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ABSTRACT

Large language model (LLM) agents show promise in automating machine learn-
ing (ML) engineering. However, existing agents typically operate in isolation on a
given research problem, without engaging with the broader research community,
where human researchers often gain insights and contribute by sharing knowledge.
To bridge this gap, we introduce MLE-Live, a live evaluation framework designed
to assess an agent’s ability to communicate with and leverage collective knowl-
edge from a simulated Kaggle research community. Building on this framework,
we propose CoMind, an multi-agent system designed to actively integrate exter-
nal knowledge. CoMind employs an iterative parallel exploration mechanism,
developing multiple solutions simultaneously to balance exploratory breadth with
implementation depth. On 75 past Kaggle competitions within our MLE-Live
framework, CoMind achieves a 36% medal rate, establishing a new state of the
art. Critically, when deployed in eight live, ongoing competitions, CoMind out-
performs 92.6% of human competitors on average, placing in the top 5% on three
official leaderboards and the top 1% on one.

1 INTRODUCTION

The capabilities of large language model (LLM)-based agents are rapidly advancing, showing sig-
nificant promise in automating complex tasks across domains like software engineering (Jimenez
et al., 2023b; Xia et al., 2025), mathematical problem-solving (OpenAI, 2024; Ren et al., 2025;
Li et al., 2025), and scientific discovery (Romera-Paredes et al., 2024; Yamada et al., 2025; Sun
et al., 2025; Feng et al., 2025). A particularly challenging and impactful frontier for these agents is
machine learning engineering (MLE). Automating the multifaceted MLE pipeline, which spans the
design, implementation, and rigorous evaluation of high-performance models, remains a critical test
of an agent’s autonomous reasoning and decision-making abilities.

Recent advances have introduced LLM agents capable of autonomously developing machine learn-
ing pipelines for Kaggle-style competitions (Chan et al., 2025). Current approaches have demon-
strated a range of techniques, from the ReAct-style reasoning in MLAB (Huang et al., 2024) and the
tree-based exploration of AIDE (Jiang et al., 2025), to the skill-specialized multi-agent system of
AutoKaggle (Li et al., 2024). Although these systems represent important steps toward automating
MLE, they are fundamentally designed to operate in isolation, exploring the solution space individ-
ually.

This isolated approach stands in stark contrast to how human experts operate. In real-world data
science competitions and research, participants thrive on community knowledge sharing: learning
from public discussions, shared code, and collective insights to enhance solution quality and drive
innovation (Wuchty et al., 2007). By failing to engage with this dynamic external context, current
agents are prone to converging on repetitive strategies and ultimately plateauing in performance.
This critical gap motivates our central research question:

How can we evaluate and design research agents that utilize collective knowledge?

To address this question, we introduce MLE-Live, a controllable evaluation framework that simu-
lates realistic Kaggle-style research communities with time-stamped public discussions and shared
code artifacts that public before competition deadline. This ensure the information access is same as
human participant. MLE-Live enables rigorous evaluation of agents’ ability to leverage community
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Figure 1: Left: CoMind’s win rates on eight ongoing Kaggle competitions compared with the public
best. Right: CoMind achieves state-of-the-art performance on MLE-Bench, measured by the Any
Medal score.

knowledge in temporally grounded settings, supporting both offline evaluation on past competitions
and online evaluation on ongoing competitions.

Building upon this framework, we propose CoMind, a multi-agent system designed to systemati-
cally incorporate external knowledge and iteratively refine solutions. CoMind’s architecture consists
of five specialized agent role operating in concert. A central Coordinator manages the overall work-
flow and community interactions. To process external knowledge, an Analyzer first summarizes and
suggests on improvements and weaknesses for a curated group of solutions, while an Idea Proposer
brainstorms a diverse pool of ideas and synthesizes novel strategies. These strategies are then passed
to multiple parallel Coding Agents for implementation and report generation. Finally, a dedicated
Evaluator, which creates robust scripts for solution assessment and selection. This collaborative pro-
cess allows CoMind to effectively utile external community knowledge and construct novel solution
for the targeted research problem.

We conducted a comprehensive, two-pronged evaluation to assess CoMind’s performance in both
static and live environments. First, on a static benchmark comprising 75 past Kaggle competitions
from MLE-Bench (Chan et al., 2025), CoMind achieved an overall medal rate of 0.36, establishing
a new state of the art by significantly outperforming prior leading agents such as Neo and ML-
Master (Liu et al., 2025). Second, to validate its real-world practicality, we deployed CoMind in
eight ongoing Kaggle competitions (detailed in Figure 1). In this challenging live setting, CoMind
proved highly effective, achieving an average rank better than 92.6% of human competitors while
placing in the top 5% on three official leaderboards and the top 1% on one. These results demonstrate
CoMind’s robust effectiveness against contemporary challengers.

In summary, our contributions are:

• MLE-Live: A live evaluation framework simulating community-driven machine learning re-
search with realistic shared discussions and code.

• CoMind: A novel agent excelling at collective knowledge utilization and iterative exploration,
achieving medal-level performance in real competitions.

• Community-Driven Multiagent Collaboration: An iterative parallel exploration mechanism
enabling continuous knowledge accumulation.

2 RELATED WORK

The rise of large language models (LLMs) has sparked a new wave of research into LLM-driven
agents, systems that leverage LLMs’ reasoning and language capabilities to autonomously perceive,
plan, and act within digital or physical environments. Early works such as ReAct (Yao et al., 2023;
Schick et al., 2023; Shen et al., 2023; Hong et al., 2023; Boiko et al., 2023) introduced frameworks
that transform LLMs into programmable reasoning engines by interleaving natural language rea-
soning with tool-use actions. Subsequent studies have extended these agents to various domains,
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including computer usage (Xie et al., 2024; Zhou et al., 2024) and software development (Wang
et al., 2025; Jimenez et al., 2023a).

In parallel, the field of automated machine learning (AutoML) aims to reduce human involvement
in building ML pipelines by automating tasks such as model selection, hyperparameter tuning, and
architecture search. Early systems like Auto-WEKA (Thornton et al., 2013), HyperBand (Li et al.,
2018) and Auto-sklearn (Feurer et al., 2022) used early stopping and Bayesian optimization to search
over pipeline configurations, while methods like DARTS (Liu et al., 2019) expanded automation
to neural architectures. More recent frameworks such as AutoGluon (Erickson et al., 2020) and
FLAML (Wang et al., 2021) emphasize efficiency and ease of use.

Building on these developments, recent efforts have applied LLM-based agents to machine learn-
ing engineering (MLE) tasks (Hollmann et al., 2023; Guo et al., 2024; Li et al., 2024; Grosnit et al.,
2024; Hong et al., 2024; Chi et al., 2024; Trirat et al., 2024; Huang et al., 2024). However, most eval-
uations remain constrained to closed-world settings with predefined search spaces, offering limited
insight into how these agents perform in open-ended or collaborative ML environments. While some
agents (Guo et al., 2024; AI-Researcher, 2025) incorporate basic retrieval tools, these are typically
based on simple semantic matching, and robust evaluation methodologies remain underdeveloped.

Meanwhile, several benchmarks have been proposed to evaluate machine learning (ML) engineering
capabilities. MLPerf (Mattson et al., 2020) assesses system-level performance, including training
speed and energy efficiency. To evaluate end-to-end ML workflows, MLAB (Huang et al., 2024)
tests the capabilities of LLM-based agents across 13 ML tasks. MLE-Bench (Chan et al., 2025) and
DSBench (Jing et al., 2025) further extends to about 75 Kaggle competitions covering tasks such
as preprocessing, modeling, and evaluation. However, these benchmarks typically evaluate agents
in isolation, overlooking the collaborative dynamics of real-world ML development. In contrast,
our work introduces a framework that simulates community-driven settings, enabling evaluation
of agents’ ability to engage with and benefit from shared knowledge, while ensuring that resource
access remains fair and realistic.

3 MLE-LIVE

Existing machine learning benchmarks typically evaluate agents in static, isolated environments.
This approach fails to capture the dynamic and collaborative nature of real-world platforms like
Kaggle, where progress is driven by community knowledge sharing. Participants constantly learn
from shared code, public discussions, and the iterative work of others, making these community
interactions a decisive factor in developing top-tier solutions.

To bridge this gap, we introduce MLE-Live, a live evaluation framework that extends the widely-
used MLE-Bench (Chan et al., 2025). The core innovation of MLE-Live is its simulation of com-
munity interactions, providing agents with a time-stamped stream of discussions and code artifacts
that mirrors the natural flow of public knowledge during a competition.

Each competition environment in MLE-Live includes the following components: (i) Task descrip-
tion: The background, specifications, evaluation metrics, and data structure, scraped directly from
the original Kaggle competition. (ii) Competition dataset: A cleaned train-test split of the official
data. When necessary, this includes reconstructed test sets to account for data that is no longer
public. (iii) Submission grader: An evaluation script that precisely mimics Kaggle’s official scoring
mechanism. (iv) Leaderboard: A snapshot of the final public leaderboard. (v) Community arti-
facts: A curated set of discussions and code notebooks that were published before the competition
deadline. These artifacts are enriched with valuable metadata (e.g., vote counts, public scores, au-
thor tiers) to signal quality and are accompanied by any public datasets or models they reference,
creating a self-contained and realistic research environment.

MLE-Live aggregates a substantial dataset of 12,951 discussions and 15,733 kernels from 75 Kag-
gle competitions. To ensure fairness and eliminate post-hoc data leakage, it strictly includes only
resources available prior to competition deadlines, forcing agents to operate under the same informa-
tion constraints as human participants. This approach offers numerous benefits for robust evaluation:
it grounds agents in diverse, objectively-graded ML problems from Kaggle, while the controlled in-
formation scope allows for a fair assessment of their retrieval and reasoning abilities. These features
enhance reproducibility and enable consistent, longitudinal comparisons between different agents.
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Figure 2: Overview of CoMind. Specialized agents (Coordinator, Analyzer, Idea Proposer, Coding
Agent, Evaluator) interact with a simulated community of kernels, datasets, and discussions.

4 COMIND

We propose CoMind, a community-augmented large language model (LLM) agent designed to
automate machine learning (ML) engineering in an iterative, collaborative setting. Figure 2 is an
overview of CoMind workflows.

4.1 COMMUNITY SIMULATION

CoMind’s effectiveness stems from simulating the collaborative dynamics that drive breakthrough
performance in competitive ML environments. Unlike isolated automated ML systems, CoMind
replicates how Kaggle participants leverage community knowledge: drawing insights from discus-
sions, adapting public notebooks and datasets, and contributing discoveries back to the collective
knowledge pool.

The simulated community is represented as (Kt,Dt, Tt) at iteration t, where Kt contains all ker-
nels with evaluation metrics, Dt includes published datasets and model checkpoints, and Tt cap-
tures the dependency relationships between resources. CoMind initializes a high-quality community
(K0,D0, T0) by fetching kkernel top-performing kernels and kdiscussion most popular discussions from
Kaggle, along with all referenced datasets and models. The system constructs a dependency graph
T0 = (V,E) where vertices represent kernels or datasets and edges capture resource dependencies.

This dependency structure enables CoMind to systematically trace solution construction, identify
influential artifacts, and prioritize resources that drive performance improvements. The graph fa-
cilitates intelligent ensemble strategies by combining complementary approaches while avoiding
redundant components.

CoMind operates as an active community participant, iteratively analyzing promising kernels, gener-
ating novel solutions, conducting experiments, and contributing successful results back to the com-
munity. Each iteration produces new artifacts: enhanced kernels, augmented datasets, or ensemble
checkpoints, that expand the community knowledge base with associated performance metrics.

Through this continuous cycle of exploration and contribution, CoMind simulates the collaborative
dynamics of competitive ML development, where collective intelligence progressively advances
performance frontiers at automated scale and speed.

4.2 MULTI-AGENT SYSTEM

CoMind orchestrates machine learning experimentation through a coordinated multi-agent system.
Specialized agents collaborate in distinct roles, mirroring the division of expertise in human research
teams across ideation, implementation, and evaluation. The workflow is an iterative loop managed
by the Coordinator, which delegates tasks to the other agents.
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Coordinator The Coordinator serves as CoMind’s central orchestration hub. Its primary respon-
sibilities are managing the workflow, interfacing with the community environment, and allocating
resources. At the start of each iteration t, the Coordinator initiates the process by strategically sam-
pling promising code notebooks (kernels) K′

t and relevant datasets D′
t from the community. This

focused sampling directs the system’s attention toward high-potential areas. After receiving re-
fined ideas from the Idea Proposer, the Coordinator translates them into concrete solution drafts St,
which are comprehensive blueprints detailing model architecture, feature engineering, and training
procedures. It then instantiates multiple Coding Agents in parallel, assigning each a distinct draft
and all referenced resources. Upon completion, the Coordinator aggregates the results and publishes
successful solutions back to the community, advancing the environment state for the next iteration.

Analyzer The Analyzer is responsible for distilling raw community artifacts into structured, ac-
tionable intelligence. It receives the sampled kernels and discussions from the Coordinator and
performs a deep analysis across four key dimensions: novelty, feasibility, effectiveness, and effi-
ciency. For each artifact, it generates a 0-10 score on these metrics, accompanied by qualitative
explanations of successful patterns, emerging trends, or potential pitfalls. The output is a set of
structured analytical reports Rt, which serve as the primary input for the Idea Proposer.

Idea Proposer The Idea Proposer functions as CoMind’s creative engine, tasked with generating
novel solution concepts. It uses the analytical reports Rt from the Analyzer and its own persistent
memory of historical ideas I∗

t to ensure that new concepts are both innovative and informed by past
results. The ideation process follows three phases: (1) Brainstorming: Generating a wide array
of diverse ideas, prioritizing creativity and exploration. (2) Filtering: Ranking these ideas based
on feasibility, potential for improvement, and alignment with the analytical reports. Only the most
promising subset of ideas It is selected. (3) Memory Integration: Updating its knowledge base
with the newly generated ideas (I∗

t+1 = I∗
t ∪ It), allowing for increasingly sophisticated strategies

over time. The final output, a filtered set of high-potential ideas It, is sent back to the Coordinator
to be developed into full solution drafts.

