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ABSTRACT

Discrete latent variables are considered important to model the generation process
of real world data, which has motivated research on Variational Autoencoders
(VAEs) with discrete latents. However, standard VAE training is not possible
in this case, which has motivated different strategies to manipulate discrete dis-
tributions in order to train discrete VAEs similarly to conventional ones. Here
we ask if it is also possible to keep the discrete nature of the latents fully intact
by applying a direct discrete optimization for the encoding model. The studied
approach is consequently strongly diverting from standard VAE training by al-
together sidestepping absolute standard VAE mechanisms such as sampling ap-
proximation, reparameterization trick and amortization. Discrete optimization is
realized in a variational setting using truncated posteriors in conjunction with evo-
lutionary algorithms (using a recently suggested approach). For VAEs with binary
latents, we first show how such a discrete variational method (A) ties into gradient
ascent for network weights and (B) uses the decoder network to select latent states
for training. More conventional amortized training is, as may be expected, more
efficient than direct discrete optimization, and applicable to large neural networks.
However, we here find direct optimization to be efficiently scalable to hundreds of
latent variables using smaller networks. More importantly, we find the effective-
ness of direct optimization to be highly competitive in ‘zero-shot’ learning (where
high effectiveness for small networks is required). In contrast to large supervised
neural networks, the here investigated VAEs can, e.g., denoise a single image
without previous training on clean data and/or training on large image datasets.
More generally, the studied approach shows that training of VAEs is indeed possi-
ble without sampling-based approximation and reparameterization, which may be
interesting for the analysis of VAE-training in general. In the regime of few data,
direct optimization, furthermore, makes VAEs competitive for denoising where
they have previously been outperformed by non-generative approaches.

1 INTRODUCTION AND RELATED WORK

Variational autoencoders (Kingma & Welling, 2014; Rezende et al., 2014) are prominent and very
actively researched models for unsupervised learning. VAEs, in their many different variations,
have successfully been applied to a large number of tasks including semi-supervised learning (e.g.
Maaløe et al., 2016), anomaly detection (e.g. An & Cho, 2015; Kiran et al., 2018), sentence in-
terpolation (Bowman et al., 2016), music interpolation (Roberts et al., 2018) and drug response
prediction (Rampasek et al., 2017). The success of VAEs rests on a series of methods that enable
the derivation of scalable training algorithms to optimize their model parameters (discussed further
below). A desired feature when applying VAEs to a given problem is that their latent variables (i.e.,
the encoder output variables) correspond to meaningful properties of the data, ideally to those latent
causes that have originally generated the data. However, many real-world datasets suggest the use
of discrete latents as they often describe the data generation process more naturally. For instance,
the presence or absence of objects in images is best described by binary latents (e.g. Jojic & Frey,
2001). Discrete latents are also a popular choice in modeling sounds; for instance, describing piano
sounds may naturally involve binary latents: keys are pressed or not (e.g. Titsias & Lázaro-Gredilla,
2011; Goodfellow et al., 2013; Sheikh et al., 2014). The success of standard forms of VAEs has
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consequently spurred research on novel formulations that feature discrete latents (e.g. Rolfe, 2016;
Khoshaman & Amin, 2018; Roy et al., 2018; Sadeghi et al., 2019; Vahdat et al., 2019).

The objective of VAE training is the optimization of a generative data model which parameterizes
a given data distribution. Typically we seek model parameters Θ of a VAE that maximize the data
log-likelihood, L(Θ) =

∑
n log

(
pΘ(~x (n))

)
, where we denote by ~x(1:N) a set of N observed data

points, and where pΘ(~x) denotes the modeled data distribution. Like conventional autoencoders
(e.g., Bengio et al., 2007), VAEs use a deep neural network (DNN) to generate (or decode) observ-
ables ~x from a latent code ~z. Unlike conventional autoencoders, however, the generation of data ~x
is not deterministic but it takes the form of a probabilistic generative model.

For VAEs with binary latent variables, as they will be of interest here, we consider the following
VAE generative model:

pΘ(~z) = Bern(~z;~π) =
∏
h

(
πzhh (1− πh)(1−zh)

)
, pΘ(~x |~z) = N

(
~x; ~µ(~z;W ), σ2I

)
, (1)

where ~z ∈ {0, 1}H is a binary code and the non-linear function ~µ(~z;W ) is a DNN that outputs
the mean of the Gaussian distribution. pΘ(~x |~z) is commonly referred to as decoder. The set of
model parameters is Θ = {~π,W, σ2}, where W incorporates DNN weights and biases. We assume
homoscedasticity of the Gaussian distribution, but note that there is no obstacle to generalizing the
model by inserting a DNN non-linearity that outputs a correlation matrix. Similarly, the algorithm
could easily be generalized to different noise distributions should the task at hand call for it. For
the purpose of this work, however, we will focus on as elementary as possible VAEs, with the form
shown in Eqn. (1).

Given standard or binary-latent VAEs, essentially all learning algorithms seek to approximately
maximize the log-likelihood using the following series of methods (we elaborate in the appendix):

(A) Instead of the log-likelihood, a variational lower-bound (a.k.a. ELBO) is optimized.
(B) VAE posteriors are approximated by an encoding model, that is a specific distribution (often

Gaussian) parameterized by one or more DNNs.
(C) The variational parameters of the encoder are optimized using gradient ascent on the lower

bound, where the gradient is evaluated based on sampling and reparameterization trick to
obtain sufficiently low-variance and yet efficiently computable estimates.

(D) Using samples from the encoder, the parameters of the decoder are optimized using gradient
ascent on the variational lower bound.

Optimization procedures for VAEs with discrete latents follow the same steps (Points A to D). How-
ever, discrete or binary latents pose substantial further obstacles in learning, mainly due to the fact
that backpropagation through discrete variables is generally not possible (Rolfe, 2016; Bengio et al.,
2013). In order to maintain the general VAE framework for encoder optimization, different groups
have therefore suggested different possible solutions: work by Rolfe (2016), for instance, extends
VAEs with discrete latents by auxiliary continuous latents such that gradients can still be computed.
Work on the concrete distribution (Maddison et al., 2016) or Gumbel-softmax distribution (Jang
et al., 2016) proposes newly defined continuous distributions that contain discrete distributions as
limit cases. Work by Lorberbom et al. (2019) merges the Gumbel-Max reparameterization with the
use of direct loss minimization for gradient estimation, enabling efficient training on structured la-
tent spaces. Finally, work by van den Oord et al. (2017), and Roy et al. (2018) combines VAEs with
a vector quantization (VQ) stage in the latent layer. Latents become discrete through quantization
but gradients for learning are adapted from latent values before they are processed by the VQ stage.
All methods have the goal of treating discrete distributions such that standard VAE training as de-
veloped for continuous latents can still be applied. These techniques interact during training with
the standard methods (Points A-D) already in place for VAE optimization. Furthermore, they add
further types of design decisions and hyper-parameters, for example parameters for annealing from
softened discrete distributions to the (hard) original distributions for discrete latents.

