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Abstract

While large language models (LLMs) have shown promise for medical question
answering, there is limited work focused on tropical and infectious disease-specific
exploration. We build on an opensource tropical and infectious diseases (TRINDs)
dataset, expanding it to include demographic and semantic clinical and consumer
augmentations yielding 11000+ prompts. We evaluate LLM performance on
these, comparing generalist and medical LLMs, as well as LLM outcomes to
human experts. We demonstrate through systematic experimentation, the benefit
of contextual information such as demographics, location, gender, risk factors for
optimal LLM response. Finally we develop a prototype of TRINDs-LM, a research
tool that provides a playground to navigate how context impacts LLM outputs for
health.

1 Introduction

Neglected tropical diseases, while extremely preventable and treatable, continue to be highly prevalent
in the poorest regions of the world, affecting 1.7 billion people globally with disproportionate impacts
on women and children [7]. Similarly, half of the world’s population are at risk from infectious
diseases, which continue to lead in global mortality and morbidity, resulting in more than 52
million deaths globally, with 99% of diseases occurring in developing countries [15]. Challenges in
preventing and treating these diseases include surveillance, early detection, accurate initial diagnosis,
management and vaccine limitations [7, 21]. During the pandemic various scalable measures were
implemented to address these challenges specific to COVID-19 [3, 6, 12, 11, 8]. Other tropical and
infectious diseases have had limited attention for surveillance and surfacing accurate diagnosis.

The use of large language models for health-related question-answering has increased in recent
years demonstrating applications for a variety of health use cases [17, 20, 9, 10]. However, there is
limited work that has focused on tropical and infectious diseases. These are particularly of interest as
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they may present out-of-distribution cases, given that they mostly occur in the global south which
may be underrepresented in training and evaluation datasets and may lead to potential biases [1, 2].
Additionally there is limited understanding of how different contextual factors such as demographics,
prompt styles, and subsets of information (eg. symptoms only, versus symptoms+location) may
influence model performance.

A few studies assess the use of machine learning and LLMs for tropical and infectious diseases.
Shenoy et al. [19] found that in a study of 40 tropical and infectious disease clinicians, 35 indicated
the need for a decision making tool. They compared logistic regression and decision trees for binary
classification and found an average prediction accuracy of 79-84%. Pfohl et al. [14] developed a
health equity dataset which introduced LLM evaluation of a tropical and infectious diseases (TRINDs)
dataset and had clinicians and health equity experts evaluate LLM responses to tropical and infectious
disease related questions,finding evidence of biased responses. Mondal et al. [13] developed 50
simulated infectious disease cases with histories, lab reports, imaging findings and evaluated it on
4 different general LLMs and compared the quantity of differential diagnosis to that of medical
experts. They found that LLMs generally had difficulties matching the experts’ differential diagnosis.
Schwartz et al. [18] delineate failure points for LLMs for infectious diseases consultation to clinical
workflow questions and find that LLMs provide dangerous hallucinations and harmful advice for
disease management-type questions.

In this paper we build on the TRopical and INfectious Diseases (TRINDs) dataset [14], making the
following primary contributions:

• We expand on the dataset to include demographic and semantic clinical and consumer
augmentations.

• We perform various evaluations with the dataset, to understand how different contexts and
counterfactual locations contribute to LLM performance.

• We evaluate LLM performance improvements on the larger augmented dataset with in-
context prompt tuning.

• We assemble a panel of human experts to set a human expert baseline score on the dataset
and to provide ratings of data quality, usefulness, etc.

• We develop TRINDs-LM, a research tool to demonstrate how context influences LLM
performance on TRINDs.

2 Methods

Table 1: Summary of datasets and experiments
Dataset augmentations Experiments
Original TRINDs dataset Generalist LLM vs. specialist LLM accuracy

LLM vs. human expert performance
Contextual dataset Impact of contextual factors on accuracy
French dataset Impact of language on accuracy
Counterfactual dataset Impact of location, race and gender on accuracy
Multiple choice set LLM vs. human expert performance
LLM-expanded demographic set Impact of a variation of demographics on accuracy
LLM-expanded semantic set Impact of a variation of question semantic styles on accuracy
Consumer set Impact of consumer style questions on accuracy

2.1 Dataset generation and expansion:

Original TRINDs dataset: We base this work on the original TRINDs dataset [14]. To summarize,
the authors examined authoritative sources containing factual information about different diseases
to create a dataset of 106 questions pertaining to tropical and infectious diseases across different
regions around the world. We use a subset of 52 questions from the TRINDs data as a seed set.
Each question in the seed set follows a templated structure where a patient persona is presented with
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general symptoms, direct attributes, specific symptoms, as well as context and lifestyle/risk factors.
Each question is associated with a ground truth disease label, which were reviewed by clinicians for
accuracy.

