Fast and Memory-Efficient Significant Pattern Mining via
Permutation Testing

Felipe Llinares-Lépez Mahito Sugiyama Laetitia Papaxanthos
D-BSSE, ETH Zirich ISIR, Osaka University D-BSSE, ETH Zirich
felipe.llinares@ JST, PRESTO laetitia.papaxanthos@

bsse.ethz.ch

mahito@ar.sanken.

bsse.ethz.ch

osaka-u.ac.jp

Karsten M. Borgwardt
D-BSSE, ETH Zirich
karsten.borgwardt@bsse.ethz.ch

ABSTRACT

We present a novel algorithm for significant pattern mining,
Westfall-Young light. The target patterns are statistically
significantly enriched in one of two classes of objects. Our
method corrects for multiple hypothesis testing and correla-
tions between patterns via the Westfall-Young permutation
procedure, which empirically estimates the null distribution
of pattern frequencies in each class via permutations.

In our experiments, Westfall- Young light dramatically out-
performs the current state-of-the-art approach, both in terms

of runtime and memory efficiency on popular real-world bench-

mark datasets for pattern mining. The key to this effi-
ciency is that, unlike all existing methods, our algorithm
does not need to solve the underlying frequent pattern min-
ing problem anew for each permutation and does not need to
store the occurrence list of all frequent patterns. Westfall-
Young light opens the door to significant pattern mining on
large datasets that previously involved prohibitive runtime
Oor memory costs.

Our code is available from http://www.bsse.ethz.ch/m
lcb/research/machine-learning/wylight .html

Categories and Subject Descriptors
H.2.8 [Database Applications|: Data mining

Keywords

Significant pattern mining; p-value; Multiple hypothesis test-
ing; Westfall-Young permutation

1. INTRODUCTION

Frequent pattern mining is a fundamental problem in data
mining, in particular in association rule mining [2]. In its
most popular instance, frequent itemset mining, a user is
given a database of transactions, each of which includes a
set of items. In its original application [1], each transaction

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).

KDD’15, August 10-13, 2015, Sydney, NSW, Australia.

ACM 978-1-4503-3664-2/15/08.

DOI: http://dx.doi.org/10.1145/2783258.2783363 .

725

represents the set of items purchased by a customer in a
supermarket. A frequent itemset is then a set of items that
co-occur in different transactions more often than a prede-
fined frequency threshold. Another prominent instance is
frequent subgraph mining in graph databases [19].

Significant pattern mining (or discriminative pattern min-
ing) extends the classic problem of frequent pattern mining
to two classes of transactions, such as cases and controls in
clinical studies [8]. The interest is in finding those sets of
items that occur statistically significantly more often in one
class than in the other.

This problem is fundamentally important in many appli-
cations, ranging from marketing to health care. For in-
stance, while frequent itemset mining tries to find prod-
ucts that are co-bought by all customers, significant pattern
mining tries to detect products that are co-bought signif-
icantly more often by elderly customers than by younger
customers. Similarly, frequent itemset mining may screen
electronic health records for combinations of drugs that have
frequently been administered to the same patients. In sig-
nificant pattern mining, however, we may be interested in
combinations of drugs that have been administered to pa-
tients who show severe side effects significantly more often
than to patients who show no side effects [14].

A critical problem in significant pattern mining is the mul-
tiple testing problem, which arises due to the fact that the
number of patterns tested for association with class mem-
bership is often in the millions or billions. If not properly
corrected for, significant pattern mining will retrieve a huge
number of false positives; that is, patterns deemed to be sig-
nificantly associated with class membership by mistake. In
most applications domains of data mining, from the natural
sciences to the social sciences, these patterns are often ex-
plored further in a time-consuming and cost-consuming ex-
perimental validation. Therefore, a high number of a false
positives is an enormous waste of resources in these fields.

In light of this multiple testing problem, current approaches
to significant pattern mining face at least one of the follow-
ing problems:

1. Many methods for finding patterns that are associated
with class membership do not correct for multiple testing
at all ([4, 10, 20, 35], see [36] for a comprehensive survey),
even those that report a measure of statistical significance
for this association [3, 5, 13, 32].

2. Other methods have corrected for multiple testing using
a naive Bonferroni correction, which leads to algorithms
that are unable to retain statistical power if the whole
search space is to be explored [27, 29, 28]. Therefore,
those methods require that arbitrary limits be set on the
maximum pattern size in order to keep the number of
patterns being tested for association small.

3. Recent approaches to correct for multiple testing in fre-
quent itemset mining [24, 18, 22], based on the seminal
work by Tarone [23], can work with arbitrary pattern
sizes, but do not consider the dependence structure be-
tween patterns, which is very important in pattern min-
ing due to the subset/superset relationship between pat-
terns. Ignoring this dependence leads to a loss of statis-
tical power; that is, the ability to detect truly associated
patterns.

4. The single approach to pattern mining that corrects for
multiple testing and takes pattern dependence into ac-
count [25] is expensive, either in terms of memory or run-
time, and is limited in its applicability to larger datasets.

Our goal in this article is to present an approach to signif-
icant pattern mining that corrects for multiple testing, takes
the dependence between patterns into account, and is effi-
cient in terms of memory and runtime.

Below we will describe the multiple hypothesis testing
problem in detail and discuss the current state-of-the-art
in significant pattern mining in Section 2. Section 3 intro-
duces our novel algorithm and the improvements it achieves.
The experiments in Section 4 show that our method outper-
forms existing techniques in two instances of pattern mining
(itemset mining and subgraph mining) across several data-
sets. Section 5 summarizes our key findings.

2. BACKGROUND

2.1 Problem Statement

Let T = {t1,t2,t3,...,tn} be a set of transactions de-
fined in a universe of m items. Each transaction (or sam-
ple) t; can be described by m binary features that indi-
cate whether or not the corresponding items are present in
the transaction. Thus, the transaction database 7 can be
encoded as a n X m binary matrix T. Furthermore, each
transaction is also tagged with a binary-class label attribute
C € {co,c1}. In the following, we call pattern a set of items
S ={l,la,...,lx}, l; €{1,...,m} of size k, and define the
binary random variable G(S,t;) = Ti1, AT, Ao ATy,
such that G(S,t;) = 1 if the pattern S is contained in
transaction ¢; and G(S,t;) = 0 otherwise. In other words,
G(S8,t;) is simply an indicator binary variable that takes
value 1 if pattern S is included in transaction ¢; and value
0 otherwise.

For each pattern S, we evaluate G(S,t;) for each transac-
tiont;, i = 1,...,n and build the following 2 x 2 contingency

table:

Variables | G(S,t) =1 G(S,t)=0 Row totals
C=c as ni1 —as n1
C=co s — as n—niy+as — s n—mny

Col totals Ts n—Is n

n denotes the total number of transactions, n; the number
of transactions with class label C' = ¢1; xs is the number
of transactions that include pattern S, i.e. the support of

726

pattern S and, finally, as is the number of transactions in
class c¢1 that include pattern S; that is, the support of
pattern S among transactions of class c;.