For discrete VAEs, it may consequently be a desirable goal to investigate alternative, more direct
optimization procedures that do not require a softening of discrete distributions or the use of other
indirect solutions. Such a direct approach is challenging, however, because once DNNs are used to
define the encoding model (Point B) standard tricks to estimate gradients (Point C) seem unavoid-
able. A direct optimization procedure, as is investigated here, consequently has to substantially
change VAE training. For the data model (1) we will maintain the variational setting and a decoding
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model with DNNs as non-linearity (Points A and D). However, we will not use an encoder model
parameterized by DNNs (Point B). Instead, the variational bound will be increased w.r.t. the encoder
model by using a discrete optimization approach. The procedure does not require gradients to be
computed for the encoder such that discrete latents are addressed without the use of reparameteriza-
tion trick and sampling approximations.

2 TRUNCATED VARIATIONAL OPTIMIZATION

Let us consider the variational lower bound of the likelihood. If we denote by q(n)
Φ (~z) the variational

distributions with parameters Φ
(n)

, and by
〈
h(~z)

〉
q
(n)
Φ

=
∑
~z q

(n)
Φ (~z) h(~z) expectation values w.r.t.

to q(n)
Φ (~z), then the lower bound can be written as:

F(Φ,Θ) =
∑
n

〈
log
(
pΘ(~x (n) |~z) pΘ(~z)

)〉
q
(n)
Φ

−
∑
n

〈
log
(
q

(n)
Φ (~z)

)〉
q
(n)
Φ

, (2)

The general challenge for the maximization of F(Φ,Θ) is the optimization of the encoding model
q

(n)
Φ . VAEs with discrete latents add to this challenge the problem of taking gradients w.r.t. discrete

latents. If we seek to avoid derivatives w.r.t. discrete variables, we have to define an alternative en-
coding model q(n)

Φ but such an encoding has to remain sufficiently efficient. Considering prior work
on generative models with discrete latents, variational distributions based on truncated posteriors
offer themselves as such an alternative (Lücke & Sahani, 2008). Truncated posterior approxima-
tions have been shown to be functionally competitive (e.g. Sheikh et al., 2014; Hughes & Sudderth,
2016; Shelton et al., 2017), and they are able to efficiently train also very large scale models with
hundreds or thousands of latents (e.g. Shelton et al., 2011; Sheikh & Lücke, 2016; Forster & Lücke,
2018). However, the important question for training discrete VAEs is if or how truncated variational
distributions can be used in gradient-based optimization of neural network parameters. We here,
for the first time, address this question noting that all previous approaches relied on closed-form (or
pseudo-closed form) parameter update equations in an expectation-maximization learning paradigm.

Optimization of the Decoding Model. In order to optimize the parameters W of the decoder DNN
~µ(~z,W ), the gradient of the variational bound (2) w.r.t. W has to be computed. We consequently
need, for any VAE, a sufficiently precise and efficient approximation of the expectation value w.r.t.
the encoder q(n)

Φ (~z). Gradient estimation is of central importance for deep unsupervised learning,
and approaches, e.g., for variance reduction of estimators have played an important role and are
dedicated solely to this purpose (e.g., Williams, 1992). Reparameterization finally emerged as a
key method because it allowed for sufficiently low-variance estimation of gradients based, e.g., on
Gaussian middle-layer units (Kingma & Welling, 2014; Rezende et al., 2014).

For discrete VAEs, however, reparameterization requires the introduction of additional manipula-
tions of discrete distributions that we here seek to fully avoid.

Instead of using reparameterization or variance reduction, we will compute gradients based on trun-
cated posterior as variational distributions. A truncated posterior has the following form:

q
(n)
Φ (~z) :=

pΘ(~z | ~x (n))∑
~z ′∈Φ

(n) pΘ(~z ′ | ~x (n))
=

pΘ(~x (n) |~z) pΘ(~z)∑
~z ′∈Φ

(n) pΘ(~x (n) |~z ′) pΘ(~z ′)
if ~z ∈ Φ

(n)

, (3)

where for all ~z 6∈ Φ
(n)

the probability q(n)
Φ (~z) equals zero. That is, a variational distribution q(n)

Φ (~z)

is proportional to the true posteriors in a subset Φ
(n)

, which acts as its variational parameter.

We can now compute the gradient of (2) w.r.t. the decoder weights W which results in:

~∇WF(Φ,Θ) = − 1

2σ2

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ~∇W ‖~x (n) − ~µ(~z,W )‖2 . (4)

The right-hand-side has salient similarities to the standard gradient ascent for VAE decoders. Es-
pecially the familiar gradient of the mean squared error (MSE) shows that, e.g., standard automatic
differentiation tools can be applied. However, the decisive difference are the weighting factors
q

(n)
Φ (~z). Considering (3), in order to compute the weighting factors we require all ~z ∈ Φ

(n)

to be
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passed through the decoder DNN. As all states of Φ
(n)

anyway have to be passed through the de-
coder for the MSE term of (4), the overall computational complexity is not higher than an estimation
of the gradient with samples instead of states in Φ

(n)

(we elaborate in Appendix A).

To complete the decoder optimization, update equations for variance σ2 and prior parameters ~π can
be computed in closed-form (compare, e.g., Shelton et al., 2011) and are given by:

σ2,new = 1
DN

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ‖~x (n) − ~µ(~z,W )‖2 , ~πnew = 1

N

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ~z, (5)

where N is the number of samples in the training dataset and D is the number of observables.

