
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMIND: TOWARDS COMMUNITY-DRIVEN AGENTS FOR MACHINE LEARNING ENGINEERING

005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Large language model (LLM) agents show promise in automating machine learning (ML) engineering. However, existing agents typically operate in isolation on a given research problem, without engaging with the broader research community, where human researchers often gain insights and contribute by sharing knowledge. To bridge this gap, we introduce MLE-Live, a live evaluation framework designed to assess an agent’s ability to communicate with and leverage collective knowledge from a simulated Kaggle research community. Building on this framework, we propose CoMind, a multi-agent system designed to systematically leverage external knowledge. CoMind employs an iterative parallel exploration mechanism, developing multiple solutions simultaneously to balance exploratory breadth with implementation depth. On 75 past Kaggle competitions within our MLE-Live framework, CoMind achieves a 36% medal rate, establishing a new state of the art. Critically, when deployed in eight live, ongoing competitions, CoMind outperforms 92.6% of human competitors on average, placing in the top 5% on three official leaderboards and the top 1% on one.

1 INTRODUCTION

The capabilities of large language model (LLM)-based agents are rapidly advancing, showing significant promise in automating complex tasks across domains like software engineering (Jimenez et al., 2023b; Xia et al., 2025), mathematical problem-solving (OpenAI, 2024; Ren et al., 2025; Li et al., 2025), and scientific discovery (Romera-Paredes et al., 2024; Yamada et al., 2025; Sun et al., 2025; Feng et al., 2025). A particularly challenging and impactful frontier for these agents is machine learning engineering (MLE). Automating the multifaceted MLE pipeline, which spans the design, implementation, and rigorous evaluation of high-performance models, remains a critical test of an agent’s autonomous reasoning and decision-making abilities.

Recent advances have introduced LLM agents capable of autonomously developing machine learning pipelines for Kaggle-style competitions (Chan et al., 2025). Current approaches have demonstrated a range of techniques, from the ReAct-style reasoning in MLAB (Huang et al., 2024) and the tree-based exploration of AIDE (Jiang et al., 2025), to the skill-specialized multi-agent system of AutoKaggle (Li et al., 2024). Although these systems represent important steps toward automating MLE, they are fundamentally designed to operate in isolation, exploring the solution space individually.

This isolated approach stands in stark contrast to how human experts operate. In real-world data science competitions and research, participants thrive on community knowledge sharing: learning from public discussions, shared code, and collective insights to enhance solution quality and drive innovation (Wuchty et al., 2007). By failing to engage with this dynamic external context, current agents are prone to converging on repetitive strategies and ultimately plateauing in performance. This critical gap motivates our central research question:

How can we evaluate and design research agents that utilize collective knowledge?

To address this question, we introduce **MLE-Live**, a controllable evaluation framework that simulates realistic Kaggle-style research communities with time-stamped public discussions and shared code artifacts that public before competition deadline. This ensure the information access is same as human participant. MLE-Live enables rigorous evaluation of agents’ ability to leverage community

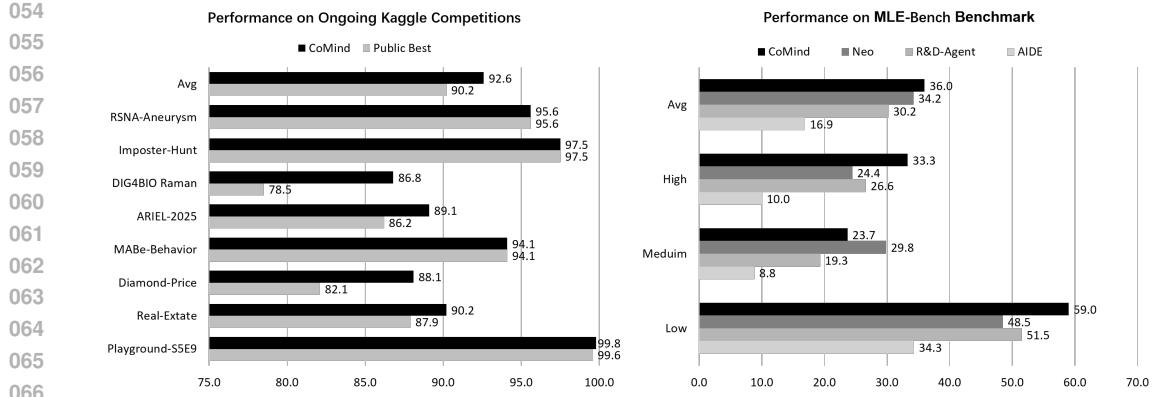


Figure 1: **Left:** CoMind’s win rates on eight ongoing Kaggle competitions compared with the public best entry. **Right:** Any Medal results on 75 MLE-Bench competitions grouped by task difficulty levels. CoMind achieves state-of-the-art performance on MLE-Bench compared to strong baselines.

knowledge in temporally grounded settings, supporting both offline evaluation on past competitions and online evaluation on ongoing competitions.

Building upon this framework, we propose **CoMind**, a multi-agent system designed to systematically incorporate external knowledge and iteratively refine solutions. CoMind’s architecture consists of five specialized agent role operating in concert. A central *Coordinator* manages the overall workflow and community interactions. To process external knowledge, an *Analyzer* first summarizes and suggests on improvements and weaknesses for a curated group of solutions, while an *Idea Proposer* brainstorms a diverse pool of ideas and synthesizes novel strategies. These strategies are then passed to multiple parallel *Coding Agents* for implementation and report generation. Finally, a dedicated *Evaluator*, which creates robust scripts for solution assessment and selection. This collaborative process allows CoMind to effectively utilize external community knowledge and construct novel solution for the targeted research problem.

We conducted a comprehensive, two-pronged evaluation to assess CoMind’s performance in both static and live environments. First, on a static benchmark comprising 75 past Kaggle competitions from MLE-Bench (Chan et al., 2025), CoMind achieved an overall medal rate of 0.36, establishing a new state of the art by significantly outperforming prior leading agents such as Neo and ML-Master (Liu et al., 2025). Second, to validate its real-world practicality, we deployed CoMind in eight ongoing Kaggle competitions (detailed in Figure 1). In this challenging live setting, CoMind proved highly effective, achieving an average rank better than 92.6% of human competitors while placing in the top 5% on three official leaderboards and the top 1% on one. These results demonstrate CoMind’s robust effectiveness against contemporary challengers.

In summary, our contributions are:

- **MLE-Live:** A live evaluation framework simulating community-driven machine learning research with realistic shared discussions and code.
- **CoMind:** A novel agent excelling at collective knowledge utilization and iterative exploration, achieving medal-level performance in real competitions.
- **Community-Driven Multiagent Collaboration:** An iterative parallel exploration mechanism enabling continuous knowledge accumulation.

2 RELATED WORK

The rise of large language models (LLMs) has sparked a new wave of research into LLM-driven agents, systems that leverage LLMs’ reasoning and language capabilities to autonomously perceive, plan, and act within digital or physical environments. Early works such as ReAct (Yao et al., 2023; Schick et al., 2023; Shen et al., 2023; Hong et al., 2023; Boiko et al., 2023) introduced frameworks that transform LLMs into programmable reasoning engines by interleaving natural language reasoning with tool-use actions. Subsequent studies have extended these agents to various domains,

108 including computer usage (Xie et al., 2024; Zhou et al., 2024) and software development (Wang
109 et al., 2025; Jimenez et al., 2023a).

110 In parallel, the field of automated machine learning (AutoML) aims to reduce human involvement
111 in building ML pipelines by automating tasks such as model selection, hyperparameter tuning, and
112 architecture search. Early systems like Auto-WEKA (Thornton et al., 2013), HyperBand (Li et al.,
113 2018) and Auto-sklearn (Feurer et al., 2022) used early stopping and Bayesian optimization to search
114 over pipeline configurations, while methods like DARTS (Liu et al., 2019) expanded automation
115 to neural architectures. More recent frameworks such as AutoGluon (Erickson et al., 2020) and
116 FLAML (Wang et al., 2021) emphasize efficiency and ease of use.

117 Building on these developments, recent efforts have applied LLM-based agents to machine learning
118 engineering (MLE) tasks (Hollmann et al., 2023; Guo et al., 2024; Li et al., 2024; Grosnit et al.,
119 2024; Hong et al., 2024; Chi et al., 2024; Trirat et al., 2024; Huang et al., 2024). However, most eval-
120 uations remain constrained to closed-world settings with predefined search spaces, offering limited
121 insight into how these agents perform in open-ended or collaborative ML environments. While some
122 agents (Guo et al., 2024; AI-Researcher, 2025) incorporate basic retrieval tools, these are typically
123 based on simple semantic matching, and robust evaluation methodologies remain underdeveloped.

124 Meanwhile, several benchmarks have been proposed to evaluate machine learning (ML) engineering
125 capabilities. MLPerf (Mattson et al., 2020) assesses system-level performance, including training
126 speed and energy efficiency. To evaluate end-to-end ML workflows, MLAB (Huang et al., 2024)
127 tests the capabilities of LLM-based agents across 13 ML tasks. MLE-Bench (Chan et al., 2025) and
128 DSBench (Jing et al., 2025) further extends to about 75 Kaggle competitions covering tasks such
129 as preprocessing, modeling, and evaluation. However, these benchmarks typically evaluate agents
130 in isolation, overlooking the collaborative dynamics of real-world ML development. In contrast,
131 our work introduces a framework that simulates community-driven settings, enabling evaluation
132 of agents' ability to engage with and benefit from shared knowledge, while ensuring that resource
133 access remains fair and realistic.

135 3 MLE-LIVE 136

137 Existing machine learning benchmarks typically evaluate agents in static, isolated environments.
138 This approach fails to capture the dynamic and collaborative nature of real-world platforms like
139 Kaggle, where progress is driven by community knowledge sharing. Participants constantly learn
140 from shared code, public discussions, and the iterative work of others, making these community
141 interactions a decisive factor in developing top-tier solutions.

142 To bridge this gap, we introduce **MLE-Live**, a live evaluation framework that extends the widely-
143 used MLE-Bench (Chan et al., 2025). The core innovation of MLE-Live is its simulation of com-
144 munity interactions, providing agents with a time-stamped stream of discussions and code artifacts
145 that mirrors the natural flow of public knowledge during a competition.

146 Each competition environment in MLE-Live includes the following components: (i) Task descrip-
147 tion: The background, specifications, evaluation metrics, and data structure, scraped directly from
148 the original Kaggle competition. (ii) Competition dataset: A cleaned train-test split of the official
149 data. When necessary, this includes reconstructed test sets to account for data that is no longer
150 public. (iii) Submission grader: An evaluation script that precisely mimics Kaggle's official scoring
151 mechanism. (iv) Leaderboard: A snapshot of the final public leaderboard. (v) Community arti-
152 facts: A curated set of discussions and code notebooks that were **published before the competition**
153 **deadline**. These artifacts are enriched with valuable metadata (e.g., vote counts, public scores, au-
154 thor tiers) to signal quality and are accompanied by any public datasets or models they reference,
155 creating a self-contained and realistic research environment.

156 MLE-Live aggregates a substantial dataset of 12,951 discussions and 15,733 kernels from 75 Kag-
157 gle competitions. To ensure fairness and eliminate post-hoc data leakage, it strictly includes only
158 resources available prior to competition deadlines, forcing agents to operate under the same informa-
159 tion constraints as human participants. This approach offers numerous benefits for robust evaluation:
160 it grounds agents in diverse, objectively-graded ML problems from Kaggle, while the controlled in-
161 formation scope allows for a fair assessment of their retrieval and reasoning abilities. These features
enhance reproducibility and enable consistent, longitudinal comparisons between different agents.

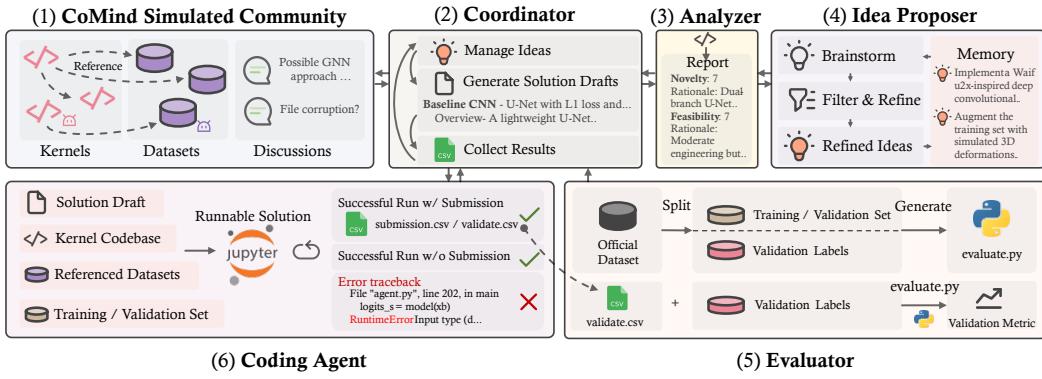


Figure 2: Overview of CoMind. Specialized agents (Coordinator, Analyzer, Idea Proposer, Coding Agent, Evaluator) interact with a simulated Kaggle community of kernels, datasets, and discussions.

