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ABSTRACT

Test-Driven Development (TDD) is a widely adopted software engineering prac-
tice that requires developers to create and execute tests alongside code imple-
mentation, ensuring that software behavior is continuously validated and refined.
In the era of vibe coding, where developers increasingly delegate code writing to
large language models (LLMs) by specifying high-level intentions, TDD becomes
even more crucial, as test cases serve as executable specifications that explicitly
define and verify intended functionality beyond what natural-language descrip-
tions and code context can convey. While vibe coding under TDD is promising,
there are three main challenges: (1) selecting a small yet effective test suite to im-
prove the generation accuracy and control the execution workload, (2) retrieving
context such as relevant code effectively, and (3) systematically using test feed-
back for effective code refinement. To address these challenges, we introduce
TENET, an LLM agent for generating functions in complex real-world repositories
under the TDD setting. TENET features three components: (1) a novel test har-
ness mechanism that selects a concise test suite to maximize diversity of target
usage scenarios; (2) a tailored agent toolset that performs efficient retrieval of
relevant code with interactive debugging; and (3) a reflection-based refinement
workflow that iteratively analyzes failures, replenishes context, and applies code
refinement. TENET achieves 69.08% and 81.77% Pass@1 on REPOCOD and Re-
poEval benchmarks, outperforming the best agentic baselines by 9.49 and 2.17
percentage points, respectively. In addition, this is the first study of test-driven
code generation with repository-level context, examining how different aspects of
test suites affect the performance of LLM agents under the TDD setting.

1 INTRODUCTION

Test-Driven Development (TDD) is a widely adopted practice in software engineering that tightly
couples the testing and implementation processes (Beck, 2022). Rather than treating tests as af-
terthoughts, TDD requires developers to create and execute tests continuously throughout the de-
velopment life-cycle. In practical TDD workflows, developers typically start by writing test cases
that specify the desired behavior or capture potential failure scenarios, then incrementally imple-
ment and refine code to satisfy these tests. Extensive empirical studies have demonstrated that
TDD improves code quality, enhances design clarity, boosts developer productivity, and supports
long-term maintainability (Mathews & Nagappan, 2024; Piya & Sullivan, 2024; Tian et al., 2025;
George & Williams, 2004; Williams et al., 2003; Janzen & Saiedian, 2008; Sheta, 2023; Mafi &
Mirian-Hosseinabadi, 2023; Cassieri et al., 2024; Baldassarre et al., 2021).

In the era of vibe coding (Karpathy, 2025), where developers increasingly delegate code writing to
large language models (LLMs) by specifying high-level intentions, TDD becomes even more crucial.
As LLM-generated code may amplify ambiguities or inconsistencies in developer intent, systemat-
ically specifying and validating requirements through test cases is essential to ensure correctness,
intended functionality, and maintainability. Recent industry practices further echo this view, em-
phasizing that TDD becomes especially powerful in the context of agentic coding (Anthropic, 2025;
Cherny, 2025).

Accordingly, TDD provides a more reliable setting for developing and evaluating code generation
techniques with repository-level dependencies. Existing work typically frames the task by requiring
the LLMs to generate target functions based on natural language descriptions of intent and contextual
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     Repo. Context
You are an intelligent coding assistant that
consistently delivers accurate and reliable
responses to user instructions. Your task is
to complete the target function body. 

         Target Function Specification & Docstring

            Task Description
sklearn
├── neural_network
│    ├── _base.py
│    └── _rbm.py    

     Test Cases as Specification

      Completion without Tests

      Test-Driven Completion

Test-D
riven Setup

Standard Setup

No Handling of y_prob with Singleton 2nd Dimension

Equivalent to Ground Truth

    # Convert to one-hot
    if y_true.ndim == 2 and y_true.shape[1] == 1:
        y_true = np.eye(y_prob.shape[1])[y_true]
    log_probs = xlogy(y_true, y_prob)
    return -np.sum(log_probs) / y_prob.shape[0]

    if y_prob.shape[1] == 1:
        # y_prob with singleton 2nd dimension
        # e.g., [[0.9]]
        y_true = y_true.reshape(-1, 1)
        log_probs = xlogy(1 - y_true, 1 - y_prob) 
                    + xlogy(y_true, y_prob)
    else:
        # y_prob with non-singleton 2nd dimension
        # e.g., [[0.1, 0.9]]
        if y_true.ndim == 1:
            y_true = np.eye(y_prob.shape[1])[y_true]
        log_probs = xlogy(y_true, y_prob)
    return -np.sum(log_probs) / y_prob.shape[0]

def log_loss(y_true, y_prob):
    """ Compute Logistic loss for classification.
    Parameters
    y_true : array-like or label indicator matrix...
        Ground truth (correct) labels
    y_prob : array-like of float, (n_samples, n_classes)
        Predicted probabilities by a classifier
    Returns
    loss : float

Complement
Specifications
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e
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def test_log_loss_1_prob_finite():
    y_true = np.array([[0], [0], [1]])   # shape (3, 1)
    y_prob = np.array([[0.9], [1.0], [1.0]])# shape (3, 1)
    loss = log_loss(y_true, y_prob)
    assert np.isfinite(loss)

Figure 1: Examples of repository-level code generation under standard and test-driven setups.

code retrieved from the repository (Zhang et al., 2023; 2024b; Li et al., 2024). However, such
descriptions and context are often insufficient to fully convey the intended functionality of the target
function, making it infeasible for the LLMs to produce the expected implementation. In contrast, test
cases offer executable specifications that explicitly define correct behaviors and failure scenarios.

Figure 1 illustrates how an LLM agent generates the target function for task scikit-learn 304
from REPOCOD (Liang et al., 2024b), a benchmark for code generation with repository-level de-
pendencies. In the standard setting, the agent is given 1 the task description, 2 the repository
context, and 3 the function specification with docstring. Based on this information, the agent
assumes that y prob.shape[1] (the size of distributions) is always greater than 1, since classifi-
cation should involve at least two classes, and produces the implementation shown in 5 . However,
in scikit-learn, developers require functions to also support singleton representation of proba-
bility for binary classification (e.g., using [0.9] instead of [0.1,0.9] for each distribution). Such
a requirement cannot be inferred from 1 – 3 alone, and the implementation in 5 fails on such
inputs. In contrast, the TDD setting additionally provides 4 test cases, which explicitly include
usage examples where the binary probability distribution is represented by the singleton second di-
mension of y prob (the gray lines in 4 ). This supervision guides the agent to generate the correct
implementation in 6 .

While this highlights TDD as a promising setting, effectively utilizing test cases for code generation
is non-trivial. First, a complex function in a real-world repository needs to be validated by dozens
of distinct test cases. How to strategically select tests to guide an LLM within a limited context
window and computational budget remains a critical open question. Second, related context for
function generation is often scattered across the repository, so efficient retrieval is key to guiding
accurate implementation. Third, it is crucial to enable the agent to systematically leverage feedback
from the test execution to automatically debug and refine its generated code.

To address the above challenges, we propose TENET, an LLM agent designed to generate functions
within complex repositories under the TDD setting. The agent is built upon three key technical
innovations. First, to tackle the challenge of strategically selecting test cases, TENET employs a
novel test harness mechanism (THM) that utilizes dynamic analysis to select a subset of test cases
that invoke target functions from distinct caller functions in the call stack to maximize coverage
of diverse target usage scenarios. Second, it leverages a tailored agent toolset for repository-level
code generation, unifying structural retrieval, semantic similarity search, and interactive debugging,
enabling the agent to navigate complex repositories with both breadth and depth. Third, to address
the challenge of systematically refining code with test feedback, it implements a reflection-based
refinement workflow (RRW) that iteratively improves generated code via failure analysis, contextual
replenishment, and execution-based debugging. Together, these innovations allow TENET to generate
more correct code in complex real-world repositories.

The core contributions can be summarized as follows:
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• We propose a novel test harness mechanism for efficient test-driven supervision, which utilizes
dynamic analysis to select a small number of test cases that benefit code generation performance.

• We design a tailored agent toolset that supports LLM agents to perform efficient code retrieval
with interactive debugging.

• We build a reflection-based refinement workflow for test-aware debugging, enabling LLM agents
to more effectively utilize test execution signals and refine incorrect code generations.

• We develop the first test-driven LLM agent for repository-level code generation, namely TENET,
which achieves 69.08% and 81.77% Pass@1 on the REPOCOD and RepoEval benchmarks, out-
performing the best agentic baselines by 9.49 and 2.17 percentage points (pp), respectively.

• We conduct the first systematic study of test-driven code generation using LLM agents at the
repository level. The key findings include:
– A larger quantity of test cases does not necessarily lead to superior results; we find that a

moderate number, typically three to five, often yields optimal performance.
– Test cases that invoke target functions from distinct callers may provide complementary infor-

mation and higher test coverage, helping the agent produce the correct implementation.
– While incorporating test signals in both context retrieval and refinement consistently improves

the performance, it comes with higher token comsumptions. We should balance the trade-off
between accuracy and efficiency.

2 RELATED WORK

2.1 TEST-DRIVEN DEVELOPMENT

Test-Driven Development (TDD) is a widely adopted software engineering methodology (Beck,
2022). A typical TDD workflow follows a “test–implement–refactor” cycle: a developer begins
with one or more test cases that define a desired function, writes the minimum code necessary to
pass those tests, and then refactors the implementation while ensuring all tests continue to pass.

Although prior work shows the effectiveness of TDD (Mathews & Nagappan, 2024; Piya & Sullivan,
2024; Tian et al., 2025), its application to repository-level LLM agents remains underexplored. In
this work, we argue that TDD is particularly well-suited for this setting and develop TENET, which
achieves state-of-the-art performance on test-driven code generation in real-world repositories.