Optimization of the Encoding Model. After having established that the decoder can be optimized
efficiently and by using standard DNN methods, the important question is if the encoder can be
trained efficiently. Encoder optimization is usually based on a reformulation of the variational bound
(2) given by:

F(Φ,Θ) =
∑
n

〈
log
(
pΘ(~x (n) |~z)

)〉
q
(n)
Φ

−
∑
nDKL

(
q

(n)
Φ (~z), pΘ(~z)

)
. (6)

Centrally for this work, truncated posteriors allow a specific alternative reformulation of the bound
that enables efficient optimization. The reformulation recombines the entropy term of the original
form (2) with the first expectation value into a single term, and is given by (see Lücke, 2019, for
details):

F(Φ,Θ) =
∑
n

log
( ∑
~z∈Φ

(n)

pΘ(~x (n) |~z) pΘ(~z)
)
. (7)

Thanks to the simplified form of the bound, the variational parameters Φ
(n)

of the encoding model
can now be sought using direct discrete optimization procedures. More concretely, because of the
specific form (7), pairwise comparisons of joint probabilities are sufficient to maximize the lower
bound: if we update the set Φ

(n)

for a given ~x (n) by replacing a state ~z old ∈ Φ
(n)

with a state
~z new 6∈ Φ

(n)

, then F(Φ,Θ) increases if and only if:

log
(
pΘ(~x (n), ~z new)

)
> log

(
pΘ(~x (n), ~z old)

)
. (8)

To obtain intuition for the pairwise comparison, consider its form when inserting the binary VAE (1)
into the left- and right-hand sides. Eliding terms that do not depend on ~z we obtain:˜log pΘ(~x, ~z) = −‖~x− ~µ(~z,W )‖2 − 2σ2

∑
h π̃h zh (9)

where π̃h = log
(
(1 − πh)/πh

)
. The expression assumes an even more familiar form if we restrict

ourselves for a moment to sparse priors π < 1
2 , i.e., π̃ > 0. Criterion (8) then becomes:

‖~x (n) − ~µ(~z new,W )‖2 + 2σ2π̃ |~z new| < ‖~x (n) − ~µ(~z old,W )‖2 + 2σ2π̃ |~z old| (10)

where |~z| =
∑H
h=1 zh. Such functions are routinely encountered in sparse coding or compressive

sensing (Eldar & Kutyniok, 2012): for each set Φ
(n)

we seek those states ~z that are reconstructing
~x (n) well while being sparse (~z with few non-zero bits). For VAEs, ~µ(~z new,W ) is a DNN and as
such much more flexible in matching the distribution of observables ~x than can be expected from
linear mappings. Furthermore, criteria like (10) usually emerge for maximum a-posteriori (MAP)
training in sparse coding (Olshausen & Field, 1996). In contrast, we here seek a population of states
~z in Φ

(n)

for each data point. It is a consequence of the reformulated lower bound (7) that it remains
optimal to evaluate joint probabilities (as for MAP) although the constructed population of states
Φ

(n)

can capture (unlike MAP training) a rich posterior structure.

But how can new states ~z new that optimize Φ
(n)

be found efficiently in high-dimensional latent
spaces? Random search and search by sampling has recently been explored for elementary gener-
ative models (Lücke et al., 2018). Here we will follow another recent suggestion (Guiraud et al.,
2018) and make use of a search based on evolutionary algorithms (EAs). In this setting we interpret
sets Φ

(n)

as populations of binary genomes ~z and base the fitness function on Eqn. (9).

Concretely, using Φ
(n)

as initial parent pool, we apply the following genetic operators in sequence:
firstly, parent selection picks Np states from the parent pool. In our numerical experiments we used
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Figure 1: The optimization process of the
variational parameters Φ(n) using evolution-
ary search. A. Some states are selected as
parents. B. Each child undergoes mutation.
C. Children are merged with the original
population and the least fit are discarded.

fitness-proportional parent selection, for which we add an offset (constant w.r.t. ~z) to the fitness
values in order to make them strictly non-negative. Each of the children undergoes mutation: one or
more bits are flipped to further increase offspring diversity. In our experiments we perform random
uniform selection of the bits to flip. Crossover could also be employed to increase offspring diversity.
We repeat the procedure using the children generated this way as the parent pool, giving birth to
multiple generations of candidate states. Finally, we update Φ

(n)

by substituting individuals with
low fitness with candidates with higher fitness. The whole procedure can be seen as an evolutionary
algorithm with perfect memory or very strong elitism (individuals with higher fitness never drop out
of the gene pool). Note that the improvement of the variational lower bound depends on generating
as many as possible different children with high fitness over the course of training.

We point out that the EAs optimize each Φ
(n)

independently, so this technique can be applied to
large datasets in conjunction with stochastic or batch gradient descent on the model parameters Θ:
it does not require to keep the full dataset (or all sets Φ

(n)

) in memory at a given time. Fig 1 shows
how EAs produce new states that are used to update each set Φ

(n)

. The full training procedure for
binary VAEs is summarized in Algorithm 1.

Algorithm 1 Training Truncated Variational Autoencoders
Initialize model parameters Θ = {W,~π, σ2}
Initialize each Φ

(n)

with S distinct latent states
repeat

for all batches in dataset do
for sample n in batch do

Φnew = Φ
(n)

for all generations do
Φnew = mutation (crossover (selection (Φnew)))

Φ
(n)

= Φ
(n)

∪ Φnew

end for
Truncate Φ

(n)

to S fittest elements based on (9)
end for
Use Adam to update W using objective (4)

end for
Use (5) to update ~π, σ2

until parameters Θ have sufficiently converged

Figure 2: Graphical representation of
the model architecture used in numeri-
cal experiments.

3 NUMERICAL EXPERIMENTS

Having defined the training procedure, we numerically investigated its properties. After first verify-
ing that the procedure can recover generating parameters using ground-truth data (see Appendix B),
we conducted experiments to address the following two standard questions:

(1) How efficient, i.e. how scalable, is the direct discrete optimization of binary VAEs?
(2) How effective is the procedure, i.e., how well does it perform for a given VAE model?

In all numerical experiments, the training of the DNN parameters based on (4) is performed with
mini-batches, the Adam optimizer (Kingma & Ba, 2014) and decaying or cyclical learning rate
scheduling (Smith, 2017). Xavier/Glorot initialization (Glorot & Bengio, 2010) is used for the DNN
weights, while biases are always zero-initialized. Parameters ~π and σ2 are updated via Eqn. (5)
and initialized to 1

H (H is the size of ~π) and 0.01 respectively. Hyper-parameter optimization was
conducted manually and, for the more complex datasets, it also made use of black box Bayesian op-
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Table 1: Denoising perfor-
mance in PSNR (dB) for
the ‘house’ image under con-
trolled conditions (D=8×8,
H=64 for all algorithms).

σ=15 σ=25 σ=50

MTMKL 34.29 31.88 28.08
GSC 32.68 31.10 28.02

VAR-BSC 32.25 31.15 28.62
TVAE 34.27 ± .02 32.65 ± .06 29.61 ± .02

timization based on Gaussian Processes (Nogueira, 2019). We will refer to the binary VAE trained
with the method described above as Truncated Variational Autoencoder (TVAE) as the use of trun-
cated posteriors is the main distinguishing feature.

Scalability and improvement on linear models. Let us first numerically investigate scalability
properties of TVAE especially in comparison with linear models. After verifying parameter recovery
for ground-truth data (see Appendix B), we used natural data in the form of image patches as an
intermediately large scale and natural dataset. Concretely, we used 100,000 whitened image patches
of 16 × 16 pixels extracted from a standard image database (van Hateren & van der Schaaf, 1998)
and pre-processed as in Guiraud et al. (2018).