Coding Agent The Coding Agent is the implementation workhorse, responsible for converting the
abstract solution drafts from the Coordinator into executable code. Following an iterative, ReAct-
style approach, it conducts trial-and-error experiments using the training and validation data pro-
vided by the Evaluator. To maximize efficiency, the agent maintains a persistent Jupyter Notebook
session to eliminate data reloading overhead and employs a monitor LLM to track execution and
terminate failed runs immediately. This iterative process of coding, debugging, and optimization
continues until a viable solution is produced or a time budget is exhausted.

Evaluator The Evaluator ensures objective, standardized, and reproducible assessment across all
experiments, mirroring official Kaggle protocols. It first partitions the public dataset D into a train-
ing set D∗ and a validation set with inputs Vx and ground-truth labels Vy . Crucially, only D∗ and
Vx are accessible to the Coding Agents, preserving the integrity of the validation process. When
a Coding Agent submits predictions Vŷ , the Evaluator computes the performance score using the
official competition metric φ(Vŷ, Vy). It maintains a global leaderboard of all experimental runs,
enabling CoMind to reliably track progress and make informed decisions about which solutions to
prioritize and publish.

5 BENCHMARK EVALUATION

5.1 SETUP

Task Selection. Based on MLE-Live evaluation framework, we evaluate our agent on 75 Kaggle
competitions on MLE-Bench. Using the MLE-Live framework, CoMind has access to shared dis-
cussions and public kernels published on the competition websites before the competition deadline.
Since the MLE-bench test set may be constructed from Kaggle’s official public training set, and
publicly available datasets or model checkpoints may have been trained on this portion of the data,
we restricted CoMind’s access to public datasets to minimize potential data contamination. It can
only view code published by other contestants.
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Table 1: Any Medal (%) scores on 75 MLE-Bench competitions. CoMind achieves state-of-the-art
results across difficulty levels. Best results in each column are bolded. Baseline numbers are taken
from the official MLE-Bench leaderboard.

Agent Low (%) Medium (%) High (%) All (%)
CoMind o4-mini 59.09 23.68 33.33 36.00
Neo multi-agent 48.48 29.82 24.44 34.22
R&D-Agent o3 + GPT-4.1 51.52 19.30 26.67 30.22
ML-Master deepseek-r1 48.50 20.20 24.40 29.30
R&D-Agent o1-preview 48.18 8.95 18.67 22.40
AIDE o1-preview 34.30 8.80 10.00 16.90
AIDE gpt-4o 19.00 3.20 5.60 8.60
AIDE claude-3-5-sonnet 19.40 2.60 2.30 7.50
OpenHands gpt-4o 11.50 2.20 1.90 5.10
AIDE llama-3.1-405b-instruct 8.30 1.20 0.00 3.10
MLAB gpt-4o 4.20 0.00 0.00 1.30

To validate CoMind under realistic conditions, we further evaluate CoMind on eight ongoing Kaggle
competitions. These competitions span diverse domains, including tabular learning, text regression,
image classification and video recognition. Rather than approximating the official scoring locally,
we directly submit CoMind’s generated submission.csv files to the Kaggle platform, so that all
reported ranks reflect genuine, live leaderboard positions.

Implementation Details. CoMind employs o4-mini-2025-04-16 (OpenAI, 2025) as its
backend LLM. We limit the hardware constraint of each run to 32 vCPUs and a single A6000 GPU.
Each competition is evaluated in separate containers with a maximum of 24 hours to produce the
final submission file. Every single code execution session is limited to 5 hour. Each Coder is limited
to a maximum of 30 steps. The number of parallel agents is set to 4.

During code generation, agents are provided with the test set inputs (without labels) and prompted
to generate a submission.csv file. The submission is then evaluated by a grader that compares
the predicted labels with the ground truth. Following the setting of MLE-Bench, to avoid potential
overfitting, test set labels and the competition leaderboard are strictly withheld from the agent’s
accessible environment. Instead, each agent must rely solely on a self-constructed ”runtime test set”,
a held-out split from the original training data, for code evaluation and performance estimation.

Metrics. Following the evaluation metrics in MLE-Bench, we measure the performance of Co-
Mind by Any Medal, the percentage of competitions where the agent earns a gold, silver, or bronze
medal.

Baselines. We compare CoMind against the MLE-Bench leaderboard1 including open-sourced
systems like R&D-Agent (Yang et al., 2025), a dual-agent framework (Researcher/Developer) that
explores multiple solution branches and merges promising ideas into improved pipelines; ML-
Master (Liu et al., 2025), which integrates exploration and reasoning via a selectively scoped
memory that aggregates insights from parallel trajectories; AIDE (Jiang et al., 2025), a purpose-
built tree-search scaffold that iteratively drafts, debugs, and benchmarks code for Kaggle-style
tasks; OpenHands (Wang et al., 2025), a general-purpose CodeAct-based scaffold that executes
code and calls tools in a sandboxed environment; MLAB (Huang et al., 2024), referring to
the ResearchAgent scaffold from MLAgentBench, a general tool-calling/plan–act baseline; and
Neo (https://heyneo.so/), a close-sourced multi-agent system for autonomous ML engi-
neering.

5.2 RESULTS

Table 1 compares CoMind with baseline methods on 75 MLE-Bench competitions. CoMind
achieves state-of-the-art performance with an Any Medal rate of 36.00%, significantly outper-

1https://github.com/openai/mle-bench
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Competition Rank Teams Top %

Playground S5E9 4 1966 0.2%
China Real Estate 43 437 9.8%
Diamond Price 8 67 11.9%
MABe Behavior 3 51 5.9%
ARIEL 2025 90 827 10.9%
DIG4BIO Raman TL 22 167 13.2%
Impostor Hunt 26 1037 2.5%
RSNA Aneurysm 35 788 4.4%

Figure 3: Left: Score distributions across participants in eight ongoing Kaggle competitions. Each
curve shows the relationship between leaderboard rank (x-axis, inverted) and competition score (y-
axis). Vertical lines indicate CoMind’s position (red) and public best performance (yellow). Right:
Results on eight ongoing Kaggle competitions. Reported are leaderboard rank, total teams, and
percentile rank (Top %, where lower means better standing).

forming open-source competitors such as R&D-Agent (submitted on 2025-08-15) and surpass-
ing the closed-source multi-agent system Neo. Appendix C provides a detailed case study on
denoising-dirty-documents.

On the eight evaluated ongoing competitions, CoMind ranked top 7.35% on average and improved
the best public kernel on 5 competitions. Details including authentic scores and win rates per task
are provided in Figure 3. These authentic results demonstrate CoMind’s capability to tackle a variety
of problem domains and achieve competitive performance in live, evolving ML workflows.

6 ABLATION STUDY

6.1 SETUP

Task Selection. To evaluate the impact of introducing public resources, we conducted an ablation
study on 20 competitions from MLE-Bench-Lite based on MLE-Live. These tasks span across
various categories, including image classification/generation, text classification/generation, image
regression, audio classification, and tabular analysis.

Baselines. We compared CoMind against the following baselines. For consistency, all baselines
use the same backend model as CoMind:

• AIDE+Code. To enable the use of publicly available code (e.g., Kaggle kernels), we extend
AIDE with access to one public kernel per draft node, which is selected by highest community
votes. AIDE+Code augments the prompt with both the task description and the selected kernel
alongside the tree summarization.

• AIDE+RAG. We further equip AIDE with a retrieval-augmented generation (RAG) mecha-
nism. Before generating code, the agent retrieves the titles of the top 10 voted discussions
and kernels. The LLM selects the most relevant ones, receives a summarization, and then pro-
poses its plan and implementation. For debugging or refinement, it can optionally re-query
documents. Retrieval is based on cosine similarity between query and candidate document
embeddings, using Multilingual E5 Text Embeddings (Wang et al., 2024).

• CoMind w/o R. R denotes all public resources. In this variant, CoMind operates without
access to any external community resources. It starts with an empty community and relies
solely on its own generation history to propose candidate ideas and assemble solution drafts.

Metrics. Following the evaluation metrics in prior research (Chan et al., 2025), the relative capa-
bility of generating high-quality solution compared with human is measured by:

• Above Median: Indicates whether the submission outperforms at least 50% of competitors on
the leaderboard.

• Win Rate: The percentage of competitors whose final scores are lower than the agent’s score.
If the agent fails to produce a valid submission, the Win Rate is 0.

7
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Figure 4: Performance of CoMind and other baselines on 20 competitions from MLE-Bench-
Lite. Valid Submission is the ratio of submissions meeting format requirements and validation crite-
ria. Win Rate is the percentage of human competitors outperformed by the agent. Any Medal, is the
proportion of competitions where the agent earned Gold, Silver or Bronze medals. Above Median is
the fraction of competitions where the agent’s score strictly exceeded the median human competitor.

Table 2: Average win rate of CoMind and other baselines across task categories on 20 competi-
tions from MLE-Bench-Lite. # of Tasks refers to the number of competitions in the corresponding
category. CoMind consistently outperforms baselines across most domains.

Category # of Tasks CoMind AIDE+Code AIDE+RAG AIDE

Image Classification 8 0.597 0.459 0.434 0.525
Text Classification 3 0.740 0.157 0.338 0.61
Audio Classification 1 0.901 0.272 0.259 0.271
Seq2Seq 2 0.408 0.503 0.550 0.228
Tabular 4 0.664 0.673 0.688 0.483
Image To Image 1 0.988 0.932 0.617 0.568
Image Regression 1 0.992 0.342 0.992 0.992

All 20 0.668 0.469 0.510 0.512

• Medals: Medals are assigned based on the agent’s score relative to Kaggle leaderboard thresh-
olds for gold, silver, and bronze medals.

• Any Medal: The percentage of competitions in which the agent earns any medal.

Implementation Setup. All agents use o4-mini-2025-04-16 as their backend. Based on the
settings of our main experiment, the hardware constraint is further limited to 4 vCPUs and 5 hours
per competition. Each execution session is limited to 1 hour. Access to public datasets are restricted.
In accordance with baselines, CoMind has access to 10 top-voted discusions and kernels.

6.2 RESULTS

Figure 4 shows the results. Our key findings are as follows: (i) CoMind consistently outper-
forms all baselines across every metric. (ii) Among the AIDE variants, AIDE+RAG outperforms
AIDE+Code, and both surpass the original AIDE on most metrics, demonstrating the benefits of
integrating community knowledge. CoMind further exceeds these approaches, highlighting the ef-
fectiveness of its deeper and more strategic community-aware exploration. (iii) Removing CoMind’s
resource access causes a significant drop in valid submission rates and other metrics, showing that
strategic access to public resources helps CoMind balance extending established methods for relia-
bility with exploring novel approaches.

7 ANALYTICAL EXPERIMENTS

For analytical experiments, we adopt the same setup as the ablation study and evaluate model per-
formance across multiple dimensions, including task categories, win rate over time, and code com-
plexity.
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Figure 5: Win rate over time. CoMind sustains
improvement while baselines plateau.

Figure 6: Code complexity over time. CoMind
generates longer, richer solutions than base-
lines.

Task Categories Table 2 reports the average ranks across seven task categories. CoMind outper-
forms all baselines in Image Classification, Text Classification, Audio Classification, and Image-
to-Image tasks, highlighting its strong adaptability. We manually inspect the tasks where CoMind
underperformed and find that the issues are often related to the use of large models or datasets.
For example, in Seq2Seq tasks, CoMind explores complex fine-tuning strategies for large language
models which often fail to complete within the one-hour runtime constraint.

Win Rate Over Time Figure 5 shows the evolution of average win rate over time. AIDE quickly
produces concise, functional solutions, leading to a rapid rise in performance during the first hour. In
contrast, CoMind spends more time on debugging and exploration early on, resulting in a slower ini-
tial improvement. However, after the first two hours, AIDE’s performance plateaus, while CoMind
continues to improve through iterative refinement and deeper exploration, ultimately surpassing
AIDE and achieving higher-quality solutions.

Code Complexity Regarding code complexity, Figure 6 illustrates the average code length during
the entire competition. CoMind consistently generates significantly longer and more complex code,
while other baselines begin with simpler implementations and introduce only incremental modifica-
tions. Appendix A offers a comparative analysis across code complexity metrics and task categories.
Notably, CoMind’s solutions for Image Regression and Audio Classification are nearly twice as long
as those of other baselines. Additionally, solutions from CoMind are, on average, 55.4% longer than
those produced by AIDE.

8 CONCLUSION

We introduced MLE-Live, the first framework to evaluate ML agents in community-driven settings,
simulating the collaborative dynamics that are essential to real-world progress in Kaggle competi-
tions and beyond. Building upon this benchmark, we proposed CoMind, a community-augmented
LLM agent that iteratively selects and synthesizes ideas, implements solutions, and shares reports
within a simulated ecosystem. Our results demonstrate that CoMind not only achieves state-of-the-
art performance on retrospective MLE-Bench tasks but also attains medal-level standings in live
Kaggle competitions.

Limitations and Future Work. While our current experiments focus on Kaggle-style ML tasks,
the MLE-Live framework can be extended to broader domains, such as scientific discovery, open-
ended coding, or robotics, enabling research agents to contribute meaningfully across diverse fields.

9
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A ADDITIONAL ANALYSIS ON CODE COMPLEXITY

In this section, we provide a comprehensive analysis of the generated code using a broad set of soft-
ware complexity and quality metrics, beyond mere line counts. Specifically, we report the following
indicators: Cyclomatic Complexity (CC), Pylint score, Halstead Metrics: Volume, Difficulty,
Effort, Source Lines of Code (SLOC), Number of Comment Lines and Code Length.

Table 3: Code complexity and quality metrics (Cyclomatic Complexity, Pylint score, Halstead met-
rics, SLOC, etc.) across task categories. CoMind produces more complex solutions compared to
baselines.