Contextual TRINDs dataset:We created 16 subsets of the seed set to understand which of the different
sections of the dataset most influenced model performance. This set used different inclusions and
combinations of general symptoms, specific symptoms, personal attributes (age and gender), location,
and risk factors.This generated 468 queries.

Counterfactual sets: Location: We examined how location influences LLM responses. The original
dataset was created with locations where the disease had a known likelihood of occurring. For each
of the original dataset and contextual subsets that included a location, we switched out the original
location for a single counterfactual location where there was less probability of disease occurring.
Here we used “San Francisco” as that location to generate 52 counterfactual location queries. Race:
We created versions of the original dataset where we included a race input (Asian, Black and White)
for each disease, yielding 159 additional queries. Gender: We created versions of the dataset that had
only male, only female and non-binary demographics, yielding an additional 159 queries.

French language set: Given prevalence of tropical and infectious diseases in non-English speaking
countries we sought to understand how language influenced the performance of the model. A
researcher whose official language is French, manually translated the original dataset of 52 queries
and diagnosis into French and compared performance to the English dataset. We selected French as
our primary interest lies in the African continent and official languages that are used are primarily in
English and French. This led to 52 prompts.

Multiple choice set: To compare the LLMs to expert baselines, we generate 153 multiple choice
questions from the original, expanded demographics and expanded semantics sets. We input the
questions and ground truth diagnosis from the original dataset and prompted an LLM to provide 5
multiple choice options that included the ground truth label, and 4 other broad tropical and infectious
disease options.

LLM-Expanded demographics set: To provide a larger demographically diverse data pool to assess
LLM responses we created a synthetically expanded dataset of 2635 queries using the original set
as a seed set. For each persona an LLM was prompted to generate 50 demographic expansions,
with varying gender, sex, age, socioeconomic status, disability status, ethnicity, location, and origin.
For the location variation the LLM was instructed to only generate locations with high incidence
of the disease. The LLM was also instructed to prioritize including locations that were consistent
with the generated demographics, and to adjust the socioeconomic status to match the location that
was generated. Finally, each proposed generation was checked by an LLM-based filter where the
LLM was asked to discard generations where the symptoms do not match the condition, or where the
demographic does not appear to be plausible. Refer to prompting method in Appendix A.3.

LLM-Expanded semantic set: As prompts from users may present in a variety of ways, and as
symptoms may vary as well, we synthetically expanded the dataset, adding 2651 additional queries.
These were created by instructing the LLM to first generate a demographically altered version of
the question, in the same way as described above for the expanded demographics set. The LLM
then follows that up by another alteration, generating an alternative formulation of the question for
the given patient and disease, but describing a different set of common symptoms related to the
disease, and potentially a different personal patient background of relevance for disease risk or onset.
LLM-based filtering was applied to these generations as well, where proposals would get discarded
in case the generated symptoms did not match the disease, or the proposed demographic does not
appear to be plausible.

LLM-Consumer augmented queries: The original personas were created with a clinical tone. We
created a consumer augmentation of the expanded dataset. We prompted an LLM to convert the
original, expanded demographics and semantic sets into first person perspective to generate the
consumer versions. This generated 52 consumer queries on the original set, 2635 on the demographic
and 2651 queries on the semantic set.

In total we generated a dataset of 11,719 queries from the original seed set of 52 queries across 50
tropical and infectious diseases. We summarize the dataset and experiments run in Table 2. Refer to
Appendix A.2 for examples.
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2.2 Model evaluation

We use two baseline models- Gemini Ultra [5], a generalist large language model (standard hyperpa-
rameters: batchsize 16, temperature 0.7, top_k=32), and MedLM Medium [4], a LLM specialized
for the health domain (standard hyperparameters: batchsize 32, temperature 0.2, top_k=None). As
a baseline, we prompt-tuned both models, providing instructions and 2-shot examples to guide the
model’s output (Appendix A.3). The models were prompted to provide an output of the ground truth
disease label. This was repeated 4 additional times to yield a total of 5 outcomes per experiment for
statistical analysis.