The simplest possible VAEs would use linear mappings for the decoder ~µ(~z,W ). For standard
Gaussian latents, a linear VAE can recover probabilistic PCA solutions (e.g. Lucas et al., 2019). For
Bernoulli latents, we would recover binary sparse coding (Haft et al., 2004; Shelton et al., 2011)
solutions. We therefore start training (using H = 300 latents) with a linear VAE. After 100 epochs
the weights of the linear mapping were used to initialize the bottom layer of a deeper decoder
network with three layers of 300, 300 and 16 × 16 = 256 units. The weights of the deeper layers
were simply initialized to the identity matrix. Furthermore, prior and variance were optimized.
The described setup guarantees a common starting point for linear and non-linear VAEs such that
the difference provided by deeper decoder DNNs can be highlighted. Fig. 3 shows the variational
bounds during learning of the linear VAE compared to the non-linear VAE for a typical experiment.
The non-linear VAE can be observed to quickly and significantly optimize the lower bound beyond
a linear VAE. We will later (when we are not interested in comparisons to linear VAEs) simply
optimize the weights of non-linear TVAE directly as we did not observed an advantage by first
optimizing a linear VAE.

linear binary VAE
TVAE starting from linear mapping

Figure 3: ELBO gain of TVAE compared to
linear VAE with binary latents (on 16 × 16
image patches).

Figure 4: TVAE denoising of house image with
noise level σ = 50. The denoised image has
PSNR=30.03, the best of the runs of Tab. 2.

Compared to shallow linear models, we observed a similar efficiency and scalability of TVAE. The
main additional computational costs are given by passing the latent states through the a full decoder
DNN instead of just through a linear mapping. The sets of states used could be kept small, at size
S = |Φ(n) | = 64, such that N × (|Φ(n) | + |Φ(n)

new|) states had to be evaluated for each epoch. This
compares to N × M states that would be used for standard VAE training (given M samples are
drawn per data point). Differently to standard VAE training the Φ

(n)

have to be remembered across
iterations. For very large datasets, the additional O(N×|Φ(n) |×H) memory demand can be dis-
tributed over compute nodes, however. To further investigate scalability, we went to up to H=1000
latent variables (while using 100 units in the DNN middle layer). TVAE training time remained in
line with the theoretical linear scaling with H while the variational bound further increased.

Effectiveness: Image Denoising. As we have observed, scaling to large latent spaces does not pose
a problem for the presented approach. It is clear, however, that memory and computational cost
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Table 2: Denoising perfor-
mance in PSNR (dB) for the
‘house’ image for different al-
gorithms with different opti-
mized hyper-parameters. The
top category only requires
the noisy image. The mid-
dle requires additional infor-
mation such as noise level
(KSVD, WNNM, BM3D) or
additional noisy images with
matched noise level (n2v†).
The bottom requires large
clean datasets.

σ=15 σ=25 σ=50

N2V? 32.05 29.20 25.42
MTMKL 34.29 31.88 28.08

GSC 33.78 32.01 28.35
S5C 33.50 32.08 28.35

VAR-BSC 33.50 32.32 28.91
TVAE 34.27 ± .02 32.65 ± .06 29.98 ± .05

N2V† 33.91 32.10 28.94
KSVD 34.32 32.15 27.95

WNNM 35.13 33.22 30.33
BM3D 34.94 32.86 29.37

EPLL 34.17 32.17 29.12
BDGAN 34.57 33.28 30.61
DPDNN 35.40 33.54 31.04

increase with the number of data points. Above, we processed 100, 000 data points which is still
feasible for the small DNNs used. However, larger DNNs increase computational load significantly
because N × (|Φ(n) | + |Φ(n)

new|) latent states have to be passed through the decoder. Furthermore,
larger DNNs require more data points to not overfit which further increases computational load
of our N -dependent method. In many applications, there is, however, anyway relatively few data
available which makes the application of large DNNs prohibitive. One example is the task of ‘zero-
shot’ denoising, i.e., denoising of an image when only the image itself is available. Learning without
clean data recently became very popular. The task is currently addressed using approaches based
on standard feed-forward DNNs whose training objectives have been altered to allow for training
on noisy images (e.g. Lehtinen et al., 2018; Krull et al., 2019). Deep generative models are, on the
other hand, more naturally suited for training on noisy data as their learning objective can be used
directly. Shocher et al. (2018) also argue that smaller DNNs are sufficient for the ‘zero-shot’ setting.
Because of its recent popularity and suitability for approaches with smaller DNNs, we consequently
focus on ‘zero-shot’ denoising. As a very significant additional benefit, the task allows for directly
comparing the VAE approach to a large range of other approaches that have recently been suggested.
Most notably we can compare to non-deep generative models, large feed-forward DNNs (Zhu et al.,
2019; Dong et al., 2019) and DNNs dedicated to learning from noisy data (Lehtinen et al., 2018;
Krull et al., 2019).

The one denoising benchmark that offers the broadest possible comparison to other methods is
probably the ‘house’ image (Fig. 4 left). The standard benchmark settings for ‘house’ make use of
additive Gaussian white noise with standard deviations σ ∈ {15, 25, 50}. First, consider the com-
parison in Tab. 1 where all models used the same patch size of D = 8 × 8 pixels and H = 64
latent variables (Appendix B for details). Tab. 1 lists the different approaches in terms of the stan-
dard measure of peak signal-to-noise ratio (PSNR). Values for MTMKL (Titsias & Lázaro-Gredilla,
2011), GSC (Sheikh et al., 2014) and S5C (Sheikh & Lücke, 2016) were taken from the respective
original publications (which all established new state-of-the-art results when first published). As can
be observed, TVAE significantly improves performance for high noise levels. TVAE is able to learn
the best data representation for denoising and represents the state-of-the-art in this controlled setting
(i.e., fixed D and H). The decoder DNN of TVAE provides the decisive performance advantage:
TVAE significantly improves performance compared to the linear Binary Sparse Coding (var-BSC,
Henniges et al., 2010; Shelton et al., 2011), confirming that the high lower bounds of TVAE on nat-
ural images translate into improved performance on a concrete benchmark. For σ = 25 and σ = 50,
TVAE also significantly improves on MTMKL, GSC, and S5C. These three approaches are based
on a spike-and-slab sparse coding model (also compare Goodfellow et al., 2012). Despite the less
flexible Bernoulli prior, the decoder DNN of TVAE provides the highest PSNR values for high noise
levels.

