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ABSTRACT

In machine learning practice, early stopping has been widely used to regularize
models and can save computational costs by halting the training process when the
model’s performance on a validation set stops improving. However, conventional
early stopping applies the same stopping criterion to all instances without consid-
ering their individual learning statuses, which leads to redundant computations
on instances that are already well-learned. To further improve the efficiency, we
propose an Instance-dependent Early Stopping (IES) method that adapts the early
stopping mechanism from the entire training set to the instance level, based on
the core principle that once the model has mastered an instance, the training on
it should stop. IES considers an instance as mastered if the second-order differ-
ences of its loss value remain within a small range around zero. This offers a
more consistent measure of an instance’s learning status compared with directly
using the loss value, and thus allows for a unified threshold to determine when
an instance can be excluded from further backpropagation. We show that exclud-
ing mastered instances from backpropagation can increase the gradient norms,
thereby accelerating the decrease of the training loss and speeding up the training
process. Extensive experiments on benchmarks demonstrate that IES method can
reduce backpropagation instances by 10%-50% while maintaining or even slightly
improving the test accuracy and transfer learning performance of a model.

1 INTRODUCTION

Early stopping is a straightforward technique that regulates model training and reduces computational
costs by halting the training process when no further improvements are observed in model performance
on the validation set (Prechelt, 2002; Raskutti et al., 2014; Caruana et al., 2000; Yuan et al., 2024).
Specifically, this method terminates training at the appropriate moment, preventing excessive training
while conserving computational resources (Zhang et al., 2021; Belkin et al., 2019; Nakkiran et al.,
2021) and reduces the reliance on other computationally intensive regularization methods in model
training (Tibshirani, 1996; Hoerl & Kennard, 1970; Goodfellow et al., 2016). The growing size
and complexity of models and datasets make these benefits increasingly critical, as they lead to
significantly rising computational costs associated with training advanced models (Kaplan et al.,
2020; Sorscher et al., 2022; Hestness et al., 2017; Sun et al., 2017; Brown et al., 2020; Power et al.,
2022). In practice, ending training when satisfactory performance is achieved is more practical than
pursuing complete convergence, as the cost of complete convergence is excessively high and may not
yield evident improvements in performance (Rice et al., 2020; Yang et al., 2020; Sagawa et al., 2020).

Despite the widespread acclaim for the elegance and practicality of the conventional early stopping
method, which focuses on the model’s performance on the validation set and simultaneously ter-
minates the optimization across the entire training set, this approach lacks flexibility. It does not
consider that the model learns different instances at varying rates and stages (Zhang et al., 2021;
Arpit et al., 2017; Toneva et al., 2018; Wen et al., 2022). Consequently, this can lead to redundant
computations, as the model may continue processing instances that are already well-learned until it
finally achieves satisfactory performance across the entire dataset. To further enhance the efficiency
of early stopping, we propose the Instance-dependent Early Stopping (IES) method, which refines
the idea of early stopping from the entire training dataset to the instance level.

The principle of our IES method is simple yet effective: once the model masters an instance, the
training on it should stop. By enabling the model to dynamically stop the training for individual
instances once satisfactory performance is achieved for those specific instances, IES can perform
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Figure 1: Effectiveness of Instance-dependent
Early Stopping (IES) on ImageNet-1k and
CIFAR-10 datasets. Top row: Test accuracy
over the course of training, showing that IES
(Ours) achieves comparable accuracy to the
baseline (No Removal) despite training on
fewer samples. Bottom row: Number of train-
ing samples excluded from backpropagation
by IES over the course of training. As the
model masters more and more samples during
the training process, IES allows an increas-
ing number of these mastered samples to be
excluded from backpropagation, significantly
reducing computation while still maintaining
the same performance as the baseline method.

early stopping in a more fine-grained manner. To instantiate the concept of mastered, we need a
computational efficiency quantitative criterion that can be applied uniformly across all instances.
A natural idea is to use the loss value of instances, which has been shown effective for identifying
important instances for optimization (Loshchilov & Hutter, 2015; Jiang et al., 2019; Qin et al., 2023).
However, due to the differences in optimal loss values across instances arising from factors such as
sample complexity (Hacohen & Weinshall, 2019; Wang et al., 2020), inherent ambiguity (Guo et al.,
2017; Liang et al., 2017), noise (Zhang et al., 2021; Jiang et al., 2018), and imbalance (Cui et al.,
2019; Cao et al., 2019), it may be suboptimal for determining whether an instance has been mastered.

In this paper, we propose to use the second-order difference of an instance’s loss values ∆2Li(w
(t))

across consecutive training epochs as the mastered criterion. If, over k epochs, the sum of the absolute
values of ∆2Li(w

(t)) for an instance i is confined to a small neighborhood around 0, it signifies that
the change in the loss tends to be flat and insensitive to parameter updates. Compared with the loss
values, the second-order differences of these values for the training data have a lower coefficient
of variation in later training stages (Figure 3). This indicates that the second-order difference loss
values of mastered instances consistently fall within a small range, regardless of the actual loss values
of these instances. This consistency allows us to set a unified threshold based on the second-order
difference values to determine whether an instance has been mastered. Moreover, the proposed
criterion is computationally efficient, relying solely on forward propagation.

As shown in Figure 1, as model training progresses and more instances are mastered, the IES method
allows an adaptive decrease in the number of training instances from backpropagation. This results
in significant savings in overall training time and computational costs while obtaining models with
comparable performance to the one that is trained using all data. Specifically, the effectiveness of the
IES method in accelerating model training progression can be attributed to its ability to allow the
model to focus on instances that are not yet mastered, which typically have larger gradient norms,
thereby speeding up the reduction of the training loss through more effective parameter updates.
By effectively identifying and skipping the redundant instances that have already been well-learned
and would not significantly contribute to further model performance improvement in the next few
epochs, IES achieves comparable results to full-data training. Moreover, by avoiding repeated training
on already mastered instances, the IES method avoids over-memorization (Ishida et al., 2020; Lin
et al., 2023; Wen et al., 2024; Zhang et al., 2021) and enables the model to more rapidly reduce the
sharpness of the loss landscape (Dauphin et al., 2014; Foret et al., 2020).

To assess the effectiveness of the IES method, we carried out extensive experiments across various
settings. Our findings reveal that IES consistently delivers substantial computational savings in
CIFAR and ImageNet-1k tasks, reducing the number of instances that require backpropagation by
10% to 50% without sacrificing model performance. In many cases, IES even slightly enhances the
model’s generalization performance and improves transferability to downstream tasks. Specifically,
fine-tuning models pretrained with IES on ImageNet-1k for the CIFAR and Caltech-101 datasets
results in average improvements of 1.5%, compared with models pretrained without IES. Through
ablation studies and comparative analysis, we demonstrate that IES outperforms existing samples
selection methods and demonstrates robust adaptiveness in hyperparameter selection.
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Our main contributions can be summarized as follows:
1. We propose Instance-dependent Early Stopping (IES), a method that adaptively stops training at the

instance level, allowing for the saving of computational resources while maintaining performance.

2. We introduce a mastered criterion based on the second-order differences of sample loss values,
providing an unified measure to determine whether a model has fully learned a given instance.

3. We analyze the mechanism behind IES’s effectiveness, revealing that it allows the model to focus
on instances with larger gradient norms and reduces the sharpness of loss landscape more rapidly.