4 COMIND

We propose **CoMind**, a community-augmented large language model (LLM) agent designed to automate machine learning (ML) engineering in an iterative, collaborative setting. Figure 2 is an overview of CoMind workflows.

4.1 COMMUNITY SIMULATION

CoMind’s effectiveness stems from simulating the collaborative dynamics that drive breakthrough performance in competitive ML environments. Unlike isolated automated ML systems, CoMind replicates how Kaggle participants leverage community knowledge: drawing insights from discussions, adapting public notebooks and datasets, and contributing discoveries back to the collective knowledge pool.

The simulated community is represented as $(\mathcal{K}_t, \mathcal{D}_t, \mathcal{T}_t)$ at iteration t , where \mathcal{K}_t contains all kernels with evaluation metrics, \mathcal{D}_t includes published datasets and model checkpoints, and \mathcal{T}_t captures the dependency relationships between resources. CoMind initializes a high-quality community $(\mathcal{K}_0, \mathcal{D}_0, \mathcal{T}_0)$ by fetching k_{kernel} top-performing kernels and $k_{\text{discussion}}$ most popular discussions from Kaggle, along with all referenced datasets and models. The system constructs a dependency graph $\mathcal{T}_0 = (V, E)$ where vertices represent kernels or datasets and edges capture resource dependencies.

This dependency structure enables CoMind to systematically trace solution construction, identify influential artifacts, and prioritize resources that drive performance improvements. The graph facilitates intelligent ensemble strategies by combining complementary approaches while avoiding redundant components.

CoMind operates as an active community participant, iteratively analyzing promising kernels, generating novel solutions, conducting experiments, and contributing successful results back to the community. Each iteration produces new artifacts: enhanced kernels, augmented datasets, or ensemble checkpoints, that expand the community knowledge base with associated performance metrics.

Through this continuous cycle of exploration and contribution, CoMind simulates the collaborative dynamics of competitive ML development, where collective intelligence progressively advances performance frontiers at automated scale and speed.

4.2 MULTI-AGENT SYSTEM

CoMind orchestrates machine learning experimentation through a coordinated multi-agent system. Specialized agents collaborate in distinct roles, mirroring the division of expertise in human research teams across ideation, implementation, and evaluation. The workflow is an iterative loop managed by the Coordinator, which delegates tasks to the other agents.

216 **Coordinator** The *Coordinator* serves as **CoMind**’s central orchestration hub. Its primary responsibilities are managing the workflow, interfacing with the community environment, and allocating resources. At the start of each iteration t , the *Coordinator* initiates the process by strategically sampling promising code notebooks (kernels) \mathcal{K}'_t and relevant datasets \mathcal{D}'_t from the community. This focused sampling directs the system’s attention toward high-potential areas. After receiving refined ideas from the *Idea Proposer*, the *Coordinator* translates them into concrete solution drafts \mathcal{S}_t , which are comprehensive blueprints detailing model architecture, feature engineering, and training procedures. It then instantiates multiple *Coding Agents* in parallel, assigning each a distinct draft and all referenced resources. Upon completion, the *Coordinator* aggregates the results and publishes successful solutions back to the community, advancing the environment state for the next iteration.

226 **Analyzer** The *Analyzer* is responsible for distilling raw community artifacts into structured, actionable intelligence. It receives the sampled kernels and discussions from the *Coordinator* and performs a deep analysis across four key dimensions: novelty, feasibility, effectiveness, and efficiency. For each artifact, it generates a 0-10 score on these metrics, accompanied by qualitative explanations of successful patterns, emerging trends, or potential pitfalls. The output is a set of structured analytical reports \mathcal{R}_t , which serve as the primary input for the *Idea Proposer*.

233 **Idea Proposer** The *Idea Proposer* functions as **CoMind**’s creative engine, tasked with generating novel solution concepts. It uses the analytical reports \mathcal{R}_t from the *Analyzer* and its own persistent memory of historical ideas \mathcal{I}_t^* to ensure that new concepts are both innovative and informed by past results. The ideation process follows three phases: (1) **Brainstorming**: Generating a wide array of diverse ideas, prioritizing creativity and exploration. (2) **Filtering**: Ranking these ideas based on feasibility, potential for improvement, and alignment with the analytical reports. Only the most promising subset of ideas \mathcal{I}_t is selected. (3) **Memory Integration**: Updating its knowledge base with the newly generated ideas ($\mathcal{I}_{t+1}^* = \mathcal{I}_t^* \cup \mathcal{I}_t$), allowing for increasingly sophisticated strategies over time. The final output, a filtered set of high-potential ideas \mathcal{I}_t , is sent back to the *Coordinator* to be developed into full solution drafts.

243 **Coding Agent** The *Coding Agent* is the implementation workhorse, responsible for converting the abstract solution drafts from the *Coordinator* into executable code. Following an iterative, ReAct-style approach, it conducts trial-and-error experiments using the training and validation data provided by the *Evaluator*. To maximize efficiency, the agent maintains a persistent Jupyter Notebook session to eliminate data reloading overhead and employs a monitor LLM to track execution and terminate failed runs immediately. This iterative process of coding, debugging, and optimization continues until a viable solution is produced or a time budget is exhausted.

251 **Evaluator** The *Evaluator* ensures objective, standardized, and reproducible assessment across all experiments, mirroring official Kaggle protocols. It first partitions the public dataset D into a training set D^* and a validation set with inputs V_x and ground-truth labels V_y . Crucially, only D^* and V_x are accessible to the *Coding Agents*, preserving the integrity of the validation process. When a *Coding Agent* submits predictions $V_{\hat{y}}$, the *Evaluator* computes the performance score using the official competition metric $\varphi(V_{\hat{y}}, V_y)$. It maintains a global leaderboard of all experimental runs, enabling **CoMind** to reliably track progress and make informed decisions about which solutions to prioritize and publish.

259

5 BENCHMARK EVALUATION

262

5.1 SETUP

264 **Task Selection.** Based on MLE-Live evaluation framework, we evaluate our agent on 75 Kaggle competitions on MLE-Bench. Using the MLE-Live framework, CoMind has access to shared discussions and public kernels published on the competition websites before the competition deadline. Since the MLE-bench test set may be constructed from Kaggle’s official public training set, and publicly available datasets or model checkpoints may have been trained on this portion of the data, we restricted CoMind’s access to public datasets to minimize potential data contamination. It can only view code published by other contestants.

270 Table 1: Any Medal (%) scores on 75 MLE-Bench competitions. CoMind achieves state-of-the-art
 271 results across difficulty levels. Best results in each column are bolded. Baseline numbers are taken
 272 from the official MLE-Bench leaderboard.

Agent	Low (%)	Medium (%)	High (%)	All (%)
CoMind o4-mini	59.09	23.68	33.33	36.00
Neo multi-agent	48.48	29.82	24.44	34.22
R&D-Agent o3 + GPT-4.1	51.52	19.30	26.67	30.22
ML-Master deepseek-r1	48.50	20.20	24.40	29.30
R&D-Agent o1-preview	48.18	8.95	18.67	22.40
AIDE o1-preview	34.30	8.80	10.00	16.90
AIDE gpt-4o	19.00	3.20	5.60	8.60
AIDE claude-3-5-sonnet	19.40	2.60	2.30	7.50
OpenHands gpt-4o	11.50	2.20	1.90	5.10
AIDE llama-3.1-405b-instruct	8.30	1.20	0.00	3.10
MLAB gpt-4o	4.20	0.00	0.00	1.30

288 To validate CoMind under realistic conditions, we further evaluate CoMind on eight ongoing Kaggle
 289 competitions. These competitions span diverse domains, including tabular learning, text regression,
 290 image classification and video recognition. Rather than approximating the official scoring locally,
 291 we directly submit CoMind’s generated `submission.csv` files to the Kaggle platform, so that all
 292 reported ranks reflect genuine, live leaderboard positions.

293 **Implementation Details.** CoMind employs o4-mini-2025-04-16 (OpenAI, 2025) as its
 294 backend LLM. We limit the hardware constraint of each run to 32 vCPUs and a single A6000 GPU.
 295 Each competition is evaluated in separate containers with a maximum of 24 hours to produce the
 296 final submission file. Every single code execution session is limited to 5 hour. Each Coder is limited
 297 to a maximum of 30 steps. The number of parallel agents is set to 4.

298 During code generation, agents are provided with the test set inputs (without labels) and prompted
 299 to generate a `submission.csv` file. The submission is then evaluated by a grader that compares
 300 the predicted labels with the ground truth. Following the setting of MLE-Bench, to avoid potential
 301 overfitting, test set labels and the competition leaderboard are strictly withheld from the agent’s
 302 accessible environment. Instead, each agent must rely solely on a self-constructed “runtime test set”,
 303 a held-out split from the original training data, for code evaluation and performance estimation.

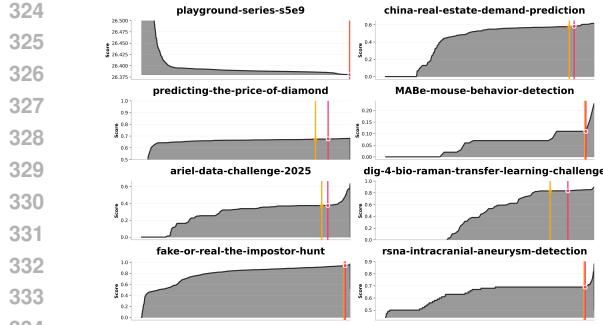
304 **Metrics.** Following the evaluation metrics in MLE-Bench, we measure the performance of Co-
 305 Mind by **Any Medal**, the percentage of competitions where the agent earns a gold, silver, or bronze
 306 medal.

308 **Baselines.** We compare CoMind against the MLE-Bench leaderboard¹ including open-sourced
 309 systems like **R&D-Agent** (Yang et al., 2025), a dual-agent framework (Researcher/Developer) that
 310 explores multiple solution branches and merges promising ideas into improved pipelines; **ML-**
 311 **Master** (Liu et al., 2025), which integrates exploration and reasoning via a selectively scoped
 312 memory that aggregates insights from parallel trajectories; **AIDE** (Jiang et al., 2025), a purpose-
 313 built tree-search scaffold that iteratively drafts, debugs, and benchmarks code for Kaggle-style
 314 tasks; **OpenHands** (Wang et al., 2025), a general-purpose CodeAct-based scaffold that executes
 315 code and calls tools in a sandboxed environment; **MLAB** (Huang et al., 2024), referring to
 316 the ResearchAgent scaffold from MAgentBench, a general tool-calling/plan-act baseline; and
 317 **Neo** (<https://heyneo.so/>), a close-sourced multi-agent system for autonomous ML engi-
 318 neering.

319 5.2 RESULTS

321 Table 1 compares CoMind with baseline methods on 75 MLE-Bench competitions. CoMind
 322 achieves state-of-the-art performance with an *Any Medal* rate of 36.00%, significantly outper-

323 ¹<https://github.com/openai/mle-bench>



Competition	Rank	Teams	Top %
Playground S5E9	4	1966	0.2%
China Real Estate	43	437	9.8%
Diamond Price	8	67	11.9%
MABe Behavior	3	51	5.9%
ARIEL 2025	90	827	10.9%
DIG4BIO Raman TL	22	167	13.2%
Impostor Hunt	26	1037	2.5%
RSNA Aneurysm	35	788	4.4%

Figure 3: **Left:** Score distributions across participants in eight ongoing Kaggle competitions. Each curve shows the relationship between leaderboard rank (x-axis, inverted) and competition score (y-axis). Vertical lines indicate CoMind’s position (red) and public best performance (yellow). **Right:** Results on eight ongoing Kaggle competitions. Reported are leaderboard rank, total teams, and percentile rank (Top %, where lower means better standing).

forming open-source competitors such as R&D-Agent (submitted on 2025-08-15) and surpassing the closed-source multi-agent system Neo. Appendix I provides a detailed case study on denoising-dirty-documents.

On the eight evaluated ongoing competitions, CoMind ranked top 7.35% on average and improved the best public kernel on 5 competitions. Details including authentic scores and win rates per task are provided in Figure 3. These authentic results demonstrate CoMind’s capability to tackle a variety of problem domains and achieve competitive performance in live, evolving ML workflows.

6 ABLATION STUDY

6.1 SETUP

Task Selection. To evaluate the impact of introducing public resources, we conducted an ablation study on 20 competitions from MLE-Bench-Lite based on MLE-Live. These tasks span across various categories, including image classification/generation, text classification/generation, image regression, audio classification, and tabular analysis.