In order to further extend our comparison, in the last experiment we considered the denoising task
without controlling for equal conditions. Concretely, we allowed for any approach that performs
denoising on the benchmark including approaches that are trained on large image datasets and/or
use different patch sizes (including multi-scale and whole image processing). Note that different
approaches may employ very different sets of hyper-parameters that can be optimized for denoising
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performance: for sparse coding approaches, hyper-parameters include patch and dictionary sizes; for
DNN approaches they include all network and training scheme hyper-parameters. By allowing for
comparison in this less controlled setting, we can include a number of recent approaches including
large DNNs trained on clean data and training schemes specifically targeted to noisy training data.
Tab. 2 shows the denoising performance for the three noise levels we investigated, with results for
other algorithms taken from their corresponding original publications unless specified otherwise.
For WNNM and EPLL we cite values from Zhang et al. (2017). The results reported for noise2void
(n2v, Krull et al., 2019) were produced specifically for this work (see Appendix B).

Note that the best performing approaches in Tab. 2 cannot be trained on noisy data: EPLL (Zoran
& Weiss, 2011), BDGAN (Zhu et al., 2019) and DPDNN (Dong et al., 2019) all make use of clean
training data (typically hundreds of thousands of data points or more). For denoising, EPLL also
requires the ground-truth noise level of the test image. Ground-truth noise level information is also
required by KSVD (Elad & Aharon, 2006) and WNNM (Gu et al., 2014). As noisy data is very
frequently occurring, removing the requirement of clean data has been of considerable interest with,
e.g., approaches like noise2noise (n2n, Lehtinen et al., 2018) and noise2void being very actively
discussed currently. The n2n approach can achieve denoising performance on noisy training data
which is almost as high as the performance of a given DNN when trained on clean data. It would
thus outperform all approaches in Tab. 2 except for the bottom three. However, n2n requires different
noise realizations of the very same underlying image. noise2void aims to remove this artificial
assumption. Considering Tab. 2, PSNR values of TVAE were consistently higher than those of n2v
even if n2v was trained on external data with matched-noise level (n2v† in Tab. 2). Performance of
TVAE is 0.2dB lower than BM3D for σ = 25 and 0.6dB higher for σ = 50, which makes it, for
large noise levels, the state-of-the-art on this benchmark in the ‘zero-shot’ setting (i.e., the setting
n2n and n2v aim to address).

4 DISCUSSION

We investigated a novel way to train VAEs with binary latents. In order to avoid derivatives w.r.t.
stochastic discrete latents, we here changed the standard training setup substantially. Updates of
the decoder DNN now involve a weighted sum over states (4) and the encoder DNN is replaced
by a discrete evolutionary optimization. The direct optimization of the encoder replaces methods
that are usually considered indispensable for the training of VAEs: sampling approximation and
reparameterization trick. Furthermore, the here investigated encoding model does not use a joint
mapping for all datapoints to latent space, i.e., the approach is not amortized. While amortization
can be advantageous as information can be shared across datapoints, disadvantages in terms of less
tight lower bounds have also been pointed out (e.g. Kim et al., 2018; Cremer et al., 2018). Related
to this point, standard VAE training usually involves factored Gaussian approximations of VAE
posteriors which can introduce biases (e.g., discussion by Vértes & Sahani, 2018). The investigation
of alternatives may therefore, more generally, shed further light on the consequences of specific
approximation choices used to define VAE encoders.

The price we pay for not using amortization is efficiency: we optimize variational parameters for
each data point which is, of course, more costly. However, direct optimization can scale VAEs to
large latent spaces if smaller DNNs are used. When the use of large DNNs is anyway prohibitive
because of limited data, the here studied approach can play out its effectiveness. For the recently
popular task of ‘zero-shot’ denoising, we observed state-of-the-art results in a domain where VAEs
have not been reported to be competitive before. The competitive performance is presumably due
to the approach not being subject to an amortization gap as well as not being based on factored
variational distributions.

Our conclusion is consequently that direct discrete optimization can serve as an alternative for train-
ing discrete VAEs. In a sense, the approach can be considered as a brute-force optimization which is
slower than conventional amortized training but more effective for scales at which it can be applied.
To our knowledge, the approach is also the first training method for VAEs that is not using sampling-
based gradient estimates, and the first which makes VAEs competitive for ‘zero-shot’ denoising.
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Jörg Lücke. Truncated Variational Expectation Maximization. arXiv preprint, arXiv:1610.03113,
2019.
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A DETAILS OF ENCODER AND DECODER OPTIMIZATION

Figure 5: From left to right: generic VAE decoding model, continuous-latent VAE model with
Gaussian noise and the binary-latent VAE model of Eqn. (1), in plate notation.

See Fig. 5 for a graphical comparison between the decoding models of a vanilla VAE and the binary
VAE considered here (1). Fig. 6 graphically illustrates different steps to optimize standard VAEs,
and additional steps suggested by different contributions in order to optimize discrete VAEs.

For the optimization of the binary VAE (1), consider the original form of the lower bound, Eqn. (2).
When taking derivatives of F(Φ,Θ) w.r.t. Θ we can ignore the entropy term1. For the binary VAE
model of Eqn. (1) the gradient of the lower bound w.r.t.W is then given by:
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n
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Φ (~z) ~∇W ‖~x (n) − ~µ(~z,W )‖2 , (11)

where the weighting factors q(n)
Φ (~z) are by using (3) and (1) given by:

q
(n)
Φ (~z) =

pΘ(~x (n) |~z) pΘ(~z)∑
~z ′∈Φ

(n) pΘ(~x (n) |~z ′) pΘ(~z ′)

=
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~z ′∈Φ
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exp
(
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2σ2 ‖~x (n) − ~µ(~z ′,W )‖2 − ~̃π T~z ′
) (12)

for all ~z ∈ Φ
(n)

, where π̃h = log
(

1−πh

πh

)
. Note that the q(n)

Φ (~z) are evaluated at the current values
of the parameters Θ, they are therefore treated as constant, e.g., for the gradient w.r.t. W .