2 RELATED WORK

IES is closely related to multiple active machine learning research areas. We review key studies in
these fields, underscoring IES’s distinct features.

Sample Selection has been widely used to improve the efficiency and robustness of deep learning
model training. The main idea is to assign higher probabilities to examples to be trained that are
informative (Alain et al., 2015; Katharopoulos & Fleuret, 2017; 2018), unique (Loshchilov & Hutter,
2015; Chang et al., 2017; Shi et al., 2021) or confident (Khim et al., 2020). Related associated
distillation and selection algorithms usually incur additional costs. Static selection typically requires
preliminary calculations before training or in the early stages of training, with related studies including
Data Pruning (Toneva et al., 2018; Paul et al., 2021; Killamsetty et al., 2021b) and Core Set (Huggins
et al., 2016; Huang et al., 2018; Braverman et al., 2022; Xia et al., 2022), etc., with the goal of
finding a small subset from all training data that can represent the entire dataset. Dynamic selection
usually involves selecting instances across training process, with related studies including Dynamic
Data Pruning (Raju et al., 2021; Mindermann et al., 2022; He et al., 2023; Truong et al., 2023; Qin
et al., 2023) and Importance Sampling (Alain et al., 2015; Katharopoulos & Fleuret, 2017; 2018;
Csiba & Richtárik, 2018; Jiang et al., 2019), etc., aimed at focusing training on more informative or
confident examples. In the context of deep learning, several methods have been proposed based on
different measures of sample “informative”, such as gradient norm (Alain et al., 2015; Killamsetty
et al., 2021a), loss value (Loshchilov & Hutter, 2015; Schaul et al., 2015; Mindermann et al., 2022),
and prediction uncertainty (Chang et al., 2017). Notably, when the gradient of an instance converges
to zero, it means that the model’s parameters will be insignificant updated based on this particular
sample. However, even with efficient gradient computation methods (Wei et al., 2017; Katharopoulos
& Fleuret, 2017; 2018), the computational cost of calculating the gradient of each sample based on
backpropagation is still high, which hinders the goal of reducing the computational cost of every
single run. Curriculum Learning (Bengio et al., 2009; Wu et al., 2021; Zhou et al., 2020; Wang
et al., 2024b;a; Kumar et al., 2010) is a learning paradigm that aims to improve the efficiency and
effectiveness of training by presenting examples in a meaningful order, typically from easy to hard.
Several methods have been proposed based on different measures of example difficulty (Weinshall
et al., 2018; Saxena et al., 2019; Jiang et al., 2018). IES method can be viewed as a curriculum
learning method design for end of training, focusing on the model’s mastery of instances.

Although IES and existing sample selection techniques share the common goal of improving training
progression via training on a selected subset of training instances, our method distinguishes itself
through its focus on whether “the model has already fully learned an instance”, i.e., mastered. This
unique perspective allows IES to adaptively adjust the proportion of instances participating in training
at different stages, thereby eliminating the need for pre-set training schedules or removal rates.

3 METHODOLOGY

To refine the advantages of early stopping to the instance level, we proposed a simple principle
that, once the model masters an instance, the training on it should stop. To operationalize this idea,
we introduce a criterion for identifying instances that the model has been mastered, as detailed in
Section 3.1. Building on this foundation, we propose Instance-dependent Early Stopping (IES) to
promote model training progression, as shown in Section 3.2. Furthermore, we demonstrate the
efficiency and effectiveness of the IES method, as discussed in Section 3.3. All toy experiments
presented in this section use a standard ResNet-18 backbone trained on the CIFAR-10 dataset. For
detailed experiment settings, please refer to Section 4 and Appendix A and B.5.
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Preliminaries. - The Hessian matrix, H = ∇2L(w), characterizes the loss function’s curvature
by its eigenvalues and eigenvectors: H = QΛQT =

∑n
i=1 λiqiq

T
i . Q is an orthogonal matrix

of eigenvectors, and Λ is a diagonal matrix of eigenvalues λi, describing the curvature in various
directions. Higher eigenvalues imply steeper curvatures, complicating optimization (Li et al., 2017).

- ∇ represents the gradient operator, for example, ∇L(w) represents the gradient of the loss function
L at the parameter w. ∆ represents the difference operator, ∆2Li(w

(t)) represents the second-order
difference of the loss function for sample i over three consecutive time steps t, t− 1, and t− 2.

3.1 THE MASTERED CRITERION

Previous studies have shown that different instances contain varying information and have inconsistent
impacts on model learning at different training stages (Zhang et al., 2021; Arpit et al., 2017; Toneva
et al., 2018). This suggests that if certain instances have been well-learned by the model early in
the training process, their contribution to model performance improvement may diminish or even
become redundant as training progresses. To apply the idea of early stopping at the instance level
and improve training efficiency, we need a simple and computationally efficient method to assess
the model’s learning status on each sample and identify these redundant instances that would not
significantly contribute to further model performance improvement in the next few epochs, which we
refer to as mastered instances.

To efficiently identify which and when an instance is mastered, we construct a criterion based on the
N -th order difference of sample loss, which only relies on forward propagation. Intuitively, the loss
of a mastered instance should be relatively stable. Specifically, when an instance i is well fitted by
the current model parameters w(t) or is insensitive to their recent update, the associated loss Li(w

(t))
will be small or reach a plateau, and thus the N -th order difference of the loss will approach zero. To
formalize this, when the N -th order difference of the loss for sample i falls beneath a specified small
positive threshold δ, sample i is considered to be mastered by the model parameters w and state t,
which can be expressed as:

∆NLi(w
(t)) < δ,N = {0, 1, 2, ...}. (1)

To demonstrate the effectiveness of the mastered criteria, we experimentally tracked the number
of instances that meet the mastered criteria during the training process. As shown in Figure 2, the
mastered criteria enable adaptive sample selection throughout the learning process, allowing the
model to dynamically adjust the size of the training set participating in backpropagation according to
the evolving requirements. During the initial stages of training, the model has scarcely learned any
instances, so the mastered criteria retain most instances for backpropagation, as almost every sample
can provide useful information. As training progresses, the model gradually masters more instances,
leading to an adaptive decrease in the number of retained training instances commensurate with the
training progress. The mastered criteria adaptively remove these fully learned redundant instances
from backpropagation, enabling the model to focus on the remaining samples. Compared to methods
that dynamically sample a fixed proportion of important instances (Raju et al., 2021; Mindermann
et al., 2022; He et al., 2023; Qin et al., 2023), stopping training on mastered instances, provides a
more adaptive and efficient approach to instance selection based on the model’s learning progress.

(a) N = 0 (b) N = 1 (c) N = 2

Figure 2: The curves show the number of instances that meet the corresponding mastered criteria (N
= {0, 1, 2}, δ = 1e−4) as the training epochs progress, under two scenarios: excluding the mastered
instances from backpropagation and allowing the mastered instances to participate in backpropagation.
The proximity of the curves suggests that the model can maintain its “mastered” on the mastered
instances without the need for actively repeated training on them.
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It is noteworthy that the number of the model mastered instances remains nearly the same regardless
of whether the instances satisfying the mastered criteria continue to participate in backpropagation
or not, as shown in Figure 2. This observation, which is particularly evident for N = 1 and
N = 2, suggests that the model can maintain its learned state on the mastered instances even without
repeatedly training on them. The mastered criterion thus provides an effective way to identify
redundant instances during training, allowing the model to exclude them from backpropagation with
minimal impact on model performance on these instances.