2.2 LARGE LANGUAGE MODEL AGENTS

LLM agents are increasingly used to automate developer workflows, which leverage an LLM as a
central reasoning engine to decompose complex problems, create multi-step plans, and interact with
environments using a predefined toolset. SWE-Agent (Yang et al., 2024) solves real-world GitHub
issues by equipping LLMs with tools for file editing, navigation, and testing. CodeAct (Wang et al.,
2024a) is a general agent, utilizes general tools to solve diverse problems. AutoCodeRover (Zhang
et al., 2024c) and SpecRover (Ruan et al., 2025) utilize program analysis to perform targeted code
modifications. CodeAgent (Zhang et al., 2024a) is the first agent specifically designed for repository-
level code generation tasks, relying on a small set of tools and pre-defined workflows.

However, when generating code in a test-driven manner in complex repositories, these agents lack
efficient mechanisms for selecting the most beneficial tests from an entire suite and struggle to ef-
fectively use execution feedback for code refinement. In contrast, TENET employs the THM to select
test cases that provide diverse test scenarios of the target function, yielding a much better context for
code generation. Furthermore, TENET enables the LLM to use a more powerful toolset for efficient
code retrieval and interactive debugging, and follows the RRW for effective code refinement.

2.3 REPOSITORY-LEVEL CODE GENERATION

Repository-level code generation requires models to implement code within complex codebases by
reasoning about source code, documentation, and dependencies (Liang et al., 2024b; Zhang et al.,
2023; Ding et al., 2023). With the rise of LLMs, many LLM-based approaches have been proposed,
which can be categorized into non-agentic and agentic approaches.

Non-agentic approaches operate without self-planning, but using techniques like Retrieval-
Augmented Generation (RAG) and feedback-driven refinement. Some methods use static or learned
retrieval strategies (Zhang et al., 2023; Wang et al., 2025; Wu et al., 2024; Shrivastava et al., 2023;
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Figure 2: TENET workflow.

Liao et al., 2024), while others base on semantic or structural graphs (Cheng et al., 2024; Liu et al.,
2024b; Li et al., 2025; Liang et al., 2024a; Ouyang et al., 2025; Phan et al., 2024). Another category
focuses on refinement using external feedback, such as compiler errors (Bi et al., 2024) or symbolic
planning (Bairi et al., 2024).

In contrast, agentic approaches remain less explored. CodeAgent equips the LLM with five tools
and four fixed planning strategies. Other general-purpose agents like OpenHands, SWE-Agent, and
those designed for issue-fixing, AutoCodeRover and SpecRover, while they can be adapted for code
generation, they underperform due to their lack of specialized design. In comparison, our proposed
agent, TENET, achieves the state-of-the-art accuracy.

3 APPROACH: TENET

Figure 2 illustrates the workflow of TENET, consisting of three major components: (1) the test har-
ness mechnism (THM), (2) the tailored agent toolset, and (3) the reflection-based refinement work-
flow (RRW). Specifically, the THM first selects a small set of the most effective test cases to serve
as additional input 4 beyond the 1 task description, 2 repository context, and 3 target function
specification, to guide further test-driven code generation. Then TENET explores the repository and
retrieves useful context through the tailored agent toolset that integrates efficient retrieval with in-
teractive debugging. After collecting sufficient context, TENET makes a generation attempt based
on the selected test cases and retrieved context, which is then validated by test execution. If any
selected test case fails, TENET enters the RRW to fix the incorrect code.

During the RRW, the agent is required to revisit its fault localization analysis, review the relevant
context, and assess whether existing information is sufficient to guide a correct refinement. If the
available evidence is not sufficient, the RRW prompts the agent to retrieve additional context and
leverage interactive debugging to gather further insights. This reflection loop continues until the
agent determines that it has sufficient evidence to perform a fix, at which point it generates a candi-
date refinement. The refined code is validated through test execution. TENET stays in RRW until a
candidate passes all selected test cases, or a maximum limit of refinement attempts is reached.

3.1 TEST HARNESS MECHANISM

While TDD is effective in guiding software implementation, dumping the entire test suite to the
LLM is infeasible due to two reasons.

• Effectiveness. Providing massive test cases can overwhelm the LLM with long, complex prompts,
increasing the cognitive load of the model (Mathews & Nagappan, 2024; Liu et al., 2024a).

• Efficiency. Such massive test suites and long prompts inevitably incur higher generation latency
and execution workload, reducing the efficiency of the agent pipeline (Kim et al., 2024).

To identify a concise and effective subset of test cases, TENET employs a novel THM that first exe-
cutes the full test suite against the unimplemented target function to collect failing cases. These
failing cases are then clustered according to the caller function that directly invokes the target
function in their call stack. The intuition is that different caller functions are likely to expose
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distinct usage patterns and test diverse aspects of the target function’s logic, thereby providing
complementary test coverage. For the example shown in Figure 1, test function with call chain
test log loss 1 prob finite→ log loss tests the target function under the binary classifica-
tion scenario and covers the if branch, while another cluster of test functions, with call chain . . . →
backprop→ log loss, all test the target function by covering the else branch.

From these clusters, TENET selects at most T test cases. The selection balances two objectives: (1)
ensuring diversity by choosing test cases from different clusters, and (2) prioritizing test cases with
the shortest call chain from the entry test function to the target function. In practice, the process first
attempts to pick one representative test case from each cluster. If the number of clusters is greater
than or equal to T , the top T clusters are chosen, with one test case selected from each. If the number
of clusters is fewer than T , additional test cases with the shortest call chains are selected until the
budget of T is reached. This strategy ensures that the final subset of test cases remains both diverse
across failure patterns and closely tied to the target function’s behavior.

We set T = 3 for the algorithm described above based on preliminary experiments on the sphinx
project from REPOCOD (Section 5.3). We study alternative test selection strategies in 5.4.

3.2 TAILORED AGENT TOOLSET

TENET provides a tailored toolset that extends the abstract-syntax-tree (AST)-based toolset of
SpecRover (Ruan et al., 2025) for structural context retrieval and interactive debugging. The API
toolsets of existing agents can be roughly divided into two categories: AST-based, such as Au-
toCodeRover and SpecRover, and terminal-command based, such as SWE-Agent (Yang et al., 2024)
and OpenHands (Wang et al., 2024b). While AST-based interfaces allow structural navigation, and
terminal-command based interfaces offers more flexibility, they still face several limitations when
generating functions under repository-level context.

First, RAG techniques can substantially improve generation accuracy by providing relevant code
examples. However, existing LLM agents have not incorporated semantic retrieval as an API beyond
basic repository navigation, which usually requires multiple attempts to locate the desired context.
Second, understanding the use cases is crucial for accurate code generation. Yet, existing LLM
agents rely on terminal commands to find the usage of a certain function based on string matching,
which is inefficient and error-prone. Third, although interactive debugging plays an important role
in refining code (Yuan et al., 2025), existing agents treat it as an end-to-end process, lacking support
for fine-grained interactive debugging that enables stepwise evidence collection and fault diagnosis.

To address these, we extend the SpecRover’s AST-based toolset with four new APIs:

• search import statement(f) retrieves all top-level import statements in the specified file f.
This enables the agent to analyze dependencies and disambiguate call paths in cross-file analysis.

• search similar method(n) retrieves the top-n methods most relevant to the signature and
docstring of the target function, ranked by BM25 similarity (Liang et al., 2024b; Zhang et al.,
2024a). This API enables the agent to collect context as references efficiently.

• search target usage(n) retrieves up to n usage examples of the target function via AST anal-
ysis. Unlike keyword-matching commands that require multiple indirect queries and often return
noisy snippets, this API provides usage contexts in a single step, making it easier for the agent to
understand how the target function is invoked.

• run debugger cmd(cmd) executes a specified debugging command (e.g., pdb) within a con-
tainer session, enabling line-by-line execution such as variable inspection and stack frame traver-
sal for fine-grained debugging (Yuan et al., 2025).

Together, these APIs address the identified limitations by allowing TENET to efficiently retrieve
relevant context and conduct structured interactive debugging.

3.3 REFLECTION-BASED REFINEMENT WORKFLOW

With the THM and the tailored toolset, TENET first generates a code snippet which is then validated
against the chosen test cases. If any test case fails, TENET enters the RRW to revise the code snippet
iteratively. Unlike refinement in the setting of self-contained functions, where the LLM only needs
to review and revise its own faulty implementation (Chen et al., 2023; Olausson et al., 2023; Huang
et al., 2024), the generation of incorrect code within a repository could be due to more complex
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reasons. For example, LLM can get “lost in the middle” due to long trajectories (Liu et al., 2024a),
overlooking important context such as the usage of repository-specific functions.

To address such issues and control the token consumption, TENET’s RRW employs an inner loop
that requires the LLM to reflect on its understanding of the faulty implementations. The LLM is
first prompted to identify faulty locations, only invoking debugger commands when necessary to
obtain extra signals. Then the LLM reviews the retrieved context to identify relevant snippets (e.g.,
implementations of similar functionality). When such snippets are available, the LLM is guided to
explain their implementations, such as handling of edge cases or the usage of specific functions, and
compare them with the faulty implementations to extract insights for bug fixing.

After fault localization and contextual comparison, TENET assesses whether the collected informa-
tion is sufficient to attempt a refinement. If yes, it formulates and applies a detailed fix strategy. If
not, it invokes tools to gather additional context to further examine the behavior of the faulty code.
TENET repeats the cycle until enough evidence is gathered to propose a refined solution.

4 EXPERIMENTAL SETUP

To assess the effectiveness of TENET and to gain deeper insights into code generation within complex
repositories under the TDD setting, we formulate the following research questions (RQs).

• RQ1: How effective is TENET compared to other repository-level code generation methods?
• RQ2: What are the contributions of TENET’s three novel components to the overall performance?
• RQ3: What effect does the quantity of test cases in TENET have on code generation performance?
• RQ4: How do different test selection strategies affect the code generation pass rate?
• RQ5: What is the impact of using test cases at different stages of TENET (e.g., before vs. after

initial generation) on performance?

We select two code generation benchmarks with repository-level context, REPOCOD (Liang et al.,
2024b) and RepoEval’s function-level tasks (Zhang et al., 2023), both of which preserve the full
repository content and executable tests, containing 980 and 373 tasks, respectively.