It may be interesting to compare the gradient estimate (11) to the gradient estimate of conventional
VAE training. For this consider a standard encoder given by an amortized variational distribution
which we shall denote by q̃(n)

Φ (~z). The distribution q̃(n)
Φ (~z) could be a Gaussian whose mean and

variance are set by passing data point ~x (n) through encoder DNNs. For discrete VAEs, q̃(n)
Φ (~z) can

be thought of as an analog discrete distribution. If we now take gradients of (6) w.r.t.W and estimate

1For our choice of variational distributions, it is not trivial that the entropy term actually can be ignored
because the encoding model qΦ(~z; ~x) in (3) is defined in terms of the decoding model and its parameters. For
truncated distributions, however, it can be shown that the entropy term can still be ignored (Lücke, 2019).
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using samples from q̃
(n)
Φ (~z), we obtain the familiar form:

~∇WF(Φ,Θ) =
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~∇W
〈

log
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log
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~∇W ‖~x (n) − ~µ(~z(m),W )‖2 , where ~z(m) ∼ q̃(n)
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We can slightly rewrite this expression to obtain:
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Φ

( 1

M
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~∇W ‖~x (n) − ~µ(~z,W )‖2 , (13)

If we now compare with the gradient using the truncated approximation q(n)
Φ (~z),

~∇WF(Φ,Θ) = − 1

2σ2

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ~∇W ‖~x (n) − ~µ(~z,W )‖2 , (14)

one can discuss analogous roles played by the subsets Φ
(n)

(the variational parameters of q(n)
Φ (~z))

and by a standard encoder q̃(n)
Φ . The states in a subset Φ

(n)

are used to estimate the gradient similar
to the samples from a standard encoder q̃(n)

Φ (~z). The size of Φ
(n)

can consequently be thought of as
analog to the number of samples used in a conventional estimation of the gradient. Standard VAE
training estimates the gradient by weighting all samples equally (with (1/M)) and the gradient di-
rection is approximated using sufficiently many samples drawn from the current q̃(n)

Φ (~z). In contrast,
truncated gradient estimation uses the states in Φ

(n)

, and the gradient is computed using a weighted
summation with weights q(n)

Φ (~z). These weights are computed by passing the states ~z through the
decoder network. The gradient is then, notably, not a stochastic estimation but exact: gradient ascent
is guaranteed (for small steps) to always monotonically increase the variational lower bound.

Computational Complexity. To add to the discussion of computational complexity of TVAE com-
pared to standard VAE training, consider again Eqns. 13 and 14. If as many samplesM are used, per
data point, as there are states in each Φ

(n)

, then both sums have the same number of summands. The
evaluation of the gradients of the mean square error (MSE) is consequently precisely the same for
both approaches. The additional weighting factors q(n)

Φ (~z) have to be computed for TVAE. However,
the weighting factors just represent a small overhead because the evaluation of the decoder DNN for
the states in Φ

(n)

is a computation that can be reused from the updates of Φ
(n)

.

The main computational differences are in the updates of Φ
(n)

compared to the update of encoder
DNNs for conventional VAEs. Once the parameters Θ = (W,σ2, ~π) are updated using (14), new
states for Φ

(n)

have to be sought based on criterion (9). In practice and for each n, we generate
M ′ new states according to the applied evolutionary procedure. To select the best states we have
to pass all these M ′ new states through the decoder DNN to evaluate (9). Furthermore, we have
to pass all M states already in Φ

(n)

through the DNN to re-evaluate (9) because the parameters Θ
have changed. In summary, we do require O(N × (M + M ′)) passes through the decoder DNN.
Selecting theM best states from the (M+M ′) states does not add complexity as this can be done in
O(M +M ′) for each n (Blum et al., 1973). The EA does add to the computational load but parent
selection and mutation only add a constant offset for each of the considered states.

For comparison with standard VAEs, if we useM samples of an encoder q̃(n)
Φ (~z), we requireO(M×

N) passes through the decoder DNN to update the parameters Θ according to (13). For the encoder
update, one requires N × M̃ passes through encoder and decoder DNN to estimate the gradient
w.r.t. the encoder weights (if we draw M̃ samples for each data point from a conventional encoder
distribution q̃(n)

Φ (~z). The additional overhead to actually draw the samples is usually negligible.

Hence, the computational complexity of TVAE training is comparable if M ≈M ′ ≈ M̃ . However,
conventional VAE training is amortized, i.e., the update of encoder weights uses information from all
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Figure 6: Standard series of methods applied to optimize the encoding model of VAEs. Left: meth-
ods applied for encoding models of standard VAEs. Middle: additional methods applied to maintain
the standard procedure of encoding model optimization also for discrete latent variables. Right: al-
ternative approach to optimize the VAE encoding model using direct discrete optimization.

data points n. In contrast, TVAE training is not amortized, i.e., the Φ
(n)

are updated per data point.
The advantage of amortization is that in practice, weights of a conventional encoder can converge
faster or (alternatively) less samples M̃ are required. Considering the observed runtimes, more
efficient conventional VAE training can presumably in large parts attributed to faster convergence
using amortization. Furthermore, the used number of samples M for conventional VAE training is
usually smaller than best working sizes of Φ

(n)

(we used, e.g., |Φ(n) | = 64 and |Φ(n) | = 200 for
denoising, see Tab. 3); and the required storage of Φ

(n)

results in overhead computations. On the
other hand, amortization also has disadvantages (e.g. Kim et al., 2018; Cremer et al., 2018). The
competitive performance for denoising may consequently be attributed at least in part to TVAE not
being subject to an amortization gap.

B DETAILS ON THE NUMERICAL EXPERIMENTS

B.1 VERIFICATION ON GROUND-TRUTH DATA

We first evaluated TVAE training on artificial datasets with known ground-truth parameters and log-
likelihood, in order to verify the correct functioning of the algorithm and to investigate possible local
optima effects. The dataset consisted of 500 4x4 images generated by linear superposition of vertical
and horizontal bars, with a small amount of Gaussian noise. The DNN’s input and middle layers had
8 units each. The Φ(n) variational sets consisted of 64 hidden states each. Fig. 7 shows the evolution
of the run that achieved the highest ELBO value out of ten. All parameters were correctly recovered,
and the ELBO value was consistent with actual ground-truth log-likelihood.

Such a simple test, however, can also be solved by linear models. In order to demonstrate that TVAEs
can solve non-linear problems, taking advantage of the neural network non-linearity embedded in the
generative model, we introduced correlations between pairs of bars: the bars combinations shown
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Figure 7: TVAE training on simple bars data: noiseless output of the TVAE’s DNN for the 8 possible
one-hot input vectors over several training epochs. Generating parameters are in the last row.

Figure 8: Correlated bars test. The plot shows the ratio between inferred and ground-truth log-
likelihoods log pΘ(~x) of datapoints with interesting bar combinations. The inferred values are re-
ported below the datapoints themselves.

in the first two datapoints from the left in Fig. 8 were discouraged from appearing together. We
employed the same evolutionary scheme and again we selected the run with highest peak ELBO
value out of ten. The model correctly learns that certain combinations of bars are much more unlikely
than others, and correctly estimates their likelihood.