3.2 INSTANCE-DEPENDENT EARLY STOPPING (IES)

Building upon the mastered criterion, we propose the Instance-dependent Early Stopping (IES)
method, allowing the model to stop training on an instance once it has been mastered. Although
using the loss value of instances (i.e., N = 0) has been widely adopted as a method to identify
important instances for current optimization (Loshchilov & Hutter, 2015; Jiang et al., 2019), different
instances may have different optimal loss values Li(w

∗) due to factors such as sample complexity
(Hacohen & Weinshall, 2019; Wang et al., 2020), noise (Zhang et al., 2021; Jiang et al., 2018), and
imbalance (Cui et al., 2019; Cao et al., 2019). This poses a challenge in simply using loss value to
construct mastered criterion for IES. If the mastered criterion were to directly depend on the absolute
loss value, it would require setting different thresholds for each sample, which can be impractical
and expensive in large-scale datasets. In this work, we use the second-order difference to identify
the mastered instances, which quantifies the rate of change in the loss for sample i across three
consecutive epochs, tth, (t − 1)th, and (t − 2)th training epochs. The second-order difference is
defined as:

∆2Li(w
(t)) = [Li(w

(t))− Li(w
(t−1))]− [Li(w

(t−1))− Li(w
(t−2))]

= Li(w
(t))− 2Li(w

(t−1)) + Li(w
(t−2)).

(2)

Figure 3: Coefficient of variation
(CV) of different orders of loss
differences during training.

By quantifying the rate of change in the loss for each instance
around the current parameters w(t), the second-order difference
effectively captures the stability of the loss function, regardless
of the specific value of Li(w

∗). This property allows for using
a unified threshold δ across all instances, greatly simplifying
the implementation and management of the mastered criterion.
To further validate this advantage, we conducted experiments
as shown in Figure 3. We calculate the zero-order (loss value),
first-order, and second-order differences for each sample’s loss
during training on CIFAR-10. Subsequently, we computed the
coefficient of variation (CV) for these differences to represent the
degree of dispersion in the data. Experimental results show that
when N = 1, 2, 3, the CV of their high-order differences of loss
value exhibits a trend of first rising and then falling, eventually
stabilizing at a lower level. This indicates that in the early stages
of training, when only some samples are sufficiently learned, there is significant variability in the
higher-order differences of loss value among different samples. As training progresses into the
mid-to-late stages, and as most instances become sufficiently learned, all instances exhibit more
similar values in their higher-order differences of loss value. Therefore, we can use a fixed threshold
to uniformly determine whether an instance has been mastered. Further experiments confirm that the
high-order difference has relatively smaller CV values, please refer to Appendix C. In our subsequent
experiments (Section 4.2), we further evaluate the IES method under different criteria.

Accordingly, based on the above analysis and experimental validation, an instance i is considered
mastered when the cumulative magnitude of these second-order differences of loss value falls beneath
a specified small positive threshold δ, which is formally expressed as:∣∣∣∆2Li(w

(t))
∣∣∣ < δ. (3)

Ultimately, IES consists of two key stages: filtering out mastered instances in the full training-set
D(0) through forward propagation, and removing mastered instances and only optimizing not-yet
mastered instances D(t) through backpropagation, as detailed in Algorithm 1.
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Algorithm 1 Instance-dependent Early Stopping (IES)

Require: Full training-set D(0), validation-set V , model fθ, threshold δ, max epochs T
1: Initialize model parameters w(0)

2: for t = 1 to T do
3: Forward pass on model f to compute loss Li(w

(t)) for each sample i ∈ D(0)

4: Calculate second-order differences: ∆2Li(w
(t)) = Li(w

(t))− 2Li(w
(t−1)) + Li(w

(t−2))

5: Identify mastered instances: M(t) =
{
i ∈ D(0) :

∣∣∣∆2Li(w
(t′))

∣∣∣ < δ
}

6: Update dataset for next epoch: D(t) = D(0) \M(t)

7: if D(t) is empty or conventional early stopping criterion(V, w(t)) then
8: Break {Stop if all instances mastered or conventional early stopping triggered}
9: end if

10: Update model parameters w(t) using instances in D(t)

11: end for=0

3.3 INSTANCE-DEPENDENT STOPPING TO ACCELERATE MODEL TRAINING PROGRESSION

The proposed Instance-dependent Early Stopping (IES) method significantly reduces computational
costs, as shown in its twofold impact: (1) IES achieves comparable performance to the baseline while
requiring fewer backpropagation instances, and (2) IES surpasses the baseline’s performance with
the same amount of backpropagation. This subsection presents experimental results and analysis to
showcase the IES’s effectiveness and effective in accelerating model training progression.

Less backpropagation, similar performance. Our proposed method achieve comparable perfor-
mance to the baseline method while using fewer instances in backpropagation. As detailed in Section
3.1, the effectiveness of using fewer instances in backpropagation without compromising performance
is achieved through the precise identification of mastered instances. As shown in Figure 4, our method
reduces the number of training instances in backpropagation by approximately 40%, resulting in a
savings of nearly 30% in total computational cost while maintaining generalization performance.

(a) SGD - 150 Epochs (b) Adam - 150 Epochs

Figure 4: Comparison of model performance metrics between the IES method and the baseline method
over the same number of backpropagation training instances. The metrics include test error, gradient
norm, training loss, sharpness-aware minimization (SAM) value, and the maximum eigenvalue of
the Hessian matrix. IES consistently outperforms the baseline in test error and reduces training
loss, SAM value, and the maximum eigenvalue more effectively, indicating a faster progression in
model training. We use ResNet-18 on the CIFAR-10 dataset in this experiment. Further detailed
experimental settings can be found in Appendix B and Section 4.
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Same backpropagation, better performance. Our proposed method consistently achieves better
performance than the baseline method at the same number of backpropagation instances. To further
demonstrate the superiority of our method, we conduct analysis from following experiments.

Larger Gradient Norms. As shown in Figure 4, the average mini-batch gradient norm for instances
selected by the IES method is consistently higher than that of the baseline method, which uses all
training data. By typically selecting instances with larger gradient norms for backpropagation, the
IES method tends to make parameter updates more effective at reducing training loss.

Faster Reduce Sharpness. We conducted experiments to investigate the changes of model’s sharpness
during the training process. Sharpness (Hochreiter & Schmidhuber, 1997; Andriushchenko &
Flammarion, 2022) often refers to the steepness of the loss function near the solution and is closely
related to the large eigenvalues of the Hessian matrix (Dinh et al., 2017; Tsuzuku et al., 2020). We
compared the changes in the largest eigenvalue of the Hessian matrix and the Sharpness-Aware
Minimization (SAM) value (Foret et al., 2020). As shown in Figure 4, IES reduces the largest
eigenvalue more quickly and consistently achieves lower SAM values compared with the baseline
method. The faster reduction in the largest eigenvalue suggests that IES can more targetedly reduce
steepness in these sharp directions of the loss landscape, thereby reducing the overall “sharpnes”
more quickly. A lower SAM value indicates a flatter minima with lower sharpness. These empirical
observations together support that IES can more targetedly reduce steepness in these sharp directions
of the loss landscape (Li et al., 2017; Keskar et al., 2016; Neyshabur et al., 2017; Dauphin et al.,
2014), thereby reducing the overall sharpness more quickly.