Intuitively, our objective is to decide if the observed value
of as indicates that pattern S is over-represented in one of
the two classes, which would the occurrence of the pattern S
within a transaction and the class labels dependent random
variables. In the next section, we describe how to carry out
that assessment in a statistically rigorous manner.

2.2 Statistical Association Testing

In statistical association testing, the goal is to determine
whether two random variables, such as G(S,t) and C' in our
setting, are statistically dependent or associated. Statistical
association testing is conservative, in that the null hypothesis
of no association or independence between the two random
variables is always assumed. Only when the data provides
very strong evidence against that assumption will the null
hypothesis be rejected and the random variables declared to
be associated.

When the two random variables to be tested for associa-
tion are binary, as is the case with G(S, t) and C, Fisher’s ez-
act test [11] is one of the most popular approaches. Fisher’s
exact test considers the margins (zs,n1,n) of the 2 X 2 con-
tingency table to be fixed. It can be shown that, under
the null hypothesis of independence between G(S,t) and
C, the cell count as follows a hypergeometric distribution
P(.|zs,n1,n):

Plas =al|zs,n1,n) = <nal> <Zs_n;>/<::s>

In order to quantify the evidence provided by the data
against the null hypothesis of independence, statistical as-
sociation testing uses the concept of p-values. A p-value is
defined as the probability of measuring an association that
is at least as extreme as the one observed in the data when
the null hypothesis of independence holds. Intuitively, the
smaller the p-value is, the less plausible the data appears to
be with the null hypothesis of independence.

In the context of Fisher’s exact test, extreme values of
association refer directly to the likelihood of observing a
given as = u. In other words, all events more extreme than
observing as = u are observing cell counts as = k that are
less likely to occur under the hypergeometric distribution
P(.|xzs,n1,n). Mathematically, the p-value is given by:

ps(u) = Z P(k|zs,n1,n)
k| P(klzg,n1,n)<P(u|zg,ni,n)
Thus, ps(u) is the cumulative probability of all possible val-
ues of the cell count as that are more unlikely than as = w.

In statistical association testing, an association between
the two random variables is deemed significant when the
p-value is smaller than the significance threshold «, which
must be fixed a priori. That is, a pattern will be declared
significant if ps(u) < a.

It can be shown that the probability of finding a false
association - that is, producing a false positive - will be
bounded above by a. Thus, if « is set to a low value, the
discovered significant patterns are more likely to be true as-
sociations. On the other hand, using low values of «a as
significant thresholds causes many true associations to be
missed as well. In other words, there is a trade-off between
Type I error (probability of discovering a false association)
and Type II error (probability of missing a true association)

that is controlled by a. The choice o = 0.05 is by far the
most common, although it generally depends on the partic-
ular application.

2.3 Multiple Hypothesis Testing

If a large number d of statistical association tests at level
« are performed as described in the previous section, the ex-
pected number of false positives will be approximately ad,
which will lead to a large number of false discoveries. There-
fore, rather than controlling the Type I error for each pattern
individually, it is advisable to control the FWER (family-
wise error rate), which is defined as the probability of pro-
ducing at least one false positive, FWER = P(FP > 0),
with FP denoting the number of false positives. To guar-
antee that FWER < «, one can apply a multiple testing
correction by changing the rule ps(u) < a by ps(u) < 6,
where 0 is said to be a corrected significance threshold. Ide-
ally, the problem to be solved is:

5" = max{§ | FWER(J) < a}

Note that it is desirable to maximize d because larger
values of the corrected significance threshold imply higher
power to discover truly associated patterns, as discussed
before. However, it is commonly not possible to evaluate
FWER(9) in closed form.

Thus, the most popular way to choose §, the Bonferroni
correction [7], uses a much simpler, suboptimal scheme that
substitutes FWER(d) by a loose upper bound FWER/(§) <
0d, leading to d5,, = a/d. Note, however, that: (1) the
Bonferroni approximation FWER(d) < dd assumes that all
patterns are mutually independent, leading to an overly con-
servative procedure; and (2) the Bonferroni correction is in-
effective in our settings, as unless an arbitrary, restrictive
limit is imposed on the maximum pattern size, d can be an
extremely large number and 4}, effectively 0.

Permutation testing

Alternatively, one of the most popular approaches for esti-
mating FWER(0) is a permutation-based resampling scheme
proposed by Westfall and Young [30]. The idea is as follows:
by randomly permuting the class labels of the transactions,
one can generate a new, resampled transaction database
for which no pattern S in the dataset is truly associated
with the permuted class labels. Thus, in this new dataset,
one can check if false positives have occurred by computing
Pmin = ming ps and checking whether pmin < §, in which
case at least one false positive occurred; that is, FP > 0.
If the whole procedure is repeated a sufficient number j, of
Jp

j=1>2

P(FP > 0) can be found as:

times (that is, j, = 10% or 10%), yielding a set { p{
good estimator of FWER(§) =
FWER(S) = — i1[U) < 5]

e = Pmin =
where 1[e] is an indicator function that takes value 1 if
its argument is true and 0 otherwise. It is then possible
to accurately estimate 6* as the a-quantile of {pl(f]i)n ;":1,
that is, choose §” such that a proportion « of the values in
{pY) }92., are below 6 and the remaining values are above
it.

Westfall-Young permutation testing compensates for the
dependence structure between patterns by directly estimat-
ing the joint null distribution of all test statistics, leading
to largely increased statistical power with respect to a Bon-
ferroni correction. The standard proof of FWER control for

727

Westfall-Young permutation testing relies on a sufficient, yet
not necessary, technical condition that is often hard to ver-
ify in practice; the subset pivotality condition. Nonetheless,
permutation-based testing approaches are extensively used
in practice and have produced numerous meaningful discov-
eries in such fields as computational biology [34, 33, 17].

However, Westfall-Young permutation testing can be ex-
tremely computationally demanding. Generating a single
sample pgi)n naively requires the enumeration of all patterns
and the computation of all their corresponding p-values,
which is infeasible except in toy problems. More impor-
tantly, in order to obtain a reliable estimate of FWER(4), a
number of permutations in the order of j, = 10% or j, = 10*
are required. Thus, a priori, applying permutation-based
testing to significant pattern mining is a challenging prob-
lem. Circumventing this computational limitation is our
main goal in this article.

2.4 The FastWY Algorithm

To the best of our knowledge, the work of Terada et
al. in [25] has been the only previous attempt to make
permutation testing in significant pattern mining tractable.
Those authors proposed FastWY, an algorithm that uses
inherent properties of discrete test statistics and succeeds
in reducing the computational burden that the Westfall-
Young permutation-based procedure entails. We introduce
FastWY below, since we share the same problem setting and
the key concept of the minimum attainable p-value. FastWyY
will be used as a baseline in our experiments.