Category Metric CoMind AIDE AIDE+RAG AIDE+Code

Image Classification

CC 1.68 1.59 1.93 1.29
Pylint Score 7.43 9.06 8.90 8.92
Volume 330.88 143.26 84.20 175.88
Difficulty 4.95 2.90 2.32 2.59
Effort 1960.22 507.06 286.31 725.59
SLOC 198.25 133.50 120.88 115.71
Comment Lines 15.62 12.88 13.75 14.43
Code Length 7638.40 4624.30 4701.30 5192.10

Text Classification

CC 3.58 4.28 2.00 0.00
Pylint Score 8.82 9.09 8.89 9.26
Volume 286.38 384.07 47.68 29.25
Difficulty 3.76 3.94 1.25 1.31
Effort 1183.11 2332.22 61.56 35.16
SLOC 181.67 133.00 141.00 69.50
Comment Lines 14.67 15.33 14.00 13.50
Code Length 6974.70 3094.50 5920.50 5629.30

Audio Classification

CC 2.00 0.00 0.00 0.00
Pylint Score 7.92 9.11 9.49 8.86
Volume 718.63 244.20 115.95 227.48
Difficulty 7.39 6.46 3.19 6.38
Effort 5308.07 1577.11 369.58 1451.30
SLOC 256.00 82.00 92.00 72.00
Comment Lines 20.00 11.00 16.00 16.00
Code Length 9449.00 3508.00 4151.00 3352.00

Seq2Seq

CC 4.38 2.25 22.33 15.75
Pylint Score 8.58 9.04 9.14 8.51
Volume 492.55 52.33 390.46 324.00
Difficulty 3.87 2.14 5.26 3.68
Effort 1935.02 140.58 2083.84 1686.74
SLOC 184.50 63.50 222.50 147.50
Comment Lines 22.50 13.00 23.00 19.50
Code Length 6925.50 5649.50 8357.50 2728.50

Tabular

CC 2.78 1.62 2.38 0.25
Pylint Score 8.65 8.96 8.87 9.31
Volume 1264.61 856.12 815.29 435.46
Difficulty 7.37 4.83 6.05 3.69
Effort 10 808.93 6163.62 5564.22 2001.06
SLOC 218.75 139.75 147.50 93.50
Comment Lines 18.25 14.75 15.25 10.50
Code Length 8570.00 3534.00 6064.00 5759.80

Image to Image

CC 1.72 2.00 3.00 1.88
Pylint Score 8.43 6.25 6.64 7.74
Volume 1298.11 1481.62 414.59 431.08
Difficulty 9.68 6.73 3.94 3.79
Effort 12 565.66 9967.24 1633.22 1631.93
SLOC 228.00 175.00 121.00 128.00
Comment Lines 26.00 8.00 23.00 13.00
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Category Metric CoMind AIDE AIDE+RAG AIDE+Code

Code Length 8800.00 5231.00 4815.00 6671.00

Image Regression

CC 1.68 2.00 2.40 2.00
Pylint Score 8.62 8.75 8.80 8.89
Volume 1310.92 241.08 70.32 72.00
Difficulty 8.75 3.88 2.18 2.73
Effort 11 466.58 934.17 153.43 196.36
SLOC 267.00 145.00 116.00 133.00
Comment Lines 36.00 15.00 12.00 12.00
Code Length 10 991.00 4841.00 4655.00 5614.00
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B PROMPTS AND RESPONSES FOR COMIND

This section provides some examples of prompts and responses in CoMind, including Coordinator,
Analyzer, Idea Proposer, Coding Agent and Evaluator.

B.1 COORDINATOR

Prompt for Solution Draft Synthesis

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description {description of the specified task}
Ideas {entries in the idea pool}
Reports {entries in the report pool}
Public Pipelines {all public pipelines extracted before}
Goals

1. Carefully read the reports provided above.
2. Based on the ideas and reports, propose {num pipes} promising self-contained

pipelines that are likely to perform well.
3. The Public pipelines section contains top-ranked public pipelines during the com-

petition. Use them as reference to polish your pipelines.
4. Each pipeline should not overlap with others. Your proposed pipelines should in-

clude one baseline pipeline that uses well-known methods but is robust and
relatively easy to implement. You should reinforce public pipelines and previous
pipelines based on their reports (if provided).

5. Ensure that each pipeline can be trained within 2 hours on a single A6000 with
48GB memory.

6. Read the submission format requirements in the task description carefully. The
format requirement is possible to be different from the training dataset. THIS IS
EXTREMELY IMPORTANT. Mention in the pipeline descriptions and be sure
to include the code that handles the input and output.

7. DO NOT USE tensorflow, use pytorch instead

Response Template for Solution Draft Synthesis

Submit Pipelines Descriptions and codes of pipelines, separated each pipeline by ===SEP-
ARATOR=== mark. For each pipeline, attach code that captures its essential. You must
include the code in public pipelines that handles input and output, and if there are
parts of the public pipelines that are similar to the current pipeline, you should include
them as well.

B.2 ANALYZER

Prompt for Strategy Distilation

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description {description of the specified task}
Goals These are top-ranked public scripts during the competition. Your job is to:

1. Carefully read the following scripts.
2. For each script, if it’s self-contained, i.e., including model architecture (if there’s a

model), training strategies, evaluation, etc., then summarize its pipeline.
3. If the pipeline contains technical details, such as extensive feature engineering,

hyperparameter tuning, etc., then list them in full detail.
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4. Select a representative code segment for each pipeline. You must include dataset
reading / submission generation parts. If task-specific details such as feature engi-
neering are included, the code segment should contain them as well.

Public Kernels {contents of public kernels}

Response Template of Strategy Distillation of Public Kernels

Pipelines Description of each strategy, separated by ===SEPARATOR=== mark. For each
strategy, follow this format:

• Pipeline: A full detailed description of the pipeline. All input/output format, hyperparam-
eters, training settings, model architectures, feature engineering, validation metric, and any
other relevant information should be included. Do not omit any feature engineering de-
tails.

• Code abstract: A representative code segments that captures the essence (including in-
put/output) and novelty of the pipeline. You MUST go through all the publicly available
code and include the parts that generate the submission file. Contain task-specific engi-
neering details. Mark the remainder as ellipses.

Prompt for Strategy Distillation of Public Discussions

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description {description of the specified task}
Goals These are top-voted public discussions during the competition. Your job is to:
Public Discussions {contents of public discussions}

1. Carefully read the following discussions.
2. For each discussion, you should decompose it into critical, novel and inspiring ideas

that have potential to win this competition.

Response Template of Strategy Distillation of Public Discussions

Ideas required format: python list of strings, each element is a description of an idea
extracted from the discussions. e.g. [’idea 1’, ’idea 2’].

B.3 IDEA PROPOSER

Prompt for Brainstorm

Introduction You are an expert machine learning researcher preparing for the Kaggle
competition described below.
Task Description {description of the specified task}
Goals I already have a list of ideas that partially explore how to approach this competition.
Your job is to:

1. Think creatively and construct at least 4 alternative and highly novel solution
paths that are likely to perform well, especially if combined with careful experi-
mentation.

2. Each solution path can be a strategy, pipeline, or method that combines multiple
techniques. Try to make them as different as possible from the existing ”ideas” list.

3. After describing each full solution path, break it down into individual minimal
ideas-these should be the smallest units of implementation (e.g., ”use LightGBM
for baseline”, ”normalize input features”, ”apply stratified K-fold CV”)

4. Ensure these ideas do not substantially duplicate items already in ”ideas”.
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5. Refer to the ”Reports” section for the latest updates and suggestions on the ideas
and previous pipelines.

Ideas {entries in the idea pool}

Reports {entries in the report pool}

Public Pipelines {all public pipelines extracted before}

Instructions Format your output like this (one line, one idea):

Response Template

{your understanding of the task and explanation of your approaches}
===SOLUTION PATH 1===
{description of this approach}
- {minimal idea 1}
- {minimal idea 2}
- {minimal idea 3}
- ...
===SOLUTION PATH 2===
...
===SOLUTION PATH 3===
...

Be ambitious but realistic - many ideas can later be tested on a small subset of the data.
Focus on novelty, diversity, and decomposability. Ready? Start.

Prompt for Idea Filtering and Reconstruction

Introduction You are a machine learning expert. After carefully searching the relevant
literature, you have come up with a list of ideas to implement. However, this idea list has
some issues:

• Some ideas are too similar and should be merged into one.
• Some ideas are overlapping, you should rephrase and decouple them.
• You should discard ideas that are irrelevant to the final performance, such as error visualiza-

tion, etc.
You should refer to the Reports section and Public Pipelines section for previous imple-
mented pipelines. Please decompose, merge, and reconstruct the ideas listed below.

Ideas {entries of the idea pool}

Reports {entries of the report pool}

Public Pipelines {all public pipelines extracted before}

Response Template of Idea Filtering and Reconstruction

Ideas required format: Python list of strings, each element is a description of an idea. e.g.
[’idea 1’, ’idea 2’].

Prompt for Coding Agent Report Compilation

Please summarize the results and submit a comprehensive report.
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Response Template for Coding Agent Report Compilation

pipeline A detailed description of the pipeline that generated the best results. All hyperpa-
rameters, training settings, model architectures, feature engineering, validation metric, and
any other relevant information should be included. Describe potential improvements and
future work.
summary A comprehensive evaluation of each individual component of the pipeline. For
each component, summarize in the following format:
=== {name of the component} ===
Novelty: 0-10 (0: trivial, 10: clearly novel - major differences from existing well-known
methods)
{your rationale}
Feasibility: 0-10 (0: almost impossible to implement and require extensive engineering, 10:
Easy to implement)
{your rationale}
Effectiveness: 0-10 (0: minimal performance improvement, 10: very strong performance,
significantly outperform most baselines)
{your rationale}
Efficiency: 0-10 (0: very slow, over-dependent on CPU and hard to produce meaningful
results within the time limit, 10: high utilization of GPU)
{your rationale}
Confidence: 0-10 (0: no emprical results, not sure whether the evaluation is correct, 10:
fully verified on large scale with abundant results)

B.4 EVALUATOR

Prompts for Dataset Splitting and evaluate.py

You are an experienced machine learning engineer. Please generate two self-contained
Python code for local evaluation of a Kaggle agent. Your code should be robust, reusable,
accept command-line arguments and print necessary information.

Background
• Kaggle competitions usually provide labels only for the training set. To evaluate an agent

locally, we need to split the training set into a training and validation split.
• The validation set must hide its labels from the agent. The agent only sees the training set

(with labels) and the validation inputs (without labels).
• The hidden validation labels will be stored separately and used only for offline evaluation.
• Importantly: ./public must never contain validation labels. Validation labels are saved only

in ./private.

Kaggle Competition Description {description of the specified task}

Data Preview {schema of the input file structure}

Deliverables Please generate two scripts (both in Python 3, runnable from the command
line):
1) split dataset.py
Goal: Split the original training data into 90% training and 10% validation. Store valida-
tion inputs (without labels) in ./public, and validation labels in ./private. The training set
(with labels) and original test set must remain in ./public, preserving the original structure
as closely as possible. The structure of validation inputs should also match the test set.
Generate a sample validate submission validate sample submission.csv under ./public. All
original data (training and test) are visible in {path to the input directory}.
Example: If the original data is structured as:
- kaggle_evaluation/ (official evaluation tool provided by Kaggle)

- __init__.py
- ...

- train.csv

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

- train/
- test.csv
- test/
- sample_submission.csv

You should split the dataset into:
(./public/)
- kaggle\_evaluation/ (official evaluation tool provided by Kaggle) (unchanged, soft

links)
- __init__.py
- ...

- train.csv (this contains 90% of the training data)
- train/ (this contains 90% of the training data, keep unchanged data as soft links)
- test.csv (unchanged, soft link)
- test/ (unchanged, soft link)
- sample_submission.csv (unchanged, soft link)
- validate.csv (this contains 10% of the training data with labels withheld)
- validate/ (soft links)
- validate_sample_submission.csv (a sample submission file for validation set)

(./private/)
- validate.csv (labels of validation set)

If the training data contains zip files, you should extract them to the public directory before
splitting the dataset. You should always print the directory structure after the split. Do not
extract files to the original directory and keep it unchanged.
If the training data contains multiple classes, you should use stratified sampling. You
should strictly follow the evaluation metric mentioned in the task description and ensure the
validation set is representative of the overall class distribution. Never write validation labels
into ./public.
Your code will be executed by command line as follows:
‘‘‘bash
python split_dataset.py --input_dir <path to the input directory> --public_dir ./public

--private_dir ./private
‘‘‘

DO NOT store the training and test files in other folders such as ./public ¡TIMESTAMP¿,
the ./public folder will be exposed to later code agent. Make sure the ./public directory has
similar structure with the original data folder.
2) evaluate.py
Goal: Evaluate the agent’s predictions on validation set against the hidden ground truth
(./private/...). Output evaluation results (json format) to console and write ./private/e-
val report.json.
It will be executed by command line as follows:
‘‘‘bash
python evaluate.py --public\_dir ./public --private\_dir ./private --pred <path to the

validation submission file>
‘‘‘

We will pass the path to the sample validation submission file as the argument to your eval-
uate.py script. It typically produces low scores.
The script should generate in the following json format at ./private/eval report.json:
{

"score": A float number represents the evaluation score on the validation set. Do
not omit this field. If the evaluation is unsuccessful or the predictions are
invalid, this field should be set to null,

"success": A boolean value indicates whether the evaluation was successful or not,
"message": A string provides additional information about the evaluation result.

Leave it an empty string if the predictions are valid and evaluation is
successful. Otherwise provide necessary details on why it failed.