4 EXPERIMENTS

In this section, we empirically demonstrate the effectiveness of Instance-dependent Early Stopping
method. In Section 4.1, we validate the broad applicability of our proposed method across different
settings. Furthermore, we demonstrate through experiments that applying our proposed method can
improve the transferability of models. In Section 4.2, we compare our proposed IES method with other
methods and different instance-level stopping criteria. We showcase the capability of our method to
maintain model performance across a wide range of hyperparameters. Section 4.3 demonstrates our
method’s applicability for more efficient training and its use in high-level tasks such as segmentation
and detection. The empirical evidence indicates that our proposed Instance-dependent Early Stopping
method can effectively reduce computational overhead under various settings, outperforming existing
baselines while simultaneously enhancing the transfer learning capabilities of models.

4.1 EFFECTIVENESS OF IES

To evaluate the effectiveness of our proposed IES method, we conducted extensive experiments
under various settings, including different datasets, network architectures, and optimizers. Table 1
and 2 demonstrate the consistent performance of the IES method across these settings. It is worth
noting that IES achieves lossless acceleration for model training; if a 1% generalization performance
decrease is acceptable, even more substantial acceleration can be obtained, as detailed in Section 4.2.

Our evaluations confirmed the effectiveness of the IES method across multiple datasets. These
datasets comprise CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-1k (Deng et al.,
2009). For the CIFAR and the ImageNet-1k tasks, we train for 200 and 150 epochs, respectively. For
ImageNet-1k task, we follow Qin et al. (2023) and anneal in the last 10% of epochs. We employ
different optimizers such as SGD with Momentum (Robbins & Monro, 1951; Polyak, 1964), Adam
(Kingma & Ba, 2014), and AdamW (Loshchilov & Hutter, 2017) to demonstrate that the IES method
remains resilient to reasonable variations across multiple optimizers and learning rate schedulers.

We use different SGD learning rate scheduler settings: SGD(F), SGD(L), SGD(M), and SGD(E),
which represent SGD with a fixed learning rate, a linearly decaying learning rate, a multi-step decaying
learning rate, and an exponentially decaying learning rate scheduler, respectively. For CIFAR, we
set base δ = 1e−3; and for ImageNet-1k, we set δ = 1. Further, we verified the effectiveness of our
proposed IES method over several commonly used deep learning models, including ResNet (He et al.,
2016), VGG (Simonyan & Zisserman, 2014), and DenseNet (Huang et al., 2017). More detailed
experimental settings and additional results can be found in Appendix B.
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Table 1: Effectiveness of IES-2nd across various settings. (5 runs, mean±std)

CIFAR-10 CIFAR-100
Architectures ResNet-18 ResNet-50 VGG-16 ResNet-34 ResNet-101 DenseNet-121

No Removal 92.9%±0.1% 93.3%±0.1% 90.9%±0.2% 69.8%±0.4% 71.9%±0.5% 73.4%±0.0%
IES (Ours) 92.9%±0.2% 93.1%±0.1% 90.7%±0.2% 69.6%±0.3% 72.2%±0.5% 73.3%±0.2%

Mini-batch Saved 54.6% 48.5% 30.4% 29.9% 28.3% 33.4%

Optimizers SGD(F) SGD(L) AdamW SGD(F) SGD(E) AdamW

No Removal 92.1%±0.1% 95.2%±0.1% 92.6%±0.1% 71.4%±0.5% 77.6%±0.4% 69.6%±0.3%
IES (Ours) 92.4%±0.0% 95.1%±0.1% 92.7%±0.1% 72.3%±0.4% 77.4%±0.4% 69.7%±0.5%

Mini-batch Saved 37.3% 26.4% 47.2% 9.3% 27.3% 17.4%

Avg. Mini-batch Saved 40.7% 24.3%
Avg. Wall-time Speedup ∼ 1.4× ∼ 1.2×

Table 2: Effectiveness of IES-2nd in ImageNet-1k task. (1 run)

DenseNet-121 ResNet-34 ResNet-101

Methods AdamW AdamW SGD(M) SGD(E)

No Removal 69.0% 68.0% 74.1% 77.4%
IES (Ours) 68.8% 68.0% 74.3% 77.4%

Mini-batch Saved 31.6% 28.7% 30.3% 34.2%

Avg. Wall-time Speedup ∼ 1.3×

Table 3: Transfer performance of IES-2nd pretrained model on ImageNet-1k task. (5 runs, mean±std)

ResNet-101 DenseNet-121

Transfer Tasks IES (Ours) No Removal IES (Ours) No Removal

ImageNet-1k –> CIFAR-10 81.2%±0.1% 80.3%±0.2% 78.6% ± 0.2% 77.3% ± 0.2%

ImageNet-1k –> CIFAR-100 57.5%±0.2% 55.6%±0.2% 53.0% ± 0.2% 52.3% ± 0.2%

ImageNet-1k –> Caltech-101 59.9%±0.8% 57.4%±1.2% 50.9% ± 1.6% 49.5% ± 1.5%

To quantify the computational resources saved by the IES method, we consider two following metrics:
• Mini-batch Saved. We calculate the percentage of mini-batch saved. This metric directly reflects

the reduction in the number of instances of backpropagation computations.

• Wall-time Speedup. We measure the training time speedup achieved by the IES method compared
with full data training. This metric provides a realistic assessment of the time savings. We report
the average training speedup on CIFAR-10, CIFAR-100, and ImageNet-1k tasks.

The IES method primarily saves computational resources by reducing the backpropagation steps,
which constitute the most time-consuming part of the training process. However, the forward pass
still needs to be computed for all instances to obtain their predictions and determine which instances
should be stopped based on the mastered criterion. The experimental results demonstrate that the IES
method can save 10% to 55% of mini-batch computations and speedup 20% to 40% of training time,
while maintaining test accuracy comparable to full data training. The empirical evidence indicates the
effectiveness of the IES method in reducing computational costs without compromising performance.

Transferability. To further evaluate the effectiveness of the IES method, we investigated its impact
on the transfer learning of models. We first pretrained models on the ImageNet-1k dataset using IES
and the baseline method without instance stopping. Then, we fine-tuned only the classification head
of these pretrained models using the model from the last epoch of pretraining on several downstream
tasks, including CIFAR-10, CIFAR-100, and Caltech-101 (Li et al., 2022) datasets. As shown in Table
3, models pretrained with IES consistently outperform those pretrained without instance removal
across all transfer learning tasks while achieving the comparable test accuracy on the ImageNet-1k.
After fine-tuning for 1 epoch, the IES pretrained model surpassing the baseline by 0.9%, 1.9%, and
2.5% on CIFAR-10, CIFAR-100, and Caltech-101, respectively. Similar improvements are observed
on DenseNet-121 and on more epoch fine-tuning, as shown in Table 3 and 7 in Appendix B.4.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

These results align with the discussion in Section 3.3, suggesting that IES can more effectively reduce
the sharpness of the loss landscape during pretraining. By instance-dependent stopping of instance
training, IES saves computational resources while potentially contributing to a more favorable loss
landscape and more transferable performance. Consequently, models pretrained with IES exhibit
better transfer learning performance, adapting more effectively to new tasks with limited fine-tuning.

4.2 EFFICIENCY OF IES

Building upon the IES method’s demonstrated ability to accelerate training without performance loss,
this section further explores its efficiency. We compare IES with different sample selection criteria,
analyze the impact of different δ value settings on performance, and investigate the potential for
additional acceleration when allowing a slight decrease in performance.