For RQ1, we compare TENET with four strong open-source baselines, covering both non-agentic
and agentic approaches. We use Claude Sonnet 4 (Anthropic, 2025) for all baselines and set the
temperature to 0. Though different in prompt design, all baselines share the same context as inputs,
including the task description, the full repository context, and three randomly selected test cases.

1. RepoCoder adopts an iterative retrieval–generation framework (Zhang et al., 2023). We follow
the original configuration on RepoEval. For REPOCOD, we use a 12,288-token retrieval window,
retrieve up to 30 snippets per query, and cap the maximum completions at 4,096 tokens.
2. SpecRover (Ruan et al., 2025) is a multi-agent framework designed for issue resolution task. It
coordinates specialized agents for retrieval, generation, testing, and reflection. We follow the same
configuration in the paper.
3. SWE-Agent is an agent for general software engineering tasks, equipping LLMs with shell com-
mands and custom actions (Yang et al., 2024). The per-task API call limit is set to 50.
4. OpenHands is an open-source platform for developing software engineering agents (Wang et al.,
2024b). We employ the default CodeAct Agent (Wang et al., 2024a), which supports shell command
execution, file reading, and file editing. The per-task API call limit is set to 50.

By default, TENET is set with (1) up to three test cases from the THM, (2) up to 15 retrieval rounds
prior to the initial generation, (3) up to five code refinement attempts in RRW, and (4) up to 15
rounds of API calls in the RRW, including both debugging and context retrieval.

For other RQs, we adopt DeepSeek-V3 (DeepSeek-AI et al., 2025) for cost efficiency. To address
RQ2, we remove each component from the full TENET system to perform an ablation study on
REPOCOD. Removing the THM (TENET-THM) provides the agent with full target test suite instead of
the selected subset; removing the tailored toolset (TENET-APIs) limits the agent to the AutoCodeRover
toolset; and removing the RRW (TENET-RRW) applies naive refinement given test feedback if test
execution fails. To study RQ3, we use the default settings and only change the number of selected
tests T = {1, 3, 5, 10, All}.

For RQ4, we compare TENET’s THM with four test selection baselines: three based on test properties
and a random selection baseline, detailed below.
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Approaches REPOCOD RepoEval
Pass@1 (%) ↑ Avg. Input Cons. ↓ Avg. Output Cons. ↓ Pass@1 (%) ↑ Avg. Input Cons. ↓ Avg. Output Cons. ↓

RepoCoder 26.22 14,225 787 53.08 6,048 306
SpecRover 33.33 95,884 6,609 72.12 52,317 4,643
OpenHands 59.18 1,119,149 8,988 79.60 471,103 4,434
SWE-Agent 59.59 597,507 1,242 67.02 280,351 1,242

TENET 69.08 194,932 6,560 81.77 111,934 3,790

Table 1: Comparison of Pass@1, LLM token consumptions on REPOCOD and RepoEval.

1. Random Selection (RS) serves as a baseline by randomly sampling tests.
2. Simplicity-Based Selection (SS) prefers low-cyclomatic-complexity tests (McCabe, 1976).
3. Failure-Revealing Selection (FRS) favors tests with explicit assertions or exception checks.
4. Invocation-Proximity Selection (IPS) selects tests with shorter call stacks to the target function.

For RQ5, we analyze the impact of using tests at different phases in TENET. In the NoTest setting,
no tests are provided and the RRW is disabled. In PreGen, tests are used only during retrieval
before the initial generation. In PostGen, tests are applied only in the RRW phase after the initial
generation. Finally, in AllStage, tests are available throughout the workflow.

5 EVALUATION RESULTS

5.1 RQ1: BASELINE COMPARE

We report the performance of TENET and other baselines on REPOCOD and RepoEval, including the
Pass@1, average input and output token consumptions of the Claude Sonnet 4 in Table 1.

Performance Superiority. TENET achieves the highest Pass@1 Chen et al. (2021) across both
benchmarks, surpassing the strongest baselines by 9.49 and 2.17 pp respectively. This consistent
gain demonstrates the effectiveness of our test-driven design and the great potential of applying the
TDD paradigm to code generation with repository-level context.

Token efficiency. TENET strikes a strong balance between accuracy and efficiency. RepoCoder,
as an non-agentic approach, consumes fewer tokens but yields worse Pass@1. OpenHands and
SWE-Agent attain competitive accuracy on REPOCOD, but at the cost of significantly larger input
consumption, over 1.12M and 598K tokens, respectively. This overhead stems from: (1) lengthy sys-
tem prompts that encode detailed execution policies, security constraints, and multi-step workflows,
and (2) reliance on terminal-level commands (e.g., grep, find) that require many sequential steps
for code retrieval under the one-command-per-response constraint. These fragmented interactions
cause the trajectory to grow rapidly, resulting in a dramatic increase in input token consumption. In
contrast, TENET and SpecRover leverage AST-based tools for precise context retrieval and support
multiple API calls per response, yielding shorter and denser trajectories. The results shows that
our TENET can achieve both strong accuracy and token efficiency.

Variants Pass@1 (%) ↑ Avg. Input Cons. ↓ Avg. Output Cons. ↓ Avg. API Call ↓

TENET-THM 31.94↓ 17.24% 208,179↑ 40.69% 5,547↑ 19.41% 12.05↑ 45.53%

TENET-APIs 34.29↓ 14.89% 138,031↓ 6.72% 6,358↑ 36.87% 10.53↑ 27.17%

TENET-RRW 39.94↓ 9.24% 132,427↓ 10.50% 4,008↓ 13.71% 6.62↓ 20.05%

TENET 49.18 147,968 4,645 8.28

Table 2: Ablation study of TENET using DeepSeek-V3 on REPOCOD. Compared with the TENET,
red arrows indicate worse results and blue arrows indicate better results.

5.2 RQ2: CONTRIBUTIONS OF TENET ’S COMPONENTS

Table 2 reports the Pass@1, average token consumptions, and the number of API calls on REPOCOD.
Across all cases, removing any component results in a clear decline in Pass@1, as detailed below.

Removing THM causes the largest Pass@1 drop (17.24%). The token consumption also rises sub-
stantially with inputs by 40.69% and outputs by 19.41%, along with a 45.53% rise in API calls. This
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Figure 3: Average API calls per task on RE-
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Figure 4: Number of solved tasks per
round (TENET, DeepSeek-V3).

Test Num. sphinx seaborn flask xarray sympy more-itertools datasets scikit-learn astropy pylint plotly.py Total

1 39.39 47.44 67.44 25.30 26.80 56.98 47.46 22.61 43.52 23.08 43.42 35.71
3 54.55 55.13 72.09 42.17 34.02 70.93 62.71 46.18 47.06 30.77 40.79 49.18
5 42.42 55.13 79.07 37.35 28.87 80.23 59.32 43.95 50.59 34.62 42.11 48.57
10 36.36 57.69 74.42 34.94 26.80 76.74 54.23 35.35 48.24 34.62 40.79 44.29
All 30.30 41.03 53.49 18.07 24.74 76.74 38.98 20.06 40.00 19.23 38.16 33.06

Table 3: Pass@1 (%) of TENET with different test suite sizes on REPOCOD

is mainly due to two factors. First, each REPOCOD task contains 68 test cases on average1, far more
than the curated suites from the THM. Feeding the model with the full suite introduces redundancy
and noise, reducing accuracy. Second, handling the full suite requires analyzing more cases through
the pipeline, which increases API calls and token usage. Overall, these results highlight the ne-
cessity of THM in filtering and prioritizing tests, ensuring both efficiency and effectiveness.

Removing the tailored toolset reduces Pass@1 by 14.89%. Without TENET’s specialized tools, such
as retrieving semantically similar code, the agent must rely on less efficient APIs to analyze the
context, which increases reasoning complexity. Though the input tokens are fewer, the more expen-
sive output tokens and API calls increase substantially. This shows our tailored toolset improves
performance while incurring only a minor increase in input cost, yet substantially reducing
output costs and API overhead.

Removing the RRW leads to a decrease of 9.24% on Pass@1. TENET-RRW naively regenerates code
from previously retrieved context and test feedback without explicit reasoning about fault localiza-
tion or code comparison. As a result, the performance drops, while the token consumption and API
calls slightly decrease. This highlights that RRW improves code generation performance at the
cost of increased token usage.

In addition, Figure 3 shows the average call frequency of different APIs2, and our four newly in-
troduced APIs (colored in blue) rank among the top five. We observe that run debugger cmd
dominates with the highest frequency (2.11), highlighting the frequent usage of interactive de-
bugging in the RRW. The next most frequently used APIs are search target usage (1.18) and
search similar method (1.02), suggesting that retrieving usage examples and similar methods
is also favorable in the TDD setting. Together, these observations indicate that the model consis-
tently favors our tailored toolset in the TDD setting.

Figure 4 shows the number of solved tasks across refinement rounds. Solved tasks drop gradually
over rounds, and out of 482 passed tasks in total, 296 (61.41%) are solved in the first attempt. The
remaining 186 tasks (38.59%) are recovered through the RRW. This shows that RRW plays a
critical role in rescuing tasks that fail initially, greatly enhancing the effectiveness of TENET.

5.3 RQ3: THE IMPACT OF TEST SUITE SIZE

As a tunable parameter, we set T = 3 based on preliminary results on the sphinx project (33 tasks) in
REPOCOD, where T = 3 achieved the best performance. To address RQ3, Table 3 reports Pass@1
across different test suite sizes on the full REPOCOD benchmark. Overall, T = 3 achieves the best
results on five projects, covering 59.8% of all tasks (589/980), and also delivers the highest overall

1This does not distinguish test functions with different inputs. If each input variant is counted as a separate
test, the average increases to 313 (Liang et al., 2024b).

2The APIs not highlighted in bold are inherited from SpecRover.
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Strategy Pass@1 (%) ↑ Avg. Cov (%) ↑

RS 32.86 70.94
SS 36.12 72.72
FRS 38.88 71.58
IPS 41.53 76.98

THM 49.18 79.38

Table 4: Pass@1 and test coverage under different
selection strategies.
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Figure 5: Overlap of solved tests
across four settings.