The p-value for a given 2 x 2 contingency table in Fisher’s
exact test, or any other test statistic that assumes the mar-
gins xs, n1 and n fixed, is a function only of the cell count
as. Since 2 X 2 contingency tables are discrete objects,
as can only take a finite number of values; that is, as €
las,min, as,maz] With as,min = max(0,zs — (n — n1)) and
a8,max = min(zs,n1). Thus, there exists a minimum at-
tainable p-value ¥(xs)' strictly greater than 0:

U(zs) = min{ps(u) | as,min < u < a8 max }

For Fisher’s exact test, as the p-value is a sum of positive
terms, the minimum attainable p-value W(zs) is reached
when as = as,min Or as = as,maz and can be computed
as a simple function of the pattern support xs. Related
to the minimum attainable p-value, we also introduce the
set of testable patterns at significance level 6, Zr(8) = {S |
U(zs) < 6}. The word testable refers to the fact that, by
definition of ¥(zs), it is impossible for patterns not in Zr(0)
to be significant at level 6.

In [24], Terada et al. introduced a monotonically decreas-
ing lower bound \i/(:rs) on the true minimum attainable p-
value ¥(zs):

as) = {f/(f)) maen
ni -
and define Z7(8) = { S| ¥(zs) < § }, which always satisfies
Zr(8) C Zr(8). While this introduces some untestable pat-
terns in the surrogate set Zr (), one can rewrite Zr(6)
{Slzs > o(8)} with o(6) = ¥~() and ¥1(5) well-
defined due to monotonicity. This is an important obser-
vation, as it links retrieval of the sets Zr(8) to an instance

"W (zs) also depends on the margins n1 and n but, since
those are the same for all patterns we drop them to simplify
the notation.

of frequent pattern mining, leading to a tractable scheme to
enumerate testable patterns.

FastWY also exploits this concept. It is based on a decre-
mental search scheme, which starts with the support o = n;.
For each o, a frequent pattern miner is first used as a black
box to retrieve the set Zr (o). The p-values ps are then com-
puted for all S € Zr (o) and ply, = min{ ps |S € Zr(o) } is
evaluated. If p/;. < ¥(0), no other pattern can make ply;,
smaller and, therefore, pl;, = pmin. Otherwise if pl;, >
\i/(a), o is decreased by one and the whole procedure is re-
peated until the condition pl,;, < \i/(a) is satisfied.

If jp permutations are needed to empirically estimate the
FWER, the procedure must be to repeated j, times. This
includes the sequence of frequent mining problems needed
to retrieve the sets Zr (o) for each support value o used
throughout the decremental search. Given the usual range
of values for j,, such an approach is as infeasible in practice
as the original brute force approach.

Inspection of the code, which the authors kindly shared on
their website, reveals that the actual implementation of the
algorithm is different from the description in [25]. Indeed, to
avoid repeating the whole frequent pattern mining process
Jp times, the authors resort to storing in memory the realiza-
tions of the variables G(S,t;) for all S € Zr(o),i=1,...,n
and every value of ¢ explored during the decremental search.
This decision corresponds to a drastic trade-off between run-
time and memory usage, leading to severe scalability limi-
tations when the method is applied to even mid-sized data-
sets, but it is an effective way to have acceptable runtime
for small-sized problems like the ones considered in [25].

Moreover, the algorithm requires computing all { p%) p
exactly, even if only the [ajp | smallest values in that set are
actually involved in the computation of 6" as the a-quantile
of the set. This is problematic since ¥~*(§) is a monotoni-
cally decreasing function, which means that the larger pfﬁi)n
is, the smaller the minimum support for frequent pattern
mining will be, requiring more enumeration runtime. Fur-
thermore, if j, is large, there is a high probability that some

of the pgi)n will be rather large, creating a bottleneck in
the algorithm. Nonetheless, a priori, it seems unclear how
the [ajp| smallest values in {pfﬂi)n 27, could be identified
without first evaluating them all.

In the next section, we propose a novel algorithm, Westfall-
Young light, which overcomes all the scalability limitations
of FastWY, leading to a large-scale, permutation-based sig-
nificant pattern miner with FWER, control.

3. WESTFALL-YOUNG LIGHT

In this section we present our contribution, the Westfall-
Young light algorithm. Subsection 3.1 describes the method,
starting from its pseudocode and then explaining the differ-
ent steps in detail. Subsection 3.2 discusses the theoretical
foundations of Westfall-Young light, proving that it provides
exactly the same solution as Westfall-Young permutation-
testing. Finally, in Subsection 3.3 we analyze all the im-
provements that Westfall-Young light provides over the cur-
rent state-of-the-art method, FastWY.

3.1 The Algorithm: Westfall-Young Light

The pseudocode of Westfall-Young shown Algorithm 1 is
composed of two parts: (1) the initialization part, function
Westfall-Young Light; and (2) the core function Process-

728

Algorithm 1 Westfall-Young light

1: Input: Transaction database T, class labels ¢, number of
permutations jp, and target FWER «

2: Output: Corrected significance threshold §*
3: function Westfall-Young Light(«, jp, T,)
4: for j=1,...,jp do
5: c() « randperm(c)
6: pt(f‘?n «—1
7 end for .
8: o+ 1,0+ ¥(o)
9: ProcessNext(root, n)
10: Return a-quantile of {pgi)n}b
j=1

11: end function
12: function ProcessNext(S, zs)
13: Compute p-values ps(u) for all u € [as min, @S, max]
14: for j=1,...,jp do
15: Compute ag)
16: pU) < min{p{) ps(ag’)}
17: end for) _
18 FWER(S) « - 277, 1 [pl3), <]
19: while FWER(4) > o do
20: o o+1,8« V(o)

. 15~
21: FWER(S) L 5% 1[p), <]
22: end while
23: for S’ € Children(S) do
24: Compute xg/
25: if 5, > o then
26: ProcessNext(S’,zg/)
27: end if
28: end for

29: end function

Next, which processes each enumerated pattern and contin-
ues the enumeration recursively in a depth-first manner.

Westfall-Young Light function

First, in Lines 4-7, we precompute all j, permuted class la-
bel vectors ¢, which can be stored as a binary matrix of
size n X jp. The set of minimum p-values for each of the
Jp permutations, {pg‘i)n }‘;-":1, is initialized to 1; that is, the
maximum value a p-value can take. Next, Lines 8 and 9 ini-
tialize the minimum support ¢ to 1 and compute the corre-
sponding corrected significance threshold § as the minimum
attainable p-value for patterns with support o. Note that
the choice o = 0 is trivial, as the corresponding § would be
0 = 1, deeming all patterns both testable and significant.

After initialization, we must start the pattern enumera-
tion procedure. Patterns are enumerated as nodes of a tree
such that children S’ of a pattern S have supports r5 < rs.
This is a common assumption for classical pattern mining
problems such as itemset, subgraph, or string mining [24,
22, 17]. Line 12 begins the enumeration process at the root
of this tree by calling the ProcessNext function, which will
continue enumerating patterns by exploring the tree with a
depth-first strategy. Note that if the pattern tree has no
clear root, one can always define a dummy root as an empty
itemset without loss of generality.

ProcessNext function

The ProcessNext function processes every enumerated pat-
tern S, one at a time.