Comparison with other sample selection methods. We compare our proposed IES method with
Random Remove and Small Loss & Rescale (Qin et al., 2023), under different Total Excluded Samples
values. Total Excluded Samples values represent the proportion of samples removed from the
backpropagation during training. Random Remove method randomly removes a certain proportion of
samples from backpropagation in each training epoch, while Small Loss & Rescale randomly prunes
samples with smaller loss values and amplifies the gradients of the remaining small-loss samples. As
shown in Figure 5, experimental results on both CIFAR-10 and CIFAR-100 datasets demonstrate that
the Random Remove method significantly reduces model performance. Although the Small Loss &
Rescale method improve results, its performance still falls behind IES. Moreover, among different
IES configurations, using second-order differences outperforms other configurations in most cases,
which aligns with our analysis in Section 3.2. Further details are in Appendix D.

Analysis of setting δ values. To further evaluate the robustness of the IES method, we expanded upon
the previous comparison by setting a broader range of δ values, observing their impact on sample
exclusion and model accuracy. As shown in Figure 5 (lower row), we varied the δ value used in the
IES method by multiplying the selected δ value (set to 0.001) by scales of {0.01, 0.1, 1, 10, 100}.
Notably, even as δ varied across four orders of magnitude, the IES method maintained the test
accuracy within approximately 2% of the baseline performance. This highlights the significant
stability and adaptability of the IES method across a wide range of δ settings, enabling its effective
implementation in diverse scenarios without the need for precise fine-tuning of the δ parameter.

(a) CIFAR-10 (b) CIFAR-100

Figure 5: Comparison of the proposed IES method of different IES criteria (loss, 1st, 2nd, and 3rd
order differences) with other sample selection methods under different Total Excluded Samples values
on both CIFAR datasets. The lower subfigure illustrates the effect of varying δ values used in IES
methods on training time reduction, sample removal, and model performance (3 runs, mean±std).
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Table 4: Comparison of IES and other data efficiency methods. (3 runs, mean±std)
Computation Speedup Methods CIFAR-10 CIFAR-100

1.0× Baseline (No Removal) 94.3%±0.3% 77.0%±0.4%

∼ 2.0×

Conventional Early Stopping 90.4%±0.5% 68.7%±0.5%
SB (Jiang et al., 2019) 93.0%±0.1% 70.6%±0.5%

DIHCL (Zhou et al., 2020) 93.4%±0.2% 74.3%±0.2%
EfficientTrain (Wang et al., 2024b) 91.5%±0.2% 75.0%±0.1%

IES (Ours) 93.7%±0.4% 74.9%±0.5%

4.3 FURTHER ANALYSIS

This section explores the scalability of IES for further acceleration, focusing on: (1) accelerating
training while tolerating minor performance loss, and (2) maintaining accuracy while achieving
targeted training speedups. Additionally, we evaluate the efficacy of IES for high-level vision tasks.

Tolerating 1% performance loss. While IES aims to maintain test accuracy compared to full
data training, it also has potential for further acceleration if a slight decrease in test accuracy
is acceptable. By allowing a 1% reduction in test accuracy, we observed that IES can achieve
even greater computational savings. For the ImageNet-1k dataset, IES can save up to 40% of
backpropagation. As shown in Figure 5 (upper row), for the CIFAR-10 and CIFAR-100 datasets, IES
can save up to 80% and 60% of backpropagation, respectively. These results demonstrate that IES
can be flexibly adjusted to prioritize either improving computational efficiency without performance
loss (a “free lunch”) or further accelerating training within an acceptable range of performance
degradation, thus adapting to different computational budgets and task requirements.

Achieving 2.0× training speedups. To further evaluate the efficacy of our proposed IES method
in scenarios prioritizing efficient training, we conducted a comparison with several data efficiency
methods: conventional early stopping, importance sampling (Jiang et al., 2019) SB, hardness-based
curriculum learning (Zhou et al., 2020) DIHCL, and resizing-based curriculum learning (Wang et al.,
2024b) EfficientTrain methods. For a fair comparison, we set the target computational acceleration
to approximately 2.0 times across all methods. We ensure the same backbones, parameters, and
data augmentation are used. The detailed settings are provided in Appendix F. As shown in Table 4,
these comparisons further demonstrate that IES, while not specifically designed for scenarios where
efficient training is the primary objective, still performs effectively in accelerating model training
while maintaining model performance.

Faster R-CNN (mAP) DeepLab v3 (mIoU)

No Removal 70.2%±0.2% 76.2%±0.2%
IES (Ours) 70.2%±0.1% 76.1%±0.2%

Mini-batch Saved 20.0% 14.0%

Table 5: Effectiveness of the IES on object detection and
segmentation model training tasks. (3 runs, mean±std)

High-level vision tasks. To further vali-
date the applicability of the IES method,
we conducted experiments on two high-
level tasks: object detection and seman-
tic segmentation. Specifically, we inte-
grated our proposed IES method into the
baseline methods Faster R-CNN (Ren,
2015) and DeepLab v3 (Chen, 2017),
respectively. For both task, we use the PASCAL VOC datasets (Everingham et al., a;b). A brief
overview of the results of model training is reported in the Table 5. Further details are in Appendix G.

5 CONCLUSION

In this work, we propose an Instance-dependent Early Stopping (IES) method that adapts the
early stopping mechanism from the entire training set to the instance level. IES considers an
instance as mastered if the second-order differences of its loss value remain within a small range
around zero, allowing for a unified threshold to determine when an instance can be excluded from
further backpropagation. Extensive experiments demonstrate the effectiveness of IES in reducing
computational cost while maintaining model performance and transferability.

Limitation. While the choice of using the second-order difference as the removal criterion for
IES has been validated through experiments, a comprehensive theoretical analysis of its superiority
remains an open research question. The potential positive/negative impact of IES method on fairness
and model performance for underrepresented groups has not been thoroughly investigated.
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A QUICK START GUIDE FOR EXPERIMENTAL SETUP.

Framework: PyTorch, Version 1.11.0.

Architecture

• Model Type: Standard ResNet-18 for CIFAR-10, ResNet-34 for CIFAR-100, and ResNet-
101 for ImageNet-1k. We do not incorporate dropout.

Parameters

• Seed: 1 run = {0} and 5 runs = {0, 1, 2, 3, 4}.
• Batch Size: {64} for CIFAR and {128} for ImageNet-1k.
• Training Epochs: 200 epochs for CIFAR. 150 epochs for ImageNet.
• Loss Function: Utilizes the CrossEntropyLoss from the nn module.

Dataset & Pre-processing

• Normalization: We employ the torchvision.transforms module to adjust pixel
values across all images, ensuring they scale uniformly within the 0 to 1 range.

• Cropping: We implement a random cropping strategy. Initially, optional padding is applied
to each 32x32 image, from which we then extract random 32x32 crops.

• Rotation: The images are subject to random rotations with an allowable variation up to ±15
degrees to enhance model robustness against orientation changes.

• Label Smoothing: Label smoothing is not incorporated in our pipeline.

B DETAILS OF EXPERIMENTS

We provide comprehensive details on the experiments conducted to validate the effectiveness of the
Instance-dependent Early Stopping (IES) method. The main results are presented in Section 4, Table
1 and Table 2. Here, we elaborate on the experimental setup across various configurations, covering
a wide range of settings typically employed in training deep learning models, including different
network architectures, datasets, hyperparameters, and optimizers. Unless otherwise specified, the
parameters and components remains consistent with the base model in Appendix A.