}

Do not raise any error or exception. If the evaluation is unsuccessful, you should set the
score to null and provide a detailed explanation in the message field.
Now, let’s write these two scripts step by step. Your should first generate split dataset.py.
We will execute the code by command line as mentioned above. You should correct the code
in case of any issues. You should always generate full, self-contained code. No part of the
code should be omitted.
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Respond in the following format:
‘‘‘current_file
This should be either split_dataset.py or evaluate.py. Leave this as None if both are

generated and functioned. This indicates the current file you are editing.
‘‘‘

‘‘‘explanation
You explanation on the workflow of your code.
‘‘‘

‘‘‘python
The full content of the current file. Leave this as None if both are generated and

functioned.
‘‘‘

B.5 CODING AGENT

Prompts for Coding Agent Iterative Implementation

Introduction You’re an expert Kaggle competitor tasked with implementing a pipeline
into Python code. You can modify the details (training parameters, feature engineering,
model selection, etc. ), but do not change overall architecture of this pipeline. The goal is to
obtain best score on this competition.
Task Description {description of the specified task}
Pipeline {description of the solution draft to implement}
Data Overview {schema of the input file structure} Follow the pipeline description and the
code abstract to implement it. All the input files are visible in ../input folder, this folder typi-
cally contains the competition data and external resouces, including public datasets, models
and outputs of other kernels. DO NOT USE /kaggle/input paths in your code. USE ../input
instead.
file structure:

- input/ (../input)
- competition_id/ # the official competition dataset
- alice/dataset1/ # other public datasets
- alice/kernel1/ # referenced kernels

- working/
- agent.ipynb # the notebook you will be working on (./agent.ipynb)
- other files

You will develop the pipeline based on this codebase. Any output files of the codebase, such
as csvs, checkpoints, etc., are visible in ./, which is also your current working directory.
{Description of Selected Codebase}
You should note that checkpoints generated by this codebase is store in ./ other than ../input.
You must load the checkpoint file under the ./ directory for ensemble prediction.
Your code must produce a submission at ./submission.csv, this is EXTREMELY IMPOR-
TANT. Before generating the submission, you must print the value of the evaluation metric
computed on a hold-out validation set. You can use custom evaluation functions during
training, but the final metric MUST FOLLOW THE EVALUATION SECTION IN THE
TASK DESCRIPTION on a validation set. If other kernels with submission.csv are pro-
vided in the input folder, you can ensemble them before generating your own submission.
This is important because we will pick your best code based on this metric. You are allowed
to load the checkpoints of other models. Do not contain any absolute paths in your code.
Time limit per run is 2 hours. Your code will be killed if timeout.
Your code will be executed on a single A6000 GPU. Use large batchsizes to maximize
the gpu utilization. If the code segment is provided in this prompt, you should follow the
input/output structure. You are allowed to install any packages you need or inspect the
workspace (e.g., print file contents, check folder structure). Always use gpu for acceleration.
DO NOT USE ABSOLUTE PATHS IN YOUR CODE.
The workspace will be maintained across iterations. That is, if your first iteration code pro-
duces a checkpoint, you can load it in the second iteration. You can ensemble submissions
generated by yourself and other kernels. You should generate model checkpoints for future
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loading. If you load the external submissions successfully but failed to merge them with
your own predictions, you should print the headers of the external submission and your own
predictions and check if the ids are aligned. All the external submissions are valid. Your
predictions should be in the same format as them.
To evaluate your submission locally. You should also generate a submission file on the
validation set. All the validation data are typically structured similarly to the test data. An
external grader will be used to evaluate your validation submission. That is to say, you
should generate TWO submission files: one is for the validation set and the other is for the
test set. Generate two submission files in the same code cell.
You are allowed to install any packages by running ‘pip install ¡package name¿‘ in your
script. Your installation will take effect in the NEXT cell.
A persistent Jupyter Notebook session is maintained. Your proposed code cell will be di-
rectly appended to the notebook and executed. You should separate data loading, training
and evaluation in different cells. Now, please propose THE FIRST CELL of your code (not
your full code!) using the following format:
<goal>
The explanation of your first cell. You should describe the desired execution time and

output of this cell. Explain how to interpret the execution output.
</goal>

<code>
The content of this cell. Do not wrap the code in a markdown block. Your code will be

appended to the notebook, which is stored at ./agent.ipynb. Your code must print
necessary information after each milestone.

</code>

<validation_submission>
The name of the submission file for the validation set. e.g. validate\_submission.csv.

If your current code cell does not produce two submission files, leave this as
None.

</validation_submission>

<submission>
The name of the submission file for the test set. e.g. submission.csv. This submission

should be ready for Kaggle submission. If your current code cell does not produce
two submission files, leave this as None.

</submission>

The validation submission tag and the submission tag should must be both empty or both
non-empty.

Prompt for Execution Monitor

You are an AI assistant monitoring code execution. Your task is to analyze the current
execution output and decide whether the code should continue running.
Code being executed:
{code to analyze}
Goal: {execution target of this code}
Runtime Information:

• Current runtime: {code execution time elapsed}
• Maximum runtime: {maximum execution time}
• Remaining time: {remaining execution time}

Current Output:
{current output of this code cell}
Consider these factors:

1. Is the loss exploding (becoming very large or NaN)?
2. Is the loss decreasing normally over time?
3. Are there any error messages indicating failure?
4. Does the output suggest normal training/execution progress?
5. Based on current progress and remaining time, is it possible to complete within the

time limit?

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Respond in the following format:
<action>
CONTINUE/STOP
</action>

<explanation>
Your rationale for the action. Describe the current progress, your estimated remaining

time, and explain why you think the execution should continue or stop. DO NOT GIVE
SUGGESTIONS ON BUG FIXES.

</explanation>

Prompt for Consequent Code Revisions

The execution takes {execution time} seconds and ends with the following output:
{truncated output}
Execution completed successfully. You should keep updating your code (e.g., try differ-
ent hyperparameters, augmentations, model architectures) after you have made successful
submission. Your best submission will be recorded.
Now, respond in the following format:
<validation_submission>
The name of the submission file for the validation set. e.g. validate_submission.csv.

If your current code cell does not produce a submission file on the validation set
, leave this as None.

</validation_submission>

<submission>
The name of the submission file for the test set. e.g. submission.csv. This submission

should be ready for Kaggle submission. If your current code cell does not produce
a submission file on the test set, leave this as None.

</submission>

<goal>Describe the goal and how to inspect the output of your next code cell</goal>

<code>
The content of your next code cell. Following the previous format, do not wrap your

code within markdown code marks. You should keep updating your code (e.g., try
different hyperparameters, augmentations, model architectures) even after you have
made successful submission. Always evaluate your submission and print the metric
on a validation set.

</code>

The validation submission tag and the submission tag should must be both empty or both
non-empty.
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C CASE STUDY: DENOISING DIRTY DOCUMENTS

C.1 DATASET PREPARATION

Besides the task description and datasets prepared in MLE-Bench, MLE-Live collects 59 public
kernels and 19 discussions which are available on Kaggle and are posted before the competition
ends.

C.1.1 EXAMPLE OF PUBLIC KERNEL

1 """
2 A simple feed-forward neural network that denoises one pixel at a time
3 """
4 import numpy as np
5 import theano
6 import theano.tensor as T
7 import cv2
8 import os
9 import itertools

10

11 theano.config.floatX = ’float32’
12

13 def load_image(path):
14 return cv2.imread(path, cv2.IMREAD_GRAYSCALE)
15

16 def feature_matrix(img):
17 """Converts a grayscale image to a feature matrix
18

19 The output value has shape (<number of pixels>, <number of features>)
20 """
21 # select all the pixels in a square around the target pixel as

features
22 window = (5, 5)
23 nbrs = [cv2.getRectSubPix(img, window, (y, x)).ravel()
24 for x, y in itertools.product(range(img.shape[0]), range(img.

shape[1]))]
25

26 # add some more possibly relevant numbers as features
27 median5 = cv2.medianBlur(img, 5).ravel()
28 median25 = cv2.medianBlur(img, 25).ravel()
29 grad = np.abs(cv2.Sobel(img, cv2.CV_16S, 1, 1, ksize=3).ravel())
30 div = np.abs(cv2.Sobel(img, cv2.CV_16S, 2, 2, ksize=3).ravel())
31

32 ... (omitted) ...
33

34 # for fname in os.listdir(’../input/test/’):
35 for fname in [’1.png’]:
36 test_image = load_image(os.path.join(’../input/test’, fname))
37 test_x = feature_matrix(test_image)
38

39 y_pred, = predict(test_x)
40 output = y_pred.reshape(test_image.shape)*255.0
41

42 cv2.imwrite(’original_’ + fname, test_image)
43 cv2.imwrite(’cleaned_’ + fname, output)
44

45

46 if __name__ == ’__main__’:
47 main()

C.1.2 EXAMPLE OF DISCUSSION

# Edge Diffraction in train_cleaned data
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(Lance <TIER: N/A>) <p>I’m studying the pixels in train_cleaned data.&nbsp; I attached a
colorized blow-up version of part of the image train_cleaned/45.png.&nbsp;&nbsp; The
yellow pixels are any pixels that were not pure white ( != 0xFF gray scale) in image 45.
png, the green was pure white (0xFF).</p>

<p>So you see what looks like an edge diffraction line lining the outer edge of all the
letters.</p>

<p>Okay, maybe I got something wrong in my code.&nbsp; Can anyone confirm this edge
diffraction thing in the train_cleaned data, as for example the first word in
train_cleaned/45.png (There).&nbsp; You need to make the non-white (byte != 0xFF)
pixels all a more contrasting color or you may not see it.</p>

<p>I’m guessing that the clean png files were at some point scanned in using some kind of
optical scanning machine which added these edge diffraction lines when the light
diffracts off the edge of the black ink character.</p>

... (omitted) ...
+ (Rangel Dokov <TIER: MASTER>) <p>Yes, there is some noise, which doesn’t look like it

should be there in the clean set... I ran a test setting everything whiter that 0xF5
to 0xFF and the RMSE was 0.005, which should be an upper bound on the effects from the
halos. This will likely be large enough to make the top of the leaderboard a game of
luck, but since this is just a playground competition I’m not terribly worried about
it.</p>

C.2 EXAMPLE AGENT WORKFLOW

In our experiment settings, CoMind only accesses top-10 voted discussions and kernels and ignores
the rest. The community is initialized with these artifacts. Upon completion of this process, 7
ideas and 10 pipelines are generated. Below is an excerpt of the ideas and reports generated by the
Analyzer.
(0) Use behaviour-based clustering of neural networks: cluster models by their error patterns

and ensemble them for document enhancement
(1) Implement sliding-window patch-based models that take an input window and output multiple

cleaned pixels simultaneously for both denoising and resolution enhancement
(2) Apply a Waifu2x-inspired deep convolutional neural network with gradually increasing

filter counts (e.g., 1 -> 32 -> 64 -> 128 -> 256 -> 512 -> 1) and LeakyReLU activations
for effective denoising

(3) Carefully initialize convolutional weights (e.g., stdv = sqrt(2/(kW*kH*nOutputPlane))) and
use LeakyReLU to improve model convergence and performance

(4) Ensemble multiple models with different input preprocessing: combine outputs from a pure
CNN, background-removed images, edge maps, and thresholded inputs to capture diverse
noise characteristics

(5) Augment training data to simulate real-world 3D deformations and shadows on text, not just
2D noise, to better match test-time artifacts

(6) Account for systematic artifacts in ’clean’ training data (e.g., single-pixel halos) by
treating them as noise or adjusting targets accordingly during training

Public pipeline (0): - Pipeline: A simple feed-forward neural network that denoises one pixel
at a time (Theano).

- Feature engineering: for each pixel extract a 5*5 window of gray values (neighbors), 5*5
median blur, 25*25 median blur, Sobel gradient and second-order derivative magnitudes,
stack into a feature vector. Normalize features to [0,1].

- Model architecture: two-layer MLP; hidden layer size N_HIDDEN=10, tanh activation, output
layer with custom activation clip(x+0.5,0,1).

- Training: MSE cost, stochastic gradient descent with learning rate 0.1, batch size 20,
epochs 100. Validation on one image (3.png) at each epoch by RMSE.

- Prediction: apply same feature_matrix to test images, predict pixel values, reshape to full
image, write out cleaned PNGs.

- Code abstract:
def feature_matrix(img):

window=(5,5)
nbrs=[cv2.getRectSubPix(img,window,(y,x)).ravel()

for x,y in itertools.product(range(img.shape[0]),range(img.shape[1]))]
median5=cv2.medianBlur(img,5).ravel()
median25=cv2.medianBlur(img,25).ravel()
grad=np.abs(cv2.Sobel(img,cv2.CV_16S,1,1,ksize=3).ravel())
div=np.abs(cv2.Sobel(img,cv2.CV_16S,2,2,ksize=3).ravel())
misc=np.vstack((median5,median25,grad,div)).T
features=np.hstack((nbrs,misc))
return (features/255.).astype(’float32’)

...
class Model(object):

def __init__(...):
self.layer1=Layer(...,n_in=...,n_out=N_HIDDEN,activation=T.tanh)
self.layer2=Layer(...,n_in=N_HIDDEN,n_out=n_out,

activation=lambda x: T.clip(x+0.5,0,1))
def cost(self,y): return T.mean((self.output-y)**2)

...
---------- PIPELINE SEPARATOR ----------
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Public pipeline (1): - Pipeline: Matching image backgrounds in R (no ML model).
- Reads test PNGs in batches of 12 images.
- Flattens each into vectors of size 258*540, stacks as columns.
- For each pixel location, takes the maximum value across images as an estimate of background

.
- Writes out background images as PNG.

- Code abstract:
for(i in 1:4) {
matches=seq(1,205,by=12)+(i-1)*3
rawData=matrix(0,258*540,length(matches))
for(j in seq_along(matches)){
imgY=readPNG(file.path(testDir,paste0(matches[j],’.png’)))
rawData[,j]=as.vector(imgY[1:258,1:540])

}
background=matrix(apply(rawData,1,max),258,540)
writePNG(background, paste0(’background’,matches[j],’.png’))

}
...

---------- PIPELINE SEPARATOR ----------
Public pipeline (2): - Pipeline: Pixel-wise Random Forest regression (Python, chunk size=1e6).
- Feature engineering: pad image by mean value (padding=1); extract 3*3 neighborhood per

pixel, flatten as features.
- Training data: load all train noisy images, compute features via joblib parallel (n_jobs

=128), load targets as flattened clean pixel intensities/255.
- Model: sklearn.ensemble.RandomForestRegressor(warm_start=True, n_jobs=-1). Incrementally

add one estimator at a time: split training rows into CHUNKSIZE=1e6 slices, in each
slice increase n_estimators by 1 and fit on that slice.

- Prediction: extract test features similarly, generate index strings "image_row_col",
predict pixel values, write submission CSV.

- Code abstract:
def get_padded(img, padding=1):

padval=int(round(img.mean()))
... return padded

def get_features_for_image(img,padding=1):
padded=get_padded(img,padding)
return np.vstack([padded[i:i+3,j:j+3].reshape(1,-1)

for i in range(rows) for j in range(cols)])
...
def get_model(X,y):

model=RandomForestRegressor(n_estimators=0,warm_start=True,n_jobs=-1)
for start,end in slices:

model.set_params(n_estimators=model.n_estimators+1)
model.fit(X[start:end],y[start:end])

return model
...

---------- PIPELINE SEPARATOR ----------
... (omitted) ...
---------- PIPELINE SEPARATOR ----------
Public pipeline (9): - Pipeline: XGBoost with basic features in R.
- Features: raw pixel value, kmeansThreshold binary, background_Removal feature.
- Sample 25k pixels, build DMatrix, 5-fold CV, early stop, select rounds, train xgb.
- Predict on test, clip, build id strings, write submission.csv.