2.3 Auto-rater LLM Evaluations

We developed an automated rater to score each query for accuracy out of the 5 repeated runs. This
was developed by prompting an LLM to determine whether the words were structurally and/or
meaningfully similar to each other and to score them as correct if they were. For instance if the
ground truth was Taeniasis/cysticercosis and model output was Tapeworm it would be marked as
correct, since these are meaningfully similar, even if they are structurally different. We performed
a manual review of the automated rating on a subset of the data to optimize the rating process and
ensure there were no errors.

From the scores we first determined performance of generalist and medical specific models on
variations of the original persona set. Next we analyzed which contextual factors/combinations
were important for model performance (combinations of general symptoms, specific symptoms, risk
factors, location and personal attributes). We then compare performance on the counterfactual and
original versions of the prompt. Finally, we assess performance on expanded data with demographic
and semantic augmentations with and without many-shot prompting with the original set.

2.4 Human Expert Baseline

Table 2: Expert panel demographics
(n=7).

Demographic No. Experts
Gender
Female 2
Male 5
Age
30-39 2
40-49 5
Country of residence
Kenya 2
Sierra Leone 1
United States 2
Nigeria 2
Switzerland 2
Highest level of education
Masters 2
MD 2
Doctorate 3
Occupation
Medical doctor 4
Public health researcher 4
Professor 1
Years of experience
5-10 3
11-20 3
20+ 1

We created a human expert baseline study to understand
expert performance on the dataset. The purpose of this was
to determine how experts in tropical and infectious diseases
performed on a representative sample of the data to enable
human expert vs LLM comparison. The study was deemed
IRB exempt by an internal ethics review personnel. We
recruited experts- public health researchers, and medical
doctors- who had generalizable knowledge of TRINDs,
using a snowballing approach via our networks.

Following informed consent, the experts filled a demo-
graphic pre-survey, summarized in Table 2. Experts re-
ported a variety of specializations with tropical and infec-
tious diseases including Immunoparasitology, Neglected
Tropical Diseases, Infectious Disease Epidemiology, and
diseases with pandemic/epidemic potential (eg. Ebola,
Mpox).

Experts were then given 52 short answer questions (SAQs)
with full context- general and specific symptoms, demo-
graphics (age and gender), location, and risk factors across
the identified diseases- and asked to write in a single most
likely diagnosis. Once they completed the SAQs, they were
given another questionnaire with multiple choice questions
of varied formats (153) where they selected the single most
likely disease given a list of diseases. Experts were asked
not to reference any sources in answering the questions
or to look up answers to the questions until both surveys
had been completed. After completing the SAQ and MCQ
surveys, experts provided feedback on various axes on data
quality. They were also asked to indicate how helpful each
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contextual information was in answering the questions.
The process took 5 hours all together and experts were compensated 500 USD for their time.

2.5 TRINDs-LM Tool design and development

We developed the TRINDs-LM playground for researchers to understand how context impacts health
responses for LLMs, using Gemini Ultra as a base model. The user interface (Appendix A.1) allows
the user to input demographic information, lifestyle information, and symptoms. A summary is
then generated and input into the LLM. The model provides an output that includes the most likely
diagnosis, reason, and disease definition. The user interface also shows an interactive map of the
global disease incidence rate. The TRINDs research tool is available on request. The tool not meant
for clinical use.

2.6 Statistical analysis

We performed two-tailed student’s t-test (alpha=0.025) for statistical analysis to compare performance
between medical specific and general purpose models for each experiment, original and counterfactual
datasets, base and many-shot prompt tuned models, and LLM and human expert performance.

3 Results

3.1 LLM experimental results

3.1.1 Generalist (Gemini Ultra) and specialist (MedLM Medium) model performance on
persona variations

We found that overall performance with minimum instruction tuning and two-shot examples yielded
an accuracy of 61.5% for Gemini Ultra and 47.9% for MedLM for the original clinical personas
(Figure 1a). Gemini Ultra performance increased to 68.7% for the consumer versions, while MedLM
remained roughly the same at 46.0%. Performance of both models was reduced with the French
versions of the questions, with Gemini dropping significantly to 46.0% compared to MedLM which
dropped slightly to 46.0%. Overall the generalist gemini model outperformed MedLM, which might
be due to factors such as differences in model sizes, or overfitting of the MedLM tuned model to
specific datasets (Figure 1a).