B.1 NETWORK ARCHITECTURES

B.1.1 RESNET (HE ET AL., 2016)

• Variants: ResNet-18, ResNet-34, ResNet-50, ResNet-101.
• Implementation:
◦ ResNet-18 and ResNet-50 for CIFAR-10.
◦ ResNet-34 and ResNet-101 for CIFAR-100.
◦ ResNet-34 and ResNet-101 for ImageNet-1k.

B.1.2 VGG-16 (SIMONYAN & ZISSERMAN, 2014)

• Implementation:
◦ Used for CIFAR-10.

B.1.3 DENSENET-121 (HUANG ET AL., 2017)

• Implementation:
◦ Used for CIFAR-100 and ImageNet-1k.
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B.2 DATASETS

B.2.1 CIFAR-10 AND CIFAR-100 (KRIZHEVSKY ET AL., 2009)

• Description: 10 classes (CIFAR-10) and 100 classes (CIFAR-100), 50,000 training and 10,000 test
images each.

• Preprocessing: Normalization (mean and std), random cropping, horizontal flipping.

B.2.2 IMAGENET-1K (DENG ET AL., 2009)

• Description: 1,000 classes, over 1 million labeled images.
• Preprocessing: Normalization (mean and std), random cropping, horizontal flipping.

B.2.3 CALTECH-101 (LI ET AL., 2022)

• Description: 101 object categories
• Preprocessing: Normalization (mean and std), random cropping, horizontal flipping.

B.3 HYPERPARAMETERS AND OPTIMIZATION

• Batch Sizes: 64 for CIFAR and Caltech-101, and 128 for ImageNet-1k.
• δ settings: δ = 1e−3 for CIFAR, and δ = 1 for ImageNet-1k.
• Optimizer settings: For SGD, momentum=0.9, weight_decay=5e-4.
◦ SGD(F) - lr = 0.001.
◦ SGD(L) - lr = 0.1, scheduler:
LinearLR(_,start_factor=1,end_factor=0.01,total_iters=150).

◦ SGD(M) - lr = 0.1, scheduler:
MultiStepLR(_, milestones=[50, 100], gamma=0.1).

◦ SGD(E) - lr = 0.1, scheduler: ExponentialLR(_, gamma=0.96).
◦ Adam (Kingma & Ba, 2014) - lr = 0.001.
◦ AdamW (Loshchilov & Hutter, 2017) - lr = 0.001, weight_decay=0.01.

• Annealing (Qin et al., 2023): For the ImageNet-1k task, we switch to using the full training data
for the last 10% of the training epochs to give better stability.

• Seeds: 5 runs with seeds {0, 1, 2, 3, 4}. 3 runs with seeds {0, 1, 2}. 1 run with seed {0}.

B.4 TRANSFER LEARNING EXPERIMENTS

• Fine-tuning Setup:
We selected the model checkpoints at the 100th epoch for ResNet-101/AdamW and DenseNet-
121/AdamW follow settings from Table 2 experiments. The models were fine-tuned using both
the IES method and full-data training. During fine-tuning, only the classification head of the
models is updated, while the rest of the model parameters were frozen.

• Experimental Setup:
The main experimental settings were consistent with those described in Appendix A. The models
were fine-tuned for 1 or 5 of epochs using the Adam optimizer with a learning rate of 0.001.
Notably, data augmentation techniques such as cropping and rotation were not applied, and all
images were resized to a fixed resolution of 224x224. For the Caltech101 dataset, an additional
preprocessing step is performed to convert grayscale images to RGB format.

• Results for fine-tuning 1 epoch:

Table 6: transferability of IES-2nd Pretrained in ImageNet-1k. Fine-tuning 1 epochs. (mean±std)

ResNet-101 DenseNet-121

Transfer Task IES (Ours) No Removal IES (Ours) No Removal

ImageNet-1k –> CIFAR-10 81.2%±0.1% 80.3%±0.2% 78.6% ± 0.2% 77.3% ± 0.2%

ImageNet-1k –> CIFAR-100 57.5%±0.2% 55.6%±0.2% 53.0% ± 0.2% 52.3% ± 0.2%

ImageNet-1k –> Caltech-101 59.9%±0.8% 57.4%±1.2% 50.9% ± 1.6% 49.5% ± 1.5%
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• Results for fine-tuning 5 epochs:

Table 7: transferability of IES-2nd Pretrained in ImageNet-1k. Fine-tuning 5 epochs. (mean±std)

DenseNet-121 ResNet-101

Transfer Task IES (Ours) No Removal IES (Ours) No Removal

ImageNet-1k –> CIFAR-10 82.6%±0.1% 81.7%±0.1% 85.6% ± 0.1% 84.6% ± 0.1%

ImageNet-1k –> CIFAR-100 61.6%±0.2% 60.8%±0.2% 66.0% ± 0.1% 64.4% ± 0.2%

ImageNet-1k –> Caltech-101 91.2%±0.2% 90.6%±0.3% 92.7% ± 0.2% 92.5% ± 0.3%

B.5 EXPERIMENTS IN FIGURE 4

Setup:

◦ The main experimental settings were consistent with those described in Appendix A.
◦ 5 runs, mean±std.
◦ Batch size: The batch size is 128.
◦ Number of epochs: The models are trained for 150 epochs.
◦ δ = 1e−4.

Evaluation Metrics:

◦ SAM (Sharpness-Aware Minimization):
The SAM value is defined as the difference between the perturbed loss and the original loss
Foret et al. (2020). The important hyperparameter is rho, which represents the magnitude of the
perturbation. In this work, rho is set to 0.05.

◦ Gradient Norm:
In the training loop, for each batch, calculates the gradient norm. For each parameter p, its gradient
norm is calculated as p.grad.data.norm(2).item() ∗∗ 2. The total gradient norm is
the square root of the sum of squares of all parameter gradient norms. Gradient Norm in Figure is
the average of gradient norms for all batches in an epoch.

◦ Maximum Eigenvalue of the Hessian Matrix:
The maximum eigenvalue is estimated using the power iteration Mises & Pollaczek-Geiringer
(1929) method to estimate the largest eigenvalue of the Hessian matrix.
The important hyperparameters include:
- n_iters: The number of iterations for the power iteration method, set to 20.
- epsilon: A small positive number for numerical stability, set to 1e−10.

◦ Training Loss: The average cross-entropy loss on the training set.

◦ Test Error: The percentage of misclassified samples in the test set.
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C COEFFICIENT OF VARIATION

To further investigate the properties of different orders of loss differences as potential mastered
criteria, we conducted experiments to compare their coefficient of variation (CV). The CV is a
standardized measure of dispersion, calculated as the ratio of the standard deviation to the mean:

CV =
σ

µ
,

where σ is the standard deviation and µ is the mean of the data. We compute the CV values for the
zero-order (loss value), first-order, second-order and third-order differences of each sample’s loss
during training. A lower CV value indicates that the data points are clustered more closely around the
mean, while a higher CV suggests greater dispersion. Figure 6 presents the CV values for different
orders of loss differences over the course of training when using the Adam optimizer. The results
show that the second-order difference and the third-order difference generally maintains lower CV
values compared to the zero-order and first-order differences throughout the training process.

Figure 6: Coefficient of variation (CV) of different orders of loss differences during training. Using
Adam optimizer, learning rate = 0.001.