Pass@1. T = 5 is optimal for four projects (24.5%, 240/980) and ranks second overall. Moreover,
performance generally declines as the test suite size increases. These results show that our finding
on sphinx generalizes to the full benchmark. Importantly, more test cases do not necessarily
improve outcomes. Instead, a moderate number of tests (three to five) consistently provides
reliable gains under the TDD setting.

5.4 RQ4: THE IMPACT OF TEST SELECTION STRATEGIES

Table 4 reports the results of TENET on REPOCOD under different test selection strategies when
T = 3. Average test coverage is computed based on the ground-truth target functions. All selec-
tion strategies outperform the RS baseline, with improvements in Pass@1 generally aligning with
higher coverage. Among them, TENET’s default THM strategy, which emphasizes caller diversity
and invocation proximity, achieves the best results (49.18% Pass@1 and 79.38% coverage). The
key takeaway is that test suites combining caller diversity with invocation proximity provide the
most effective guidance for LLM agent code generation with repository-level dependencies.

5.5 RQ5: THE IMPACT OF TEST USAGE STAGE

Phases Pass@1 (%) ↑ Avg. Input Cons. ↓ Avg. Output Cons. ↓ Avg. API Calls ↓

NoTest 29.90 32,829 2,482 5.04
PreGen 36.93 35,427 2,408 5.63
PostGen 42.65 138,330 4,710 8.91
AllStage 49.18 147,968 4,645 8.28

Table 5: Results of leveraging tests at different phases in TENET’s workflow.

Table 5 reports how leveraging tests at different stages affects the performance of TENET. We make
two main observations. First, leveraging tests in more stages improves correctness. The Pass@1
rises from 29.90% (NoTest) to 36.93% (PreGen), 42.65% (PostGen), and peaks at 49.18% with
AllStage. Second, this improvement comes at a higher cost. PostGen and AllStage require more
token consumptions and API call counts than NoTest and PreGen, reflecting the extra debugging and
context retrieval required by the RRW. Moreover, Figure 5 further analyzes the overlap of solved
tasks across the four settings. The AllStage setting achieves the largest number of uniquely solved
tasks (66). Each setting also contributes its own distinct set of solved tasks. While some of this
diversity may arise from the inherent randomness of LLMs, it also points to potential opportunities
for improvement by tailoring how tests are leveraged at different stages.

6 CONCLUSION & FUTURE WORK

This work introduces TENET, an agent framework for repository-level code generation under the
TDD paradigm. It features three components: (1) a test harness mechanism that selects concise and
effective tests to guide code generation, (2) a tailored toolset for context retrieval and debugging, and
(3) a reflection-based refinement workflow for code fixing. TENET achieves the best performance
on two code generation datasets with repository-level context among SOTA baselines. In addition,
we present the first study on test suites’ impact on code generation with repository-level context,
including test numbers, selection strategies, and test usage stage, which offers valuable insights into
leveraging TDD for agent-based software development. For future work, we will explore integrating
more advanced test generation approaches (Chen et al., 2022; 2024; Schäfer et al., 2024) to overcome
the limitation of THM’s reliance on existing tests and move toward a fully automated TDD pipeline.
We plan to adopt more flexible refinement strategies to further enhance the effectiveness of RRW.
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7 REPRODUCIBILITY STATEMENT

The implementations of TENET (Section 3) and the evaluation results of the RQs (Section 5) can be
downloaded at this link.
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A APPENDIX

In the appendix, we provide additional details to complement the main text. First, we include the
prompts of TENET and agentic baselines for RQ1 (Section 5.1). Second, we present case studies for
RQ2 (Section 5.2), illustrating how each component of TENET contributes to effective code gener-
ation, also including a failure case that TENET fails to generate the correct code. Third, we report
detailed statistics of the different test selection strategies for RQ4 (Section 5.4) and the complete
Pass@1 results on each REPOCOD project for leveraging tests at different stages of TENET (Sec-
tion 5.5). Finally, we describe the usage of Large Language Models in our paper writing.

A.1 PROMPT DETAILS OF TENET AND AGENTIC BASELINES

All the following prompts use scikit-learn 304 from REPOCOD as an example, same as the
motivation described in the Section 1.

A.1.1 TENET

The system prompt and task description example of TENET:

You are an intelligent software developer that consistently delivers accurate and reliable
responses to user instructions. Now you are assigned to a code generation task.

The task description is provided between the tags <issue> and </issue>.
Your goal is to generate an accurate and well-structured implementation for the target

function.
To do this, you should first iteratively invoke search APIs to retrieve relevant code context

from the codebase.
Analyze the retrieved context carefully to understand the target functionality, dependencies,

and any useful patterns or examples that can inform your implementation.
<issue>You are working on a code generation task. You will be provided with:
1. The information of the target function
2. Access to the entire project for retrieval and analysis
3. Tests for the target function (if available)
Your task is to generate the function body of the target.
## Target Code Information:

**Target Function Name:**: ‘log_loss‘;

**File Location:**: ‘sklearn/neural_network/_base.py‘;

**Line Location:**: from line 175 to line 191;

**Source Code:**:
‘‘‘
def log_loss(y_true, y_prob):
"""Compute Logistic loss for classification.
Parameters
----------
y_true : array-like or label indicator matrix
Ground truth (correct) labels.
y_prob : array-like of float, shape = (n_samples, n_classes)
Predicted probabilities, as returned by a classifier’s
predict_proba method.
Returns
-------
loss : float
The degree to which the samples are correctly predicted.
"""
‘‘‘
## Test Information
We will provide you the top 3 test cases that invoke the target from distinct callers with

shortest call stack.
Here are 3 selected test cases:
- Test 1:
pytest node id: ‘sklearn/neural_network/tests/test_base.py::test_log_loss_1_prob_finite‘,

around line: 15.
- Test 2:
pytest node id: ‘sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classification‘,

around line: 417;
The target function is called in file sklearn/neural_network/_multilayer_perceptron.py around

line 330;
- Test 3:
pytest node id: ‘sklearn/neural_network/tests/test_mlp.py::test_partial_fit_unseen_classes‘,

around line: 444;
The target function is called in file sklearn/neural_network/_multilayer_perceptron.py around

line 330;
## Task Instructions
The target function is currently unimplemented and contains only ‘raise NotImplementedError‘.
You will have access to different APIs for context retrieval in the codebase.
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Please carefully read the above information and retrieve context wisely to understand the
target behavior,

and provide a complete solution for the target code.
REMEMBER:
1. Avoid importing additional packages or libraries unless they already exist or considered

necessary.
2. Ensure your generated code has correct indentation and follows the same formatting style as

the context.
3. Do not generate additional code or patches other than the above target function.
</issue>

The prompt of out tailored agent toolset:

Based on the the task, you can use the following search APIs to get more context:
- search_test_cases(): Search for test cases of the target function. Analyzing test cases can

help you to refine your solution. These test cases are filtered using dynamic analysis
based on pytest. The API will return the test in pytest nodeid format. Based on the
pytest nodeid, you can further use other API calls to retrieve the source code of the
test cases. You don’t need to provide any arguments for ‘search_test_cases()‘ API.

- search_import_in_file(file_name: str): Search for top-level import statements in given file
‘file_name‘.

- search_target_usage_example(example_num: int): Search for a given number (‘example_num‘) of
methods that call the target function directly. This will help you to understand how the
target function is acutally used or tested in the codebase. If ‘example_num‘ is greater
than the total number of usage examples, the API will return all of them.

- search_test_cases(): Search for test cases of the target function. Analyzing test cases can
help you to refine your solution. These test cases are filtered using dynamic analysis
based on pytest. The API will return the test in pytest nodeid format. Based on the
pytest nodeid, you can further use other API calls to retrieve the source code of the
test cases. You don’t need to provide any arguments for ‘search_test_cases()‘ API.

- search_relevant_method(top_num: int): Search for the method that is most relevant to the
target function’s docstring by default. We will return the ‘top_num‘ methods with the
highest BM25 score. This may give you hints about the implementation of your target
function from similar ones.

- run_pdb_cmd(cmd: str): Execute a specified debugging command (e.g., pdb) within a container
terminal. you can carry out line-by-line execution such as variable inspection and stack
frame traversal for fine-grained debugging, for example:

‘‘‘
l --> list source around the current line
n --> step to the next line (skip into functions)
s --> step into a function
c --> continue execution until the next breakpoint
b 23 --> set a breakpoint at line 23
p var --> print value of variable var
q --> quit debugger
‘‘‘

- search_class(class_name: str): search for a class in the codebase. The class signature
includes class name, base classes, and signatures for all of its methods/properties.

- search_class_in_file(class_name:str, file_name: str): Search for class with name ‘class_name
‘ in given file ‘file_name‘.

- search_method(method_name: str): Search for a method in the entire codebase.
- search_method_in_file(method_name: str, file_path: str): Search for method with name ‘

method_name‘ in file ‘file_path‘.
- search_method_in_class(method_name: str, class_name: str): Search for method with name ‘

method_name‘ in class with name ‘class_name‘.
- search_code(code_str: str): Search for a code snippet in the entire codebase. Only ‘code_str

‘ is needed.
- search_code_in_file(code_str: str, file_path: str): Search for code snippets conatining ‘

code_str‘ in given ‘file_path‘.
- get_code_around_line(file_path: str, line_number: int, window_size: int): Gets the code

around the specified line_number in the file ‘file_path‘. ‘window_size‘ is the number of
lines before and after ‘line_number‘. Please make sure to provide all 3 parameters.

Remember:

You MUST provide correct number of arguments when invoking APIs! Do not leave any
necessary arguments blank.

You can use multiple APIs in one round.

Do not call the same API with the same parameters repeatedly.

You SHOULD NOT generate hallucination code as the API return. We will provide you the
searched context next round after you providing the needed APIs.

Now analyze the task and select necessary APIs to get more context. It’s better to provide the
APIs you need to call and their arguments in your response.
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A.1.2 OPENHANDS

You are OpenHands agent, a helpful AI assistant that can interact with a computer to solve
tasks.