First, in Line 13, we precompute all possible p-values for a
hypergeometric random variable with parameters zs, n1 and
n. This precomputation technique is one runtime improve-

ment in our algorithm. It is a consequence of the fact that,
for fixed zs, n1 and n, the computational complexity of eval-
uating Fisher’s exact test p-values ps(as) for a single value
of as or for all as € [as,min, @s,max] is the same and equal
to O(min{zs,n1}). This property can be readily checked
from the definition of Fisher’s exact test, since the main
computational burden is evaluating the probability mass of
the hypergeometric random variable with parameters zs, n1
and n, a computation that can be shared across all j, per-
mutations. This reduces the computational complexity of
this step from O(jp, min{zs,n1}) to O(min{zs,n1}), with
jp = 10*. Thus, this novel “trick” makes the time com-
plexity of evaluating Fisher’s exact test negligible. Such an
optimization is only possible if all j, permutations are pro-
cessed at the same time for each pattern S; therefore, it is
not feasible with the decremental scheme of FastWY.

In Lines 14-17 we compute the cell counts a for all per-
mutations j = 1,. .., jp and fetch the corresponding p-values
P = ps(afsj)), updating pgi)n if pL < pfﬁi)n if needed. We
then also update the current estimate of the FWER at level
¢ in Line 18. Next, between Lines 19-22, we check if the
current estimate of the FWER is too large; that is, above
the target FWER «. If it is, we must decrease the current
threshold § by increasing the minimum support ¢ until the
empirical FWER is again below «. Note that every time
o is increased, § decreases, which means that the empirical
estimate of the FWER must be updated.

Finally, between Lines 23-28, the pattern enumeration
process continues; the pattern tree is explored in a depth-
first manner along every child of pattern S that is frequent
at the current support o.

This combination of frequent pattern enumeration and
adaptive threshold adjustment continues until all patterns
for a certain minimum support oy have been enumerated.
That is, oy is the minimum support when Westfall-Young
light finishes. Then, the original call to ProcessNext in
Line 9 is completed and the algorithm terminates by return-
ing the solution 6 as the a-quantile of the set {pm »

min Jj=1"

3.2 Correctness of Westfall-Young Light

In this subsection, we will prove that Westfall-Young light
correctly obtains the optimal 6* based on the Westfall-Young
FWER estimator.

THEOREM 1. (Correctness of Westfall-Young Light) The
Westfall- Young light algorithm returns the exact solution to
0" = max{d | FWER(J) < a}, where FWER(0) is the empir-
ical Westfall-Young FWER estimator FWER(§) = i i

j=1
1 [p(j) < 6] described in Section 2.3.

The proof of Theorem 1 is based on exploiting the follow-
ing properties of the FWER:

PROPOSITION 1. For a fized §, processing a new pattern
S can never make the empirical FWER estimate decrease.

PrOOF. Let M be the current set of patterns and S be a
new pattern. We have min {pgr | R € M U{S} } < min{pr |
R € M} and hence 1[min{pr | R € M} <] < 1[min{pr |
ReMU{S}}<é]. O

PROPOSITION 2. FWER(8) with § < ¥(c—1) can be eval-
uated exactly using only the p-values of patterns with support
xrs > o.

PROOF. First note that zs > 0 < S € Zr(¥(0)). Let
Phoin = min{ ps | S € Zr(¥(o)) }. If plin > 6 then pumin > 6,

729

because ps > W(o —1) > § VS & Zr(¥(0)) by definition of
Zr(e). Thus, 1[pmin < 8] = 1[pln < 6], O

PrROOF OF THEOREM 1. Proposition 1 guarantees that ev-
ery time FWER(§) > « in Line 20 of Algorithm 1, we know
that 6* < § and must therefore decrease the current thresh-
old 4. This is because even if the current estimate FWER(0)
is still noisy due to the many remaining patterns not yet pro-
cessed, we know that processing further patterns will only
make FWER(4) larger.

Finally, Proposition 2 guarantees that, at convergence,
Westfall-Young light has all the information it needs to com-
pute 6*. Let oy be the minimum support at convergence and

05 = U(oy) the associated corrected significance threshold.
Similarly, let 07 prev = W(of — 1) be the immediately pre-
ceding corrected significance threshold.

By construction of the algorithm, FWER(d;) < a and
FWER(d#,prev) > a. Thus, 6" € [d¢,d¢,prev). By Proposi-
tion 2, we can then only evaluate exactly FWER(J) for all
0 < 0fprev, but since 0* < df prev, that is all we need. In
fact, this implies that our algorithm does not waste time
computing exactly the values of {pgi)n ;":1 that are above
0", translating into a much larger final minimum support oy
for pattern enumeration. []

3.3 Improvements over FastWY

Compared to the current state-of-the-art FastWY, our
proposal improves the following scalability aspects:

(I1) Instead of a decremental search strategy, it is based
on an incremental search strategy, which recent studies
have shown to be more efficient than decremental search
[18, 22]. The incremental search is implemented in the
initialization of the support ¢ in Line 8 of Algorithm 1
and when o is updated in Line 20.

(I2) It computes the solution §* enumerating the frequent
patterns only once, instead of j, times. Moreover, it
does so without any non-scalable memory overheads
such as storing G(S,t;) for all S € Zr(0),i = 1,...,n.
Indeed, Line 25 prunes the patterns according to the
support zs. Non-pruned patterns are processed using
the function ProcessNext, which computes the j, p-
values corresponding to all j, permutations simultane-
ously. There is no longer any need to repeat pattern
mining once per permutation or store occurrence lists
G(S,t;) in memory.

(I3) It does not need to compute the |(1—a)j, | largest val-

ues of {p](f")n ;":1 exactly, which greatly increases the

minimum support for pattern enumeration and thus re-
duces the runtime. It also decreases the number of cell
counts that need to be evaluated, further reducing the
overall runtime. This is a consequence of the incremen-
tal search strategy described in the previous point and
the natural stopping criteria of the method via end-
ing of the depth-first enumeration recursion of function
ProcessNext.

(I4) It uses an efficient scheme to share the computation of
p-values across permutations, reducing the correspond-
ing runtime for that task by a factor of jp, with j, in
the order of 10*. Therefore, the runtime for p-value
evaluation in Westfall-Young light is negligible for all
practical purposes. This is implemented via the pre-
computation of p-values in Line 13, which involves time
complexity O(min{n;,zs}) independent of j, and neg-

a Overall runtime b Runtime improvement of (12) and (14)
105+ —O— Westfall-Young light A\ 5
_ —/\— FastWy /é' 1
) /,é(@
g g 10
5 5
5 102 5 10 —(QO— LCM with incremental scheme with final minimum support of Westfall-Young light
o o
2 13 --+- - LCM with decremental scheme with final minimum support of Westfall-Young light
] n]
107" —/\— LCM with decremental scheme with worst case minimum support of FastWY
1 T T T T T T T T T T T T T T
1000 5000 20000 100000 1000 5000 20000 100000
n n Memory improvement (13)
f —(Q— LCM with final minsup. of .
c Overall memory usage d Memory improvement of (12) e Westfall-Young light f Memory improvement (14)
—QO— Westfall-Young light —QO— Permutation matrix —/\— LCM with worst case —/\— p-value cache in FastWyY