Baselines. We compared CoMind against the following baselines. For consistency, all baselines use the same backend model as CoMind:

- **AIDE+Code.** To enable the use of publicly available code (e.g., Kaggle kernels), we extend AIDE with access to one public kernel per draft node, which is selected by highest community votes. AIDE+Code augments the prompt with both the task description and the selected kernel alongside the tree summarization.
- **AIDE+RAG.** We further equip AIDE with a retrieval-augmented generation (RAG) mechanism. Before generating code, the agent retrieves the titles of the top 10 voted discussions and kernels. The LLM selects the most relevant ones, receives a summarization, and then proposes its plan and implementation. For debugging or refinement, it can optionally re-query documents. Retrieval is based on cosine similarity between query and candidate document embeddings, using Multilingual E5 Text Embeddings (Wang et al., 2024).
- **CoMind w/o \mathcal{R} .** \mathcal{R} denotes all public resources. In this variant, CoMind operates without access to any external community resources. It starts with an empty community and relies solely on its own generation history to propose candidate ideas and assemble solution drafts.

Metrics. Following the evaluation metrics in prior research (Chan et al., 2025), the relative capability of generating high-quality solution compared with human is measured by:

- **Above Median:** Indicates whether the submission outperforms at least 50% of competitors on the leaderboard.
- **Win Rate:** The percentage of competitors whose final scores are lower than the agent’s score. If the agent fails to produce a valid submission, the Win Rate is 0.

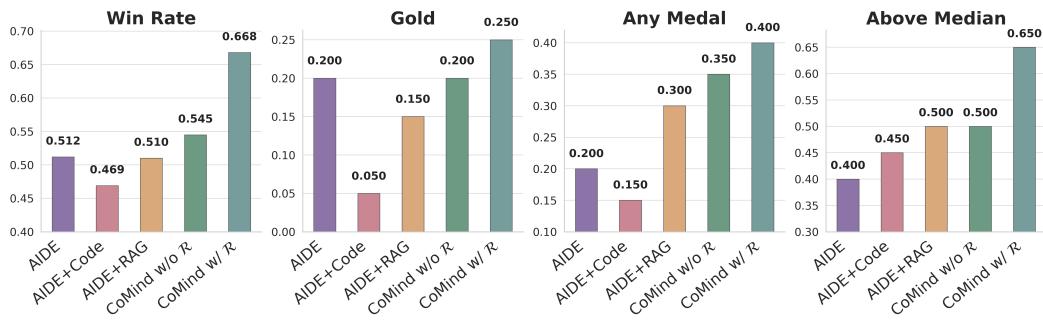


Figure 4: **Performance of CoMind and other baselines on 20 competitions from MLE-Bench-Lite.** *Valid Submission* is the ratio of submissions meeting format requirements and validation criteria. *Win Rate* is the percentage of human competitors outperformed by the agent. *Any Medal*, is the proportion of competitions where the agent earned Gold, Silver or Bronze medals. *Above Median* is the fraction of competitions where the agent’s score strictly exceeded the median human competitor.

Table 2: **Average win rate of CoMind and other baselines across task categories on 20 competitions from MLE-Bench-Lite.** # of Tasks refers to the number of competitions in the corresponding category. CoMind consistently outperforms baselines across most domains.

Category	# of Tasks	CoMind	AIDE+Code	AIDE+RAG	AIDE
Image Classification	8	0.597	0.459	0.434	0.525
Text Classification	3	0.740	0.157	0.338	0.61
Audio Classification	1	0.901	0.272	0.259	0.271
Seq2Seq	2	0.408	0.503	0.550	0.228
Tabular	4	0.664	0.673	0.688	0.483
Image To Image	1	0.988	0.932	0.617	0.568
Image Regression	1	0.992	0.342	0.992	0.992
All	20	0.668	0.469	0.510	0.512

- **Medals:** Medals are assigned based on the agent’s score relative to Kaggle leaderboard thresholds for gold, silver, and bronze medals.
- **Any Medal:** The percentage of competitions in which the agent earns any medal.

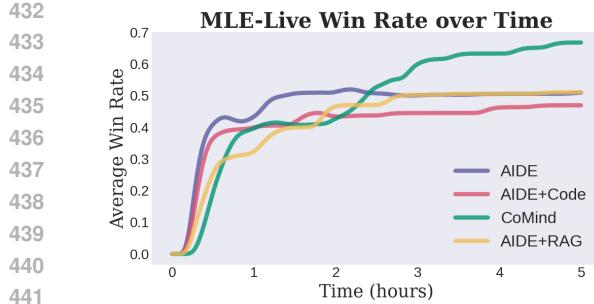
Implementation Setup. All agents use o4-mini-2025-04-16 as their backend. Based on the settings of our main experiment, the hardware constraint is further limited to 4 vCPUs and 5 hours per competition. Each execution session is limited to 1 hour. Access to public datasets are restricted. In accordance with baselines, CoMind has access to 10 top-voted discussions and kernels.

6.2 RESULTS

Figure 4 shows the results. Our key findings are as follows: (i) CoMind consistently outperforms all baselines across every metric. (ii) Among the AIDE variants, AIDE+RAG outperforms AIDE+Code, and both surpass the original AIDE on most metrics, demonstrating the benefits of integrating community knowledge. CoMind further exceeds these approaches, highlighting the effectiveness of its deeper and more strategic community-aware exploration. (iii) Removing CoMind’s resource access causes a significant drop in valid submission rates and other metrics, showing that strategic access to public resources helps CoMind balance extending established methods for reliability with exploring novel approaches.

7 ANALYTICAL EXPERIMENTS

For analytical experiments, we adopt the same setup as the ablation study and evaluate model performance across multiple dimensions, including task categories, win rate over time, and code complexity.



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 5: Win rate over time. CoMind sustains improvement while baselines plateau.

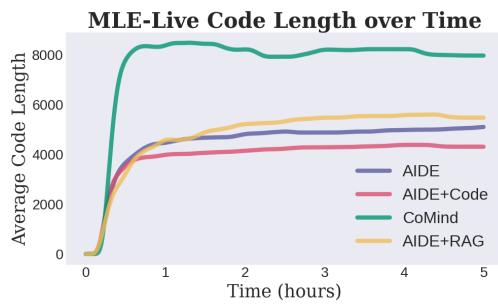


Figure 6: Code complexity over time. CoMind generates longer, richer solutions than baselines.

Task Categories Table 2 reports the average ranks across seven task categories. CoMind outperforms all baselines in Image Classification, Text Classification, Audio Classification, and Image-to-Image tasks, highlighting its strong adaptability. We manually inspect the tasks where CoMind underperformed and find that the issues are often related to the use of large models or datasets. For example, in Seq2Seq tasks, CoMind explores complex fine-tuning strategies for large language models which often fail to complete within the one-hour runtime constraint.

Win Rate Over Time Figure 5 shows the evolution of average win rate over time. AIDE quickly produces concise, functional solutions, leading to a rapid rise in performance during the first hour. In contrast, CoMind spends more time on debugging and exploration early on, resulting in a slower initial improvement. However, after the first two hours, AIDE’s performance plateaus, while CoMind continues to improve through iterative refinement and deeper exploration, ultimately surpassing AIDE and achieving higher-quality solutions.

Code Complexity Regarding code complexity, Figure 6 illustrates the average code length during the entire competition. CoMind consistently generates significantly longer and more complex code, while other baselines begin with simpler implementations and introduce only incremental modifications. Appendix B offers a comparative analysis across code complexity metrics and task categories. Notably, CoMind’s solutions for Image Regression and Audio Classification are nearly twice as long as those of other baselines. Additionally, solutions from CoMind are, on average, 55.4% longer than those produced by AIDE.

8 CONCLUSION

We introduced MLE-Live, the first framework to evaluate ML agents in community-driven settings, simulating the collaborative dynamics that are essential to real-world progress in Kaggle competitions and beyond. Building upon this benchmark, we proposed CoMind, a community-augmented LLM agent that iteratively selects and synthesizes ideas, implements solutions, and shares reports within a simulated ecosystem. Our results demonstrate that CoMind not only achieves state-of-the-art performance on retrospective MLE-Bench tasks but also attains medal-level standings in live Kaggle competitions.

Limitations and Future Work. While our current experiments focus on Kaggle-style ML tasks, the MLE-Live framework can be extended to broader domains, such as scientific discovery, open-ended coding, or robotics, enabling research agents to contribute meaningfully across diverse fields.

486 REFERENCES

487

488 AI-Researcher. Ai-researcher: Fully-automated scientific discovery with llm agents, 2025. URL
489 <https://github.com/HKUDS/AI-Researcher>. Accessed: 2025-05-15.

490 Daniil A. Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical re-
491 search with large language models. *Nature*, 624:570 – 578, 2023. URL <https://api.semanticscholar.org/CorpusID:266432059>.

492 Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
493 Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Aleksander Madry, and Lilian Weng. MLE-
494 bench: Evaluating machine learning agents on machine learning engineering. In *The Thirteenth*
495 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=6s5uXNWGIh>.

496 Yizhou Chi, Yizhang Lin, Sirui Hong, Duyi Pan, Yaying Fei, Guanghao Mei, Bangbang Liu, Tianqi
497 Pang, Jacky Kwok, Ceyao Zhang, Bangbang Liu, and Chenglin Wu. Sela: Tree-search enhanced
498 llm agents for automated machine learning. *ArXiv*, abs/2410.17238, 2024. URL <https://api.semanticscholar.org/CorpusID:273507330>.

500 Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
501 Smola. Autogluon-tabular: Robust and accurate automl for structured data. *arXiv preprint*
502 *arXiv:2003.06505*, 2020.

503 Shengyu Feng, Weiwei Sun, Shanda Li, Ameet Talwalkar, and Yiming Yang. A comprehensive eval-
504 uation of contemporary ml-based solvers for combinatorial optimization. *ArXiv*, abs/2505.16952,
505 2025. URL <https://arxiv.org/abs/2505.16952>.

506 Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
507 sklearn 2.0: Hands-free automl via meta-learning. *Journal of Machine Learning Research*, 23
508 (261):1–61, 2022. URL <http://jmlr.org/papers/v23/21-0992.html>.

509 Antoine Grosnit, Alexandre Max Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refi-
510 nath Shahul Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci,
511 Abdelhakim Benechehab, Hamza Cherkaoui, Youssef Attia El Hili, Kun Shao, Jianye Hao, Jun
512 Yao, Balázs Kégl, Haitham Bou-Ammar, and Jun Wang. Large language models orchestrat-
513 ing structured reasoning achieve kaggle grandmaster level. *ArXiv*, abs/2411.03562, 2024. URL
514 <https://api.semanticscholar.org/CorpusID:273850235>.

515 Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-
516 agent: Automated data science by empowering large language models with case-based rea-
517 soning. *ArXiv*, abs/2402.17453, 2024. URL <https://api.semanticscholar.org/CorpusID:268033675>.

518 Noah Hollmann, Samuel G. Müller, and Frank Hutter. Large language models for automated
519 data science: Introducing caafe for context-aware automated feature engineering. In *Neural*
520 *Information Processing Systems*, 2023. URL <https://api.semanticscholar.org/CorpusID:258547322>.

521 Sirui Hong, Xiawu Zheng, Jonathan P. Chen, Yuheng Cheng, Ceyao Zhang, Zili Wang, Steven
522 Ka Shing Yau, Zi Hen Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, and Chenglin Wu.
523 Metagpt: Meta programming for multi-agent collaborative framework. *ArXiv*, abs/2308.00352,
524 2023. URL <https://api.semanticscholar.org/CorpusID:260351380>.

525 Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin
526 Wang, Lingyao Zhang, Mingchen Zhuge, Taicheng Guo, Tuo Zhou, Wei Tao, Wenyi Wang, Xi-
527 angru Tang, Xiangtao Lu, Xinbing Liang, Yaying Fei, Yuheng Cheng, Zhibin Gou, Zongze Xu,
528 Chenglin Wu, Li Zhang, Min Yang, and Xiawu Zheng. Data interpreter: An llm agent for data
529 science. *ArXiv*, abs/2402.18679, 2024. URL <https://api.semanticscholar.org/CorpusID:268063292>.

530 Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language
531 agents on machine learning experimentation. In *Forty-first International Conference on Machine*
532 *Learning*, 2024. URL <https://openreview.net/forum?id=1Fs1LvjYQW>.

540 Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixin Xu, Ian Kaplan, Deniss Jacenko, and
541 Yuxiang Wu. Aide: Ai-driven exploration in the space of code, 2025. URL <https://arxiv.org/abs/2502.13138>.

543

544 Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
545 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *ArXiv*,
546 abs/2310.06770, 2023a. URL [https://api.semanticscholar.org/CorpusID:
547 263829697](https://api.semanticscholar.org/CorpusID:263829697).

548 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
549 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint
550 arXiv:2310.06770*, 2023b.

551

552 Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
553 Zhang, Xinya Du, and Dong Yu. DSbench: How far are data science agents from becoming data
554 science experts? In *The Thirteenth International Conference on Learning Representations*, 2025.
555 URL <https://openreview.net/forum?id=DSsSPr0RZJ>.

556

557 Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
558 A novel bandit-based approach to hyperparameter optimization. *Journal of Machine Learning
Research*, 18(185):1–52, 2018. URL <http://jmlr.org/papers/v18/16-558.html>.