<ROLE>
Your primary role is to assist users by executing commands, modifying code, and solving

technical problems effectively. You should be thorough, methodical, and prioritize
quality over speed.

* If the user asks a question, like "why is X happening", don’t try to fix the problem. Just
give an answer to the question.

</ROLE>

<EFFICIENCY>

* Each action you take is somewhat expensive. Wherever possible, combine multiple actions into
a single action, e.g. combine multiple bash commands into one, using sed and grep to

edit/view multiple files at once.

* When exploring the codebase, use efficient tools like find, grep, and git commands with
appropriate filters to minimize unnecessary operations.

</EFFICIENCY>

<FILE_SYSTEM_GUIDELINES>

* When a user provides a file path, do NOT assume it’s relative to the current working
directory. First explore the file system to locate the file before working on it.

* If asked to edit a file, edit the file directly, rather than creating a new file with a
different filename.

* For global search-and-replace operations, consider using ‘sed‘ instead of opening file
editors multiple times.

</FILE_SYSTEM_GUIDELINES>

<CODE_QUALITY>

* Write clean, efficient code with minimal comments. Avoid redundancy in comments: Do not
repeat information that can be easily inferred from the code itself.

* When implementing solutions, focus on making the minimal changes needed to solve the problem
.

* Before implementing any changes, first thoroughly understand the codebase through
exploration.

* If you are adding a lot of code to a function or file, consider splitting the function or
file into smaller pieces when appropriate.

</CODE_QUALITY>

<VERSION_CONTROL>

* When configuring git credentials, use "openhands" as the user.name and "openhands@all-hands.
dev" as the user.email by default, unless explicitly instructed otherwise.

* Exercise caution with git operations. Do NOT make potentially dangerous changes (e.g.,
pushing to main, deleting repositories) unless explicitly asked to do so.

* When committing changes, use ‘git status‘ to see all modified files, and stage all files
necessary for the commit. Use ‘git commit -a‘ whenever possible.

* Do NOT commit files that typically shouldn’t go into version control (e.g., node_modules/, .
env files, build directories, cache files, large binaries) unless explicitly instructed
by the user.

* If unsure about committing certain files, check for the presence of .gitignore files or ask
the user for clarification.

</VERSION_CONTROL>

<PULL_REQUESTS>

* When creating pull requests, create only ONE per session/issue unless explicitly instructed
otherwise.

* When working with an existing PR, update it with new commits rather than creating additional
PRs for the same issue.

* When updating a PR, preserve the original PR title and purpose, updating description only
when necessary.

</PULL_REQUESTS>

<PROBLEM_SOLVING_WORKFLOW>
1. EXPLORATION: Thoroughly explore relevant files and understand the context before proposing

solutions
2. ANALYSIS: Consider multiple approaches and select the most promising one
3. TESTING:

* For bug fixes: Create tests to verify issues before implementing fixes

* For new features: Consider test-driven development when appropriate

* If the repository lacks testing infrastructure and implementing tests would require
extensive setup, consult with the user before investing time in building testing
infrastructure

* If the environment is not set up to run tests, consult with the user first before
investing time to install all dependencies

4. IMPLEMENTATION: Make focused, minimal changes to address the problem
5. VERIFICATION: If the environment is set up to run tests, test your implementation

thoroughly, including edge cases. If the environment is not set up to run tests, consult
with the user first before investing time to run tests.

</PROBLEM_SOLVING_WORKFLOW>
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<SECURITY>

* Only use GITHUB_TOKEN and other credentials in ways the user has explicitly requested and
would expect.

* Use APIs to work with GitHub or other platforms, unless the user asks otherwise or your task
requires browsing.

</SECURITY>

<ENVIRONMENT_SETUP>

* When user asks you to run an application, don’t stop if the application is not installed.
Instead, please install the application and run the command again.

* If you encounter missing dependencies:
1. First, look around in the repository for existing dependency files (requirements.txt,

pyproject.toml, package.json, Gemfile, etc.)
2. If dependency files exist, use them to install all dependencies at once (e.g., ‘pip

install -r requirements.txt‘, ‘npm install‘, etc.)
3. Only install individual packages directly if no dependency files are found or if only

specific packages are needed

* Similarly, if you encounter missing dependencies for essential tools requested by the user,
install them when possible.

</ENVIRONMENT_SETUP>

<TROUBLESHOOTING>

* If you’ve made repeated attempts to solve a problem but tests still fail or the user reports
it’s still broken:

1. Step back and reflect on 5-7 different possible sources of the problem
2. Assess the likelihood of each possible cause
3. Methodically address the most likely causes, starting with the highest probability
4. Document your reasoning process

* When you run into any major issue while executing a plan from the user, please don’t try to
directly work around it. Instead, propose a new plan and confirm with the user before
proceeding.

</TROUBLESHOOTING>

I’ve uploaded a python code repository in the directory ‘/testbed‘. There is a function
remained to be completed in ‘sklearn/neural_network/_base.py‘:

<func_signature>
def log_loss(y_true, y_prob)
</func_signature>

File ‘relevant_test_cases.txt‘ contains all the test cases that this function need to pass.

Can you help me implement the function described in <func_signature>?

Before your implementation, create a clean working environment for you:
1. Run ‘git config --global user.email "openhands@all-hands.dev"‘ and ‘git config --global

user.name "OpenHands Bot"‘ to set your identity.
2. Run ‘rm -rf .git && git init && git add . && git commit -q -m "init"‘ to initialize the

folder as a new Git repo.

Here are the steps for you to follow:
1. Explore the repository to familiarize yourself with its structure.
2. Check the corresponding code of test cases in ‘relevant_test_cases.txt‘ to understand the

expected functionality of the target function.
3. Complete the body of the target function.
4. Execute the test cases in ‘relevant_test_cases.txt‘ to ensure your completed function

passes the test cases.
5. Use the ‘git diff‘ command to produce a patch file named ‘patch.diff‘ containing your

implementation changes.

Additional notes:
- When running Python, make sure to use ‘/opt/miniconda3/envs/testbed/bin/python‘.
- Do not change or delete any code that already exists in the repo.
- The ‘patch.diff‘ file should be saved in ‘/workspace‘.

A.1.3 SPECROVER

You are an intelligent software developer that consistently delivers accurate and reliable
responses to user instructions. Now you are assigned to a code generation task.

The task description is provided between the tags <issue> and </issue>.
Your goal is to generate an accurate and well-structured implementation for the target

function.
To do this, you should first iteratively invoke search APIs to retrieve relevant code context

from the codebase.
Analyze the retrieved context carefully to understand the target functionality, dependencies,

and any useful patterns or examples that can inform your implementation.
<issue>You are working on a code generation task. You will be provided with:
1. The information of the target function
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2. Access to the entire project for retrieval and analysis
3. Tests for the target function (if available)
Your task is to generate the function body of the target.
## Target Code Information:

**Target Function Name:**: ‘log_loss‘;

**File Location:**: ‘sklearn/neural_network/_base.py‘;

**Line Location:**: from line 175 to line 191;

**Source Code:**:
‘‘‘
def log_loss(y_true, y_prob):
"""Compute Logistic loss for classification.
Parameters
----------
y_true : array-like or label indicator matrix
Ground truth (correct) labels.
y_prob : array-like of float, shape = (n_samples, n_classes)
Predicted probabilities, as returned by a classifier’s
predict_proba method.
Returns
-------
loss : float
The degree to which the samples are correctly predicted.
"""
‘‘‘
## Test Information
‘‘‘
sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classification
sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-

check_f_contiguous_array_estimator]
sklearn/neural_network/tests/test_mlp.py::test_gradient
‘‘‘
## Task Instructions
The target function is currently unimplemented and contains only ‘raise NotImplementedError‘.
You will have access to different APIs for context retrieval in the codebase.
Please carefully read the above information and retrieve context wisely to understand the

target behavior,
and provide a complete solution for the target code.
REMEMBER:
1. Avoid importing additional packages or libraries unless they already exist or considered

necessary.
2. Ensure your generated code has correct indentation and follows the same formatting style as

the context.
3. Do not generate additional code or patches other than the above target function.
</issue>

A.1.4 SWE-AGENT

SETTING: You are a helpful assistant and a senior developper that can interact with a computer
terminal and other provided tools to solve code generation tasks.

The special interface consists of a file editor that shows you {{WINDOW}} lines of a file at a
time.

In addition to typical bash commands, you can also use the following commands to help you
navigate and edit files.

COMMANDS:
{{command_docs}}

Please note that THE EDIT COMMAND REQUIRES PROPER INDENTATION.
If you’d like to add the line ’ print(x)’ you must fully write that out, with all those spaces

before the code! Indentation is important and code that is not indented correctly will
fail and require fixing before it can be run.

RESPONSE FORMAT:
Your shell prompt is formatted as follows:
(Open file: <path>) <cwd> $

You need to format your output using two fields; discussion and command.
Your output should always include _one_ discussion and _one_ command field EXACTLY as in the

following example:
DISCUSSION
First I’ll start by using ls to see what files are in the current directory. Then maybe we can

look at some relevant files to see what they look like.
‘‘‘
ls -a
‘‘‘
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You should only include a *SINGLE* command in the command section and then wait for a response
from the shell before continuing with more discussion and commands. Everything you

include in the DISCUSSION section will be saved for future reference.
If you’d like to issue two commands at once, PLEASE DO NOT DO THAT! Please instead first

submit just the first command, and then after receiving a response you’ll be able to
issue the second command.

You’re free to use any other bash commands you want (e.g. find, grep, cat, ls, cd) in addition
to the special commands listed above.

However, the environment does NOT support interactive session commands (e.g. python, vim), so
please do not invoke them.

We’re currently attempting to solve the following code generation problem:
ISSUE:
I’ve uploaded a python code repository in the directory ‘/testbed‘. There is a function

remained to be completed in ‘sklearn/neural_network/_base.py‘:

<func_signature>
def log_loss(y_true, y_prob)
</func_signature>

The test cases that this function need to pass are:

<tests>
sklearn/neural_network/tests/test_mlp.py::test_partial_fit_unseen_classes
sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification[X0-y0]
sklearn/neural_network/tests/test_mlp.py::test_mlp_warm_start_with_early_stopping[

MLPClassifier]
</tests>

Please only use the above tests to verify your implementation. Do not use other tests or write
your own.