Fig. 9 offers some more insight into the correlated bars test experiment described. The left section of
the figure shows the generative parameters for the dataset used: W0 is the 8x8 weight matrix of the
top-to-middle layer: this makes it so that the activation of the first latent variable inhibits activation
of the second, and activation of the last latent variable inhibits activation of the last. Concretely,
this results in a dataset where these specific bars combinations are discouraged from appearing. The
weightsW1, visualized as 8 4x4 matrices, generate the actual bars. σ2 was set to 0.01 and the dataset
contained an average of two superimposing bars per datapoint (πh = 2/8 for each h).

The middle section of the figure shows the ELBO values (averages over all batches for each epoch)
as training progresses. The cyclic learning rate schedule is responsible for the oscillatory behavior.

The right section shows some example datapoints together with samples from the trained TVAE
model that reached the highest ELBO value out of the ten runs.

Figure 9: From left to right: generative parameters for the correlated bars test; ELBO values over
epochs for 10 runs; example datapoints and samples from the generative model.
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B.2 DENOISING

Given a trained TVAE with parameters Θ, we estimated the value of a pixel in a single patch as
xest
d = 〈xd〉pΘ(xd|~x). When using pΘ(xd | ~x) =

∑
{~z} pΘ(xd | ~z)pΘ(~z | ~x) we obtain:

xest
d =

〈
〈xd〉pΘ(xd|~z)

〉
pΘ(~z|~x)

= 〈µd(~z)〉pΘ(~z|~x) . (15)

The expectation value on the right-hand-side of Eqn. (15) is then approximated based on the encod-
ing parameters Φ

(n)

using truncated posteriors. Finally, we took a weighted average of the estimates
of a pixel value in different patches (see, e.g., Burger et al., 2012) in order to generate the pixel
values of the full denoised image.

In Tab. 3 we list the exact hyper-parameters used to obtain the PSNR values reported. In parentheses,
the parameters for the run on data with noise level σ = 50 and unconstrained hyper-parameters are
given, when they differ from the other experiments.

Table 3: Hyper-parameters
for the denoising experiments
on the house image.

Neural network units
Input (H) 64 (512)
Middle 64 (512)
Output (D) 64 (144)

Cyclic Learning Rates
Min l.r. 0.0001
Max l.r. 0.01 (0.05)
Epochs/cycle 20
Batch size 32

Evolutionary parameters
Parents 10 (5)
Children 9 (4)
Generations 4 (1)
Size of Φ(n) 200 (64)

Table 4: Denoising performance of n2v in PSNR (dB) for
the ‘house’ image with AWG noise. For comparison, we
additionally list the performance of TVAE (numbers copied
from Tab. 2). PSNR values for n2v? are obtained by train-
ing only on the noisy image (i.e., in the same setting as used
for MTMKL, GSC, var-BSC and TVAE in Tab. 2. More
training data improves performance for n2v. PSNR values
for n2v† show performance if additional training data in the
form of noisy images with AWG noise σ = 25 is used. Fur-
ther improvements (especially for high noise) are obtained
if the n2v network is trained on training data with a noise
level that matches the noise of the test set (see n2v‡). For
instance, we used for n2v‡ training data with σ = 50 to de-
noise the ‘house’ with σ = 50. See text for further details.

σ=15 σ=25 σ=50

n2v? 32.05 29.20 25.42
n2v† 32.93 32.10 20.96
n2v‡ 33.91 32.10 28.94

TVAE 34.27 ± .02 32.65 ± .06 29.98 ± .05

To evaluate the performance on standard denoising benchmarks, we first compared TVAE to related
probabilistic sparse coding approaches such as MTMKL, GSC and var-BSC (Tab. 1). MTMKL
and GSC use the data model of spike-and-slab sparse coding and for training mean-field and trun-
cated posterior approximations with pre-selection are used, respectively. Compared to MTMKL
and GSC, var-BSC uses a less complex data model and a training scheme also based on evolution-
ary optimization (Guiraud et al., 2018). The denoising performance observed in the scenario with
controlled conditions (Tab. 1) shows that for high noise level (σ = 50), var-BSC achieves higher
PSNR values than MTMKL and GSC although the method uses a simpler data model. This observa-
tion demonstrates the effectiveness of the evolutionary training method used by var-BSC. However,
PSNR values for TVAE are significantly higher due to the higher flexibility in modeling the data
distribution provided by the used DNN.

In a second step, Tab. 2 compared the performance of TVAE with respect to different denoising
approaches including deterministic sparse coding (KSVD), a mixture model approach (EPLL), a
non-local image processing method (WNNM) and state-of-the-art denoising methods based on deep
neural networks (BDGAN and DPDNN). These approaches can be distinguished, e.g., by the amount
of employed training data and by the requirement for clean data.

TVAE as well as MTMKL, GSC and var-BSC do not require clean images for training. Furthermore,
all these approaches can be trained if only the single noisy image is available (‘zero-shot’ learning;
compare, e.g., Shocher et al., 2018; Imamura et al., 2019). Instead, EPLL, BDGAN and DPDNN use
clean training data (typically tens or hundreds of thousands of data points are collected for training).
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Approaches such as noise2noise (n2n Lehtinen et al., 2018) and noise2void (n2v Krull et al., 2019)
occupy a middle ground: they can be trained on noisy data but they typically require much larger
amounts of data than, e.g., TVAE or MTMKL. In the original n2v publication, for instance, 400
(noisy) 180 × 180 BSD (Martin et al., 2001) images were used to create a training dataset (this
procedure also involved data augmentation; compare Krull et al. 2019). For our comparison with
results of Tab. 2, we used the standard, publicly available code for n2v together with the default
training set (σ = 25) employed in the original n2v publication. We then applied the trained n2v
network to denoise the ‘house’ image with σ = 25. The resulting PSNR value was 32.10dB which
is 0.76dB lower than the PSNR value for BM3D (32.86dB). The difference is consistent with an
on average 0.88dB lower performance of n2v compared to BM3D on the BSD68 test set (see Krull
et al., 2019). The same network can also be used to denoise an image with lower or higher noise
level. The n2v network trained on σ = 25 does, for instance, result in PSNR values of 32.93dB
for the ‘house’ image with σ = 15 and in 20.96dB for the ‘house’ image with σ = 50 (see n2v†

in Tab. 4). Especially for high noise levels performance can be much improved, however, if the n2v
network is trained using images with the same noise level as the test image. In order to do so, we
followed the procedure described in the n2v publication while adapting the noise level of σ = 15 in
one case and σ = 50 for the other case. Trained on a dataset with matched noise, we then denoised
the ‘house’ image with σ = 15 in the one, and σ = 50 in the other case (results listed as n2v‡ in
Tab. 4). The PSNR values obtained for ‘house’ in this matched-noise-level scenario are much higher
compared to the scenario with unmatched noise level (e.g., for σ = 50 the PSNR improvement is
approximately 8 dB). The much lower performance for mismatched noise for n2v is in this respect
consistent with observations for standard DNN denoising for which training with the ground-truth
noise level has been pointed out as important for performance (Chaudhury & Roy, 2017; Zhang
et al., 2018).