559

560 Shanda Li, Tanya Marwah, Junhong Shen, Weiwei Sun, Andrej Risteski, Yiming Yang, and Ameet
561 Talwalkar. Codepde: An inference framework for llm-driven pde solver generation. *arXiv preprint
arXiv:2505.08783*, 2025.

562

563 Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tuney Zheng, Minghao Liu, Xinyao Niu, Yue
564 Wang, Jian Yang, Jiaheng Liu, et al. Autokaggle: A multi-agent framework for autonomous data
565 science competitions. *arXiv preprint arXiv:2410.20424*, 2024.

566

567 Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
568 *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=S1eYHoC5FX>.

569

570 Zexi Liu, Yuzhu Cai, Xinyu Zhu, Yujie Zheng, Runkun Chen, Ying Wen, Yanfeng Wang,
571 E Weinan, and Siheng Chen. Ml-master: Towards ai-for-ai via integration of exploration and
572 reasoning. *ArXiv*, abs/2506.16499, 2025. URL [https://api.semanticscholar.org/
573 CorpusID:279465426](https://api.semanticscholar.org/CorpusID:279465426).

574

575 Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micikevicius, David Pat-
576 terson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, et al. Mlperf training benchmark.
577 *Proceedings of Machine Learning and Systems*, 2:336–349, 2020.

578

579 OpenAI. Learning to reason with llms, 2024. URL <https://openai.com/index/learning-to-reason-with-llms/>.

580

581 OpenAI. Introducing openai o3 and o4-mini, 2025. URL <https://openai.com/index/introducing-o3-and-o4-mini/>.

582

583 Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
584 Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang,
585 Yuxuan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing for-
586 mal mathematical reasoning via reinforcement learning for subgoal decomposition, 2025. URL
587 <https://arxiv.org/abs/2504.21801>.

588

589 Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
590 M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
591 Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
592 *Nature*, 625(7995):468–475, 2024.

593

594 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
595 Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
596 use tools, 2023. URL <https://arxiv.org/abs/2302.04761>.

594 Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
595 gningpt: Solving ai tasks with chatgpt and its friends in hugging face, 2023. URL <https://arxiv.org/abs/2303.17580>.
596

597 Weiwei Sun, Shengyu Feng, Shanda Li, and Yiming Yang. Co-bench: Benchmarking language
598 model agents in algorithm search for combinatorial optimization. *ArXiv*, abs/2504.04310, 2025.
599 URL <https://arxiv.org/abs/2504.04310>.
600

601 Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-weka: Combined
602 selection and hyperparameter optimization of classification algorithms. In *Proceedings of the 19th*
603 *ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 847–855,
604 2013.

605 Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Automl-agent: A multi-agent llm frame-
606 work for full-pipeline automl. *ArXiv*, abs/2410.02958, 2024. URL <https://api.semanticscholar.org/CorpusID:273162376>.
607

608 Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. Flaml: A fast and lightweight automl
609 library. *Proceedings of Machine Learning and Systems*, 3:434–447, 2021.
610

611 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multi-
612 lingual e5 text embeddings: A technical report. *arXiv preprint arXiv:2402.05672*, 2024.

613 Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
614 Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
615 Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
616 Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI soft-
617 ware developers as generalist agents. In *The Thirteenth International Conference on Learning*
618 *Representations*, 2025. URL <https://openreview.net/forum?id=OJd3ayDDoF>.
619

620 Stefan Wuchty, Benjamin F. Jones, and Brian Uzzi. The increasing dominance of teams
621 in production of knowledge. *Science*, 316:1036 – 1039, 2007. URL <https://api.semanticscholar.org/CorpusID:260992737>.
622

623 Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Demystifying llm-based
624 software engineering agents. *Proceedings of the ACM on Software Engineering*, 2(FSE):801–
625 824, 2025.

626 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
627 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
628 Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking multimodal
629 agents for open-ended tasks in real computer environments. In *The Thirty-eight Conference on*
630 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=tN61DTr4Ed>.
631

632 Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,
633 and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree
634 search. *arXiv preprint arXiv:2504.08066*, 2025.

635 Xu Yang, Xiao Yang, Shikai Fang, Bowen Xian, Yuante Li, Jian Wang, Minrui Xu, Haoran Pan, Xin-
636 peng Hong, Weiqing Liu, et al. R&d-agent: Automating data-driven ai solution building through
637 llm-powered automated research, development, and evolution. *arXiv preprint arXiv:2505.14738*,
638 2025.

639 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
640 Cao. React: Synergizing reasoning and acting in language models. In *The Eleventh International*
641 *Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.
642

643 Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
644 Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A real-
645 istic web environment for building autonomous agents. In *The Twelfth International Confer-
646 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=oKn9c6ytLx>.
647

648 A USE OF LLMs

649
 650 We employ large language models (LLMs) exclusively for the purpose of assisting in the drafting
 651 and refinement of our manuscripts, with the objective of enhancing clarity and coherence.
 652

653 B ADDITIONAL ANALYSIS ON CODE COMPLEXITY

654
 655 In this section, we provide a comprehensive analysis of the generated code using a broad set of soft-
 656 ware complexity and quality metrics, beyond mere line counts. Specifically, we report the following
 657 indicators: **Cyclomatic Complexity (CC)**, **Pylint score**, **Halstead Metrics**: Volume, Difficulty,
 658 Effort, **Source Lines of Code (SLOC)**, **Number of Comment Lines** and **Code Length**. We prior-
 659 itized these over human annotation to ensure reproducibility and avoid subjective bias.
 660

661 Table 3: **Code complexity and quality metrics (Cyclomatic Complexity, Pylint score, Halstead**
 662 **metrics, SLOC, etc.) across task categories.** CoMind produces more complex solutions compared
 663 to baselines.

665 Category	666 Metric	667 CoMind	668 AIDE	669 AIDE+RAG	670 AIDE+Code
671 Image Classification	CC	1.68	1.59	1.93	1.29
	Pylint Score	7.43	9.06	8.90	8.92
	Volume	330.88	143.26	84.20	175.88
	Difficulty	4.95	2.90	2.32	2.59
	Effort	1960.22	507.06	286.31	725.59
	SLOC	198.25	133.50	120.88	115.71
	Comment Lines	15.62	12.88	13.75	14.43
	Code Length	7638.40	4624.30	4701.30	5192.10
672 Text Classification	CC	3.58	4.28	2.00	0.00
	Pylint Score	8.82	9.09	8.89	9.26
	Volume	286.38	384.07	47.68	29.25
	Difficulty	3.76	3.94	1.25	1.31
	Effort	1183.11	2332.22	61.56	35.16
	SLOC	181.67	133.00	141.00	69.50
	Comment Lines	14.67	15.33	14.00	13.50
	Code Length	6974.70	3094.50	5920.50	5629.30
673 Audio Classification	CC	2.00	0.00	0.00	0.00
	Pylint Score	7.92	9.11	9.49	8.86
	Volume	718.63	244.20	115.95	227.48
	Difficulty	7.39	6.46	3.19	6.38
	Effort	5308.07	1577.11	369.58	1451.30
	SLOC	256.00	82.00	92.00	72.00
	Comment Lines	20.00	11.00	16.00	16.00
	Code Length	9449.00	3508.00	4151.00	3352.00
674 Seq2Seq	CC	4.38	2.25	22.33	15.75
	Pylint Score	8.58	9.04	9.14	8.51
	Volume	492.55	52.33	390.46	324.00
	Difficulty	3.87	2.14	5.26	3.68
	Effort	1935.02	140.58	2083.84	1686.74
	SLOC	184.50	63.50	222.50	147.50
	Comment Lines	22.50	13.00	23.00	19.50
	Code Length	6925.50	5649.50	8357.50	2728.50
675 Tabular	CC	2.78	1.62	2.38	0.25
	Pylint Score	8.65	8.96	8.87	9.31
	Volume	1264.61	856.12	815.29	435.46
	Difficulty	7.37	4.83	6.05	3.69
	Effort	10808.93	6163.62	5564.22	2001.06
	SLOC	218.75	139.75	147.50	93.50
	Comment Lines	18.25	14.75	15.25	10.50
	Code Length	8570.00	3534.00	6064.00	5759.80

Category	Metric	CoMind	AIDE	AIDE+RAG	AIDE+Code
Image to Image	CC	1.72	2.00	3.00	1.88
	Pylint Score	8.43	6.25	6.64	7.74
	Volume	1298.11	1481.62	414.59	431.08
	Difficulty	9.68	6.73	3.94	3.79
	Effort	12565.66	9967.24	1633.22	1631.93
	SLOC	228.00	175.00	121.00	128.00
	Comment Lines	26.00	8.00	23.00	13.00
	Code Length	8800.00	5231.00	4815.00	6671.00
Image Regression	CC	1.68	2.00	2.40	2.00
	Pylint Score	8.62	8.75	8.80	8.89
	Volume	1310.92	241.08	70.32	72.00
	Difficulty	8.75	3.88	2.18	2.73
	Effort	11466.58	934.17	153.43	196.36
	SLOC	267.00	145.00	116.00	133.00
	Comment Lines	36.00	15.00	12.00	12.00
	Code Length	10991.00	4841.00	4655.00	5614.00

C TOKEN USAGE ON MLE-BENCH COMPETITIONS

Agent	Uncached Tokens	Cached Tokens	Completion Tokens	Cost
CoMind	18.23 M \pm 14.62 M	13.05 M \pm 11.43 M	1.96 M \pm 1.04 M	\$32.25 \pm 19.43

Table 4: Average token usage (mean \pm standard deviation) and monetary cost for CoMind across the 75 Kaggle competitions in MLE-Bench. The cost is calculated based on the API prices of o4-mini published by OpenAI.

D LOCAL EVALUATION DYNAMICS OF COMIND ON ONGOING COMPETITIONS

Figure 7 plot the agent’s locally estimated validation metrics over its execution time, as computed by the Evaluator module using held-out validation splits constructed from the public training data. These trajectories capture how CoMind iteratively explores, implements, debugs, and refines solution pipelines through its multi-agent workflow. It illustrates several consistent patterns: (i) rapid early improvements as baseline solutions are assembled; (ii) mid-phase refinements driven by Analyzer-guided idea selection and iterative debugging; and (iii) late-stage stabilization once the agent converges to high-performing configurations.

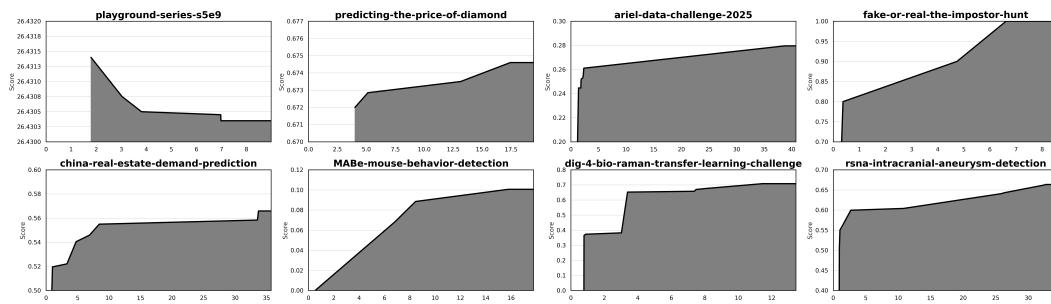
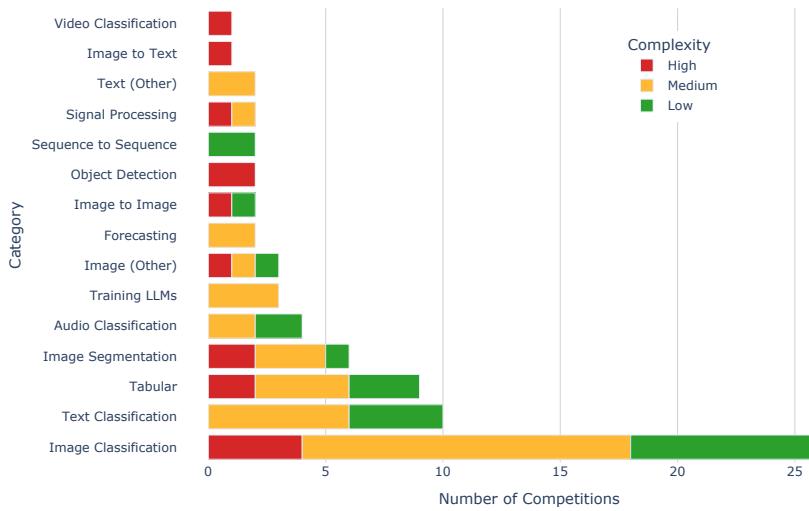


Figure 7: Evolution of CoMind’s Locally Estimated Competition Metrics Over Runtime Across Eight Ongoing Kaggle Tasks.