3.1.2 Assessing Gemini model performance on varied combinations of attributes and factors

We found that symptoms, location and risk factors (SLR) enable the best model performance, followed
by the full persona (FP) of symptoms, location, risk factors and personal attributes (Figure 1c).
This implies that excluding personal attributes such as age and gender, may preserve privacy while
still maintaining beneficence. The worst performing contextual combinations were general and
specific symptoms (S) alone (46.8%), symptoms and attribute (SA) (44.91%) and general symptoms,
location, attributes and risk factors (gSLAR) (44.5%), demonstrating the need for both specific and
general symptoms, as well as other contextual factors such as location and risk factors to enhance
model accuracy. We also show performance per disease and find that the model performs best on
relatively widespread or distinctive diseases eg. Trachoma, HIV and Rabies, but performs worst on
less common or diseases with common symptoms eg. tuberculosis (Figure 2a).

3.1.3 Assessing Gemini model performance on counterfactual inputs

Location: We found that generally, the counterfactual location decreased performance across all
contextual combinations that included location (L), but performance was least affected in cases with
full persona (FP), or with the combination of general and specific symptoms, location and risk (SLR)
demonstrating the usefulness of including added contextual information (Figure 1b). Counterfactual
location caused the model to perform the worst when only symptoms were provided without any
additional context, or when either general symptoms or specific symptoms were provided even with
other information. This demonstrates the need to have both specific and general symptoms, plus
other contextual information for optimal performance. We find that this pattern is consistent across
the individual diseases (Figure 2b). Race: There were no statistically significant differences in

5



Figure 1: Model performance on persona variations. a) Generalist (Gemini) and specialist (MedLM)
model performance on clinical, consumer and French persona variations. b) Gemini model per-
formance on counterfactual location inputs. c) Gemini performance for contextual combinations
of attributes and factors and count. d) Gemini performance for race counterfactuals e) Gemini
performance for gender counterfactuals. Error bars are 90% confidence interval. *=p<0.025
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Figure 2: Per disease performance for LLMs and human experts, a) LLM performance on original
persona with different contextual combinations (5 repeated runs), b) LLM performance on location
counterfactual with different contextual combinations (5 repeated runs), c) Human expert performance
(top 5 out of 7 experts). Error bars are 90% confidence interval. Legend: S=symptoms(general
and specific), gS=general symptoms, sS= specific symptoms, L=location, A=attribute (age and
gender), R=risk factor, FP=full persona, Exp_Tot=total expert score, Exp_Maj = expert majority
score, Exp_Any = expert any/at least one score, Exp_All = Expert all score.
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performance across different racial counterfactual inputs, even though we note that performance for
“White race” counterfactuals increased slightly (Figure 1d). Gender: There were no statistically
significant differences in performance across different gender counterfactual inputs, even though we
note that performance for each of the gender counterfactuals was slightly higher than the original
persona (Figure 1e).

3.1.4 Assessing model performance on the demographic and semantic expansions

We found no significant difference for base Gemini (Figure 3 a,b) performance for clinical and con-
sumer variations on the expanded dataset. We found no significant differences between performance
of the base models on demographic and semantic variations (Figure 3a,b). This demonstrates that
models perform approximately the same on clinical style and consumer style questions which contain
the same information.

3.1.5 Impact of many-shot in-context learning with original persona set on model
robustness and generalizability

We found that in-context learning by providing the model with many-shot examples of the full
original set for each disease, significantly increased Gemini performance for demographic and
semantic augmentations, though less so for semantic augmentations(Figure 3 a,b). It also increased
performance on different styles of question inputs (semantics). This demonstrates that in-context
learning with a small set of high quality data improves model performance and robustness across
different demographics, locations and question styles.

3.2 Human expert baseline and data rating

3.2.1 Expert vs LLM performance:

Figure 3: Model performance on expanded dataset.
a) LLM performance on demographic clinical and
consumer augmentations (2635 each) and b)LLM
performance on semantic clinical and consumer
augmentations (2651 each). We compared the
base model, with the multi-shot tuned model.
****=p<0.00005

Seven experts filled out the baseline SAQs and
MCQs. We calculated the score for each expert
and selected responses for the top 5 scoring ex-
perts for each survey for further analysis. For
each question from the top 5 responses, we cal-
culated the (i) the Expert total score: sum of
the score from the 5 experts, (ii) Expert major-
ity score: full score (5/5) if the majority of ex-
perts had the correct answer else 0/5, (iii) Expert
any/at least one score: a full score (5/5) if any
one of the experts had the correct answer, and
(iv) Expert all score: a full score (5/5) only if
all the experts had the answer correct. TRINDs
experts tend to specialize and different special-
ists may do better on some diseases than others.
These combinations of expert scores simulate
real-world policy settings where a panel of ex-
perts may be used to come to a diagnosis in a
variety of ways.