Please help me implement the function described above.

Now, you will start solve this issue on your own. Your terminal session has started and you’re
in the repository’s root directory. You can use any bash commands or the special

interface to help you. **Edit only the function to be completed and run tests you want.**
When you’re satisfied with all of the changes you’ve made, you can submit your changes to the

code base by simply running the submit command.
Note you cannot use any interactive session commands (e.g. python, vim) in this environment,

but you can use ‘/opt/miniconda3/envs/testbed/bin/python‘ to run a python file.
NOTE ABOUT THE EDIT COMMAND: Indentation really matters! When editing a file, make sure to

insert appropriate indentation before each line!

INSTRUCTIONS:
0. Run ‘rm -rf .git && git init && git add . && git commit -q -m "init"‘ first to initialize

the folder as a new Git repo. THIS IS A MUST!
1. Quickly find the file where the target function is located and find the specific line

number where the target function is located.
2. Explore the repository and collect necessary context to familiarize yourself with the repo

and the target.
3. Utilize the test cases to make sure the completed function passes the test cases. DO NOT

USE EXTRA TESTS OR WRITE YOUR OWN.
4. when you believe you finish the task, use the ‘submit‘ action to submit the task.

TIPS:
0. ONLY complete the body of the target function, and DO NOT change or delete any code that

already exists in the repo.
1. If you open a file and need to get to an area around a specific line, using the goto

command, such as ‘goto 583‘, is much quicker.
2. Make sure to look at the currently open file and the current working directory (which

appears right after the currently open file). The currently open file might be in a
different directory than the working directory! Note that some commands, such as ’create
’, open files, so they might change the current open file.

3. When editing files, it is easy to accidentally specify a wrong line number or to write code
with incorrect indentation. Always check the code after you issue an edit to make sure

that it reflects what you wanted to accomplish. If it didn’t, issue another command to
fix it.

4. MKAE SURE your ouput in each round only consider ONE discussion and ONE command! Please
wait for a response from the shell before continuing with more discussion and commands.

5. Again, if all three provided tests passes, you no longger need do extra tests. You may
consider yourself already finished the task.

Now, let’s start solving the task.

(Open file: )
(Current directory: /testbed)
bash-$
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     Target Function Specification & Docstring

       Final Generation without THM

           Final Generation of Full TENET 

Lacking Handling the special  value of prop

Equivalent to Ground Truth

def desaturate(color, prop):
    """Decrease the saturation channel of color by prop.
    Parameters
    ----------
    color : matplotlib color
        hex, rgb-tuple, or html color name
    prop : float
        multiply saturation channel of color by this value
    Returns
    -------
    new_color : rgb tuple
        desaturated color code in RGB tuple representation
    """

     Full Target Test Suite

     Selected Test Suite via THM

test_desaturate; test_share_xy; test_palette_desat;
test_plot_elements; test_desaturation_prop;
test_palette_desat; test_axis_labels;
test_labels_wide; ... (156 in total)

def test_desaturation_prop():
   with pytest.raises(ValueError):
       utils.desaturate("blue", 50)

def test_desaturate():
    out5 = utils.desaturate("lightblue", 1)
    assert out5 == mpl.colors.to_rgb("lightblue")

def test_palette_desat(self):
   pal1=palettes.husl_palette(6)
   pal1=[utils.desaturate(c,.5) for c in pal1]
   pal2=palettes.color_palette("husl",0.5)
   npt.assert_array_equal(pal1, pal2)

if not 0 <= prop <= 1:
    raise ValueError("prop must be between 0 and 1")
# Get rgb tuple rep
rgb = to_rgb(color)
# Short circuit to avoid floating point issues
if prop == 1:
    return rgb
# Convert to hls
h, l, s = colorsys.rgb_to_hls(*rgb)
# Desaturate the saturation channel
s *= prop
# Convert back to rgb
new_color = colorsys.hls_to_rgb(h, l, s)
return new_color

# Convert input color to RGB tuple format
rgb = to_rgb(color)
# Transform to HLS color space to access saturation
h, l, s = colorsys.rgb_to_hls(*rgb)
# Apply desaturation by scaling saturation channel
s *= prop
# Convert back to RGB space and return
return colorsys.hls_to_rgb(h, l, s)

Full Tests as Input
Selected Tests as Input

Te
st
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n 
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a 
T

H
M

    Repo. Context      Task Description

Figure 6: A case study on task seaborn 34 from REPOCOD. This example explains how the test
cases selected by the THM guides the TENET toward correct code generation.

A.2 CASE STUDIES

In this part, we provide case studies about how the test harness mechanism (THM), tailored agent
toolset, and the reflection-based refinement workflow (RRW) contribute to the code generation per-
formance. We also provide a failure case study to indicate possible limitations of our TENET.

A.2.1 TEST HARNESS MECHANISM

Figure 6 demonstrates the task seaborn 34 from REPOCOD to show the effectiveness of the THM.
The full target test suite of seaborn 34 contains 156 test cases for the target function desaturate.
Without the THM, The 0 test suite with massive size confuses the LLM, causing the agent ignoring
important test signals and finally generating the incorrect code in 5 . First, it did not follow the input
validation requirements, which is explicitly conveyed in test desaturation prop. Second, it
fails the test test desaturate with the following error message.

E AssertionError: assert (0.6784313725...9607843137256) == (0.6784313725...9607843137255)
E At index 1 diff: 0.8470588235294119 != 0.8470588235294118

The failure occurs since the incorrect code in 5 always performs an RGB→HLS→RGB round-trip,
even for the boundary case prop==1. This introduces tiny floating-point deviations and causes the
test to fail. In contrast, the THM selects three test cases without overwhelming the agent, and finally
the TENET uses two rounds of refinement to generate the correct code in 6 that carefully handles all
the edge cases.

A.2.2 TAILORED AGENT TOOLSET

Figure 7 shows the task scikit 47 from REPOCOD, explaining how the tailored agent toolset
improves the efficiency and generation accuracy of the TENET. Without our tailored toolset,
the LLM first searches for the class FeatureUnion in the file sklearn/pipeline.py:
search class in file("FeatureUnion", "sklearn/pipeline.py"), which is the class to
which the target function fit belongs. Then LLM retrieves the target function specifications within
the class FeatureUnion: search method in class("fit", "FeatureUnion"), though they
are already provided as the input 3 . After these two API calls, the agent believes the collected
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context is sufficient for a generation attempt. However, the initial generation fails all three test cases
with similar error message.

sklearn/tests/test_pipeline.py:508: in test_feature_union
fs.fit(X, y)

sklearn/pipeline.py:1653: in fit
results = Parallel(n_jobs=self.n_jobs)(

sklearn/utils/parallel.py:77: in __call__
return super().__call__(iterable_with_config)

/usr/local/lib/python3.10/site-packages/joblib/parallel.py:1918: in __call__
return output if self.return_generator else list(output)

/usr/local/lib/python3.10/site-packages/joblib/parallel.py:1847: in _get_sequential_output
res = func(*args, **kwargs)

sklearn/utils/parallel.py:139: in __call__
return self.function(*args, **kwargs)

sklearn/pipeline.py:1298: in _fit_one
return transformer.fit(X, y, **params["fit"])

E TypeError: ’NoneType’ object is not subscriptable

test_feature_union
test_meta_estimators_delegate_data_validation
test_feature_union_weights

def fit(self, X, y=None, **fit_params):
    """Fit all transformers using X.
    Parameters
    ----------
    X : iterable or array-like, depending on transformers
        Input data, used to fit transformers.
    y : array-like of shape (n_samples, n_outputs), default=None
        Targets for supervised learning.
    **fit_params : dict, default=None
        - If `enable_metadata_routing=False` (default):
            Parameters directly passed to the `fit` methods of the
            sub-transformers.
        - If `enable_metadata_routing=True`:
            Parameters safely routed to the `fit` methods of the
            sub-transformers...
        .. versionchanged:: 1.5
            `**fit_params` can be routed via metadata routing API.
    Returns
    -------
    self : object. FeatureUnion class instance.
    """

search_class_in_file("FeatureUnion", "sklearn/pipeline.py")
search_method_in_class("fit", "FeatureUnion")

if _routing_enabled():
    routed_params = process_routing(self, 
    "fit", **fit_params)
else:
    routed_params = Bunch()
    for name, _ in self.transformer_list:
        routed_params[name] = Bunch(fit=fit_params)
transformers = self._parallel_func(X, y, 
_fit_one, routed_params)
if transformers:  
    self._update_transformer_list(transformers)
return self

search_class_in_file("FeatureUnion", "sklearn/pipeline.py")
search_similar_method(3)
search_usage_example(2)
search_import_in_file("sklearn/pipeline.py")

        Target Function Specification & Docstring

Agent API Calls in Context Retrieval

        Selected Test Suite via THM

Agent API Call in Context Retrieval

Initial Generation

Equivalent to the Ground Truth

search_method("_fit_one")
search_code("process_routing")
search_code("routed_params")
get_code_around_line("sklearn/pipeline.py", 1653, 10)

Agent API Calls in RRW

self._validate_transformers()
if _routing_enabled():
    routed_params = process_routing(self, "fit", 
    **fit_params)
else:
    routed_params = Bunch()
    for name, trans in self.transformer_list:
        if trans != "drop":
            routed_params[name] = Bunch(fit=fit_params)
results = Parallel(n_jobs=self.n_jobs)(
    delayed(_fit_one)(trans, X, y, routed_params[name])
    for name, trans, _ in self._iter())
self._update_transformer_list([trans for _,trans in results])
return self

Initial Generation

All Tests Fail Due to Declaring results with Parallel

TENET w/o Tailored Toolset FULL TENET

     Full Repositpory Context            Task Description

Final Generation

Same Errors Remain

if _routing_enabled():
    routed_params = process_routing(self, 
    "fit_transform", **params)
else:
    ...
results = self._parallel_func(X, y, 
          _fit_transform_one, routed_params)
if not results: # All transformers are None
    return np.zeros((X.shape[0], 0))
Xs, transformers = zip(*results)
self._update_transformer_list(transformers)
return self._hstack(Xs)

Retrieved Func.: fit_transform

...
results = Parallel(n_jobs=self.n_jobs)(
...