756 E CATEGORIES AND DIFFICULTIES IN MLE-BENCH

758 MLE-Bench (Chan et al., 2025) curates 75 ML engineering-related competitions from Kaggle, creating
 759 a diverse set of challenging tasks that test real-world ML engineering skills. These competitions
 760 span 15 diverse problem categories. Each competition has an associated description, dataset, and
 761 grading code. MLE-Bench categorizes competitions based on human evaluation results: Low (29%)
 762 if an experienced ML engineer can produce a sensible solution in 2 hours (excluding training time),
 763 Medium (51%) for 2–10 hours, and High (20%) for more than 10 hours.



782 Figure 8: (From MLE-Bench) **Competitions in MLE-Bench spans 15 categories.** MLE-Bench
 783 categorizes competition difficulties in Low, Medium and High.

784 F MLE-LIVE ON MLE-BENCH COMPETITIONS

785 We collected all public kernels and discussions posted before each competition’s deadline, preserving
 786 the temporal information to simulate realistic research environments. Table 5 presents detailed
 787 statistics for each competition in MLE-Live. The dataset encompasses 15,733 kernels and 12,951
 788 discussions across competitions of varying difficulty levels (Low, Medium, High).

789 Figure 9 shows the distribution of kernel votes across all competitions. The distribution is heavily
 790 skewed, with over half of the kernels receiving fewer than 10 votes. This long-tail pattern reflects
 791 real-world community dynamics where a small fraction of high-quality contributions attracts sub-
 792 stantial attention, while most submissions receive minimal engagement.

793 **Table 5: Statistics of MLE-Live on MLE-Bench competitions.** *Kern.* is the number of public
 794 kernels. *Disc.* is the number of discussions. *Dsets* is the number of external datasets referenced
 795 by public kernels, *Lines* refers to the average number of lines of all kernels, *Comms* is the average
 796 number of comments in all discussions.

Competition	Kern.	Disc.	Dsets	Lines	Comms
Low					
aerial-cactus-identification	275	27	12	177.40	3.52
aptos2019-blindness-detection	186	503	70	357.18	8.33
denoising-dirty-documents	59	19	1	70.36	4.53
detecting-insults-in-social-commentary	0	27	0	–	4.26
dog-breed-identification	64	33	9	161.75	5.15

809 *Continued on next page*

	Competition	Kern.	Disc.	Dsets	Lines	Comms
810	dogs-vs-cats-redux-kernels-edition	0	31	0	–	4.68
811	histopathologic-cancer-detection	118	51	12	228.19	9.53
812	jigsaw-toxic-comment-classification-challenge	128	394	56	80.88	7.19
813	leaf-classification	803	23	1	143.37	1.61
814	mlsp-2013-birds	0	35	0	–	4.94
815	new-york-city-taxi-fare-prediction	143	53	6	256.69	5.75
816	nomad2018-predict-transparent-conductors	53	40	9	57.14	5.30
817	plant-pathology-2020-fgvc7	207	91	27	281.84	5.14
818	random-acts-of-pizza	8	19	1	35.25	3.74
819	ranzcr-clip-catheter-line-classification	323	289	156	326.17	6.99
820	siim-isic-melanoma-classification	276	707	135	345.59	10.87
821	spooky-author-identification	153	68	13	103.45	3.75
822	tabular-playground-series-dec-2021	427	134	53	233.22	6.84
823	tabular-playground-series-may-2022	247	64	23	273.53	5.02
824	text-normalization-challenge-english-language	57	51	3	153.93	4.45
825	text-normalization-challenge-russian-language	12	20	2	37.67	2.85
826	the-icml-2013-whale-challenge-right-whale-redux	0	8	0	–	1.62
827	Medium					
828	AI4Code	159	178	93	395.78	5.76
829	alaska2-image-steganalysis	109	154	31	317.38	6.35
830	billion-word-imputation	0	23	0	–	3.43
831	cassava-leaf-disease-classification	411	724	209	358.37	6.77
832	cdiscount-image-classification-challenge	91	109	3	57.10	9.25
833	chaiii-hindi-and-tamil-question-answering	269	147	137	341.48	6.74
834	champs-scalar-coupling	290	340	49	307.36	8.54
835	facebook-recruiting-iii-keyword-extraction	0	72	0	–	5.32
836	freesound-audio-tagging-2019	109	128	18	349.46	7.23
837	google-quest-challenge	225	258	128	442.04	9.04
838	h-and-m-personalized-fashion-recommendations	419	223	63	240.76	6.30
839	herbarium-2020-fgvc7	19	15	3	205.83	3.67
840	herbarium-2021-fgvc8	21	26	17	266.86	2.46
841	herbarium-2022-fgvc9	36	37	6	274.52	3.84
842	hotel-id-2021-fgvc8	30	30	15	196.00	2.07
843	hubmap-kidney-segmentation	321	340	178	325.47	6.70
844	icecube-neutrinos-in-deep-ice	187	156	38	319.70	5.58
845	imet-2020-fgvc7	32	21	13	298.37	3.67
846	inaturalist-2019-fgvc6	12	11	3	244.17	4.27
847	iwildcam-2020-fgvc7	21	22	5	256.86	3.55
848	jigsaw-unintended-bias-in-toxicity-classification	410	413	118	301.86	8.16
849	kuzushiji-recognition	42	55	4	226.57	5.00
850	learning-agency-lab-automated-essay-scoring-2	477	226	301	349.24	7.78
851	lmsys-chatbot-arena	305	260	123	299.33	8.51
852	multi-modal-gesture-recognition	0	39	0	–	3.36
853	osic-pulmonary-fibrosis-progression	513	499	80	386.23	5.92
854	petfinder-pawpularity-score	397	461	153	240.50	5.86
855	plant-pathology-2021-fgvc8	325	112	135	273.29	4.20
856	seti-breakthrough-listen	230	222	72	333.81	7.82
857	statoil-iceberg-classifier-challenge	160	178	15	80.98	6.09
858	tensorflow-speech-recognition-challenge	47	139	4	55.94	6.83
859	tensorflow2-question-answering	102	193	52	420.29	6.71
860	tgs-salt-identification-challenge	213	336	24	329.40	12.16
861	tweet-sentiment-extraction	536	387	117	324.96	9.86
862	us-patent-phrase-to-phrase-matching	456	233	352	284.25	7.15
863	uw-madison-gi-tract-image-segmentation	233	230	124	445.30	6.32
864	ventilator-pressure-prediction	407	268	70	246.07	9.05
865	whale-categorization-playground	32	22	4	61.93	5.00
866	High					
867	3d-object-detection-for-autonomous-vehicles	39	116	10	565.09	6.19
868	bms-molecular-translation	167	218	57	463.33	10.39

Continued on next page

Competition	Kern.	Disc.	Dsets	Lines	Comms
google-research-identify-contrails-reduce-global-warming	143	136	115	322.43	6.24
hms-harmful-brain-activity-classification	631	390	258	573.88	6.64
iwildcam-2019-fgvc6	37	26	9	196.06	3.77
nfl-player-contact-detection	94	81	32	342.78	4.17
predict-volcanic-eruptions-ingv-oe	102	55	21	271.21	3.55
rsna-2022-cervical-spine-fracture-detection	209	152	106	302.68	4.34
rsna-breast-cancer-detection	538	433	291	342.78	7.11
rsna-miccai-brain-tumor-radiogenomic-classification	414	334	131	321.36	5.72
siim-covid19-detection	586	419	382	337.11	5.59
smartphone-decimeter-2022	49	56	16	244.82	3.79
stanford-covid-vaccine	201	194	29	342.38	8.55
vesuvius-challenge-ink-detection	190	177	72	387.63	6.19
vinbigdata-chest-xray-abnormalities-detection	317	187	115	379.55	6.70

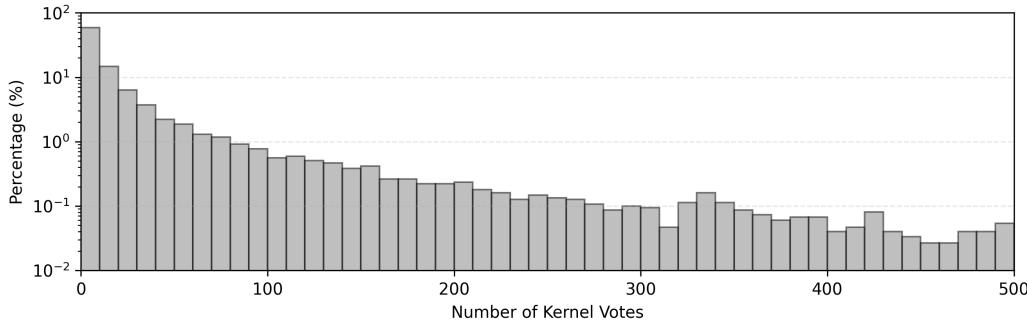


Figure 9: **Distribution of kernel votes across all competitions in MLE-Bench.** Over half of the kernels received fewer than 10 votes, demonstrating the long-tail nature of community contributions where most submissions receive minimal engagement while a small fraction attracts substantial attention.

G ERROR ANALYSIS

In this section, we analyze why CoMind failed to surpass the strongest public kernel in the fake-or-real-the-impostor-hunt Kaggle competition. The task involves identifying the fake text within each pair of samples. Although the dataset originates from The Messenger journal, both the “real” and “fake” texts have been heavily modified by LLMs, making the distinction more subtle and challenging. Below, we summarize the main obstacles encountered during CoMind’s execution:

Noised external resources. Public voting did not reliably indicate kernel quality; many highly upvoted kernels were merely ensembles or reused outputs from stronger solutions, offering little actionable insight. With a large volume of heterogeneous public contributions, identifying genuinely informative resources remained difficult.

Sparse evaluation signal. CoMind depends on the Evaluator’s feedback to guide iteration, but the task’s extremely small dataset allowed validation on only 10 examples. This produced highly unstable feedback and limited the system’s ability to differentiate between small performance variations. As shown in Figure 7, Evaluator accuracy saturated at 100% within the first 7 hours, leaving no meaningful gradient for further improvement.

Insufficient ablation analysis. While CoMind explored multiple strategies, its assessment of individual module effectiveness was inconsistent. For example, early iterations attempted to fine-tune local LLMs via LoRA and train binary classifiers on their outputs, but due to poor base model selection and insufficient hyperparameter exploration, these approaches underperformed simple classical signals such as TF-IDF cosine similarity and token-level similarity.

918 H PROMPTS AND RESPONSES FOR CoMIND 919

920 This section provides some examples of prompts and responses in CoMind, including **Coordinator**,
921 **Analyzer**, **Idea Proposer**, **Coding Agent** and **Evaluator**.
922

923 H.1 COORDINATOR 924

925 **Prompt for Solution Draft Synthesis**

926 **Introduction** You are an expert machine learning researcher preparing for the Kaggle
927 competition described below.
928

929 **Task Description** *{description of the specified task}*

930 **Ideas** *{entries in the idea pool}*

931 **Reports** *{entries in the report pool}*

932 **Public Pipelines** *{all public pipelines extracted before}*

933 **Goals**

- 934 1. Carefully read the reports provided above.
935
- 936 2. Based on the ideas and reports, propose *{num_pipes}* **promising self-contained**
937 **pipelines** that are likely to perform well.
938
- 939 3. The Public pipelines section contains top-ranked public pipelines during the com-
940 petition. Use them as reference to polish your pipelines.
941
- 942 4. Each pipeline should not overlap with others. Your proposed pipelines should in-
943 clude **one baseline pipeline that uses well-known methods but is robust and**
944 **relatively easy to implement**. You should reinforce public pipelines and previous
945 pipelines based on their reports (if provided).
946
- 947 5. Ensure that each pipeline can be trained within 2 hours on a single A6000 with
948 48GB memory.
949
- 950 6. Read the **submission format** requirements in the task description carefully. The
951 format requirement is possible to be different from the training dataset. **THIS IS**
952 **EXTREMELY IMPORTANT**. Mention in the pipeline descriptions and be sure
953 to include the code that handles the input and output.
954
- 955 7. DO NOT USE tensorflow, use pytorch instead

956 **Response Template for Solution Draft Synthesis**

957 **Submit Pipelines** Descriptions and codes of pipelines, separated each pipeline by ===SEP-
958 ARATOR== mark. For each pipeline, attach code that captures its essential. **You must**
959 **include the code in public pipelines that handles input and output, and if there are**
960 **parts of the public pipelines that are similar to the current pipeline, you should include**
961 **them as well.**

959 H.2 ANALYZER 960

961 **Prompt for Strategy Distillation**

962 **Introduction** You are an expert machine learning researcher preparing for the Kaggle
963 competition described below.
964

965 **Task Description** *{description of the specified task}*

966 **Goals** These are top-ranked public scripts during the competition. Your job is to:

- 967 1. Carefully read the following scripts.
968
- 969 2. For each script, if it's self-contained, i.e., including model architecture (if there's a
970 model), training strategies, evaluation, etc., then summarize its pipeline.
971
- 972 3. If the pipeline contains technical details, such as extensive feature engineering,
973 hyperparameter tuning, etc., then list them in full detail.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

4. Select a representative code segment for each pipeline. You must include dataset reading / submission generation parts. If task-specific details such as feature engineering are included, the code segment should contain them as well.