@ 10°1 —\— Fastwy @ 10° —\— Frequent patterns o 10° minsup. of FastWy o 10°

= £ % = = =

o 104 o @ A o

10 2 10° 2 10° o 2 10° A

[« 12} 12} /é‘

S 0 3 3 g S

> z 2 z _bx

S S 10 s 10 s 10

£ 10° § & 5 5 L

= = = =

107"

=)

i

T

2

107"

L — L —
5000 20000 100000
n

T
1000

T T L —
5000 20000 100000
n

1000

L — T T
5000 20000 100000
n

L — T T T
5000 20000 100000 1000

n

T
1000

Figure 1: Simulation results. Runtimes beyond 12 hours are extrapolated. Note that both the xz- and y-axes have logarithmic

scale. Data show means+SD in 10 trials.

ligible storage complexity. Then, for each permutation
7, we simply fetch the corresponding p-value from the
precomputed ones. In contrast, FastWY caches every
p-value computation in memory, creating an additional
memory overhead.

In the next section, we empirically demonstrate that, as a
consequence of improvements 1-4, Westfall-Young light has
much better memory-usage scaling and can be up to three
orders of magnitude faster in real-world data than FastWY.

4. EXPERIMENTS

We evaluate our proposed method Westfall-Young light on
a wide range of synthetic and real-world datasets in two rep-
resentative data mining problems: significant itemset min-
ing and significant subgraph mining, compared to the current
state-of-the-art FastWY.

4.1 Experimental Setup

Both Westfall-Young light and FastWY were written in
C/C++. Since FastWY was implemented in Python by its
authors, we reimplemented it in C/C++ for a fair compari-
son. This new implementation of FastWY used as a baseline
is about two or three orders of magnitude faster and reduces
the amount of RAM used by one or two orders of magnitude.

As a frequent closed itemset miner, we chose LCM version
3 [26] for both Westfall-Young light and FastWY. LCM has
been shown to exhibit state-of-the-art performance in a large
number of datasets and won the FIMI’04 frequent itemset
mining competition [12]. The code was compiled using In-
tel C++ compiler version 14.0.1 and executed on a single
2.7 GHz Intel Xeon CPU with 256 GB of memory. In sub-
graph mining, we employed Gaston [19] as a frequent sub-
graph miner? because it is reported to be one of the fastest
algorithms [31]. The code was compiled with gcc 4.8.2 and
run on a single 2.5 GHz Intel Xeon CPU with 256 GB of
memory.

2Code available from http://www.liacs.nl/"snijssen/ga
ston/iccs.html

730

4.2 Evaluation on Synthetic Data

First we analyze Westfall-Young light on synthetic data to
evaluate the improvement of overall runtime and memory
usage compared to FastWY and the contribution of each
improvement from (I1) to (I4) in Section 3. Note that (I1)
and (I3) contribute to the runtime efficiency and (12), (I3),
and (I4) to the memory efficiency.

We randomly generated a set of transactions with n/n; =
2 and m = 10%, where the size of each transaction is 50, and
we varied n from 10® to 10°. Then 10 true causal itemsets
81, ..., S10 with |S;| = 5 were prepared, which were also ran-
domly generated from the same domain of items, and each
transaction with the label 1 contains one of those itemsets.

Results are plotted in Figure 1. The overall runtime in
Figure 1la clearly shows that Westfall-Young light is one to
two orders of magnitude faster than FastWY, and the dif-
ference gets larger as n increases. To explore the reason for
this difference, we solely ran LCM with the decremental or
incremental scheme, omitting the computational effort for
permutation testing that is shared between methods. In ad-
dition, to separate the improvement (I1) and (I3), we also
ran LCM with the decremental scheme by using the final
minimum support obtained by our method. In our results,
plotted in Figure 1b, the difference between a green line and
a green dashed line shows the contribution of (I3), and the
difference between a green dashed line and a blue line shows
the contribution of (I1). Therefore, our improvement (I1) of
employing the incremental search strategy is crucial for the
efficiency.

The peak memory usage of our method is larger than that
of FastWY if n is small, but gets smaller once n exceeds 10*
and is an order of magnitude smaller if n > 5-10* (Fig-
ure 1c). This comes from the aggregation of our three im-
provements (I2), (I3), and (I4), the contributions of which
are demonstrated in Figures 1d, e, and f, respectively. Fig-
ure 1d shows the memory usage for a permutation matrix
in our method (green) and storing all frequent patterns in
FastWY (blue). We can see that the amount of memory
for storing frequent patterns finally exceeds that for a per-
mutation matrix. This is due to the number of frequent
patterns exponentially increasing with n, while the amount

Table 1: Characteristics of itemset mining datasets. n and n; are the number of transactions in total and in the minor class,
respectively, m is the number of items and |t|/n the average transaction size. n/n; is shown only for labeled datasets.

p S o 4
o) Q — 3 =)
& sl e | Bl sl 5 s 2= 8] 2| s
8 Q 2 g 2 S & 2 © s a 2,
% < R 2 < 0 kot a =) 2
1 15} = - =} g Q = E
g © o = = 3 g S 7 ~ = =
A - = £ g © £ = = &
m jas] B =
958 3196 3279 8124 | 12773 | 49046 | 67557 | 77512 | 88162 | 100000 | 100000 | 515597
n/n1 | 2.89 — 7.14 2.08 11.31 — — — — — — —
m 18 75 1554 117 1129 7117 129 3340 16470 870 942 1657
[t]/n] 6.93 | 37.00 | 12.00 | 22.00 6.70 50.48 | 43.00 4.62 10.31 10.10 39.61 6.53

Table 2: Characteristics of subgraph mining datasets, where |V| and | E| denote the number of vertices and edges, respectively.

— — = — 5]
>
F|ElE|2 |2 2|8 alz|z2]8|5]|8%
s | o o | o slslgl 22 ¢ Sl 218
~ SlE S |E |7 |5
n 581 | 584 | 576 | 563 | 188 | 600 | 1178 | 4208 | 27965 | 4256 | 80581 | 900
n/ni | 323 | 374 [3.18 | 3.15 | 2.08 | 2.00 | 242 | 2.00 | 17.23 | 2.00 | 838 | 3.10
ax[V] | 181 | 181 | 181 | 181 | 28 | 126 | 5748 | 462 | 462 | 462 | 482 | 239
max[E| | 181 | 181 | 181 | 181 | 66 | 149 | 14267 | 468 | 468 | 468 | 478 | 255

of memory for storing a permutation matrix scales linearly.
Moreover, the improvement (I3) results in less memory us-
age in LCM (shown in Figure le) due to a larger minimum
support, and (I4) saves the extra amount of memory for
the p-value cache in FastWY in Figure 1f. Interestingly, the
overall memory usage decreases if n = 2-10°. This is because
the final minimum support rises, resulting in less memory
usage in LCM as shown in Figure le.