- Code abstract:
dat=cbind(y,raw=img2vec(imgX),thresholded=kmeansThreshold(imgX),

backgroundRemoval=img2vec(background_Removal(imgX)))
rows=sample(nrow(dat),25000)
dtrain=xgb.DMatrix(dat[rows,-1],label=dat[rows,1])
xgb.tab=xgb.cv(data=dtrain,nfold=5,early.stop.round=50)
xgb.mod=xgboost(data=dtrain,nrounds=min.err.idx)
yHat=predict(xgb.mod,newdata=as.matrix(x))
...

Then, the Idea Proposer begins brainstorming to propose more original strategies.
===SOLUTION_PATH_1===
Multi-Scale Wavelet-U-Net with Attention and Multi-Term Loss
Description: decompose each image via discrete wavelet transform (DWT) into low-/high-

frequency bands, process each band in a dual-branch U-Net enhanced with channel- and
spatial-attention, then invert the wavelet to reconstruct. Train end-to-end with a
weighted sum of pixel-wise RMSE, wavelet-band consistency, and edge preservation losses.

- apply 2D DWT to noisy input -> obtain LL, LH, HL, HH sub-bands
- feed LL into a "coarse" encoder branch, feed concatenated LH/HL/HH into a "detail" encoder

branch
- use a U-Net decoder to upsample each branch back to patch size, fuse via learned 1*1

convolutions
- insert Convolutional Block Attention Modules (CBAM) after each encoder and decoder block
- define loss = alpha*pixelRMSE(clean,output) + beta*bandRMSE(wavelet(clean),wavelet(output))

+ gamma*edgeLoss(Sobel(clean),Sobel(output))
- train on full images with AdamW and a cosine-annealing LR schedule

===SOLUTION_PATH_2===
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Stroke-Aware Conditional GAN with OCR-Guided Perceptual Loss
Description: build a conditional GAN (generator = deep residual encoder-decoder, discriminator

= PatchGAN) that not only minimizes pixel loss but also preserves text strokes-enforce a
stroke-level loss via a pre-trained small CNN classifier that predicts presence/width of
strokes. Add an OCR-based perceptual loss: feed predictions through a frozen OCR engine

embedding and minimize distance to clean embedding.
- implement generator as ResNet blocks + skip connections (64->128->256->128->64)
- implement discriminator as 70*70 PatchGAN to focus on local texture
- include L1 pixel loss + adversarial loss + stroke consistency loss (L1 between stroke-CNN

features on clean vs. restored)
- freeze a small text-structure CNN (trained on binary masks) to extract stroke features
- run Tesseract (or lightweight OCR CNN) on restored vs. clean, extract penultimate-layer

activations, add perceptual loss term
- train with R1 gradient penalty and spectral normalization on discriminator

===SOLUTION_PATH_3===
Joint Dictionary Learning + Non-Local Patch Aggregation
Description: learn paired dictionaries (D_noisy, D_clean) for small patches (e.g. 8*8) via

coupled K-SVD. At test time, extract overlapping patches, compute sparse codes alpha
under D_noisy via OMP, reconstruct clean patches = D_clean*alpha. Then, perform non-local
means on the reconstructed patches to exploit self-similarity and average aggregates.

- sample a large bank of noisy/clean patch pairs, initialize D_noisy, D_clean with DCT basis
- run coupled K-SVD to minimize ||D_noisy*alpha - y_noisy|| + ||D_clean*alpha - y_clean|| w.r.

t. D_noisy,D_clean,alpha
- at test time, for each image patch y_noisy, compute alpha via Orthogonal Matching Pursuit (

sparsity <= k)
- reconstruct y_clean_est = D_clean*alpha for each patch
- perform block-matching to find K nearest patches per reference patch (Euclid dist), stack

them
- aggregate reconstructed patches with non-local weights (e.g. Gaussian on reconstruction

residual)

===SOLUTION_PATH_4===
Self-Supervised Blind Denoising via Noise2Void + Test-Time Adaptation
Description: exploit purely noisy data-train a small U-Net with masked pixel prediction (

Noise2Void) on each test image at inference (test-time training). The network learns to
predict a pixel from its context, gradually adapting to local noise statistics, then you
run a forward pass to obtain the cleaned image. No clean target needed.

- define blind-spot or random masking scheme: mask 1% pixels per batch, replace with neighbors
- build a lightweight CNN (e.g. 5 down/up blocks with skip connections) that predicts a full

image
- fine-tune this CNN on each test image for N_iter (e.g. 500 steps) using only masked L2 loss
- use data augmentation (rotations, flips) on the single test image to diversify contexts
- after adaptation, perform a clean forward pass without masking to get the denoised output
- optionally ensemble outputs from multiple random initializations to reduce variance

To remove similar ideas and decompose overlapped ideas, a reconstruction is performed subse-
quently. 9 ideas are preserved after the filtering and reconstruction. These ideas are then merged
with the idea memory.

(0) Use diverse ensembles by clustering models based on their error patterns and combining
outputs from differently preprocessed inputs (e.g., raw, background-removed, edge maps,
thresholded) to capture varied noise characteristics.

(1) Develop a sliding-window, patch-based model that takes an input region and predicts
multiple denoised and super-resolved pixels simultaneously for efficient document
enhancement.

(2) Implement a Waifu2x-inspired deep convolutional network with progressively increasing
filter counts and LeakyReLU activations, initialized using He normalization for robust
convergence in denoising tasks.

(3) Augment the training set with simulated 3D deformations, lighting variations, and shadows
on text to better match real-world scanning artifacts.

(4) Identify and compensate for systematic artifacts in the "clean" training targets (e.g.,
single-pixel halos) by modeling them as noise or adjusting ground-truth labels during
training.

(5) Build a wavelet-domain dual-branch U-Net: decompose inputs with 2D DWT into approximation
and detail bands, encode separately, decode and fuse via learned 1*1 convolutions,
integrate CBAM attention modules, and train end-to-end with a composite loss combining
pixel RMSE, wavelet-band RMSE, and edge loss, optimized using AdamW with a cosine-
annealing LR schedule.

(6) Apply a GAN-based restoration framework: use a ResNet-based generator and 70*70 PatchGAN
discriminator, train with a combination of L1 pixel loss, adversarial loss, stroke-
consistency loss (via a frozen stroke-feature CNN), and perceptual OCR-feature loss,
incorporating R1 gradient penalty and spectral normalization.

(7) Leverage coupled dictionary learning and non-local aggregation: learn noisy and clean
dictionaries simultaneously via coupled K-SVD, reconstruct patches using OMP, enhance
self-similarity with block-matching, and fuse reconstructed patches with non-local
weighting.

(8) Implement blind-spot test-time adaptation: randomly mask a small percentage of pixels per
batch, train a lightweight CNN with skip connections on the single test image using
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masked L2 loss and augmentations, fine-tune per image for a few hundred steps, and
optionally ensemble multiple initializations for variance reduction.

Based on the ideas received from the Idea Proposer and previous reports, the Coordinator then
compiles 2 solution drafts.
Pipeline 1 (Baseline CNN - U-Net with L1 loss and simple augmentations)
--------------------------------------------------------------------------------
Overview
- A lightweight U-Net trained on 256*256 patches of noisy/clean document pairs.
- Single-branch encoder-decoder with skip connections, ReLU activations, batch norm.
- Loss: L1 pixel-wise loss (less sensitive to outliers than MSE), optional total variation

regularization.
- Optimizer: Adam; train on 1 A6000 within 1 hr.

Data Preparation
1. Read all noisy (input) and clean (target) train images, normalize intensities to [0,1].
2. Extract random 256*256 patches (stride = 128) with matching noisy/clean pairs.
3. Data augmentation: random horizontal/vertical flips, +-90 degree rotations.
4. Create PyTorch DataLoader with batch_size=16 (fits 48 GB) for ˜100 k patches.

Network Architecture (PyTorch pseudocode)
‘‘‘
class UNet(nn.Module):

def __init__(self):
super().__init__()
# Encoder
self.enc1 = DoubleConv(1, 64)
self.enc2 = Down(64,128)
self.enc3 = Down(128,256)
self.enc4 = Down(256,512)
# Bottleneck
self.bottleneck = Down(512,512)
# Decoder
self.up4 = Up(1024,256)
self.up3 = Up(512,128)
self.up2 = Up(256,64)
self.up1 = Up(128,64)
self.final = nn.Conv2d(64,1,kernel_size=1)

def forward(self,x):
e1=self.enc1(x)
e2=self.enc2(e1)
e3=self.enc3(e2)
e4=self.enc4(e3)
b = self.bottleneck(e4)
d4=self.up4(b,e4)
d3=self.up3(d4,e3)
d2=self.up2(d3,e2)
d1=self.up1(d2,e1)
return torch.sigmoid(self.final(d1))

‘‘‘
Helper modules:
- DoubleConv = (Conv2d -> BatchNorm2d -> ReLU) *2
- Down = (MaxPool2d -> DoubleConv)
- Up = (ConvTranspose2d for upsampling -> concatenate skip -> DoubleConv)

Training
- Loss = L1Loss(output, target) + lambda*TV(output) (lambda=1e-5 for smoothness).
- Optimizer = Adam(lr=1e-3, weight_decay=1e-5).
- LR schedule: ReduceLROnPlateau(monitor=val_loss, factor=0.5, patience=5).
- Train for up to 50 epochs; early-stop if val_loss stagnates.
- Validation: hold out 10% patches to monitor RMSE.

Inference
- For each test image (e.g., 540*258), slide 256*256 window with stride=128, predict, and

average overlapping outputs.
- Threshold nothing; output raw [0,1] floats per pixel.

Compute Budget
- ˜100 k patches, batch 16, ˜6 k steps per epoch. On A6000: ˜2-3 min/epoch => 50 epochs ˜ 2 hr

; with early stopping < 1 hr.

Pipeline 2 (Advanced Wavelet U-Net with CBAM and Composite Loss)
----------------------------------------------------------------
Overview
- Dual-branch U-Net operating in wavelet domain (Haar DWT) to explicitly denoise tonal and

textural components.
- CBAM (Convolutional Block Attention Modules) to adaptively weigh spatial/channel features.
- Loss = alpha*L1_pixel + beta*L2_wavelet + gamma*EdgeLoss.
- Optimizer = AdamW + CosineAnnealingLR.
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Data Preparation
- Same as Pipeline 1 (256*256 patches + augmentations).
- On-the-fly DWT: for each noisy patch, compute one-level Haar DWT -> yields approximation (A)

and details (H,V,D).

Network Architecture
(implemented in PyTorch)
‘‘‘
class WaveletUNet(nn.Module):

def __init__(self):
super().__init__()
# Shared CBAM-Res blocks for Approx and Detail branches
self.encA1 = CBAMResBlock(1,64)
self.encD1 = CBAMResBlock(3,64)
self.pool = nn.MaxPool2d(2)
self.encA2 = CBAMResBlock(64,128)
self.encD2 = CBAMResBlock(64,128)
# Bottleneck
self.bottleneck = CBAMResBlock(256,256)
# Decoder
self.up2 = UpRes(256,128)
self.up1 = UpRes(128,64)
self.final = nn.Conv2d(64,4,kernel_size=1)

def forward(self, x):
# x shape: [B,1,H,W]
A, (H,V,D) = haar_dwt(x) # PyWavelets or custom conv
d0 = torch.cat([self.encA1(A), self.encD1(torch.cat([H,V,D],dim=1))],dim=1)
p1 = self.pool(d0)
d1 = torch.cat([self.encA2(p1[:, :128]), self.encD2(p1[:, 128:])],dim=1)
b = self.bottleneck(self.pool(d1))
u2 = self.up2(b,d1)
u1 = self.up1(u2,d0)
out = self.final(u1) # [B,4,H,W]
# Reconstruct denoised x via inverse DWT
A_hat, H_hat,V_hat,D_hat = out[:,0:1], out[:,1:2], out[:,2:3], out[:,3:4]
return ihaar_dwt((A_hat, (H_hat,V_hat,D_hat)))

‘‘‘
Key building blocks:
- CBAMResBlock: residual block with Conv-BN-ReLU->Conv-BN, plus CBAM (channel & spatial

attention after second Conv).
- UpRes: ConvTranspose2d upsample->concatenate skip->CBAMResBlock.

Loss
- L1_pixel = L1(output, target).
- L2_wavelet = L2(DWT(output) - DWT(target)).
- EdgeLoss = L1(Sobel(output), Sobel(target)).
- TotalLoss = alpha*L1_pixel + beta*L2_wavelet + gamma*EdgeLoss (alpha=1, beta=0.5, gamma=0.2)

.

Training
- Optimizer: AdamW(lr=1e-3, weight_decay=1e-4).
- Scheduler: CosineAnnealingLR(T_max=50).
- Batch size=8 (higher memory due to dual branches).
- Epochs=50, early-stop by composite loss on val set.

Inference
- Same sliding-window approach as Pipeline 1.

Compute Budget
- CBAM and wavelet layers add ˜1.5* compute but within A6000 48 GB: patch batch=8 yields ˜250

steps/epoch, so 50 epochs ˜2 hr. Use early-stop or T_max=30 to finish within 1 hr.

References
- CBAM: Woo et al., "CBAM: Convolutional Block Attention Module" (ECCV 2018).
- Haar DWT: PyWavelets or custom conv filters.
- Edge loss: Sobel via fixed conv kernels.

Expected Benefits
- Explicit noise suppression in high-frequency bands.
- Attention modules focus on text strokes and edge restoration.
- Composite loss balances global structure and fine details.

In our experiment, 2 parallel Coding Agents are invoked to implement the solution drafts respec-
tively. Each instance has a quota of 20 steps, 3 hours in total and 1 hour per execution. An LLM is
instructed to monitor the execution process and terminate failed runs.