Figure 7: A case study on task scikit 47 from REPOCOD. This example explains how the tailored
agent toolset contributes to the efficiency and effectiveness of the TENET.

The error persists because the agent repeatedly assumes that the target function fit should use
the Parallel class. This misconception arises from the frequent use of Parallel for parallel
execution within the FeatureUnion class. Even after entering the RRW and calling other APIs to
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retrieve context based on failure feedback, the agent continues to misapply Parallel, leaving the
error unresolved in the end.

In contrast, with the support of our tailored agent toolset, Except from retrieving
the context of the class FeatureUnion, TENET also uses search similar method(3),
search usage example(2), and search import in file("sklearn/pipeline.py") to
search for similar methods in the codebase , usage examples of the target fit function, and the
imports avaliable in the file . Among them, search relevant method(3) returns the context of
function fit transform that uses parallel func for parallel execution. TENET catches this
insight and generates the correct implementation without any refinements. This case reveals that
our tailored toolset can efficiently help the agent retrieve useful context and improve the generation
accuracy.

You are an intelligent coding assistant 
that consistently delivers accurate and 
reliable responses to user instructions.
Your task is to complete 
the target function body.
 
Target Function Info: 
File: sklearn/pipeline.py 
Class: FeatureUnion
Lines: 1537 ~ 1549
Function Name: get_feature_names_out

search_class("FeatureUnion")
search_similar_method(3)
search_usage_example(2)

feature_names = []
for name, trans in self._iter():
    if trans == 'drop':
        continue
    if not hasattr(trans, 'get_feature_names_out'):
        raise AttributeError(
            f"Transformer {name} (type {type(trans).__name__})"
            "does not provide get_feature_names_out"
        )
    names = trans.get_feature_names_out(input_features)
    names = self._add_prefix_for_feature_names_out(name, names)
    feature_names.extend(names)
return np.asarray(feature_names, dtype=object)

feature_names = []
for name, trans, *_ in self._iter():
    ...
    names = self._add_prefix_for_feature_names_out(name, names)
    ...

feature_names = []
for name, trans, *_ in self._iter():
    ...
    names = trans.get_feature_names_out(input_features)
    feature_names.append((name, names))
return self._add_prefix_for_feature_names_out(feature_names)

      Task Description &          Target Function Specifications

Agent API Call in Context Retrieval

Initial Generation

Failure Identification:
ValueError: too many values to unpack (expected 2)

Relevant Context Review:
class Pipeline:
    def get_feature_names_out():

...
        for _, name, transform in self._iter():

    ...
Fix Strategy:
-    for name, trans in self._iter():
+    for name, trans, *_ in self._iter():

Refinement Round 1

Failure Identification:
TypeError:
FeatureUnion._add_prefix_for_feature_names_out()
takes 2 positional arguments but 3 were given

Relevant Context Review:
search_class("FeatureUnion") shows class FeatureUnion 
contains _add_prefix_for_feature_names_out(), 
but its implementation is not shown in detail.

Additional Context:
search_method_in_class(
    "_add_prefix_for_feature_names_out", 
    "FeatureUnion")

RRW

Fix Strategy after Collecting Extra Context
_add_prefix_for_feature_names_out() expects 
a list of = (transformer_name, feature_names) tuples, 
so collect all transformer outputs before calling it.

Refinement Round 2

Equivalent to Ground Truth

[3]

[5]

[6]

Specification:
def get_feature_names_out(
    self, input_features=None):
    """Get output feature names for transformation.
    Parameters
    input_features: array-like of str, default=None
    Returns
    feature_names_out: ndarray of str objects
        Transformed feature names.
    """

       Repo Context
sklearn
├── base.py
├── pipeline.py
├── tests 
...     ├── test_pipeline.py
        ├── test_base.py

test_feature_union_feature_names;
test_set_feature_union_steps;
test_set_feature_union_step_drop;

        Selected Tests

[1]

[2]

[4]

[7]

Figure 8: A case study on task scikit 49 from REPOCOD. This example explains how the RRW
contributes to the efficiency and effectiveness of the code refinement in TENET.

A.2.3 REFLECTION-BASED REFINEMENT WORKFLOW

Figure 8 illustrates the task scikit 49 from REPOCOD to show how the RRW enables TENET to
progressively correct generation errors and converge to the ground-truth solution.. Given the 1 task
description, 2 the specification of the target function get feature names out, 3 full repository
context, and the 4 selected test cases with source code, TENET first calls three APIs in [1] to retrieve
the context of the class featureUnion to which the target function belongs, similar methods and
the usage examples of the target. Believing the context sufficient, TENET generates an initial imple-
mentation [2]. However, test execution immediately exposes a runtime error in [3]: ValueError: too
many values to unpack. Guided by RRW, TENET first identifies the failure location (the for loop),
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then reviews the retrieved context. Finding the similar loop in function get feature names out,
TENET corrects the loop structure and produces the first refinement in [4].

When re-tested, the code triggers a new error: TypeError: add prefix for feature names out
takes 2 positional arguments but 3 were given. Based on the clear execution feedback,
the RRW guides TENET to identify the fauilure location quickly and find that the skele-
ton of add prefix for feature names out has been retrieved but its full implementa-
tion is missing by context review. To resolve this, TENET issues an additional query
search method in class(" add prefix for feature names out", "FeatureUnion") to
obtain the complete method definition, shown in [5]. With the correct usage clarified, TENET ap-
plies the appropriate fix strategy in [6] and produces a final refinement [7] that is equivalent to the
ground truth.

By iteratively identifying failure signals, reviewing context, and adaptively invoking APIs when nec-
essary, the RRW is able to help agents overcome non-trivial generation errors and improve accuracy.

A.2.4 FAILURE CASE STUDY

In Figure 9, We use task more itertools-66 from REPOCOD as a failure case stud. The TENET is
asked to generate the target function windowed at file more itertools/more.py from line 870 to
896. The agent first invokes three APIs in [1] to search for the similar method, usage examples of the
target, and the top-level import statements at file more itertools/more.py. After analyzing the
context, TENET reasons that the target function windowed should generate sliding windows, support
padding for incomplete windows and custom step sizes, and return results consistent with tests. The
function should involve input validation, iterator handling, first-window construction, sliding logic,
and step control. The first attempt in [2] passes the first and the second tests but fails on the third
one with the error message: UnboundLocalError: cannot access local variable consume where it
is not associated with a value. Since the test feedback is easy to trace, the agent identifies the failure
location immediately, and found the function consume is already imported in the file, which does
not need to self-define in the branch if step > 1.

After analysis, TENET generates the second version of implementation in [4]. However, the third
test fails again, indicating the logic mistake in generating the sliding windows. This is where TENET
starts to hallucinate. After context review in [5], TENET indicates that the collected information
demonstrates using function tee and zip longest can fix the logic error. However, The two re-
trieved context window in the figure show that tee function is only used once through the entire
collected context, and zip longest function is never used after import statements. The hallucina-
tion causes TENET generate the second refined code in [6] but fails to pass the third test.

then in the rest of the workflow, TENET insists using function tee and zip longest, leading to
failure in the end. This case highlights a limitation of TENET: when context signals are weak or
misleading, the agent may overfit to spurious cues, hallucinate dependencies, and persist in unpro-
ductive refinements, preventing the correct generation.

Strategy seaborn flask xarray sphinx sympy more-itertools datasets scikit-learn astropy pylint plotly.py

RS 44.87 76.74 32.53 42.42 28.87 68.60 44.07 12.10 34.12 19.23 36.84
SS 51.28 69.77 36.14 45.45 32.99 68.60 47.46 15.97 36.47 23.08 43.42
FRS 47.44 74.72 30.12 36.36 32.99 63.95 50.84 28.98 36.47 19.23 40.79
IPS 55.13 74.42 33.73 48.48 29.90 69.77 50.84 28.66 47.06 26.92 42.11

THM 55.13 72.09 42.17 54.55 34.02 70.93 62.71 46.18 47.06 30.77 40.79

Table 6: Pass@1 of TENET (DeepSeek-V3) under different selection strategies across different repos-
itories from REPOCOD.