4.3 Evaluation on Real Data

Itemset Mining Datasets: We used four labeled data-
sets: TicTacToe®, Inetads?, Mushroom, and Breast cancer.
The first three are commonly studied datasets taken from
the UCI repository and Breast cancer is described in [25].

In addition, we used eight unlabeled datasets from the
well-known public benchmark datasets for frequent itemset
mining [12]: Bmspos, BmsWebview, Retail, T1014D100K,
T40-110D100K, Chess, Connect and Pumsb-star. Since la-
bels only affect the algorithm via n and n; as far as finding
the corrected significance threshold 6 is concerned, we con-
sidered two representative cases: m/ni = 2 or 10. Higher
ratios m/ny are usually more computationally demanding.
This results in a total of 20 different cases to be tested. The
main properties of each dataset are summarized in Table 1.

Subgraph Mining Datasets: We used 12 labeled graph
datasets: four PTC (Predictive Toxicology Challenge) data-
sets®, MUTAG, ENZYMES, D&D®, and four NCI (National
Cancer Institute) datasets”, where ENZYMES and D&D are
proteins and others are chemical compounds. These data-
sets are popular benchmarks and have been frequently used
in previous studies (e.g. [16, 21]). Graph nodes are labeled in
all datasets and edges are also labeled except for ENZYMES
and D&D. In the four PTC datasets, graphs labeled as CE,

%https://archive.ics.uci.edu/ml/datasets/Tic-Tac-T
oe+Endgame
‘https://archive.ics.uci.edu/ml/datasets/Internet
+Advertisements
Shttp://www.predictive-toxicology.org/ptc/
SMUTAG, ENZYMES, and D&D are obtained from
http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/
Graphkernels/data.zip
"https://pubchem.ncbi.nlm.nih.gov/

SE, or P were treated as positive and those of NE or N as
negative, the same setting as in [15]. The properties of these
datasets are summarized in Table 2.

Note that the number of nodes in subgraphs is bounded
by 15 in NCI1, NCI109, and NCI220, 10 in MUTAG, NCI41,
and NCI167, and 8 in ENZYMES such that the comparison
partner, FastWY, can finish in a reasonable time, allowing us
to check its peak memory consumption. For example, in EN-
ZYMES with the maximum subgraph size 10, our method
takes 3.6 hours while FastWY did not stop after two weeks.
In D&D and the four PTC datasets, the size of subgraphs
is unlimited.

Runtime and memory usage

As the main result, we compare the runtime and memory
usage of our method Westfall-Young light and the compari-
son partner FastWY for all 20 itemset mining cases and 12
subgraph mining datasets. In both algorithms, the number
jp of permutations is the only parameter and is set j, = 10*.
We defer the discussion about the effect ofj, to the end of
this section. The target FWER « is never to be treated as
a parameter, but as a user requirement fixed a priori before
seeing the data. Here we use a = 0.05, which is the most
standard choice across different scientific disciplines.

The results for significant itemset mining are summarized
in Figure 2, and those of significant subgraph mining are
summarized in Figure 3. Overall, our algorithm Westfall-
Young Light tends to be two to three orders of magnitude
faster than FastWY in itemset mining and one to two orders
of magnitude faster in subgraph mining. The exact differ-
ence in runtime is dataset-dependent, but there is a clear
trend showing that, for large-scale datasets, the runtime gap
between FastWY and Westfall- Young light increases sharply.

Even more importantly, six out of 20 significant itemset
datasets correspond to the datasets Chess, Pumsb-star and
Connect, for which FastWY crashed due to excessive mem-
ory requirements. Indeed, as far as memory usage is con-
cerned, we see two different situations: (1) in 17 out of 32
datasets, both methods use approximately the same amount
of memory (up to the order of magnitude); (2) in the oth-
ers, the peak memory usage of FastWY is much larger than

731

NN Fastwy

Emm Westfall-Young light]

—
0
-
()
S
=
c
o
)
>S5
[v]
(9]
X
i
-1
10w,\,~m Lo s o~ o o~~~ o~ o~ o~~~
ONOUE(DNONONONONONONO
er—cﬁggt-—c:.—c;.—uV.—«;.—c;.—i;H
w = z = - C = = =
T »n v = © o =
I—m&cﬁgﬁaoﬁﬁj%ﬂmgégggg
,Esw—ju.d‘zcw>._ivul_.o'_.omo_
F O c© soaa P c B> TF35 €0
(@] T W o O c OO o a 8 & €
¢ E VWO o=z S o
= £ o = S X 29 o
o 2 [—
=2 EE Fggs
& o £ FE S
o ~
(a) Runtime
l” Max RAM (256 GB) N FastWY EEE Westfall-Young light Bl LCM
[an]
=
<
()
()]
®©
]
>
>
—
£
(]
=
-1
10mAAm Lo~ s o~ o~ o~ s~ o~ o~~~
ONOUEMNONONONONONONO
EVHsgg:.—u:.—«;HVH;.—«;H;H
n = =) z = - C = c =]
T n o = T o =
}—m&cﬁﬁﬁ%mﬁ&%ﬁmgggégg
O c o - 35 P8 c032 0o 83353 0 a
F O < w o P cco>ax 00 085 g0
O S g wa o c 0 o o< a a e
9 E @O o=z W = o [
= £ o = S X2 g o
m > 0 S
a S <) - o o &
a £ - = < O
o L
o =
(b) Peak memory usage

Figure 2: Performance comparison between Westfall-Young
light and FastWY in itemset mining with j, = 10%. Num-
bers attached to dataset names denote the class ratio n/n;.

that of Westfall-Young light, in some cases soaring up to the
point in which the algorithm simply breaks down. It should
also be noted that for most of the 17 datasets in which both
methods have a similar memory footprint, the frequent pat-
tern miner (LCM or Gaston) is responsible for almost the
entire memory usage, which means there is little room for
improvement. In general, the trend for the memory usage
gap is similar to that for the runtime gap: FastWY only
works properly in small-sized problems and shows poor scal-
ing characteristics in larger datasets. With respect to mem-
ory usage, this is clearly due to the need to store G(S,t;)
for all S € fT(U),i =1,...,n. As a consequence, the peak
memory overhead of FastWY scales with the number of fre-
quent patterns enumerated by the algorithm, which tends
to increase exponentially with the database size and den-
sity. In contrast, Westfall-Young light has a much smaller
memory overhead that does not increase with the number of
frequent patterns; it only increases linearly with the number
of transactions n.

The actual memory usage of FastWY for the six out of
20 significant itemset mining datasets in which it crashed is
actually only lower-bounded in Figure 2b; the numbers we
plotted are a conservative lower bound on what the actual
memory usage would have been, obtained simply by count-
ing the number of testable patterns processed by Westfall-

732

NN Fastwy

EE Westfall-Young light]

Execution time (s)

PTC(MR)
PTC(FR)
PTC(MM)
PTC(FM)
MUTAG
ZYMES
D&D
NCI1
NCl41
NCI109
NCI167
NCI220

EN

(a) Runtime

l- FastWY mEE Westfall-Young light BB Gaston

Memory usage (MB)

PTC(FR)
PTC(FM)
MUTAG
D&D
NCI1
NCI41
NCI109
NCI167
NCI220

4
=
[}
£
[N

PTC(MM)
ENZYMES

(b) Peak memory usage

Figure 3: Performance comparison between Westfall-Young
light and FastWY in subgraph mining with j, = 10* per-
mutations. The memory usage due to Gaston is included.