The best code snippet generated in the first iteration is:
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1 import os, glob, random, math
2 from PIL import Image
3 import torch
4 import torch.nn as nn
5 import torch.nn.functional as F
6 from torch.utils.data import Dataset, DataLoader
7 from torchvision import transforms
8

9

10 # -- 1) Haar DWT / inverse DWT --
11 class HaarDWT(nn.Module):
12 def __init__(self):
13 super().__init__()
14 wt = torch.zeros(4, 1, 2, 2)
15 wt[0, 0, :, :] = 0.5
16 wt[1, 0, 0, 0], wt[1, 0, 0, 1], wt[1, 0, 1, 0], wt[1, 0, 1, 1] = (
17 0.5,
18 -0.5,
19 0.5,
20 -0.5,
21 )
22 wt[2, 0, 0, 0], wt[2, 0, 0, 1], wt[2, 0, 1, 0], wt[2, 0, 1, 1] = (
23 0.5,
24 0.5,
25 -0.5,
26 -0.5,
27 )
28 wt[3, 0, 0, 0], wt[3, 0, 0, 1], wt[3, 0, 1, 0], wt[3, 0, 1, 1] = (
29 0.5,
30 -0.5,
31 -0.5,
32 0.5,
33 )
34 self.register_buffer("weight", wt)
35

36 def forward(self, x):
37 return F.conv2d(x, self.weight, stride=2)
38

39

40 class HaarIDWT(nn.Module):
41 def __init__(self):
42 super().__init__()
43 wt = HaarDWT().weight.clone()
44 self.conv = nn.ConvTranspose2d(4, 1, 2, stride=2, bias=False)
45 self.conv.weight.data.copy_(wt)
46 self.conv.weight.requires_grad_(False)
47

48 def forward(self, coeffs):
49 return self.conv(coeffs)
50

51

52 # -- 2) Sobel edge for EdgeLoss --
53 class Sobel(nn.Module):
54 def __init__(self):
55 super().__init__()
56 kx = torch.tensor(
57 [[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=torch.float32
58 ).view(1, 1, 3, 3)
59 ky = torch.tensor(
60 [[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float32
61 ).view(1, 1, 3, 3)
62 self.register_buffer("wx", kx)
63 self.register_buffer("wy", ky)
64

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

65 def forward(self, x):
66 gx = F.conv2d(x, self.wx, padding=1)
67 gy = F.conv2d(x, self.wy, padding=1)
68 return torch.sqrt(gx * gx + gy * gy + 1e-6)
69

70

71 # -- 3) CBAM, ResBlock, UpRes, WaveletUNet --
72 class CBAM(nn.Module):
73 def __init__(self, c, r=16, k=7):
74 super().__init__()
75 self.mlp = nn.Sequential(
76 nn.Linear(c, c // r, bias=False),
77 nn.ReLU(inplace=True),
78 nn.Linear(c // r, c, bias=False),
79 )
80 self.spatial = nn.Conv2d(2, 1, kernel_size=k, padding=k // 2, bias=

False)
81

82 def forward(self, x):
83 b, c, h, w = x.shape
84 avg = F.adaptive_avg_pool2d(x, 1).view(b, c)
85 mx = F.adaptive_max_pool2d(x, 1).view(b, c)
86 ca = torch.sigmoid(self.mlp(avg) + self.mlp(mx)).view(b, c, 1, 1)
87 x2 = x * ca
88 avgc = x2.mean(1, True)
89 maxc, _ = x2.max(1, True)
90 sa = torch.sigmoid(self.spatial(torch.cat([avgc, maxc], 1)))
91 return x2 * sa
92

93

94 class CBAMResBlock(nn.Module):
95 def __init__(self, inp, outp):
96 super().__init__()
97 self.conv1 = nn.Conv2d(inp, outp, 3, padding=1, bias=False)
98 self.bn1 = nn.BatchNorm2d(outp)
99 self.conv2 = nn.Conv2d(outp, outp, 3, padding=1, bias=False)

100 self.bn2 = nn.BatchNorm2d(outp)
101 self.cbam = CBAM(outp)
102 self.skip = (
103 nn.Conv2d(inp, outp, 1, bias=False) if inp != outp else nn.

Identity()
104 )
105 self.relu = nn.ReLU(inplace=True)
106

107 def forward(self, x):
108 idt = self.skip(x)
109 out = self.relu(self.bn1(self.conv1(x)))
110 out = self.bn2(self.conv2(out))
111 out = self.cbam(out) + idt
112 return self.relu(out)
113

114

115 class UpRes(nn.Module):
116 def __init__(self, ic, sc, oc):
117 super().__init__()
118 self.up = nn.ConvTranspose2d(ic, oc, 2, stride=2)
119 self.block = CBAMResBlock(oc + sc, oc)
120

121 def forward(self, x, skip):
122 x = self.up(x)
123 if x.shape[-2:] != skip.shape[-2:]:
124 x = F.interpolate(
125 x, size=skip.shape[-2:], mode="bilinear", align_corners=False
126 )
127 return self.block(torch.cat([x, skip], 1))
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129

130 class WaveletUNet(nn.Module):
131 def __init__(self):
132 super().__init__()
133 self.dwt = HaarDWT()
134 self.idwt = HaarIDWT()
135 self.eA1 = CBAMResBlock(1, 64)
136 self.eD1 = CBAMResBlock(3, 64)
137 self.pool = nn.MaxPool2d(2)
138 self.eA2 = CBAMResBlock(64, 128)
139 self.eD2 = CBAMResBlock(64, 128)
140 self.b = CBAMResBlock(256, 256)
141 self.u2 = UpRes(256, 256, 128)
142 self.u1 = UpRes(128, 128, 64)
143 self.final = nn.Conv2d(64, 4, 1)
144

145 def forward(self, x):
146 A, H, V, D = self.dwt(x).chunk(4, 1)
147 a1 = self.eA1(A)
148 d1 = self.eD1(torch.cat([H, V, D], 1))
149 d0 = torch.cat([a1, d1], 1)
150 p1 = self.pool(d0)
151 pA, pD = p1[:, :64], p1[:, 64:]
152 a2 = self.eA2(pA)
153 d2 = self.eD2(pD)
154 d1b = torch.cat([a2, d2], 1)
155 b = self.b(self.pool(d1b))
156 u2 = self.u2(b, d1b)
157 u1 = self.u1(u2, d0)
158 out = self.final(u1)
159 return self.idwt(out)
160

161

162 # -- 4) OCRDataset for full training --
163 class OCRDataset(Dataset):
164 def __init__(self, noisy, clean, pp, ps, mode):
165 self.noisy = noisy
166 self.clean = clean
167 self.pp = pp
168 self.ps = ps
169 self.mode = mode
170 self.toT = transforms.ToTensor()
171

172 def __len__(self):
173 return len(self.noisy) * self.pp
174

175 def __getitem__(self, idx):
176 ii = idx // self.pp
177 n = Image.open(self.noisy[ii]).convert("L")
178 c = Image.open(self.clean[ii]).convert("L")
179 tn, tc = self.toT(n), self.toT(c)
180 H, W = tn.shape[-2], tn.shape[-1]
181 y = random.randint(0, H - self.ps)
182 x = random.randint(0, W - self.ps)
183 tn = tn[:, y : y + self.ps, x : x + self.ps]
184 tc = tc[:, y : y + self.ps, x : x + self.ps]
185 if self.mode == "train":
186 if random.random() < 0.5:
187 tn, tc = torch.flip(tn, [-1]), torch.flip(tc, [-1])
188 if random.random() < 0.5:
189 tn, tc = torch.flip(tn, [-2]), torch.flip(tc, [-2])
190 k = random.randint(0, 3)
191 if k > 0:
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192 tn, tc = torch.rot90(tn, k, [1, 2]), torch.rot90(tc, k, [1,
2])

193 return tn, tc
194

195

196 # -- 5) Prepare train/val split --
197 all_no = sorted(glob.glob("./input/train/*.png"))
198 all_cl = sorted(glob.glob("./input/train_cleaned/*.png"))
199 idxs = list(range(len(all_no)))
200 random.seed(42)
201 random.shuffle(idxs)
202 split = int(0.9 * len(idxs))
203 tr_idxs, va_idxs = idxs[:split], idxs[split:]
204 noisy_tr = [all_no[i] for i in tr_idxs]
205 clean_tr = [all_cl[i] for i in tr_idxs]
206 noisy_va = [all_no[i] for i in va_idxs]
207 clean_va = [all_cl[i] for i in va_idxs]
208

209 # -- 6) DataLoaders --
210 train_ds = OCRDataset(noisy_tr, clean_tr, pp=25, ps=256, mode="train")
211 val_ds = OCRDataset(noisy_va, clean_va, pp=1, ps=256, mode="val")
212 train_loader = DataLoader(
213 train_ds, batch_size=8, shuffle=True, num_workers=4, pin_memory=True
214 )
215 val_loader = DataLoader(
216 val_ds, batch_size=1, shuffle=False, num_workers=2, pin_memory=True
217 )
218

219 # -- 7) Model, optimizer, scheduler, loss w/ tuned weights --
220 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
221 model = WaveletUNet().to(device)
222 dwt = HaarDWT().to(device)
223 sobel = Sobel().to(device)
224 opt = torch.optim.AdamW(model.parameters(), lr=1e-3, weight_decay=1e-4)
225 sched = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=30)
226

227 # Tuned weights
228 alpha = 0.769634
229 beta = 0.430968
230 gamma = 0.250750
231

232

233 def composite_loss(o, t):
234 l1 = F.l1_loss(o, t)
235 l2 = F.mse_loss(dwt(o), dwt(t))
236 e1 = F.l1_loss(sobel(o), sobel(t))
237 return alpha * l1 + beta * l2 + gamma * e1
238

239

240 # -- 8) Train + validate --
241 best_rmse = 1e9
242 patience = 5
243 wait = 0
244 for epoch in range(1, 31):
245 model.train()
246 tloss = 0.0
247 for xb, yb in train_loader:
248 xb, yb = xb.to(device), yb.to(device)
249 pred = model(xb)
250 loss = composite_loss(pred, yb)
251 opt.zero_grad()
252 loss.backward()
253 opt.step()
254 tloss += loss.item()
255 sched.step()
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256

257 # sliding-window validation
258 model.eval()
259 rmse_sum = 0.0
260 stride, ps = 128, 256
261 with torch.no_grad():
262 for nf, cf in zip(noisy_va, clean_va):
263 imn = Image.open(nf).convert("L")
264 imc = Image.open(cf).convert("L")
265 tn = transforms.ToTensor()(imn).unsqueeze(0).to(device)
266 tc = transforms.ToTensor()(imc).unsqueeze(0).to(device)
267 _, _, H, W = tn.shape
268 acc = torch.zeros_like(tn)
269 cnt = torch.zeros_like(tn)
270 xs = list(range(0, W - ps + 1, stride)) + [W - ps]
271 ys = list(range(0, H - ps + 1, stride)) + [H - ps]
272 for x in xs:
273 for y in ys:
274 p = tn[:, :, y : y + ps, x : x + ps]
275 out = model(p)
276 acc[:, :, y : y + ps, x : x + ps] += out
277 cnt[:, :, y : y + ps, x : x + ps] += 1
278 rec = acc / cnt
279 mse = F.mse_loss(rec, tc).item()
280 rmse_sum += math.sqrt(mse)
281 val_rmse = rmse_sum / len(noisy_va)
282 print(
283 f"Epoch {epoch}: train_loss={tloss/len(train_loader):.4f}, val_RMSE

={val_rmse:.6f}"
284 )
285

286 if val_rmse < best_rmse:
287 best_rmse = val_rmse
288 wait = 0
289 torch.save(model.state_dict(), "./working1/best.pth")
290 else:
291 wait += 1
292 if wait >= patience:
293 print("Early stopping.")
294 break
295

296 print("Best validation RMSE:", best_rmse)
297

298 # -- 9) Inference & submission --
299 model.load_state_dict(torch.load("./working1/best.pth"))
300 model.eval()
301 test_files = sorted(glob.glob("./input/test/*.png"))
302 with open("./working1/submission.csv", "w") as fout:
303 fout.write("id,value\n")
304 for tf in test_files:
305 im = Image.open(tf).convert("L")
306 t = transforms.ToTensor()(im).unsqueeze(0).to(device)
307 _, _, H, W = t.shape
308 acc = torch.zeros_like(t)
309 cnt = torch.zeros_like(t)
310 xs = list(range(0, W - ps + 1, stride)) + [W - ps]
311 ys = list(range(0, H - ps + 1, stride)) + [H - ps]
312 with torch.no_grad():
313 for x in xs:
314 for y in ys:
315 p = t[:, :, y : y + ps, x : x + ps]
316 out = model(p)
317 acc[:, :, y : y + ps, x : x + ps] += out
318 cnt[:, :, y : y + ps, x : x + ps] += 1
319 rec = (acc / cnt).clamp(0, 1).cpu().numpy()[0, 0]
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320 img_id = os.path.splitext(os.path.basename(tf))[0]
321 for r in range(H):
322 for c in range(W):
323 fout.write(f"{img_id}_{r+1}_{c+1},{rec[r,c]:.6f}\n")
324

325 print("Submission written to ./working1/submission.csv")

The Coordinator submits the scripts generated by Coding Agents and their workspace to the com-
munity. Then, it proceeds to the second iteration. The report generated by the Analyzer for the
second Coding Agent is:
Pipeline:
Our final pipeline is an Advanced Wavelet U-Net with CBAM attention modules, Composite Loss,

and sliding-window inference. Specifically:

1. Data Preparation
- Read all 112 noisy/clean train pairs, split 90/10 train/val by file indices (random seed

42).
- On-the-fly extract 25 random 256*256 patches per train image each epoch, with random

horizontal/vertical flips and 90 degree rotations.
- Validation uses a single full-image sliding-window pass (256 patches with 50% overlap) on

the 10% hold-out.

2. Model Architecture
- Haar DWT and inverse DWT implemented as fixed convolutional filters (LL, LH, HL, HH bands)

.
- Dual-branch encoder: separate CBAMResBlocks for the approximation (1 channel) and detail

(3 channels) coefficients.
- Two-level downsampling with MaxPool, interleaved CBAMResBlocks, and a 256-channel

bottleneck.
- Decoder with ConvTranspose upsampling and CBAMResBlock skip-connections (UpRes),

recombining wavelet bands.
- Final 1*1 convolution to 4 coefficient channels and inverse DWT back to image domain.

3. Composite Loss
- L1(pixels) weighted by alpha=0.769634
- L2(wavelet coefficients) weighted by beta=0.430968
- L1(edge Sobel) weighted by gamma=0.250750

4. Training
- Optimizer: AdamW(lr=1e-3, weight_decay=1e-4).
- Scheduler: CosineAnnealingLR(T_max=30).
- Batch size 8, 30 epochs, early stopping (patience=5) based on full-image RMSE on the val

set.

5. Inference
- Sliding-window full-image inference with 256*256 patches, stride=128, averaging overlapped

pixels.
- Generate submission.csv with id=image_row_col and float values.

6. Hyperparameter tuning
- Optuna over (alpha, beta, gamma) on a 20-train/5-val mini-split for 10 trials, each with 2

epochs and 10 patches/image.
- Best found: alpha=0.769634, beta=0.430968, gamma=0.250750.