Although the CV values do not converge to a low level in the later stages of training as observed with
the SGD optimizer (results on SGD shown in Figure 3), the second-order difference and the third-order
difference still exhibits significantly smaller CV values compared to the other orders. This suggests
that the second-order difference provides a relatively more consistent measure of an instance’s
learning status across different samples, even when the CV values do not converge. The lower CV
values of the second-order difference and the third-order difference throughout the training process
support the use of a unified threshold δ to determine the mastered instances. This property simplifies
the implementation and management of the mastered criterion in the IES method, as it allows for
a more consistent approach to identifying mastered instances across the entire dataset. Using the
second-order difference (N = 2) as the mastered criterion achieves good performance in most
cases, as shown in Figure 5. N = 2 outperformed other configurations (including N = 3) in most
scenarios. Given the satisfactory performance of N = 2, the potential benefits of exploring higher-
order differences (N > 3) may be limited. The additional computational complexity introduced
by higher-order differences may not yield significant improvements in the effectiveness of the IES
method.

These experimental results provide evidence for the effectiveness of using the second-order difference
as the mastered criterion in the IES method, enabling a more efficient and generalizable approach to
instance-dependent early stopping.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D COMPARE WITH VARYING METHODS AND CRITERIA

To evaluate the effectiveness of the proposed IES method and its different criteria, we conducted
experiments comparing IES with other sample selection methods under various hyperparameter
settings. Figure 5 presents the results of these experiments on CIFAR-10 and CIFAR-100 datasets. It
is worth noting that the hyperparameters were fine-tuned to manually set the methods and criteria to
have similar total backpropagation sample savings rates, making the methods comparable.

D.0.1 EXPERIMENT: IES WITH DIFFERENT CRITERIA, HYPERPARAMETERS AND
COMPARISON METHODS

• Setup:
– Models: ResNet-18 for CIFAR-10, ResNet-34 for CIFAR-100
– Optimizers: SGD with momentum and exponential decay, the initial learning rate is set to 0.1,

and the gamma parameter is set to 0.96
– Training Epoch: 200 for CIFAR
– Batch Size: 64 for CIFAR
– Seed: 0

– Comparison Methods (CIFAR-10 and CIFAR-100):
* Random Remove: Randomly excludes a fixed proportion of samples from backpropagation in

each training epoch. Removal rates: 10%, 20%, 30%, 40%, 50%.
* Small Loss & Reweight (Qin et al., 2023): Randomly removes samples with smaller loss

values and amplifies the gradients of the remaining small-loss samples. To focus on the core
idea of the method and ensure a simple and direct comparison with the proposed IES method,
we removed the annealing and other additional operations from the original implementation.
This modification allows us to evaluate the effectiveness of removing small-loss samples and
amplifying their gradients in isolation, providing a clearer understanding of the differences
between the two methods. Removal ratios: 10% - 50%. A comparison of the wall-time
between IES method and InfoBatch method is provided in Figure 7.

• Results:
– IES with N = 2 (2nd order difference) outperforms other criteria and sample selection meth-

ods in most cases, achieving a good balance between computational efficiency and model
performance.

– The performance of IES is relatively stable across a wide range of δ values for each criterion.
– Random Remove significantly reduces model performance, confirming the effectiveness of the

IES method in selecting not-yet mastered samples.
– Small Loss & Rescale improves results compared to Random Remove but still falls behind IES.

Figure 5 visualizes the results of these experiments, comparing the test accuracy of different methods
and criteria under varying Total Excluded Samples ratios.

(a) CIFAR-10 (b) CIFAR-100

Figure 7: Comparison of the wall-time between IES method and InfoBatch method
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E HIGH-LEVEL TASKS

To further validate the general applicability of our perspective and method, we provide a comprehen-
sive evaluation of our proposed Instance-dependent Early Stopping (IES) method across two distinct
but equally important high-level vision tasks: object detection and image segmentation, providing a
broader perspective on its potential applications in the field of computer vision. Our experimental
approach centered on integrating our proposed IES method into established baseline models for each
task. Here’s a detailed look at the experimental setup and result for each task:

We selected Faster R-CNN (Ren, 2015) as our baseline for object detection. Faster R-CNN is a
two-stage detector that has shown remarkable performance in accurately identifying and localizing
multiple objects within an image. For this experiment, we utilized the PASCAL VOC2007 (Evering-
ham et al., a) dataset, and we implemented VGG-16 (Simonyan & Zisserman, 2014) as the backbone
network for feature extraction. Both the baseline method and the IES method were run for 30 epochs.
We evaluate the best mAP value of the trained model and report the proportion of back-propagation
mini-batches saved by the IES method.

Object Detection
mAP (%) Mini-Batch Saved (%)

Baseline 70.2 ± 0.2 \
InfoBatch (Qin et al., 2023) 69.9 ± 0.2 18.7
IES (Ours) 70.2 ± 0.1 20.0

For the task of image segmentation, we chose DeepLab v3 (Chen, 2017) as our baseline. DeepLab
v3 is a state-of-the-art model for semantic segmentation, allowing the model to capture multi-scale
contextual information effectively. We employed the PASCAL VOC2012 (Everingham et al., b)
dataset for this experiment, and we used ResNet-50 (He et al., 2016) as the backbone network. Both
the baseline method and the IES method were run for 50 epochs. We evaluate the best mIoU value
of the trained model and report the proportion of back-propagation mini-batches saved by the IES
method.

Image Segmentation
mIoU (%) Mini-Batch Saved (%)

Baseline 76.2 ± 0.2 \
InfoBatch (Qin et al., 2023) 76.0 ± 0.3 12.0
IES (Ours) 76.1 ± 0.2 14.0

F MORE BASELINE METHODS

We further compare the IES method with several other data efficient methods, including:

1. The conventional early stopping method.

2. The importance sampling method (Jiang et al., 2019).

3. Curriculum learning methods (Zhou et al., 2020; Wang et al., 2024b).

To evaluate the applicability of the IES method in scenarios where efficiency is the primary objective,
we conducted comparisons using the same training parameters as the IES method (detailed in Section
D). To further demonstrate the ability of these methods to accelerate training while tolerating a certain
degree of model performance degradation, we reduced the total training epochs by half to 100 and
set the target computational speedup to approximately 2.0 and 3.0 times. Under higher speedup
ratios, we evaluate the loss on the full training set at five-epoch intervals to reduce the computational
overhead of loss evaluation, thereby enabling more efficient training. The comparison is made based
on the test accuracy achieved by each method’s trained model.
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Table 8: Comparison of IES and other data efficiency methods. (3 runs, mean±std)
Computation Speedup Methods CIFAR-10 CIFAR-100

1.0× Baseline (No Removal) 94.3%±0.3% 77.0%±0.4%

∼ 2.0×

Conventional Early Stopping 90.4%±0.5% 68.7%±0.5%
SB (Jiang et al., 2019) 93.0%±0.1% 70.6%±0.5%

DIHCL (Zhou et al., 2020) 93.4%±0.2% 74.3%±0.2%
EfficientTrain (Wang et al., 2024b) 91.5%±0.2% 75.0%±0.1%

IES (Ours) 93.7%±0.4% 74.9%±0.5%

∼ 3.0×

Conventional Early Stopping 88.1%±0.3% 63.9%±1.0%
SB (Jiang et al., 2019) 91.1%±0.5% 65.8%±0.3%

DIHCL (Zhou et al., 2020) 92.7%±0.1% 72.6%±0.1%
EfficientTrain (Wang et al., 2024b) 92.5%±0.2% 70.6%±0.7%

IES (Ours) 93.2%±0.1% 73.0%±0.5%

As shown in Table 8, these comparisons further demonstrate that IES, while not specifically designed
for scenarios where efficient training is the primary objective, still performs effectively in accelerating
model training while maintaining model performance. This can be attributed to its adaptively
identifying and excluding mastered samples during the training process.

