit-driven tool calls significantly en- 286

hances the model’s ability to learn effective legal 287

reasoning strategies, improving both accuracy and 288

resource efficiency. 289
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6 Limitations290

Despite its advantages, our multi-tool invocation291

framework has limitations. It relies on domain-292

specific tools, which may limit its applicability293

across diverse industry systems. Additionally, the294

reinforcement learning setup can require consid-295

erable computational resources, posing challenges296

for large-scale deployment.297
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A Macro with GRPO policy model 384

The policy πθ is optimized by maximizing: 385

JGRPO(θ) = E q∼D,

{yi}Gi=1∼τold(·|q;E)

[
1

G

G∑
i=1

1∑|yi|
t=1 I(yi,t)

·

·
|yi|∑
t=1

I(yi,t)min
(
ptÂi,t, clip(pt, 1− ϵ, 1 + ϵ)Âi,t

)]
− βDKL[πθ||πref]

(10)

386
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Here, pt =
πθ(yi,t|x,yi,<t;Tool)
πold(yi,t|x,yi,<t;Tool) represents the im-387

portance sampling ratio at token t of response yi,388

considering the context x, previous tokens yi,<t,389

and any information obtained from tool calls (de-390

noted by ’Tool’). Âi,t denotes the advantage at391

token t in response yi, computed based on the rela-392

tive ranking of rewards within the group. β control-393

ling the KL-regularization strength. The clipping394

threshold ϵ ensures stable updates.395

B Tool Productivity396

TP =

∑N
i=1 SMCQ-ACC,i∑N

i=1 tci + δ
(11)397

where tci is its tool call count, N is the total sam-398

ples, and δ is a small constant (e.g., 10−8) to pre-399

vent division by zero if no tools are called.400

C MARCO-Law in GRPO algorithm401

The complete workflow is outlined in Algorithm 1402
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Algorithm 1 MARCO-Law in GRPO: Multi-Turn LLM Interaction with Tool Use and Composite Reward
Calculation
Require: Initial user query xuser, LLM policy πθ, Initial Tool Prompt tool_promptinit, Iteration

Tool Prompt tool_promptiter,zero Tool Prompt promptinit, Tool executor T E , Max LLM calls
MAXiteration, group size Ngroup, sreward parameters k1, k2, k3.

Ensure: Final response yfinal, A trained policy model.
1: Initialize first round respense with tool y0 ∼ πθ(·|tool_promptinit, xuser ).
2: Initialize zero tool respense yzero_tool ∼ πθ(·|promptinit,xuser ).
3: Initialize conversation history H ← [tool_promptiter, xuser, " (Call #1):" + y0]
4: Initialize current LLM output to analyze ycurrent ← y0
5: Initialize tool calls ctool ← 0
6: Initialize tool errors etool ← 0
7: Initialize list of all LLM responses Ylist ← [y0]
8: for i← 1 to MAXiteration -1 do
9: continue_interaction, call_type, parsed_output← ParseLLMResponse(ycurrent)

10: if not continue_interaction then ▷ Direct answer found
11: break
12: ctool ← ctool + 1 ▷ Attempting a tool call
13: if call_type = ’correct_call’ then
14: qsearch ← parsed_output["tool_query"]
15: qtool_type ← parsed_output["tool_type"]
16: dsearch ← T E(qsearch, qtool_type) ▷ Call Tool
17: if dsearch ̸= "no_result" then
18: Update last part of H by inserting dsearch where "to_search" was.
19: else
20: etool ← etool + 1

21: else ▷ call_type = ’false_call’
22: etool ← etool + 1

23: if cllm < MLLM then
24: Construct prompt Pllm from H and system prompt.
25: Generate new LLM response ynew ∼ πθ(·|Pllm)
26: Append " (Call " + cllm + "):” + ynew to H
27: ycurrent ← ynew
28: else
29: break ▷ Exceeded LLM call budget
30: yfinal ← ExtractFinalAnswerFromLastElementOf(H)
31: Sacc ← CalculateMCQScore(yfinal, gold_label) ▷ Base accuracy score

▷ — Reward Calculation —
32: Reward 1 (Tool Efficiency): R1 ← CalculateToolEfficiencyReward(Sacc, ctool, Ngroup, k1)
33: ▷ Adjusts Sacc based on ctool relative to others with same Sacc in a group.
34: Reward 2 (Tool Error Penalty): R2 ← CalculateToolErrorPenalty(ctool, etool, k2)
35: ▷ Penalizes based on ratio of etool to ctool. Max penalty −k2.
36: Reward 3 (Marginal Gain): R3 ← CalculateMarginalGainReward(Sacc, yzero_tool, ctool, Ngroup, k3)
37: ▷ Rewards/penalizes based on Sacc vs Sgold if ctool > 0. Reward ±k3.
38: Rtotal ← R1 +R2 +R3 +Rformat ▷ Rtotal is the total reward for a sample
39: Update parameters θ of policy πθ by maximizing JGRPOwith_tool(θ)
40: return yfinal, πθ
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