Final validation RMSE on 10% hold-out: ˜0.012685.

References: CBAM (Woo et al., ECCV 2018), Haar DWT.

Summary:
- Haar DWT:
Novelty: 2
Rationale: Uses standard 1-level Haar wavelet decomposition.
Feasibility: 10
Rationale: Straightforward fixed conv implementation in PyTorch.
Effectiveness: 6
Rationale: Explicit frequency separation aids denoising of high-frequency noise.
Efficiency: 9
Rationale: Lightweight fixed kernels on GPU.
Confidence: 8
Rationale: Verified on toy and full runs.

- CBAMResBlock:
Novelty: 5
Rationale: Incorporates both channel & spatial attention for context-aware features.
Feasibility: 8
Rationale: Moderate complexity but supported by existing PyTorch modules.
Effectiveness: 7
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Rationale: Improves focus on text strokes, empirically lowers RMSE.
Efficiency: 7
Rationale: Adds overhead (˜1.5*), but fits within GPU budget.
Confidence: 9
Rationale: Confirmed across toy and full training.

- UpRes (ConvTranspose + CBAM):
Novelty: 3
Rationale: Standard upsampling with skip-connections and attention.
Feasibility: 9
Rationale: Simple extension of ResBlock.
Effectiveness: 6
Rationale: Maintains detail in reconstruction.
Efficiency: 8
Rationale: Reasonable GPU use.
Confidence: 8
Rationale: Working in end-to-end script.

- Wavelet UNet overall:
Novelty: 7
Rationale: Dual-branch U-Net in wavelet domain combining DWT, CBAM, skip connections.
Feasibility: 7
Rationale: Moderate engineering but fully implemented.
Effectiveness: 8
Rationale: Achieved RMSE ˜0.0127, strong denoising.
Efficiency: 7
Rationale: 25 patches*8 batch; 30 epochs in ˜20min.
Confidence: 8
Rationale: Reproducible on A6000.

- Composite Loss:
Novelty: 6
Rationale: Balances pixel, frequency, and edge domains.
Feasibility: 8
Rationale: Simple weighted sum.
Effectiveness: 8
Rationale: Lower RMSE than L1 or L2 alone.
Efficiency: 7
Rationale: Small overhead for extra transforms.
Confidence: 9
Rationale: Verified in tuning and full runs.

- Data Augmentation:
Novelty: 3
Rationale: Flips and rotations.
Feasibility: 10
Rationale: Trivial to implement.
Effectiveness: 5
Rationale: Standard but helpful for invariance.
Efficiency: 9
Rationale: CPU-level only.
Confidence: 9
Rationale: Common practice.

- CosineAnnealingLR & EarlyStopping:
Novelty: 4
Rationale: Standard learning-rate decay and val-based stop.
Feasibility: 10
Rationale: Built-in PyTorch.
Effectiveness: 6
Rationale: Helps convergence and prevents overfit.
Efficiency: 9
Rationale: Minimal overhead.
Confidence: 9
Rationale: Observed smoothed training curves.

- Sliding-window Inference:
Novelty: 3
Rationale: Ensures full-image coverage.
Feasibility: 10
Rationale: Straightforward loops.
Effectiveness: 7
Rationale: Accurate RMSE measurement, smooth outputs.
Efficiency: 8
Rationale: Reasonable inference time (˜10 min).
Confidence: 9
Rationale: Verified end-to-end.

- Hyperparameter Tuning (Optuna):
Novelty: 4
Rationale: Automated search of loss weights.
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Feasibility: 8
Rationale: Low-cost mini-training.
Effectiveness: 7
Rationale: Found better weights vs. defaults.
Efficiency: 5
Rationale: 10 trials * 2 epochs ˜8 min.
Confidence: 7
Rationale: Verified chosen parameters.

Weaknesses and Suggestions:
1. EMA & TTA Bug: The EMA + 4-way TTA implementation caused RMSE blow-ups, likely due to

incorrect accumulation. Before reintroducing, validate TTA on toy splits or isolate EMA
without TTA.

2. Multi-Level Wavelets: Extend to 2-3 levels of DWT to capture coarser scales, with separate
branches per level.

3. Advanced Loss Terms: Incorporate perceptual (VGG) or structural (SSIM) losses to encourage
visual fidelity.

4. Dynamic Loss Weights: Schedule (alpha,beta,gamma) during training (e.g., start with high L1
, gradually emphasize wavelet).

5. Mixed Precision & Gradient Checkpointing: Further reduce memory and speed up with AMP and
checkpointing deep layers.

6. Deeper/Ubiquitous Attention: Explore transformer-style attention (Swin, ViT) in encoder for
global context.

7. Ensemble Models: Train multiple random seeds or architectures (ResUNet, UNet++) and average
outputs.

8. Multi-Scale Inference: Use patches at multiple scales or whole-image passes via down/
upscaling for context.

9. Adaptive Overlap: Use weights at edges of patches to smoothly blend overlaps (Gaussian
windows).

10. Distributed Hyperparameter Search: Scale Optuna across more trials or use BOHB for
architecture search.

Implementing these will likely push RMSE even lower and improve robustness across document
noise patterns.

Full code: ...(omitted)...

Following the brainstorming and idea refinement phases, the current idea memory is presented be-
low. Notably, entries (3), (4), (5), and (7) are newly proposed by the agent, while the remaining
ideas have been refined from those in the previous iteration.

(0) Patch-based convolutional super-resolution denoiser: a sliding-window, patch-based model
that predicts multiple denoised and super-resolved pixels per patch. Architecture
inspired by Waifu2x with progressively increasing filter counts, LeakyReLU activations,
and He initialization for robust convergence.

(1) Advanced wavelet-domain dual-branch U-Net with CBAM attention and composite loss:
decompose inputs via fixed 1-level DWT (LL, LH, HL, HH bands), encode approximation and
detail separately with CBAM ResBlocks, decode and fuse via 1*1 convolutions, and train
end-to-end using a weighted sum of pixel L1, wavelet-band L2, and edge L1 losses.
Optimized with AdamW and cosine-annealing LR scheduling.

(2) GAN-based restoration framework: a ResNet-based generator and 70*70 PatchGAN discriminator
trained with combined losses-L1 pixel loss, adversarial loss, stroke-consistency loss (

via frozen stroke-feature CNN), and perceptual OCR-feature loss. Includes R1 gradient
penalty and spectral normalization for stability.

(3) Masked autoencoder with vision transformer for denoising: patchify each image into non-
overlapping square tokens, randomly mask a high percentage, pretrain a ViT encoder (12
layers, hidden 768, 12 heads) plus light transformer decoder on L2 reconstruction of
dirty images, then append an MLP head and fine-tune end-to-end on noisy->clean pairs with
L1 pixel + differentiable OCR-confidence loss. Employ random block dropout and color

jitter during fine-tuning; at inference use full-image encoding or averaged mask
schedules.

(4) Conditional diffusion-based restoration: define a forward Gaussian-noise diffusion
schedule, train a 5-level U-Net conditioned on the dirty image via channel concatenation
and FiLM/cross-attention of sinusoidal timestep embeddings. Use the standard DDPM MSE
loss with classifier-free guidance, and sample with a deterministic DDIM sampler (˜50
steps). Optionally post-process with bilateral or median filtering to remove speckles.

(5) Learnable spectral gating in the Fourier domain: compute the 2D FFT of the dirty image,
split its spectrum into low/mid/high radial bands, apply learnable complex masks per band
, and modulate each by gate scalars predicted by a lightweight CNN on the dirty image.
Recombine via inverse FFT and train end-to-end with L2 pixel loss plus a spectral-
smoothness regularizer on the masks.

(6) Hypernetwork-modulated U-Net: extract per-image noise statistics (mean, std, skew,
kurtosis, histogram bins), feed into an MLP hypernetwork that outputs FiLM scale (gamma)
and shift (beta) parameters for selected convolutional feature maps of a base U-shaped
CNN. Randomly augment noise levels during training; train end-to-end on noisy->clean with
L1 loss and a small regularizer pushing gamma->1, beta->0. At inference compute stats

per image, generate FiLM params, and denoise via the modulated U-Net.
(7) Blind-spot test-time adaptation: for each test image, randomly mask a subset of pixels and

fine-tune a lightweight CNN with skip connections on the single image using masked L2
loss and augmentations for a few hundred gradient steps. Optionally ensemble multiple
random initializations to reduce variance.
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(8) Multi-model ensemble with diverse preprocessing: cluster trained models by their error
patterns and combine their outputs. Apply different preprocessing pipelines (raw,
background-removed, edge maps, thresholded) to the input, denoise with clustered sub-
ensembles, and fuse predictions for robustness across noise characteristics.

(9) Enhanced augmentation and target refinement: simulate realistic scanning artifacts by
applying 3D text deformations, lighting variations, and shadows to clean images. Identify
and compensate for systematic artifacts in the provided ’clean’ targets (e.g., single-

pixel halos) by either modeling them as noise or adjusting ground-truth labels during
training.

And solution drafts generated in this iteration are:
Pipeline 1: ResNet-34 Encoder U-Net with Multi-Scale Edge & Total-Variation Loss

Overview:
A robust baseline using a pretrained ResNet-34 backbone as a U-Net encoder fused with a light-

weight decoder. Combines L1 loss, Sobel edge loss at multiple scales, and a total-
variation regularizer to preserve text strokes while smoothing background noise. Mixed
precision training and sliding-window inference ensure the entire pipeline runs in ˜45
min on an A6000.

1. Data Preparation
- Read all train noisy/clean PNGs, normalize to [0,1].
- Extract on-the-fly 256*256 patches: random crop + random horizontal/vertical flips + 90

degree rotations.
- 90/10 split by file indices (seed=42). Use batch size 8-16.

2. Model Architecture
- Encoder: torchvision.models.resnet34(pretrained=True), first conv modified to 1->64

channels.
- Decoder: four upsampling stages (ConvTranspose2d + Conv2d+BN+ReLU) mirroring ResNet blocks,

with skip-connections from encoder layers.
- Final conv 64->1 + Sigmoid.

3. Loss Function
Let y_hat and y be predictions and targets.
- L1Loss(y_hat,y)
- Edge loss: L1 between Sobel(y_hat) and Sobel(y) at both full resolution and half resolution

(downsample by 2).
- TV: lambda*TV(y_hat) where TV = mean(|\nabla xy_hat|+|\nabla yy_hat|).
Total loss = alpha*L1 + beta*Edge_full + gamma*Edge_half + delta*TV, e.g. alpha=1.0, beta

=0.5, gamma=0.25, delta=1e-5.

4. Optimization
- Optimizer: AdamW(lr=1e-3, weight_decay=1e-4).
- Scheduler: CosineAnnealingLR(T_max=25).
- Mixed precision via torch.cuda.amp.
- Early stopping on validation RMSE (patience=5).

5. Inference & Submission
- Perform sliding-window inference on each test image with 256*256 patches, stride=128.
- Average overlapping patches.
- Clamp outputs to [0,1], write submission.csv with id=image_row_col.

Compute budget: ˜20 min train + ˜5 min inference.

Pipeline 2: Laplacian-Pyramid Multi-Scale Residual U-Net with Pyramid Loss

Overview:
A novel pyramid-domain network that decomposes images into multi-scale Laplacian bands,

denoises each band via shared-weight residual blocks, and merges them back. Multi-level
L1 losses focus the model on both coarse structures and fine text details. Efficient and
fully end-to-end in PyTorch, training finishes in ˜50 min on an A6000.

1. Data & Augmentation
- Same data split and patch sampling (256*256, flips, rotations).

2. Laplacian Pyramid Transform (LPT)
- On the fly, for each patch: create 2-level Gaussian pyramid using avg-pooling (scale

1->0.5->0.25), then compute Laplacian bands L0=(I-upsample(I/2)), L1=(I/2-upsample(I/4)),
and a residual low band L2=I/4.

- Stack [L0,L1,L2] as 3 input channels.

3. Network
- Encoder-decoder U-Net with 3-channel input and 3-channel output, 4 down/upsampling stages,

64->128->256->512->256->128->64 channel widths.
- Each block: two 3*3 Conv+BN+ReLU and a residual skip connection.

4. Reconstruction
- Output is 3 residual corrections R0,R1,R2 to each band.
- Reconstruct clean patch:
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a0 = L0 + R0; a1 = L1 + R1; a2 = L2 + R2;
I = a0 + up(a1) + up(up(a2)).

5. Loss Function
- Per-band L1 losses: w0*L1(a0,H0) + w1*L1(a1,H1) + w2*L1(a2,H2), where Hk are ground-truth

bands and w0=1.0, w1=0.5, w2=0.25.
- Pixel L1: lambda_pix*L1(I, Igt) with lambda_pix=0.1.

6. Training
- AdamW(lr=5e-4, weight_decay=1e-5), one-cycle scheduler (max_lr=5e-4, epochs=30).
- Batch size 8, mixed precision.
- Early stopping on val RMSE (patience=6).

7. Inference
- On full test images, run sliding-window with 256*256 patches, stride=128.
- For each patch, apply pyramid -> model -> reconstruct -> accumulate and average.
- Clamp to [0,1], write submission.csv.

Compute budget: ˜25 min training + ˜8 min inference.