G LABEL NOISE

An analysis of learning with noisy labels is crucial to evaluate the robustness and practicality of our
proposed IES method. To address this, we attempt to discuss this issue under Typical Learning with
Noisy Label scenarios and Epoch-wise Double Descent scenarios, respectively.

Typical Learning with Noisy Labels. We validate the performance of the IES method and the
baseline method (without removal) under typical learning with noisy labels settings, specifically,
on the CIFAR-10/CIFAR-100 datasets with 20% and 40% symmetric and instance-dependent label
noise.

Table 9: Performance comparison on CIFAR-10 dataset with different noise settings.

Noise Ratio Type Best Accuracy [Early Stopping Epoch] Mini-batch Saved
Baseline IES

20% Symmetric 87.81% [21] 87.81% [21] 0%
40% Symmetric 81.29% [13] 81.29% [13] 0%
20% Instance 87.09% [22] 87.09% [22] 0%
40% Instance 83.49% [20] 83.49% [20] 0%

Table 10: Performance comparison on CIFAR-100 dataset with different noise settings.

Noise Ratio Type Best Accuracy [Early Stopping Epoch] Mini-batch Saved
Baseline IES

20% Symmetric 55.39% [17] 55.39% [17] 0%
40% Symmetric 43.87% [15] 43.87% [15] 0%
20% Instance 57.30% [18] 57.30% [18] 0%
40% Instance 47.67% [18] 47.67% [18] 0%

The experimental results indicate that the IES method degenerates to the baseline method (without
removal) across all tested label noise rates, noise types, and datasets. This suggests that during the
training process, no training sample satisfies the master criterion before the model overfits to the
noisy labels and its performance declines.
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The core idea behind the IES method is that once a model has mastered a sample, it should stop
training on that sample. However, when a certain proportion of label noise exists in the dataset,
memorization of mislabeled samples may affect the model’s ability to learn stable patterns, making it
difficult for the model to truly master any samples before the early stopping point.

Epoch-wise Double Descent. Epoch-wise Double Descent refers to the phenomenon where, when
the training samples contain a certain amount (usually low) of label noise, as training progresses, the
model’s generalization performance first rises, then falls, and then rises again, with the generalization
performance after the second rise being superior to the first peak. In this label noise scenario,
the model needs to prolong training to achieve better generalization performance compared to
conventional early stopping. We validate the performance of the IES method and the baseline method
(without removal) under typical Epoch-wise Double Descent settings, specifically, on the CIFAR-100
datasets with 10% symmetric and instance-dependent label noise.

Table 11: Performance comparison under Epoch-wise Double Descent settings on CIFAR-100.

Noise Ratio Type Best Accuracy [Epoch] Mini-batch Saved
Baseline IES

10% Symmetric 61.9% [190] 62.0% [191] 14.2%
10% Instance 58.9% [151] 59.2% [199] 11.0%

The experimental results show that the IES method can achieve lossless efficient training under the
Epoch-wise Double Descent scenario. In the later stages of training, the model inevitably “well-learn”
some instances due to the memorization effect. However, this does not affect the generalization
performance of the final model (even slightly better).

This behavior can potentially be explained by the fact that although ’well-learned’ instances may be
forgotten as the model training overfits the mislabeled samples, the IES method allows these samples
to adaptively re-include in training, thereby mitigating the negative impact of mislabeled samples.
Furthermore, as shown in the Figure 4, the IES method can more targetedly reduce steepness in
these sharp directions of the loss landscape, and therefore may be able to train a model with better
generalization performance even in the presence of label noise.

Consequently, in the typical scenarios of learning with noisy labels and scenarios of Epoch-wise
Double Descent, the IES method appears to have no negative impact on model performance compared
to the baseline.

H CATASTROPHIC FORGETTING

We define “early removed examples” as the first 5% of samples that are removed. We conducted
experiments in a typical IES training environment with CIFAR-10, ResNet18, and SGD optimizer,
which saves approximately 43% of the backpropagation samples in total 200 training epoch.

We tracked the average training loss and accuracy of these “early removed examples” during the
training process and compared them with the corresponding values of the entire training set. The
experimental results are as follows:

The results demonstrate that the “early removed examples” are well learned (even better) by the
model, and their training accuracy and loss are on par with other samples in the end of training. This
implies that the model isn’t catastrophically forgetting these “early removed examples”.

Furthermore, we investigated the reasons why our IES method does not lead to catastrophic forgetting.
Notably, the IES is a reversible method, which means that the removed samples have a chance to re-
include in the training process if their second-order loss difference exceeds the threshold. Therefore,
we tracked the average number of times the “early removed examples” were re-included in the
training process, as shown in the following table:

Considering that our method allows these “early removed examples” to re-include in training for
an average of about 13 times, with the most frequently replaced samples experiencing 26 training
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Table 12: Comparison of training loss and accuracy between full training set and early removed
examples across different epochs.

Epoch Training Loss Training Accuracy

Full Set Early Removed Full Set Early Removed

50 0.120135 0.001003 95.96% 100.00%
100 0.001448 0.000920 99.99% 99.98%
150 0.000914 0.000806 100.00% 100.00%
200 0.000883 0.000833 100.00% 100.00%

Table 13: Statistics of sample re-inclusion during training.

Metric Value

Average Times Re-included 13.14
Maximum Times Re-included 26.00

replays, we propose that this adaptive dynamic training mechanism contributes to the IES method’s
ability to effectively prevent “early removed examples” from being catastrophically forgotten during
model training.

I FAIRNESS

We conducted a preliminary assessment of the fairness of training using the IES method in sensitive
environments. We utilized the CelebA face dataset as an adversarial dataset to investigate whether the
IES method would introduce new biases during training when using male as the sensitive attribute
and attractiveness as the target label, thereby affecting the model’s fairness.

We compared the baseline method (without sample removal) and the IES method on the ResNet-18
model for the attractiveness classification task, evaluating the accuracy, recall (True Positive Rate),
and Demographic Parity Difference (DPD) metrics on the male and female validation subsets. The
results are as follows:

Table 14: Fairness evaluation on CelebA dataset using gender as the sensitive attribute. Metrics
include overall accuracy, gender-specific accuracy and recall rates, and Demographic Parity Difference
(DPD). Lower DPD indicates better fairness. Best results are shown in bold.

Method Overall Male Female DPD
Acc. Acc. Recall Acc. Recall

Baseline 82.5 83.8 68.2 81.6 90.6 0.4613
IES (Ours) 82.4 83.4 58.9 81.8 87.0 0.4544

From the Demographic Parity Difference (DPD) metric, which evaluates fairness (the closer to 0, the
better), the IES method is slightly lower than the baseline method (0.4544 vs 0.4613), indicating that
its prediction results have slightly less disparity between the two gender subsets.

These results provide a preliminary indication that the IES method may introduce or amplify certain
biases to some extent, negatively impacting the classification performance for different population
subsets. However, since IES allows excluded samples to adaptively re-participate in training, the
overall fairness is slightly improved.
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