A.3 STATISTICS OF DIFFERENT TEST SELECTION STRATEGIES

This section we will provide more details about the test selection strategies mentioned in Section 5.4.
Table 6 shows the complete Pass@1 of TENET based on DeepSeek-V3 across each project on RE-
POCOD. Our THM outperforms consistently than other selection baselines, further demonstrating
the effectiveness of our design of the THM.
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from itertools import (
    ...
    starmap,
    takewhile,
    tee,
    zip_longest,
    product,
)

Retrieved Context [2]

Agent API Call in Context Retrieval

[1]

def windowed(seq, n, fillvalue=None, step=1):
    """Return a sliding window of width *n* over the given iterable.
        >>> all_windows = windowed([1, 2, 3, 4, 5], 3)
        >>> list(all_windows)
        [(1, 2, 3), (2, 3, 4), (3, 4, 5)]
    When the window is larger than the iterable, *fillvalue* is used in place
    of missing values:
        >>> list(windowed([1, 2, 3], 4))
        [(1, 2, 3, None)]
    Each window will advance in increments of *step*:
        >>> list(windowed([1, 2, 3, 4, 5, 6], 3, fillvalue='!', step=2))
        [(1, 2, 3), (3, 4, 5), (5, 6, '!')]
    To slide into the iterable's items, use :func:`chain` to add filler items
    to the left:
        >>> iterable = [1, 2, 3, 4]
        >>> n = 3
        >>> padding = [None] * (n - 1)
        >>> list(windowed(chain(padding, iterable), 3))
        [(None, None, 1), (None, 1, 2), (1, 2, 3), (2, 3, 4)]
    """

test_empty_seq
test_fillvalue
test_basic:
iterable = [1, 2, 3, 4, 5]
for n, expected in (
    (6, [(1, 2, 3, 4, 5, None)]),
    (5, [(1, 2, 3, 4, 5)]),
    (4, [(1, 2, 3, 4), (2, 3, 4, 5)]),
    (3, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]),
    (2, [(1, 2), (2, 3), (3, 4), (4, 5)]),
    (1, [(1,), (2,), (3,), (4,), (5,)]),
    (0, [()]),):
    with self.subTest(n=n):
        actual = list(mi.windowed(iterable, n))
        self.assertEqual(actual, expected)

search_import_statement("more_itertools/more.py")
search_similar_method(3)
search_target_usage(2)

...
if step > 1:
    from itertools import islice
    consume = lambda it, n: tuple(islice(it, n))
    consume(it, step - 1)
from itertools import tee, zip_longest
its = tee(it, n - 1)
for i, it_ in enumerate(its, 1):
    consume(it_, i)
for window in zip_longest(*([it] + list(its)),
illvalue=fillvalue):
    yield window

Target Function Specifications         Selected Tests

Initial Generation

[3]

Failure Identification:
UnboundLocalError: cannot access local variable 
'consume' where it is not associated with a value
Relevant Context Review:
from .recipes import (
    ...
    consume,
Fix Strategy:
Call consume directly rather than self-define

[2]

RRW

if step > 1:
    consume(it, step - 1)
# Create sliding window iterators
its = tee(it, n - 1)
for i, it_ in enumerate(its, 1):
    consume(it_, i)
...

Refinement 1

[4]

Failure Identification:
ERROR
tests/test_more.py:741: in test_basic
    self.assertEqual(actual, expected)
E   AssertionError:
    [(1, 2, 3, 4)] != [(1, 2, 3, 4), (2, 3, 4, 5)]
...
Conclusion: error in sliding winow mechanism.
Relevant Context Review:
the context includes similar sliding window
that use itertools.tee and zip_longest to
handle the logic properly.
Fix Strategy: ... RRW [5]

Hallucination:
The tee function is only used once in the 
distribute function;

The zip_longest method is only imported 
but never invoked in the collected context.

# Generate all windows
while True:
    window = []
    # Get next window
    for _ in range(n):
        try:
            window.append(next(it))
        except StopIteration:
            if window:
                # Pad with fillvalue if needed
                yield tuple(window) + (fillvalue,) * (n - len(window))
            return
    yield tuple(window)
    # Skip items between windows if step > 1
    if step > 1:
        try:
            consume(it, step - 1)
        except StopIteration:
            return

Refinement 2

Did not use the function tee and zip_longest at all [6]

Failure Identification:
ERROR
[(1, 2, 3, 4), (5, None, None, None)] 
!= [(1, 2, 3, 4), (2, 3, 4, 5)]
...

Relevant Context Review:
keep emphasizing how function tee and 
zip_longest demonstrate proper 
sliding windows behavior

Fix Strategy: ... RRW [7]

def distribute(n, iterable):
   """
   Distribute the items from 
   *iterable* among *n* 
   smaller iterables.
   ...
   This function uses 
   :func:`itertools.tee` 
   and may require 
   significant storage.
   """
   if n < 1:
       raise ValueError('...')
   children = tee(iterable, n)

Retrieved Context [1]

...
if n < 0:
    raise ValueError("n must be >= 0")
if step < 1:
    raise ValueError("step must be >= 1")
it = iter(seq)
if n == 0:
    yield ()
    return
while True:
    window = list(islice(it, n))
    if not window:
        return
    if len(window) == n:
        yield tuple(window)
        if len(window) == n and 
        len(list(islice(it, 1))) == 0:
            return
        if step > 1:
            consume(it, step - 1)
    else:
        yield tuple(window)  
        (fillvalue,) * (n - len(window))
        return

Refinement 5 (LAST)

Figure 9: A failure case study on task more itertools-66 from REPOCOD.

A.3.1 RANDOM SELECTION

Random Selection (RS) acts baseline that uniformly samples a fixed number T of test cases from
the full test suite. It helps benchmark the impact of smarter selection strategies.

A.3.2 SIMPLICITY-BASED SELECTION

Simplicity-Based Selection (SS) prioritizes test cases with lower cyclomatic complexity, under our
assumption that simpler tests are more likely to isolate specific behaviors and yield focused feed-
back.

Test cases vary in complexity. Some are concise and directly validate specific behavior, while others
with multiple branches and complex logics. We hypothesize that simpler tests with fewer control-
flow paths are more effective for validation and refinement, as they contain limited number of control
paths or dependencies. In contrast, complex test functions often involve auxiliary logic, nested calls,
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Figure 10: Test distributions on REPOCOD based on
cyclomatic complexity.
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Figure 11: Test distributions on RE-
POCOD based on FRS strategy. FR:
tests containing failure revealing struc-
ture; NFR: tests that have no failure re-
vealing structure.

or multiple assertions, making their failures harder to interpret and potentially misleading for the
agent.

To quantify test simplicity, we compute the cyclomatic complexity of each test function and sort
them in ascending order. Then we select the top-k tests as the final test set according to the given test
number T . Figure 10 presents the distribution of test cases on REPOCOD with respect to cyclomatic
complexity. Most tests fall within a complexity range of one to four, and their frequency decreases
as complexity increases. Although each task on REPOCOD is accompanied by a relatively large full
test suite (on average 68 tests per task), more than 45 tests per task have a complexity below four.
This indicates that the majority of existing tests are of relatively low complexity, suggesting that
simple and clear tests remain more practical and useful for both LLMs and developers.

A.3.3 FAILURE-REVEALING SELECTION

Failure-Revealing Selection (FRS) prefers tests that contain explicit assertions or exception checks.

Not all test cases may produce direct and clear signals. Tests that simply run code without checking
behavior (e.g., smoke tests or loose integration tests) often pass silently or fail ambiguously. In
contrast, tests that include assertions, such as assert and raise, are likely written to verify specific
properties. When these tests fail, they typically produce direct and interpretable signals, such as
mismatched values or unhandled exceptions. By selecting such tests, their source code and resulting
signals may provide the agent with clearer guidance on specific behaviors. We include a test function
in the Failure-Revealing Selection when abstract syntax tree (AST) parsing reveals the presence of
any of the following constructs.

• Python built-in assert or raise statements.
• Pytest constructs such as with pytest.raises().
• Unittest-style assertions including self.assert* methods (e.g., self.assertEqual,
self.fail()) and their variants.

From all qualified tests, we randomly sample T test cases to be provided to the agent. Figure 11
shows the test distribution of REPOCOD under the FRS strategy. Nearly 90% of the test cases
in REPOCOD include constructs such as codeassert or raise. This suggests that in real-world
development scenarios, developers indeed frequently encounter tests containing such assertions,
highlighting the practicality and realism of our strategy design. However, the drawback is that the
selection pool becomes overly large, covering almost 90% of all test cases. This may cause the
results to be similar to RS and thereby diminish the effectiveness of this strategy.

A.3.4 INVOCATION-PROXIMITY SELECTION

Invocation-Proximity Selection (IPS) prioritizes test cases with shorter call chains to the target func-
tion, based on the assumption that more direct invocations yield clearer execution feedback.
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Figure 12: Test distributions on REPOCOD based on the invocation depth from the test function to
the target function.

Stage seaborn flask xarray sphinx sympy more-itertools datasets scikit-learn astropy pylint plotly.py

NoTest 41.03 53.49 18.07 30.30 24.74 51.16 38.98 20.06 37.65 19.23 28.95
PreGen 41.03 60.46 19.28 27.27 18.56 61.63 44.07 36.94 41.18 19.23 34.21
PostGen 51.28 72.09 31.33 36.36 27.84 67.44 54.23 40.76 35.29 26.92 46.05
AllStage 55.13 72.09 42.17 54.55 34.02 70.93 62.71 46.18 47.06 30.77 40.79

Table 7: of leveraging tests at different phases in TENET’s workflow across different repositories in
REPOCOD.

The clarity of test context plays a critical role in improving the agent’s understanding of the target
functionality. When a test case invokes the target function through a shorter call chain, the function
context and the execution signal are often more concise and relevant to the target function. In
contrast, tests that reach the target through multiple layers of indirection often introduce additional
abstractions and complex logic, which dilute useful signals and obscure the root cause of failures. By
favoring tests with shorter call chains, we aim to provide the agent with cleaner behavioral signals
and thereby strengthen its reasoning and refinement process.

To measure the invocation depth from tests to targets, we replace the body of the target function with
raise NotImplementedError and execute the full target test suite using pytest. For each test
case, we extract the call chain from the resulting traceback and record the depth at which the target
is invoked. Test cases are then ranked by this depth in ascending order, and the top-k test cases are
selected for use.

Figure 12 reports the test distribution on REPOCOD based on the invocation depth from the test
to the target. The majority of tests concentrate at shallow depths. invocation depth from one to
five each has over 5,000 tests, with a significant peak at depth seven (8,249 tests). Then as the
invocation depth increases, the number of tests steadily drops. This distribution suggests that in
practical development, developers tend to provide tests that directly or closely invoke the target
function, which is easier to trace and debug through validation.

B COMPLETE PASS@1 OF LEVERAGING TESTS AT DIFFERENT STAGES

In Section 5.5, we present the main results and the overlap of solved tasks when utilizing test cases
across different stages of TENET. Here we further report the complete Pass@1 for each repository
in REPOCOD, as shown in Table 7. AllStage achieves the best performance on 10 projects except
the plotly.py. This highlights the overall effectiveness of incorporating tests throughout all stages of
generation and the potential of the TDD setting in modern software development with LLMs.

C LLM USAGE

We use LLMs solely to polish the manuscript. Their roles were limited to checking grammar, im-
proving readability, and ensuring clarity of expression. No substantive changes to the content, anal-
ysis, or results were made using the LLM.
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