Young light and computing the amount of memory needed
to store G(S,t;) for all S € Zr(0),i = 1,...,n. This ne-
glects: (1) all memory needed by LCM itself; (2) the fact
that FastWY produces many more testable patterns due to
computing the entire set {pgi)n }i2, exactly.

Final minimum support for frequent pattern mining

Since FastWY computes all values {pl(f]i)n };":1 exactly, the
final minimum support for frequent pattern mining is deter-
mined by max; pgi)n. In contrast, Westfall-Young light has
its final minimum support determined by the [ajp| largest
values only. The impact on the final support is shown quan-
titatively in Figure 4. It can be seen from the figure that,
in most datasets, the final minimum support of FastWY is
considerably larger than that of Westfall-Young light.

Most databases obey a power-law distribution, which makes
patterns with low supports much more abundant than those
with large supports. This effect is particularly harmful for
FastWY as the memory overhead needed to store G(S,t;)
for all S € fT(O'),i = 1,...,n scales with the number of
frequent patterns at the final minimum support.

Statistical power of permutation-testing

Measuring the resulting FWER is a powerful proxy to com-
pare the statistical power of several FWER-controlling meth-
ods. Optimal schemes should achieve a FWER as close as
possible to o without it ever being larger. If FWER < «,
the method is overly conservative, and will therefore have a
higher probability of missing true positives. In this section,

BN FastWY EEE Westfall-Young light]

30
25¢
=
)
8 20
Q
S
o 15+
©
c 10r
£
51
[—_ A~ o~ o~ A~~~ o~~~
S 84 € § § @ § & § 8 8§ & N °
F & 9 O - A = 4 = 4 = A = «
e & 8 2 3 T = S v v g C
£ 2 s 8% 323568 %8 % 83
o £ w S © 9 & © © © o g
= S ¥ 3 S x © = S = O Q
= s 2 g 3 r O =4 o = £ ©
2 © § 0 6 o o &
£ = 2 S ¥ = 9 @
mEV’ A~ o o ¢
a E P EFE S
@ =
(a) Itemset mining.
[mmm Fastwy —mmm Westfall-Young light

Final support

PTC(MR)
PTC(FR)
PTC(MM)
PTC(FM)
MUTAG
ENZYMES
D&D
NCI1
NCl41
NCI109
NCI167
NCI220

(b) Subgraph mining.

Figure 4: Comparison of final minimum support between
Westfall-Young light and FastWY. Datasets for which
FastWY crashed due to memory limitations were excluded.

we compare the resulting FWER of Westfall-Young permu-
tation testing-based methods to that of LAMP, dpamp [24],
which is the first prominent method that controls the FWER
in significant pattern mining. LAMP applies an improved
Bonferroni correction that also exploits the concept of mini-
mum attainable p-value ¥(zs), but does not correct for the
dependence between patterns, thus making it a baseline to
measure the statistical power of Westfall-Young permuta-
tion testing approaches. Note that the resulting FWER of
FastWY and Westfall-Young light is identical since both use
the same underlying statistical procedure.

As far as parameters are concerned, we must only deal
with the number j, of permutations. Intuitively, the trade-
off involved when setting jj, is clear: the larger j,, the more
precise the estimation of ¢ will be at the expense of in-
creased runtime. To illustrate the effect of changes in the
number j, of permutations, we executed Westfall-Young
light for 10 different values of j, between j, = 10° and
jp = 10* in steps of Aj, = 10%. For each pair (dataset,
Jjp) we repeat the execution 100 times and show the me-
dian empirical FWER as a function of j,, along with the
corresponding 5%-95% confidence interval.

We depict the results for four sample datasets due to space
considerations: two datasets in itemset mining (BmsWeb-
view and T40I10D100K) in Figure 5 and two datasets in
subgraph mining (ENZYMES and NCI220) in Figure 6. As
the figure shows, the median FWER appears to be fairly sta-
ble to changes in j, and, more importantly, the spread of the
empirical FWER saturates at about j, = 10*. Therefore,
we believe j, = 10* to be the safest parameter choice. Using

733

|— FWER — F\\'ER,_A_\,P| I— FWER — FWER,LAMP|
0.04 0.04
g 0.03 g 0.03
= 0.02 = 0.02
\7 - —
T
0.01f e

0.00
1000 4000 7000 10000
Number of permutations

(b) T40110D100K (n/n; = 2)

0.00
1000 4000 7000 10000
Number of permutations

(a) BmsWebview (n/ni = 2)

Figure 5: Empirical FWER versus j, for two representative
itemset mining databases.

|— FWER — F\\‘ERH_\,P| |— FWER — FWER,
0.05 —— 0.05
0.04 0.04
g 0.03 g 0.03
=] 0.0ZR = 0.02
0.01) o 0.01
L

1000 4000 7000 10000
Number of permutations

(b) NCI220.

0.00
1000 4000 7000 10000
Number of permutations

(a) ENZYMES.

Figure 6: Empirical FWER versus j, for two representative
subgraph mining databases.

Jp = 102 might still lead to good performance while reducing
the runtime by approximately one order of magnitude.

Finally, our results also clearly demonstrate that LAMP,
while much more effective than a standard Bonferroni cor-
rection (which would have a FWER extremely close to 0),
is still an overly conservative algorithm. It tends to yield an
empirical FWER that oscillates between a/2 and «/100 de-
pending on the dataset. Even just halving the target FWER
can have drastic consequences and cause a large amount
of significant patterns to be lost as a consequence of over-
controlling the FWER;; this point justifies the need to use
permutation-testing based approaches if optimal statistical
power is required.

S. CONCLUSIONS

In this paper, we have described a novel algorithm for min-
ing statistically significant patterns, called Westfall- Young
light, which allows users to adjust the probability of having
false discoveries. The algorithm estimates the null distribu-
tion of the test statistics via Westfall-Young permutations,
and succeeds in overcoming the massive computational cost
of permutation testing in large databases by exploiting a set
of computational tricks.

Empirically, our Westfall-Young light algorithm drasti-
cally improves upon the state of the art. The runtime de-
creases by up to three orders of magnitude and the peak
memory usage by up to two orders of magnitude in several
itemset and subgraph mining benchmarks. We also show
that the peak memory usage of Westfall-Young light scales
gently with the complexity of the database. In contrast, the
peak memory usage of the state-of-the-art algorithm soars as

the databases become large and dense, thus breaking down
in large-scale problems.

Several interesting challenges still remain to be addressed.
In domains such as computational biology, there is increas-
ing interest in less conservative statistical testing procedures
that enjoy increased statistical power, such as FDR con-
trol [6]. Another critical problem is how to correct for con-
founders [9]. Those are predictive features that are corre-
lated to both the target response and some of the patterns,
artificially inflating the resulting p-values. Extending the
framework in either of those directions would represent a
valuable contribution.