The best code proposed in the second iteration is:

1 import os, random, csv
2 import numpy as np
3 from glob import glob
4 from PIL import Image
5

6 import torch
7 import torch.nn as nn
8 import torch.nn.functional as F
9 from torch.utils.data import Dataset, DataLoader

10 from torchvision import transforms, models as tv_models
11 from torch.cuda.amp import autocast, GradScaler
12

13 # 1) Reproducibility
14 SEED = 42
15 random.seed(SEED)
16 np.random.seed(SEED)
17 torch.manual_seed(SEED)
18 torch.cuda.manual_seed_all(SEED)
19

20 DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21

22 # 2) Paths
23 TRAIN_NOISY = "./input/train"
24 TRAIN_CLEAN = "./input/train_cleaned"
25 TEST_DIR = "./input/test"
26 WORK_DIR = "./working0"
27 os.makedirs(WORK_DIR, exist_ok=True)
28

29 # 3) Hyperparameters
30 PATCH_SIZE = 256
31 STRIDE = 128
32 BATCH_SIZE = 12
33 LR, WD = 1e-3, 1e-4
34 MAX_EPOCHS = 50
35 PATIENCE = 10
36 T_MAX = 50 # for LR scheduler
37

38 # 4) Loss-weight constants (from tuning)
39 w1, w2, w3, w4 = 1.0, 0.5, 0.25, 1e-5
40 lambda_aux = 0.4394633936788146
41 lambda_mse = 0.1312037280884873
42 lambda_ssim = 0.031198904067240532
43 lambda_ssim2 = lambda_ssim / 2
44

45

46 # 5) Dataset + augmentations
47 class OCRDataset(Dataset):
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48 def __init__(self, noisy_list, clean_list, ps, train):
49 self.noisy, self.clean = noisy_list, clean_list
50 self.ps, self.train = ps, train
51 self.to_tensor = transforms.ToTensor()
52 self.aug = transforms.Compose(
53 [
54 transforms.RandomChoice(
55 [
56 transforms.RandomHorizontalFlip(1.0),
57 transforms.RandomVerticalFlip(1.0),
58 transforms.RandomRotation(90),
59 transforms.RandomRotation(180),
60 transforms.RandomRotation(270),
61 ]
62 ),
63 transforms.RandomApply([transforms.GaussianBlur(3, (0.1, 2.0)

)], p=0.3),
64 transforms.RandomApply([transforms.RandomAdjustSharpness(2.0)

], p=0.3),
65 ]
66 )
67

68 def __len__(self):
69 return len(self.noisy)
70

71 def __getitem__(self, i):
72 n = Image.open(self.noisy[i]).convert("L")
73 c = Image.open(self.clean[i]).convert("L")
74 w, h = n.size
75 # pad
76 if w < self.ps or h < self.ps:
77 pad = (0, 0, max(0, self.ps - w), max(0, self.ps - h))
78 n = transforms.functional.pad(n, pad, fill=255)
79 c = transforms.functional.pad(c, pad, fill=255)
80 w, h = n.size
81 # crop
82 if self.train:
83 x = random.randint(0, w - self.ps)
84 y = random.randint(0, h - self.ps)
85 else:
86 x = (w - self.ps) // 2
87 y = (h - self.ps) // 2
88 n = n.crop((x, y, x + self.ps, y + self.ps))
89 c = c.crop((x, y, x + self.ps, y + self.ps))
90 if self.train and random.random() < 0.5:
91 n = self.aug(n)
92 c = self.aug(c)
93 return self.to_tensor(n), self.to_tensor(c)
94

95

96 # 6) Prepare train/val split
97 noisy_files = sorted(glob(f"{TRAIN_NOISY}/*.png"))
98 clean_files = [f"{TRAIN_CLEAN}/" + os.path.basename(x) for x in

noisy_files]
99 N = len(noisy_files)

100 idx = list(range(N))
101 random.shuffle(idx)
102 ntr = int(0.9 * N)
103 tr_idx, va_idx = idx[:ntr], idx[ntr:]
104 train_noisy = [noisy_files[i] for i in tr_idx]
105 train_clean = [clean_files[i] for i in tr_idx]
106 val_noisy = [noisy_files[i] for i in va_idx]
107 val_clean = [clean_files[i] for i in va_idx]
108

109 train_ds = OCRDataset(train_noisy, train_clean, PATCH_SIZE, train=True)
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110 val_ds = OCRDataset(val_noisy, val_clean, PATCH_SIZE, train=False)
111 train_loader = DataLoader(
112 train_ds, batch_size=BATCH_SIZE, shuffle=True, num_workers=4,

pin_memory=True
113 )
114 val_loader = DataLoader(
115 val_ds, batch_size=BATCH_SIZE, shuffle=False, num_workers=4,

pin_memory=True
116 )
117

118 # 7) Sobel, TV, SSIM helpers
119 sob_x = (
120 torch.tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=torch.float32

)
121 .view(1, 1, 3, 3)
122 .to(DEVICE)
123 )
124 sob_y = sob_x.transpose(2, 3)
125

126

127 def sobel(x):
128 gx = F.conv2d(x, sob_x, padding=1)
129 gy = F.conv2d(x, sob_y, padding=1)
130 return torch.sqrt(gx * gx + gy * gy + 1e-6)
131

132

133 def total_variation(x):
134 dh = (x[:, :, 1:, :] - x[:, :, :-1, :]).abs().mean()
135 dw = (x[:, :, :, 1:] - x[:, :, :, :-1]).abs().mean()
136 return dh + dw
137

138

139 def ssim_map(a, b, C1=0.01**2, C2=0.03**2):
140 mu_a = F.avg_pool2d(a, 3, 1, 1)
141 mu_b = F.avg_pool2d(b, 3, 1, 1)
142 sa = F.avg_pool2d(a * a, 3, 1, 1) - mu_a * mu_a
143 sb = F.avg_pool2d(b * b, 3, 1, 1) - mu_b * mu_b
144 sab = F.avg_pool2d(a * b, 3, 1, 1) - mu_a * mu_b
145 num = (2 * mu_a * mu_b + C1) * (2 * sab + C2)
146 den = (mu_a * mu_a + mu_b * mu_b + C1) * (sa + sb + C2)
147 return num / (den + 1e-8)
148

149

150 def ssim_loss(a, b):
151 return 1.0 - ssim_map(a, b).mean()
152

153

154 # 8) loss_terms
155 l1_loss = nn.L1Loss()
156 mse_loss = nn.MSELoss()
157

158

159 def loss_terms(pred, target):
160 L1v = l1_loss(pred, target)
161 MSEv = mse_loss(pred, target)
162 Ef = l1_loss(sobel(pred), sobel(target))
163 p2, t2 = F.avg_pool2d(pred, 2), F.avg_pool2d(target, 2)
164 Eh = l1_loss(sobel(p2), sobel(t2))
165 TVv = total_variation(pred)
166 return L1v, MSEv, Ef, Eh, TVv
167

168

169 # 9) Model w/ deep supervision
170 class ResUNetDS(nn.Module):
171 def __init__(self):
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172 super().__init__()
173 r34 = tv_models.resnet34(pretrained=True)
174 self.enc0 = nn.Conv2d(1, 64, 7, 2, 3, bias=False)
175 self.enc0.weight.data = r34.conv1.weight.data.mean(dim=1, keepdim=

True)
176 self.bn0, self.relu0, self.pool0 = r34.bn1, r34.relu, r34.maxpool
177 self.enc1, self.enc2 = r34.layer1, r34.layer2
178 self.enc3, self.enc4 = r34.layer3, r34.layer4
179

180 def up(i, o):
181 return nn.ConvTranspose2d(i, o, 2, 2)
182

183 def cb(i, o):
184 return nn.Sequential(
185 nn.Conv2d(i, o, 3, 1, 1, bias=False),
186 nn.BatchNorm2d(o),
187 nn.ReLU(inplace=True),
188 nn.Conv2d(o, o, 3, 1, 1, bias=False),
189 nn.BatchNorm2d(o),
190 nn.ReLU(inplace=True),
191 )
192

193 self.up4, self.dec4 = up(512, 256), cb(256 + 256, 256)
194 self.up3, self.dec3 = up(256, 128), cb(128 + 128, 128)
195 self.up2, self.dec2 = up(128, 64), cb(64 + 64, 64)
196 self.aux_up, self.aux_out = up(64, 64), nn.Conv2d(64, 1, 1)
197 self.up1, self.dec1 = up(64, 64), cb(64 + 64, 64)
198 self.up0, self.outc = up(64, 64), nn.Conv2d(64, 1, 1)
199 self.sig = nn.Sigmoid()
200

201 def forward(self, x):
202 x0 = self.relu0(self.bn0(self.enc0(x)))
203 x1 = self.pool0(x0)
204 x2 = self.enc1(x1)
205 x3 = self.enc2(x2)
206 x4 = self.enc3(x3)
207 x5 = self.enc4(x4)
208

209 d4 = self.dec4(torch.cat([self.up4(x5), x4], dim=1))
210 d3 = self.dec3(torch.cat([self.up3(d4), x3], dim=1))
211 d2 = self.dec2(torch.cat([self.up2(d3), x2], dim=1))
212 aux = self.sig(self.aux_out(self.aux_up(d2)))
213 d1 = self.dec1(torch.cat([self.up1(d2), x0], dim=1))
214 main = self.sig(self.outc(self.up0(d1)))
215 return main, aux
216

217

218 model = ResUNetDS().to(DEVICE)
219

220 # 10) Optimizer, scheduler, scaler
221 optimizer = torch.optim.AdamW(model.parameters(), lr=LR, weight_decay=WD)
222 scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=

T_MAX)
223 scaler = GradScaler()
224

225 # 11) Training + snapshot saving
226 best_rmse = float("inf")
227 patience = 0
228 snap_epochs = set([10, 20, 30, 40, 50])
229

230 for epoch in range(1, MAX_EPOCHS + 1):
231 model.train()
232 train_loss = 0.0
233 for noisy_img, clean_img in train_loader:
234 noisy_img, clean_img = noisy_img.to(DEVICE), clean_img.to(DEVICE)
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235 optimizer.zero_grad()
236 with autocast():
237 main_pred, aux_pred = model(noisy_img)
238 L1v, MSEv, Ef, Eh, TVv = loss_terms(main_pred, clean_img)
239 s1 = ssim_loss(main_pred, clean_img)
240 p2, t2 = F.avg_pool2d(main_pred, 2), F.avg_pool2d(clean_img, 2)
241 s2 = ssim_loss(p2, t2)
242 main_loss = (
243 w1 * L1v
244 + lambda_mse * MSEv
245 + w2 * Ef
246 + w3 * Eh
247 + w4 * TVv
248 + lambda_ssim * s1
249 + lambda_ssim2 * s2
250 )
251 aux_up = F.interpolate(
252 aux_pred,
253 size=clean_img.shape[-2:],
254 mode="bilinear",
255 align_corners=False,
256 )
257 La, Ma, Ea, Eh2, TVa = loss_terms(aux_up, clean_img)
258 sa = ssim_loss(aux_up, clean_img)
259 pa, ca = F.avg_pool2d(aux_up, 2), F.avg_pool2d(clean_img, 2)
260 sa2 = ssim_loss(pa, ca)
261 aux_loss = (
262 w1 * La
263 + lambda_mse * Ma
264 + w2 * Ea
265 + w3 * Eh2
266 + w4 * TVa
267 + lambda_ssim * sa
268 + lambda_ssim2 * sa2
269 )
270 loss = main_loss + lambda_aux * aux_loss
271 scaler.scale(loss).backward()
272 scaler.step(optimizer)
273 scaler.update()
274 train_loss += loss.item()
275 scheduler.step()
276

277 # validation
278 model.eval()
279 se, count = 0.0, 0
280 with torch.no_grad():
281 for noisy_img, clean_img in val_loader:
282 noisy_img, clean_img = noisy_img.to(DEVICE), clean_img.to(DEVICE

)
283 with autocast():
284 pred, _ = model(noisy_img)
285 se += ((pred - clean_img) ** 2).sum().item()
286 count += pred.numel()
287 val_rmse = np.sqrt(se / count)
288 print(
289 f"Epoch {epoch}: TrainLoss={train_loss/len(train_loader):.4f},

ValRMSE={val_rmse:.6f}"
290 )
291

292 # best + snapshot
293 if val_rmse < best_rmse:
294 best_rmse = val_rmse
295 torch.save(model.state_dict(), os.path.join(WORK_DIR, "best_full.

pth"))
296 patience = 0
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297 else:
298 patience += 1
299 if epoch in snap_epochs:
300 torch.save(model.state_dict(), os.path.join(WORK_DIR, f"snap_{epoch

}.pth"))
301 if patience >= PATIENCE:
302 print("Early stopping.")
303 break
304

305 print("Best validation RMSE:", best_rmse)
306

307 # 12) Ensemble load
308 ckpts = ["best_full.pth"] + sorted(
309 [f for f in os.listdir(WORK_DIR) if f.startswith("snap_")],
310 key=lambda x: int(x.split("_")[1].split(".")[0]),
311 )[-2:]
312 ensemble_nets = []
313 for ck in ckpts:
314 net = ResUNetDS().to(DEVICE)
315 net.load_state_dict(torch.load(os.path.join(WORK_DIR, ck)))
316 net.eval()
317 ensemble_nets.append(net)
318

319

320 # 13) Sliding-window ensemble inference
321 def ensemble_infer(img_arr):
322 h, w = img_arr.shape
323 inp = torch.from_numpy(img_arr / 255.0).unsqueeze(0).unsqueeze(0).to(

DEVICE)
324 ph = (PATCH_SIZE - h % STRIDE) % STRIDE
325 pw = (PATCH_SIZE - w % STRIDE) % STRIDE
326 inp = F.pad(inp, (0, pw, 0, ph), mode="reflect")
327 _, _, H, W = inp.shape
328 out = torch.zeros_like(inp)
329 wt = torch.zeros_like(inp)
330 for y in range(0, H - PATCH_SIZE + 1, STRIDE):
331 for x in range(0, W - PATCH_SIZE + 1, STRIDE):
332 patch = inp[:, :, y : y + PATCH_SIZE, x : x + PATCH_SIZE]
333 preds = []
334 with torch.no_grad(), autocast():
335 for net in ensemble_nets:
336 p, _ = net(patch)
337 preds.append(p)
338 avg_p = torch.stack(preds, 0).mean(0)
339 out[:, :, y : y + PATCH_SIZE, x : x + PATCH_SIZE] += avg_p
340 wt[:, :, y : y + PATCH_SIZE, x : x + PATCH_SIZE] += 1.0
341 out = out / wt
342 out = out[:, :, :h, :w]
343 return out.detach().cpu().numpy().squeeze()
344

345

346 # 14) Write submission.csv
347 submission_path = os.path.join(WORK_DIR, "submission.csv")
348 with open(submission_path, "w", newline="") as f:
349 writer = csv.writer(f)
350 writer.writerow(["id", "value"])
351 for tf in sorted(
352 glob(f"{TEST_DIR}/*.png"), key=lambda x: int(os.path.basename(x).

split(".")[0])
353 ):
354 img_id = os.path.basename(tf).split(".")[0]
355 img = np.array(Image.open(tf).convert("L"), dtype=np.float32)
356 den = ensemble_infer(img)
357 H, W = den.shape
358 for i in range(H):
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359 for j in range(W):
360 writer.writerow([f"{img_id}_{i+1}_{j+1}", f"{den[i,j]:.6f}"])
361 print("Submission saved to", submission_path)
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