The n2v approach can avoid having to know the exact noise level, e.g., if it is trained on just the
single noisy image. In a last experiment, we hence investigated this ‘zero-shot’ denoising feature
of n2v and applied the algorithm to denoise the ‘house’ image while using the same noisy image
for training that we seek to denoise (we took the publicly available code of n2v as an example and
manually adjusted hyperparameters as follows: we set the ”Percentage of pixel to manipulate per
patch” to a value of 0.4, as ”Number of training epochs” we used 400 and we set the ”Number of
parameter update steps per epoch” to 33). The obtained PSNR values are listed as n2v∗ in Tab. 4.

From Tab. 4 it can be observed, that for all considered training settings of n2v and all noise levels,
PSNR values of TVAE are consistently higher than those of n2v even if n2v is trained on external
data with matched-noise level. Additional parameter tuning may improve performance of n2v∗ to
a certain extent but PSNRs are in general much lower than n2v‡. While we followed for n2v‡ the
standard hyperparameter setting of the original paper/code publication of n2v (Krull et al., 2019),
we cannot exclude further improvements with parameter fine tuning for the ‘house’ benchmark.
However, we remark that the difference of n2v‡ and BM3D for the ‘house’ benchmark is on the
very same range as the differences between n2v and BM3D as reported on the BSD data set in the
original n2v publication. The stronger performing BM3D is according to denoising performance the
preferable comparison and as such included in Tab. 2. In terms of efficiency, the n2v approach is in
general (once trained) faster than BM3D as well as TVAE, however.

PSNR values of noise2noise (n2n) are usually very closely aligned with PSNR values achievable by
feed-forward DNNs. More concretely, n2n uses, for instance, a RED30 network (Mao et al., 2016)
which achieves 31.07 dB PSNR on the BSD300 data set if trained on clean data. If directly trained
on noisy data, RED30 achieves 31.06 dB (Lehtinen et al., 2018). n2n is thus strongly performing
in terms of PSNR. The caveat of n2n compared to n2v is, however, that the noisy data n2n uses is
rather artificial. The pairs of images n2n is trained on consist of two different noise realization of
the same underlying clean image. For real data, such a setting is only approximately occurring at
most, which has motivated the n2v approach.

Like n2v, BDGAN and DPDNN are optimized for specific noise levels (specific standard deviations
are used to generate the noisy training examples). EPLL is trained exclusively on clean image
patches; for denoising, the algorithm requires the ground-truth noise level of the test image as input
parameter. Ground-truth noise level information is also required by KSVD and WNNM.

Like all approaches in the top category of Tab. 2, TVAE does not require ground-truth noise level
information, nor clean images, nor large amounts of training data. For the ‘zero-shot’ setting, TVAE
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is consequently the best performing system on the ‘house’ benchmark. Such a high performance is
notably achieved using a basic DNN and relatively small patch sizes of D = 8 × 8 (for σ = 15
and σ = 25) or D = 12 × 12 (for σ = 50). All feed-forward DNNs for denoising use much
larger patches (e.g., n2v use 64 × 64). That a competitive denoising performance can be achieved
for small patches, in general, argues in favor for VAE approaches to denoising. Indeed, TVAE
even comes close to state-of-the-art approaches (BDGAN and DPDNN) that use very intricate DNN
architectures and large amounts of clean training data. We believe that such results underline the
potential of the here investigated approach although the novelty of the approach is the focus rather
than extensive benchmarking.

On the other hand, an important limitation of TVAE is its computational demand. For our exper-
iments on the ‘house’ image with noise level σ = 50 in Tab. 2 we used N = 60025 patches of
D = 12 × 12 pixels, which amounts to all possible non-overlapping square patches of that size
that can be extracted from the image. For training and denoising we used a TVAE with H = 512

latent variables, sizes of |Φ(n) | = 64, and 512 units in the DNN middle layer of the decoder. TVAE
training required 49 seconds per training epoch when executing on a single NVIDIA Titan Xp GPU
and 2.5 GB of GPU memory. We ran for 500 epochs which required between seven and eight hours
on the single GPU. We did not observe significant changes in variational bound values or in de-
noising performance after 500 epochs in any of the experiments we conducted for Tabs 1 and 2.
Runtime complexity increased linear with the number of data points N , with the dimensionality of
the data D, with the number of the latents H , and with the size of the DNN used. Runtimes also
increased approximately proportional w.r.t. the size of Φ

(n)

. Empirically we observed a sublinear
scaling with |Φ(n) | presumably because of significant overhead computations: for example, increas-
ing from |Φ(n) | = 64 to |Φ(n) | = 128 (while keeping all other parameters as above) computational
time increases from 49 seconds per training epoch to 75 seconds.

For noise levels σ = 15 and σ = 25 in Tab. 2 we used smaller patch sizes (D = 8 × 8) and fewer
stochastic latents (H = 64) but larger Φ

(n)

(i.e., |Φ(n) | = 200). In general, if the patch size D
is increased, more structure has to be captured. This can be done either by increasing the size of
the stochastic latents H or by using larger DNNs. Both, in turn, requires more training data in
order to estimate the increased number of parameters. In the current setup, the sizes of D which
are currently feasible are comparably small. The denoising performance based on small patches is,
however, notably very high.

For comparison, n2v uses up to D = 64 × 64 and also all other feed-forward DNN approaches
use significantly larger patch sizes than TVAE (and the other approaches in category 1). Still, n2v
can be trained efficiently on large patches requiring approximately 19 hours on a NVIDIA Tesla
K80 GPU for training on approximately 3k noisy images of shape 180x180 and seconds for the
denoising of one 256x256 image. The higher computational demand of TVAE is also the reason
why averaging across databases with many images (such as BSD68) or applications to large single
images quickly becomes infeasible. As a novel approach, TVAE is, however, far from being fully
optimized algorithmically compared to large feed-forward approaches, and there is certainly further
potential to improve training efficiency.

While denoising is, in general, well suited for deep generative models, performance for standard
image denoising is by far not as common as such results for standard DNNs (which may also be
related to efficiency aspects). An exception is a recent GAN approach (BDGAN; Zhu et al., 2019).
VAEs are often evaluated using binarized MNIST with approximate log-likelihoods for comparison;
that benchmark, however, is not consistent with the Gaussian noise model used here and does not
allow a direct comparison with feed-forward DNNs which are the state-of-the-art.
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