6. ACKNOWLEDGMENTS

This work was funded in part by the Alfried Krupp von
Bohlen und Halbach-Stiftung (KB), the SNSF Starting Grant
‘Significant Pattern Mining’ (KB), a Grant-in-Aid for Scien-
tific Research (Research Activity Start-up) 26880013 (MS)
and the Marie Curie Initial Training Network MLPM2012,
Grant No. 316861 (FLL, KB).

7. REFERENCES

[1] C. C. Aggarwal and J. Han, editors. Frequent Pattern
Mining. Springer, 2014.
[2] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large databases.
In SIGMOD, pages 207-216, 1993.
A. Arora, M. Sachan, and A. Bhattacharya. Mining
statistically significant connected subgraphs in vertex
labeled graphs. In SIGMOD, pages 1003-1014, 2014.
M. Atzmueller and F. Puppe. SD-Map — A fast algorithm
for exhaustive subgroup discovery. In PKDD, volume 4213
of LNCS, pages 6—17, 2006.
S. D. Bay and M. Pazzani. Detecting group differences:
Mining contrast sets. Data Mining and Knowledge
Discovery, 5(3):213-246, 2001.
Y. Benjamini and Y. Hochberg. Controlling the false
discovery rate: A practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society.
Series B, 57(1):289-300, 1995.
C. E. Bonferroni. Teoria statistica delle classi e calcolo delle
probabilita. Pubblicazioni del R Istituto Superiore di
Scienze FEconomiche e Commerciali di Firenze, 8:3—62,
1936.
G. Dong and J. Bailey. Contrast Data Mining: Concepts,
Algorithms, and Applications. Chapman&Hall/CRC, 2012.
M. P. Epstein, R. Duncan, Y. Jiang, K. N. Conneely, A. S.
Allen, and G. A. Satten. A permutation procedure to
correct for confounders in case-control studies, including
tests of rare variation. Am J Hum Genet, 91:215-223, 2012.
W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S.
Yu, and O. Verscheure. Direct mining of discriminative and
essential frequent patterns via model-based search tree. In
SIGKDD, pages 230-238, 2008.
R. A. Fisher. On the Interpretation of x2 from Contingency
Tables, and the Calculation of P. Journal of the Royal
Statistical Society, 85(1):87-94, 1922.
B. Goethals and M. J. Zaki. Frequent itemset mining
dataset repository (FIMI'04).
http://fimi.ua.ac.be/data/, 2004.
W. Hamélédinen. StatApriori: an efficient algorithm for
searching statistically significant association rules.
Knowledge and Information Systems, 23(3):373-399, 2010.
J. Hopstadius and G. N. Norén. Robust discovery of local
patterns: Subsets and stratification in adverse drug reaction
surveillance. In ACM SIGHIT, pages 265-274, 2012.
X. Kong and P. S. Yu. Semi-supervised feature selection for
graph classification. In SIGKDD, pages 793-802, 2010.

(3]

(4]

(5]

[6]

[7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

(15]

734

[16] G. Li, M. Semerci, B. Yener, and M. J. Zaki. Effective
graph classification based on topological and label
attributes. Statistical Analysis and Data Mining,
5(4):265-283, 2012.

F. Llinares-Lépez, D. G. Grimm, D. A. Bodenham,

U. Gieraths, M. Sugiyama, B. Rowan, and K. M.
Borgwardt. Genome-wide detection of intervals of genetic
heterogeneity associated with complex traits.
Bioinformatics, in press, 2015.

S. Minato, T. Uno, K. Tsuda, A. Terada, and J. Sese. A
fast method of statistical assessment for combinatorial
hypotheses based on frequent itemset enumeration. In
ECMLPKDD, volume 8725 of LNCS, pages 422-436, 2014.
S. Nijssen and J. N. Kok. A quickstart in frequent structure
mining can make a difference. In SIGKDD, pages 647—652,
2004.

P. K. Novak, N. Lavra¢, and G. I. Webb. Supervised
descriptive rule discovery: A unifying survey of contrast
set, emerging pattern and subgroup mining. JMLR,
10:377-403, 2009.

N. Shervashidze, P. Schweitzer, E. J. van Leeuwen,

K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-Lehman
graph kernels. JMLR, 12:2359-2561, 2011.

M. Sugiyama, F. Llinares-Lépez, N. Kasenburg, and K. M.
Borgwardt. Significant subgraph mining with multiple
testing correction. In SDM, pages 3745, 2015.

R. E. Tarone. A modified bonferroni method for discrete
data. Biometrics, 46(2):515-522, 1990.

A. Terada, M. Okada-Hatakeyama, K. Tsuda, and J. Sese.
Statistical significance of combinatorial regulations.
Proceedings of the National Academy of Sciences,
110(32):12996-13001, 2013.

A. Terada, K. Tsuda, and J. Sese. Fast westfall-young
permutation procedure for combinatorial regulation
discovery. In IEEE International Conference on
Bioinformatics and Biomedicine, pages 153-158, 2013.

T. Uno, T. Asai, Y. Uchida, and H. Arimura. An efficient
algorithm for enumerating closed patterns in transaction
databases. In Discovery Science, volume 3245 of LNCS,
pages 16-31, 2004.

G. Webb. Discovering significant rules. In L. Ungar,

M. Craven, D. Gunopulos, and T. Eliassi-Rad, editors,
SIGKDD, pages 434 — 443, New York, 2006. The
Association for Computing Machinery.

G. Webb. Layered critical values: A powerful
direct-adjustment approach to discovering significant
patterns. Machine Learning, 71(2-3):307-323, 2008.

G. I. Webb. Discovering significant patterns. Machine
Learning, 68(1):1-33, 2007.

P. Westfall and S. S. Young. Resampling-Based Multiple
Testing: Examples and Methods for P-Value Adjustment.
Wiley, 1993.

M. Wérlein, T. Meinl, I. Fischer, and M. Philippsen. A
quantitative comparison of the subgraph miners MoFa,
gSpan, FFSM, and Gaston. In PKDD, volume 3721 of
LNCS, pages 392-403. Springer, 2005.

X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant
graph patterns by leap search. In SIGMOD, pages 433-444,
2008.

X. Zhang, S. Huang, F. Zou, and W. Wang. TEAM:
Efficient two-locus epistasis tests in human genome-wide
association study. Bioinformatics, 26(12):1217-1227, 2010.
X. Zhang, F. Zou, and W. Wang. FastANOVA: an efficient
algorithm for genome-wide association study. In SIGKDD,
pages 821-829, 2008.

A. Zimmermann, B. Bringmann, and U. Riickert. Fast,
effective molecular feature mining by local optimization. In
ECMLPKDD, volume 6323 of LNCS, pages 563-578, 2010.
A. Zimmermann and S. Nijssen. Supervised Pattern Mining
and Applications to Classification, pages 425—-442. Springer,
2014.

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

(26]

27]

28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