Public Kernels *{contents of public kernels}*

Response Template of Strategy Distillation of Public Kernels

Pipelines Description of each strategy, separated by ===SEPARATOR== mark. For each strategy, follow this format:

- Pipeline: A full detailed description of the pipeline. All input/output format, hyperparameters, training settings, model architectures, feature engineering, validation metric, and any other relevant information should be included. **Do not omit any feature engineering details.**
- Code abstract: A representative code segments that captures the essence (including input/output) and novelty of the pipeline. You **MUST** go through all the publicly available code and **include the parts that generate the submission file**. Contain task-specific engineering details. Mark the remainder as ellipses.

Prompt for Strategy Distillation of Public Discussions

Introduction You are an expert machine learning researcher preparing for the Kaggle competition described below.

Task Description *{description of the specified task}*

Goals These are top-voted public discussions during the competition. Your job is to:

Public Discussions *{contents of public discussions}*

1. Carefully read the following discussions.
2. For each discussion, you should decompose it into critical, novel and inspiring ideas that have potential to win this competition.

Response Template of Strategy Distillation of Public Discussions

Ideas required format: python list of strings, each element is a description of an idea extracted from the discussions. e.g. ['idea 1', 'idea 2'].

H.3 IDEA PROPOSER

Prompt for Brainstorm

Introduction You are an expert machine learning researcher preparing for the Kaggle competition described below.

Task Description *{description of the specified task}*

Goals I already have a list of ideas that partially explore how to approach this competition. Your job is to:

1. Think creatively and construct at least **4 alternative and highly novel solution paths** that are likely to perform well, especially if combined with careful experimentation.
2. Each solution path can be a strategy, pipeline, or method that combines multiple techniques. Try to make them as different as possible from the existing "ideas" list.
3. After describing each full solution path, **break it down into individual minimal ideas**-these should be the smallest units of implementation (e.g., "use LightGBM for baseline", "normalize input features", "apply stratified K-fold CV")
4. Ensure these ideas do not substantially duplicate items already in "ideas".

1026
1027 5. Refer to the "Reports" section for the latest updates and suggestions on the ideas
1028 and previous pipelines.

1029 **Ideas** *{entries in the idea pool}*

1030 **Reports** *{entries in the report pool}*

1032 **Public Pipelines** *{all public pipelines extracted before}*

1033 **Instructions** Format your output like this (one line, one idea):

1035 **Response Template**

1037 *{your understanding of the task and explanation of your approaches}*

1038 **====SOLUTION_PATH_1====**

1039 *{description of this approach}*

1040 - *{minimal idea 1}*

1041 - *{minimal idea 2}*

1042 - *{minimal idea 3}*

1043 - ...

1044 **====SOLUTION_PATH_2====**

1045 ...

1046 **====SOLUTION_PATH_3====**

1047 ...

1048 Be ambitious but realistic - many ideas can later be tested on a small subset of the data.
1049 Focus on novelty, diversity, and decomposability. Ready? Start.
1050

1051
1052 **Prompt for Idea Filtering and Reconstruction**

1054 **Introduction** You are a machine learning expert. After carefully searching the relevant
1055 literature, you have come up with a list of ideas to implement. However, this idea list has
1056 some issues:

1057 • Some ideas are too similar and should be merged into one.
1058 • Some ideas are overlapping, you should rephrase and decouple them.
1059 • You should discard ideas that are irrelevant to the final performance, such as error visualization,
1060 etc.

1061 You should refer to the Reports section and Public Pipelines section for previous implemented
1062 pipelines. Please decompose, merge, and reconstruct the ideas listed below.

1063 **Ideas** *{entries of the idea pool}*

1064 **Reports** *{entries of the report pool}*

1066 **Public Pipelines** *{all public pipelines extracted before}*

1069 **Response Template of Idea Filtering and Reconstruction**

1071 **Ideas** required format: Python list of strings, each element is a description of an idea. e.g.
1072 ['idea 1', 'idea 2'].
1073

1074
1075 **Prompt for Coding Agent Report Compilation**

1077 Please summarize the results and submit a comprehensive report.
1078

1079

1080
1081

Response Template for Coding Agent Report Compilation

1082
1083
1084
1085

pipeline A detailed description of the pipeline that generated the best results. All hyperparameters, training settings, model architectures, feature engineering, validation metric, and any other relevant information should be included. Describe potential improvements and future work.

1086
1087

summary A comprehensive evaluation of each individual component of the pipeline. For each component, summarize in the following format:

==== {name of the component} ===

Novelty: 0-10 (0: trivial, 10: clearly novel - major differences from existing well-known methods)

{your rationale}

Feasibility: 0-10 (0: almost impossible to implement and require extensive engineering, 10: Easy to implement)

{your rationale}

Effectiveness: 0-10 (0: minimal performance improvement, 10: very strong performance, significantly outperform most baselines)

{your rationale}

Efficiency: 0-10 (0: very slow, over-dependent on CPU and hard to produce meaningful results within the time limit, 10: high utilization of GPU)

{your rationale}

Confidence: 0-10 (0: no empirical results, not sure whether the evaluation is correct, 10: fully verified on large scale with abundant results)

1102

1103
1104

H.4 EVALUATOR

1105
1106

Prompts for Dataset Splitting and evaluate.py

1107
1108
1109

You are an experienced machine learning engineer. Please generate two self-contained Python code for local evaluation of a Kaggle agent. Your code should be robust, reusable, accept command-line arguments and print necessary information.

1110
1111
1112
1113
1114
1115
1116
1117

Background

- Kaggle competitions usually provide labels only for the training set. To evaluate an agent locally, we need to split the training set into a training and validation split.
- The validation set must hide its labels from the agent. The agent only sees the training set (with labels) and the validation inputs (without labels).
- The hidden validation labels will be stored separately and used only for offline evaluation.
- Importantly: ./public must never contain validation labels. Validation labels are saved only in ./private.

1118
1119
1120

Kaggle Competition Description {description of the specified task}

1121
1122

Data Preview {schema of the input file structure}

1123

Deliverables Please generate two scripts (both in Python 3, runnable from the command line):

1124

1) split_dataset.py

1125
1126
1127
1128
1129

Goal: Split the original training data into 90% training and 10% validation. Store validation inputs (without labels) in ./public, and validation labels in ./private. The training set (with labels) and original test set must remain in ./public, preserving the original structure as closely as possible. The structure of validation inputs should also match the test set. Generate a sample validate submission validate_sample_submission.csv under ./public. All original data (training and test) are visible in {path to the input directory}.

1130

Example: If the original data is structured as:

1131
1132
1133

```
- kaggle_evaluation/ (official evaluation tool provided by Kaggle)
  - __init__.py
  - ...
- train.csv
```

```

1134
1135     - train/
1136     - test.csv
1137     - test/
1138     - sample_submission.csv
1139
1140     You should split the dataset into:
1141
1142         (./public/)
1143         - kaggle\_evaluation/ (official evaluation tool provided by Kaggle) (unchanged, soft
1144             links)
1145             - __init__.py
1146             - ...
1147             - train.csv (this contains 90% of the training data)
1148             - train/ (this contains 90% of the training data, keep unchanged data as soft links)
1149             - test.csv (unchanged, soft link)
1150             - test/ (unchanged, soft link)
1151             - sample_submission.csv (unchanged, soft link)
1152             - validate.csv (this contains 10% of the training data with labels withheld)
1153             - validate/ (soft links)
1154             - validate_sample_submission.csv (a sample submission file for validation set)
1155
1156         (./private/)
1157             - validate.csv (labels of validation set)
1158
1159     If the training data contains zip files, you should extract them to the public directory before
1160     splitting the dataset. You should always print the directory structure after the split. Do not
1161     extract files to the original directory and keep it unchanged.
1162
1163     If the training data contains multiple classes, you should use stratified sampling. You
1164     should strictly follow the evaluation metric mentioned in the task description and ensure the
1165     validation set is representative of the overall class distribution. Never write validation labels
1166     into ./public.
1167
1168     Your code will be executed by command line as follows:
1169
1170         ````bash
1171             python split_dataset.py --input_dir <path to the input directory> --public_dir ./public
1172                 --private_dir ./private
1173
1174             DO NOT store the training and test files in other folders such as ./public-;TIMESTAMP;, the
1175             ./public folder will be exposed to later code agent. Make sure the ./public directory has
1176             similar structure with the original data folder.
1177
1178     2) evaluate.py
1179
1180     Goal: Evaluate the agent's predictions on validation set against the hidden ground truth
1181     (./private/...). Output evaluation results (json format) to console and write ./private/e-
1182     val_report.json.
1183
1184     It will be executed by command line as follows:
1185
1186         ````bash
1187             python evaluate.py --public_dir ./public --private_dir ./private --pred <path to the
1188                 validation submission file>
1189
1190
1191     We will pass the path to the sample validation submission file as the argument to your eval-
1192     uate.py script. It typically produces low scores.
1193
1194     The script should generate in the following json format at ./private/eval_report.json:
1195
1196     {
1197         "score": A float number represents the evaluation score on the validation set. Do
1198             not omit this field. If the evaluation is unsuccessful or the predictions are
1199             invalid, this field should be set to null,
1200         "success": A boolean value indicates whether the evaluation was successful or not,
1201         "message": A string provides additional information about the evaluation result.
1202             Leave it an empty string if the predictions are valid and evaluation is
1203             successful. Otherwise provide necessary details on why it failed.
1204     }
1205
1206
1207     Do not raise any error or exception. If the evaluation is unsuccessful, you should set the
1208     score to null and provide a detailed explanation in the message field.
1209
1210     Now, let's write these two scripts step by step. You should first generate split_dataset.py.
1211     We will execute the code by command line as mentioned above. You should correct the code
1212     in case of any issues. You should always generate full, self-contained code. No part of the
1213     code should be omitted.
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2279
2280
2281
2282
2283
2284
2285
2286
2287
2287
2288
2289
2289
2290
2291
2292
2293
2294
2295
2296
2297
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2338
2339
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2348
2349
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2378
2379
2379
2380
2381
2382
2383
2384
2385
2386
2387
2387
2388
2389
2389
2390
2391
2392
2393
2394
2395
2396
2397
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2428
2429
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2438
2439
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2448
2449
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2458
2459
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2468
2469
2469
2470
2471
2472
2473
2474
2475
2476
2477
2477
2478
2478
2479
2479
2480
2481
2482
2483
2484
2485
2486
2487
2487
2488
2489
2489
2490
2491
2492
2493
2494
2495
2496
2497
2497
2498
2499
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2528
2529
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2538
2539
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2548
2549
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2558
2559
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2568
2569
2569
2570
2571
2572
2573
2574
2575
2576
2577
2577
2578
2578
2579
2579
2580
2581
2582
2583
2584
2585
2586
2587
2587
2588
2589
2589
2590
2591
2592
2593
2594
2595
2596
2597
2597
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2608
2609
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2618
2619
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2628
2629
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2638
2639
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2648
2649
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2658
2659
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2677
2678
2678
2679
2679
2680
2681
2682
2683
2684
2685
2686
2687
2687
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2697
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2720
2721
2721
2722
2723
2724
2725
2726
2727
2728
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2768
2769
2769
2770
2771
2772
2773
2774
2775
2776
2777
2777
2778
2778
2779
2779
2780
2781
2782
2783
2784
2785
2786
2787
2787
2788
2789
2789
2790
2791
2792
2793
2794
2795
2796
2797
2797
2798
2799
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2808
2809
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2819
2820
2820
2821
2821
2822
2823
2824
2825
2826
2827
2828
2829
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2838
2839
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2848
2849
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2858
2859
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2879
2880
2881
2882
2883
2884
2885
2886
2887
2887
2888
2889
2889
2890
2891
2892
2893
2894
2895
2896
2897
2897
2898
2899
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2908
2909
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2919
2920
2920
2921
2921
2922
2923
2924
2925
2926
2927
2928
2928
2929
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2938
2939
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2948
2949
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2958
2959
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2968
2969
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2979
2980
2981
2982
2983
2984
2985
2986
2987
2987
2988
2989
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2998
2999
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3008
3009
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3038
3039
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3048
3049
3049
3050
3051

```

```

1188
1189 Respond in the following format:
1190
1191     ```current_file
1192     This should be either split_dataset.py or evaluate.py. Leave this as None if both are
1193     generated and functioned. This indicates the current file you are editing.
1194
1195     ```explanation
1196     Your explanation on the workflow of your code.
1197
1198     ```python
1199     The full content of the current file. Leave this as None if both are generated and
1200     functioned.
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

H.5 CODING AGENT

Prompts for Coding Agent Iterative Implementation

1205 **Introduction** You're an expert Kaggle competitor tasked with implementing a pipeline
1206 into Python code. You can modify the details (training parameters, feature engineering,
1207 model selection, etc.), but do not change overall architecture of this pipeline. The goal is to
1208 **obtain best score** on this competition.

1209 **Task Description** *{description of the specified task}*

1210 **Pipeline** *{description of the solution draft to implement}*

1211 **Data Overview** *{schema of the input file structure}* Follow the pipeline description and the
1212 code abstract to implement it. All the input files are visible in ./input folder, this folder typi-
1213 cally contains the competition data and external resources, including public datasets, models
1214 and outputs of other kernels. DO NOT USE /kaggle/input paths in your code. USE ./input
1215 instead.

1216 file structure:

```

1216     - input/ (./input)
1217         - competition_id/ # the official competition dataset
1218         - alice/dataset1/ # other public datasets
1219         - alice/kernel1/ # referenced kernels
1220     - working/
1221         - agent.ipynb # the notebook you will be working on (./agent.ipynb)
1222         - other files

```

1223 You will develop the pipeline based on this codebase. Any output files of the codebase, such
1224 as csvs, checkpoints, etc., are visible in ./, which is also your current working directory.

1225 *{Description of Selected Codebase}*

1226 You should note that checkpoints generated by this codebase are stored in ./ other than ./input.
1227 You must load the checkpoint file under the ./ directory for ensemble prediction.

1228 Your code must produce a submission at ./submission.csv, this is EXTREMELY IMPOR-
1229 TANT. Before generating the submission, you must print the value of the evaluation metric
1230 computed on a hold-out validation set. You can use custom evaluation functions during
1231 training, but the final metric **MUST FOLLOW THE EVALUATION SECTION IN THE**
1232 **TASK DESCRIPTION** on a validation set. If other kernels with submission.csv are pro-
1233 vided in the input folder, you can ensemble them before generating your own submission.
1234 This is important because we will pick your best code based on this metric. You are allowed
1235 to load the checkpoints of other models. Do not contain any absolute paths in your code.
1236 Time limit per run is 2 hours. Your code will be killed if timeout.

1237 Your code will be executed on a single A6000 GPU. Use large batch sizes to maximize
1238 the GPU utilization. If the code segment is provided in this prompt, you should follow the
1239 input/output structure. You are allowed to install any packages you need or inspect the
1240 workspace (e.g., print file contents, check folder structure). Always use GPU for acceleration.
1241 DO NOT USE ABSOLUTE PATHS IN YOUR CODE.

1242 The workspace will be maintained across iterations. That is, if your first iteration code pro-
1243 duces a checkpoint, you can load it in the second iteration. You can ensemble submissions
1244 generated by yourself and other kernels. You should generate model checkpoints for future

1242
 1243 loading. If you load the external submissions successfully but failed to merge them with
 1244 your own predictions, you should print the headers of the external submission and your own
 1245 predictions and check if the ids are aligned. All the external submissions are valid. Your
 1246 predictions should be in the same format as them.
 1247 To evaluate your submission locally. You should also generate a submission file on the
 1248 validation set. All the validation data are typically structured similarly to the test data. An
 1249 external grader will be used to evaluate your validation submission. That is to say, you
 1250 should generate TWO submission files: one is for the validation set and the other is for the
 1251 test set. Generate two submission files in the same code cell.
 1252 You are allowed to install any packages by running ‘`pip install {package_name}`’ in your
 1253 script. Your installation will take effect in the NEXT cell.
 1254 A persistent Jupyter Notebook session is maintained. Your proposed code cell will be di-
 1255 rectly appended to the notebook and executed. You should separate data loading, training
 1256 and evaluation in different cells. Now, please propose THE FIRST CELL of your code (not
 1257 your full code!) using the following format:
 1258

```

<goal>
The explanation of your first cell. You should describe the desired execution time and
      output of this cell. Explain how to interpret the execution output.
</goal>

<code>
The content of this cell. Do not wrap the code in a markdown block. Your code will be
      appended to the notebook, which is stored at ./agent.ipynb. Your code must print
      necessary information after each milestone.
</code>

<validation_submission>
The name of the submission file for the validation set. e.g. validate\_submission.csv.
      If your current code cell does not produce two submission files, leave this as
      None.
</validation_submission>

<submission>
The name of the submission file for the test set. e.g. submission.csv. This submission
      should be ready for Kaggle submission. If your current code cell does not produce
      two submission files, leave this as None.
</submission>
  
```

1258 The validation_submission tag and the submission tag should must be both empty or both
 1259 non-empty.

Prompt for Execution Monitor

1275
 1276 You are an AI assistant monitoring code execution. Your task is to analyze the current
 1277 execution output and decide whether the code should continue running.
 1278 Code being executed:
 1279 *{code to analyze}*
 1280 Goal: *{execution target of this code}*
 1281 Runtime Information:
 1282

- Current runtime: *{code execution time elapsed}*
- Maximum runtime: *{maximum execution time}*
- Remaining time: *{remaining execution time}*

1283 Current Output:
 1284 *{current output of this code cell}*
 1285 Consider these factors:
 1286

1. Is the loss exploding (becoming very large or NaN)?
2. Is the loss decreasing normally over time?
3. Are there any error messages indicating failure?
4. Does the output suggest normal training/execution progress?
5. Based on current progress and remaining time, is it possible to complete within the
 1287 time limit?

```
1296
1297     Respond in the following format:
1298
1299         <action>
1300             CONTINUE/STOP
1301         </action>
1302
1303         <explanation>
1304             Your rationale for the action. Describe the current progress, your estimated remaining
1305                 time, and explain why you think the execution should continue or stop. DO NOT GIVE
1306                 SUGGESTIONS ON BUG FIXES.
1307             </explanation>
1308
1309
1310
1311
1312
1313
```

Prompt for Consequent Code Revisions

```
1306
1307
1308     The execution takes {execution_time} seconds and ends with the following output:
1309     {truncated output}
1310
1311     Execution completed successfully. You should keep updating your code (e.g., try different
1312     hyperparameters, augmentations, model architectures) after you have made successful
1313     submission. Your best submission will be recorded.
```

Now, respond in the following format:

```
1314
1315     <validation_submission>
1316         The name of the submission file for the validation set. e.g. validate_submission.csv.
1317             If your current code cell does not produce a submission file on the validation set
1318                 , leave this as None.
1319             </validation_submission>
1320
1321     <submission>
1322         The name of the submission file for the test set. e.g. submission.csv. This submission
1323             should be ready for Kaggle submission. If your current code cell does not produce
1324                 a submission file on the test set, leave this as None.
1325             </submission>
1326
1327     <goal>Describe the goal and how to inspect the output of your next code cell</goal>
1328
1329     <code>
1330         The content of your next code cell. Following the previous format, do not wrap your
1331             code within markdown code marks. You should keep updating your code (e.g., try
1332                 different hyperparameters, augmentations, model architectures) even after you have
1333                 made successful submission. Always evaluate your submission and print the metric
1334                 on a validation set.
1335             </code>
```

The validation_submission tag and the submission tag should must be both empty or both non-empty.

```
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
```

1350
1351

I CASE STUDY: DENOISING DIRTY DOCUMENTS

1352
1353

I.1 DATASET PREPARATION

1354
1355
1356

Besides the task description and datasets prepared in MLE-Bench, MLE-Live collects 59 public kernels and 19 discussions which are available on Kaggle and are posted before the competition ends.

1357
1358

I.1.1 EXAMPLE OF PUBLIC KERNEL

1359
1360

```
"""
A simple feed-forward neural network that denoises one pixel at a time
"""

import numpy as np
import theano
import theano.tensor as T
import cv2
import os
import itertools

theano.config.floatX = 'float32'

def load_image(path):
    return cv2.imread(path, cv2.IMREAD_GRAYSCALE)

def feature_matrix(img):
    """Converts a grayscale image to a feature matrix

    The output value has shape (<number of pixels>, <number of features>)
    """
    # select all the pixels in a square around the target pixel as
    # features
    window = (5, 5)
    nbrs = [cv2.getRectSubPix(img, window, (y, x)).ravel()
            for x, y in itertools.product(range(img.shape[0]), range(img.
shape[1]))]

    # add some more possibly relevant numbers as features
    median5 = cv2.medianBlur(img, 5).ravel()
    median25 = cv2.medianBlur(img, 25).ravel()
    grad = np.abs(cv2.Sobel(img, cv2.CV_16S, 1, 1, ksize=3).ravel())
    div = np.abs(cv2.Sobel(img, cv2.CV_16S, 2, 2, ksize=3).ravel())

    ... (omitted) ...

    # for fname in os.listdir('../input/test/'):
    for fname in ['1.png']:
        test_image = load_image(os.path.join('../input/test', fname))
        test_x = feature_matrix(test_image)

        y_pred, = predict(test_x)
        output = y_pred.reshape(test_image.shape)*255.0

        cv2.imwrite('original_' + fname, test_image)
        cv2.imwrite('cleaned_' + fname, output)

if __name__ == '__main__':
    main()
```

1401
1402

I.1.2 EXAMPLE OF DISCUSSION

1403

```
# Edge Diffraction in train_cleaned data
```

1404
1405 (Lance <TIER: N/A>) <p>I'm studying the pixels in train_cleaned data. I attached a
1406 colorized blow-up version of part of the image train_cleaned/45.png. The
1407 yellow pixels are any pixels that were not pure white (!= 0xFF gray scale) in image 45.
1408 png, the green was pure white (0xFF).</p>
1409 <p>So you see what looks like an edge diffraction line lining the outer edge of all the
1410 letters.</p>
1411 <p>Okay, maybe I got something wrong in my code. Can anyone confirm this edge
1412 diffraction thing in the train_cleaned data, as for example the first word in
1413 train_cleaned/45.png (There). You need to make the non-white (byte != 0xFF)
1414 pixels all a more contrasting color or you may not see it.</p>
1415 <p>I'm guessing that the clean png files were at some point scanned in using some kind of
1416 optical scanning machine which added these edge diffraction lines when the light
1417 diffracts off the edge of the black ink character.</p>
1418 ... (omitted) ...
1419 + (Rangel Dokov <TIER: MASTER>) <p>Yes, there is some noise, which doesn't look like it
1420 should be there in the clean set... I ran a test setting everything whiter than 0x00
1421 to 0xFF and the RMSE was 0.005, which should be an upper bound on the effects from the
1422 halos. This will likely be large enough to make the top of the leaderboard a game of
1423 luck, but since this is just a playground competition I'm not terribly worried about
1424 it.</p>

I.2 EXAMPLE AGENT WORKFLOW

In our experiment settings, CoMind only accesses top-10 voted discussions and kernels and ignores the rest. The community is initialized with these artifacts. Upon completion of this process, 7 ideas and 10 pipelines are generated. Below is an excerpt of the ideas and reports generated by the Analyzer.

- (0) Use behaviour-based clustering of neural networks: cluster models by their error patterns and ensemble them for document enhancement
- (1) Implement sliding-window patch-based models that take an input window and output multiple cleaned pixels simultaneously for both denoising and resolution enhancement
- (2) Apply a Waifu2x-inspired deep convolutional neural network with gradually increasing filter counts (e.g., 1 \rightarrow 32 \rightarrow 64 \rightarrow 128 \rightarrow 256 \rightarrow 512 \rightarrow 1) and LeakyReLU activations for effective denoising
- (3) Carefully initialize convolutional weights (e.g., $\text{stdv} = \sqrt{2 / (\text{kW} * \text{kH} * \text{nOutputPlane})}$) and use LeakyReLU to improve model convergence and performance
- (4) Ensemble multiple models with different input preprocessing: combine outputs from a pure CNN, background-removed images, edge maps, and thresholded inputs to capture diverse noise characteristics
- (5) Augment training data to simulate real-world 3D deformations and shadows on text, not just 2D noise, to better match test-time artifacts
- (6) Account for systematic artifacts in 'clean' training data (e.g., single-pixel halos) by treating them as noise or adjusting targets accordingly during training

```

Public pipeline (0): - Pipeline: A simple feed-forward neural network that denoises one pixel
    at a time (Theano).
- Feature engineering: for each pixel extract a 5*5 window of gray values (neighbors), 5*5
    median blur, 25*25 median blur, Sobel gradient and second-order derivative magnitudes,
    stack into a feature vector. Normalize features to [0,1].
- Model architecture: two-layer MLP; hidden layer size N_HIDDEN=10, tanh activation, output
    layer with custom activation clip(x+0.5,0,1).
- Training: MSE cost, stochastic gradient descent with learning rate 0.1, batch size 20,
    epochs 100. Validation on one image (3.png) at each epoch by RMSE.
- Prediction: apply same feature_matrix to test images, predict pixel values, reshape to full
    image, write out cleaned PNGs.
- Code abstract:
def feature_matrix(img):
    window=(5,5)
    nbrs=[cv2.getRectSubPix(img,window,(y,x)).ravel()
        for x,y in iter工具s.product(range(img.shape[0]),range(img.shape[1]))]
    median5=cv2.medianBlur(img,5).ravel()
    median25=cv2.medianBlur(img,25).ravel()
    grad=np.abs(cv2.Sobel(img,cv2.CV_16S,1,1,ksize=3).ravel())
    div=np.abs(cv2.Sobel(img,cv2.CV_16S,2,2,ksize=3).ravel())
    misc=np.vstack((median5,median25,grad,div))
    features=np.hstack((nbrs,misc))
    return (features/255.).astype('float32')