For the SAQs dataset, Gemini performed signif-
icantly better than all the expert response com-
binations, except for the Expert Any/at least
one which was significantly better than Gem-
ini. For the MCQs, Gemini significantly per-
formed better than the Expert total and Expert
all scores, and significantly worse than the Ex-
pert Any score. There was no difference be-
tween Gemini and Expert majority performance
for MCQs (Figure 4a).
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3.2.2 Expert data rating and qualitative feedback:

Experts rated level of helpfulness of each of the contextual information in providing a diagnosis.
Symptoms were rated highest by most experts, followed by risk factors, location and then demograph-
ics attributes (Figure 4 c). This is in line with LLM results that indicate that symptoms, location
and risk factors are most important for LLM classification. On the dataset quality, experts generally
indicated high scores (4-5) for accuracy, completeness, range of tropical and infectious diseases
covered, geographic and demographic diversity, and timelines of the dataset (Figure 4 b). Experts
rated the level of difficulty of the questions as 3-4/5. The diversity in the style of questions-asking
was rated low with several experts commenting on the repetitiveness of the questions. Experts
recommended including the use of over-the-counter medications, less repetition in the question style,
improving the specificity of some of the symptoms, and the need for differential diagnosis. There
were also comments on improving the quality of the LLM-generated queries. One expert commented
on the inclusion of smallpox which has been eradicated for 40 years, but indicated the potential tie
to the ongoing Monkeypox (Mpox) epidemic. Experts also indicated the need for patient images to
provide more informative responses demonstrating the need for a multimodal version of the dataset.

Figure 4: Expert baseline and data quality rating. a)Expert baseline compared to LLM, b) Expert
rating of data quality, c) Expert rating of helpfulness of contextual information. Error bars are 90%
CI. *=p<0.05 ****=p<0.00005

4 Discussion

This work is motivated by the need to evaluate LLMs on tropical and infectious diseases which
present a potential out-of-distribution shift for LLM performance given that these tend to occur in
the global south which may have less representation in datasets used for LLM training [1, 2]. This
study confirms this distribution shift with the Gemini model achieving an accuracy of 61.5% and
MedLM achieving an accuracy of 47.9% on clinical-style questions, significantly lower than reported
performances on USMLE benchmarks (GPT: 90.2%, MedLM: 91.1% [16]). We find that simple
in-context prompting with the dataset, and potentially intentional training focus on these diseases
improves the LLM performance significantly. We find that Gemini Ultra performs better than MedLM
medium, however this is likely due to differences in model sizes.
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Our evaluations demonstrate that including additional context such as risk factors and location in
addition to symptoms also improves model performance. However indicating locations where the
disease is less likely to occur, reduces model performance. This has implications for LLMs that
may attempt to provide a disease diagnosis based on autorecognition of location without considering
contexts such as visits to endemic locations. On this dataset, we do not find significant differences
in LLM performance across race or gender. We also do not find any significant differences in
performance between different styles of question asking (semantic, clinical, and consumer variations).

Our analysis reveal that LLMs tend to more accurately identify common diseases, or diseases with
very specified symptoms such as Trachoma, Rabies and Yaws, while less common and less specific
diseases are mislabeled. For instance we find that LLMs mostly classify Hepatitis E as Hepatitis A,
though this was a common mistake among human experts as well.

Our human expert baseline finds that for both SAQs and MCQs, experts scored lower in accuracy on
the full context questions than the model except in cases where we looked at expert any/at least one
score. Avian influenza is an example of a disease that the LLM had trouble with, but that majority of
the experts got right. On the other hand the model got diseases like Giardiasis and Onchocerciasis
right, while most experts got these wrong. We do note that experts were asked not to consult any
external material, which would not be the case in real-world scenarios, and real world scenarios may
also provide confirmatory tests for the diseases.

Experts generally rated the dataset highly on axes of accuracy, completeness, timeliness and diversity
across tropical and infectious diseases. However they suggested improvements in diversity in question
asking styles, and addition of images to the questions where applicable.

Implications for Policy and Practice: Our findings demonstrate the discrepancy in LLM perfor-
mance on tropical and infectious diseases, compared to reported performance on USMLE questions,
identifying the need for contextual evaluation of LLMs that are used in clinical settings in the global
south - i.e the need for LLM usage to take into account contextual, regional-specific and patient-
specific factors. However, we also find that Gemini performs better on this dataset compared to
human experts for identifying TRINDs from text-based descriptions. For healthcare workers, our
findings highlight the potential of LLMs to serve as valuable decision-support tools, thus enhancing
clinical diagnostic accuracy in resource-limited settings. Notably, these tools should complement, not
replace, clinical judgment and should be balanced by continuous evaluation and refinement of these
models to maintain their relevance and reliability in diverse clinical settings.

Limitations and Future work: Limitations of this work include the focus on only disease clas-
sification, primary focus on English and primary focus on text-based queries. Future work could
explore evaluating other tasks such as management steps and treatments, additional languages and
multimodal datasets such as relevant disease-related images, or sounds from coughs and breathing.
Another limitation is that we used a relatively small sample size of experts, which may not represent
the breath of experience in this very broad subject area. Future work should look at a larger sample
size of experts reflecting geographic and sub-specialty diversity to improve expert assessment and
provide a more generalizable human expert baseline.

5 Conclusion

Overall this study finds that while LLM performance on providing a diagnosis of the tropical and
infectious diseases dataset is low, we find that experts performance is similarly low in most cases.
LLM performance improves with simple in-context learning with our dataset. We find that larger
generalist models outperform smaller specialist models. We underline the importance of context in
performance, noting that providing symptoms, risk factors and location outperform the provision of
symptoms alone to the LLM. This work provides a scalable methodology for evaluating LLMs for
health in global settings for out-of-distribution cases.
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Figure 5: TRINDs research tool showing user entry
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Figure 6: TRINDs research tool showing LLM output
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A.2 Examples of data/query types

This section shows the different data/query augmentations developed used for evaluations.

Figure 7: Contextual combinations of general symptoms,specific symptoms, location, risk factor and
attributes. The first combination is the original full persona containing all context

Figure 8: Location counterfactual with context combination
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Figure 9: Gender counterfactual of full persona

Figure 10: Race counterfactual of full persona

Figure 11: Language (French) and Multichoice formats
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Figure 12: Language model augmentations/expansions
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A.3 Sample Prompts

This section shows prompts used to generate LLM classification for open ended and multiple
choice questions. The section also shows sample prompts used to create the LLM demographic
Augmentations/Expansions

Figure 13: prompt for generating disease type
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Figure 14: prompt for generating multiple choice answers
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Figure 15: prompt for generating demographic augmentations/expansions
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A.4 Expert survey instructions

Figure 16: Instructions for experts completing short answer questions

Figure 17: Instructions for experts completing multiple choice questions
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims in Abstract are detailed in methods and results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the Limitations and future works section: 4

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

21



Justification: This work does not include theoretical assumptions and proofs
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully described the methods used in the methods section and further provide
the specific prompts, and examples of the dataset in the Appendix: A.2, A.3
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We do not provide the code or full dataset, however we reference the open-
source TRINDs dataset that was used in this work and can readily be downloaded. We
also detail examples of the data augmentation methods (Appendix A.2) as well as LLM
prompting methods (Appendix A.3)

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details of the models used in the methods section. We also detail
the prompting strategies as indicated above. 2.2

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars of confidence interval are reported in result figures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Unfortunately we did not record this information during the experiment.
However we use an internal compute cluster that has a total memory of 30GiB and CPU of
0.76 GCU.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work conforms with the code of ethics detailed.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We detail the broader impacts for evaluation. There are no obvious negative
impacts of the study.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Does not apply and we are not releasing data or models

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

[Yes]

Justification: We cite the original paper and authors that developed the original dataset in
the introduction section 1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New data assets are documented in the methods with examples provided in the
appendix. as detailed above.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We provide details on the methods we used for expert baselines and data
quality labeling. We also provide the detailed instructions for the SAQs and MCQs in
Appendix A.4
Guidelines: We detail under the methods: Human experts baseline ??, how the expert
baselines and data quality inputs were sourced. We also indicate the incentive provided to
the experts.
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We detail that the study was deemed IRB exempt by an internal ethics review
personnel.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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