...
class Model(object):
    def __init__(...):
        self.layer1=Layer(...,n_in=...,n_out=N_HIDDEN,activation=T.tanh)
        self.layer2=Layer(...,n_in=N_HIDDEN,n_out=n_out,
                        activation=lambda x: T.clip(x+0.5,0,1))
    def cost(self,y): return T.mean((self.output-y)**2)
...
----- PIPELINE SEPARATOR -----
```

```

1458 Public pipeline (1): - Pipeline: Matching image backgrounds in R (no ML model).
1459   - Reads test PNGs in batches of 12 images.
1460   - Flattens each into vectors of size 258*540, stacks as columns.
1461   - For each pixel location, takes the maximum value across images as an estimate of background
1462   .
1463   - Writes out background images as PNG.
1464   - Code abstract:
1465     for(i in 1:4) {
1466       matches=seq(1,205,by=12)+(i-1)*3
1467       rawData=matrix(0,258*540,length(matches))
1468       for(j in seq_along(matches)) {
1469         imgY=readPNG(file.path(testDir,paste0(matches[j],'.png')))
1470         rawData[,j]=as.vector(imgY[1:258,1:540])
1471       }
1472       background=matrix(apply(rawData,1,max),258,540)
1473       writePNG(background, paste0('background',matches[j],'.png'))
1474     }
1475   ...
1476   ----- PIPELINE SEPARATOR -----
1477 Public pipeline (2): - Pipeline: Pixel-wise Random Forest regression (Python, chunk size=1e6).
1478   - Feature engineering: pad image by mean value (padding=1); extract 3*3 neighborhood per
1479     pixel, flatten as features.
1480   - Training data: load all train noisy images, compute features via joblib parallel (n_jobs
1481     =128), load targets as flattened clean pixel intensities/255.
1482   - Model: sklearn.ensemble.RandomForestRegressor(warm_start=True, n_jobs=-1). Incrementally
1483     add one estimator at a time: split training rows into CHUNKSIZE=1e6 slices, in each
1484     slice increase n_estimators by 1 and fit on that slice.
1485   - Prediction: extract test features similarly, generate index strings "image_row_col",
1486     predict pixel values, write submission CSV.
1487   - Code abstract:
1488     def get_padded(img, padding=1):
1489       padval=int(round(img.mean()))
1490       ...
1491       return padded
1492     def get_features_for_image(img,padding=1):
1493       padded=get_padded(img,padding)
1494       return np.vstack([padded[i:i+3,j:j+3].reshape(1,-1)
1495                     for i in range(rows) for j in range(cols)])
1496     ...
1497     def get_model(X,y):
1498       model=RandomForestRegressor(n_estimators=0,warm_start=True,n_jobs=-1)
1499       for start,end in slices:
1500         model.set_params(n_estimators=model.n_estimators+1)
1501         model.fit(X[start:end],y[start:end])
1502       return model
1503     ...
1504   ----- PIPELINE SEPARATOR -----
1505   ... (omitted) ...
1506   ----- PIPELINE SEPARATOR -----
1507 Public pipeline (9): - Pipeline: XGBoost with basic features in R.
1508   - Features: raw pixel value, kmeansThreshold binary, background_Removal feature.
1509   - Sample 25k pixels, build DMatrix, 5-fold CV, early stop, select rounds, train xgb.
1510   - Predict on test, clip, build id strings, write submission.csv.
1511   - Code abstract:
1512     dat=cbind(y,raw=img2vec(imgX),thresholded=kmeansThreshold(imgX),
1513                backgroundRemoval=img2vec(background_Removal(imgX)))
1514     rows=sample(nrow(dat),25000)
1515     dtrain=xgb.DMatrix(dat[rows,-1],label=dat[rows,1])
1516     xgb.tab=xgb.cv(data=dtrain,nfold=5,early.stop.round=50)
1517     xgb.mod=xgboost(data=dtrain,nrounds=min.err.idx)
1518     yHat=predict(xgb.mod,newdata=as.matrix(x))
1519     ...
1520

```

1500 Then, the Idea Proposer begins brainstorming to propose more original strategies.

```

1501 ===SOLUTION_PATH_1===
1502 Multi-Scale Wavelet-U-Net with Attention and Multi-Term Loss
1503 Description: decompose each image via discrete wavelet transform (DWT) into low-/high-
1504   frequency bands, process each band in a dual-branch U-Net enhanced with channel- and
1505   spatial-attention, then invert the wavelet to reconstruct. Train end-to-end with a
1506   weighted sum of pixel-wise RMSE, wavelet-band consistency, and edge preservation losses.
1507   - apply 2D DWT to noisy input -> obtain LL, LH, HL, HH sub-bands
1508   - feed LL into a "coarse" encoder branch, feed concatenated LH/HL/HH into a "detail" encoder
1509   branch
1510   - use a U-Net decoder to upsample each branch back to patch size, fuse via learned 1*1
1511   convolutions
1512   - insert Convolutional Block Attention Modules (CBAM) after each encoder and decoder block
1513   - define loss = alpha*pixelRMSE(clean,output) + beta*bandRMSE(wavelet(clean),wavelet(output))
1514     + gamma*edgeLoss(Sobel(clean),Sobel(output))
1515   - train on full images with AdamW and a cosine-annealing LR schedule
1516
1517 ===SOLUTION_PATH_2===

```

```

1512 Stroke-Aware Conditional GAN with OCR-Guided Perceptual Loss
1513 Description: build a conditional GAN (generator = deep residual encoder-decoder, discriminator
1514 = PatchGAN) that not only minimizes pixel loss but also preserves text strokes-enforce a
1515 stroke-level loss via a pre-trained small CNN classifier that predicts presence/width of
1516 strokes. Add an OCR-based perceptual loss: feed predictions through a frozen OCR engine
1517 embedding and minimize distance to clean embedding.
1518 - implement generator as ResNet blocks + skip connections (64->128->256->128->64)
1519 - implement discriminator as 70*70 PatchGAN to focus on local texture
1520 - include L1 pixel loss + adversarial loss + stroke consistency loss (L1 between stroke-CNN
1521 features on clean vs. restored)
1522 - freeze a small text-structure CNN (trained on binary masks) to extract stroke features
1523 - run Tesseract (or lightweight OCR CNN) on restored vs. clean, extract penultimate-layer
1524 activations, add perceptual loss term
1525 - train with R1 gradient penalty and spectral normalization on discriminator
1526
1527 ===SOLUTION_PATH_3===
1528 Joint Dictionary Learning + Non-Local Patch Aggregation
1529 Description: learn paired dictionaries ( $D_{noisy}$ ,  $D_{clean}$ ) for small patches (e.g. 8*8) via
1530 coupled K-SVD. At test time, extract overlapping patches, compute sparse codes  $\alpha$ 
1531 under  $D_{noisy}$  via OMP, reconstruct clean patches =  $D_{clean} \cdot \alpha$ . Then, perform non-local
1532 means on the reconstructed patches to exploit self-similarity and average aggregates.
1533 - sample a large bank of noisy/clean patch pairs, initialize  $D_{noisy}$ ,  $D_{clean}$  with DCT basis
1534 - run coupled K-SVD to minimize  $\|D_{noisy} \cdot \alpha - y_{noisy}\| + \|D_{clean} \cdot \alpha - y_{clean}\|$  w.r.
1535 t.  $D_{noisy}, D_{clean}, \alpha$ 
1536 - at test time, for each image patch  $y_{noisy}$ , compute  $\alpha$  via Orthogonal Matching Pursuit (
1537 sparsity  $\leq k$ )
1538 - reconstruct  $y_{clean\_est} = D_{clean} \cdot \alpha$  for each patch
1539 - perform block-matching to find K nearest patches per reference patch (Euclid dist), stack
1540 them
1541 - aggregate reconstructed patches with non-local weights (e.g. Gaussian on reconstruction
1542 residual)
1543
1544 ===SOLUTION_PATH_4===
1545 Self-Supervised Blind Denoising via Noise2Void + Test-Time Adaptation
1546 Description: exploit purely noisy data-train a small U-Net with masked pixel prediction (
1547 Noise2Void) on each test image at inference (test-time training). The network learns to
1548 predict a pixel from its context, gradually adapting to local noise statistics, then you
1549 run a forward pass to obtain the cleaned image. No clean target needed.
1550 - define blind-spot or random masking scheme: mask 1% pixels per batch, replace with neighbors
1551 - build a lightweight CNN (e.g. 5 down/up blocks with skip connections) that predicts a full
1552 image
1553 - fine-tune this CNN on each test image for N_iter (e.g. 500 steps) using only masked L2 loss
1554 - use data augmentation (rotations, flips) on the single test image to diversify contexts
1555 - after adaptation, perform a clean forward pass without masking to get the denoised output
1556 - optionally ensemble outputs from multiple random initializations to reduce variance
1557
1558 To remove similar ideas and decompose overlapped ideas, a reconstruction is performed subse-
1559 quently. 9 ideas are preserved after the filtering and reconstruction. These ideas are then merged
1560 with the idea memory.
1561
1562 (0) Use diverse ensembles by clustering models based on their error patterns and combining
1563 outputs from differently preprocessed inputs (e.g., raw, background-removed, edge maps,
1564 thresholded) to capture varied noise characteristics.
1565 (1) Develop a sliding-window, patch-based model that takes an input region and predicts
1566 multiple denoised and super-resolved pixels simultaneously for efficient document
1567 enhancement.
1568 (2) Implement a Waifu2x-inspired deep convolutional network with progressively increasing
1569 filter counts and LeakyReLU activations, initialized using He normalization for robust
1570 convergence in denoising tasks.
1571 (3) Augment the training set with simulated 3D deformations, lighting variations, and shadows
1572 on text to better match real-world scanning artifacts.
1573 (4) Identify and compensate for systematic artifacts in the "clean" training targets (e.g.,
1574 single-pixel halos) by modeling them as noise or adjusting ground-truth labels during
1575 training.
1576 (5) Build a wavelet-domain dual-branch U-Net: decompose inputs with 2D DWT into approximation
1577 and detail bands, encode separately, decode and fuse via learned 1*1 convolutions,
1578 integrate CBAM attention modules, and train end-to-end with a composite loss combining
1579 pixel RMSE, wavelet-band RMSE, and edge loss, optimized using AdamW with a cosine-
1580 annealing LR schedule.
1581 (6) Apply a GAN-based restoration framework: use a ResNet-based generator and 70*70 PatchGAN
1582 discriminator, train with a combination of L1 pixel loss, adversarial loss, stroke-
1583 consistency loss (via a frozen stroke-feature CNN), and perceptual OCR-feature loss,
1584 incorporating R1 gradient penalty and spectral normalization.
1585 (7) Leverage coupled dictionary learning and non-local aggregation: learn noisy and clean
1586 dictionaries simultaneously via coupled K-SVD, reconstruct patches using OMP, enhance
1587 self-similarity with block-matching, and fuse reconstructed patches with non-local
1588 weighting.
1589 (8) Implement blind-spot test-time adaptation: randomly mask a small percentage of pixels per
1590 batch, train a lightweight CNN with skip connections on the single test image using

```

1566 masked L2 loss and augmentations, fine-tune per image for a few hundred steps, and
 1567 optionally ensemble multiple initializations for variance reduction.
 1568

1569 Based on the ideas received from the Idea Proposer and previous reports, the Coordinator then
 1570 compiles 2 solution drafts.

1571 Pipeline 1 (Baseline CNN - U-Net with L1 loss and simple augmentations)
 1572 -----
 1573 Overview
 1574 - A lightweight U-Net trained on 256*256 patches of noisy/clean document pairs.
 1575 - Single-branch encoder-decoder with skip connections, ReLU activations, batch norm.
 1576 - Loss: L1 pixel-wise loss (less sensitive to outliers than MSE), optional total variation
 regularization.
 1577 - Optimizer: Adam; train on 1 A6000 within 1 hr.

1578 Data Preparation
 1579 1. Read all noisy (input) and clean (target) train images, normalize intensities to [0,1].
 1580 2. Extract random 256*256 patches (stride = 128) with matching noisy/clean pairs.
 1581 3. Data augmentation: random horizontal/vertical flips, +90 degree rotations.
 1582 4. Create PyTorch DataLoader with batch_size=16 (fits 48 GB) for ~100 k patches.

1583 Network Architecture (PyTorch pseudocode)
 1584 ```
 1585 class UNet(nn.Module):
 1586 def __init__(self):
 1587 super().__init__()
 1588 # Encoder
 1589 self.enc1 = DoubleConv(1, 64)
 1590 self.enc2 = Down(64,128)
 1591 self.enc3 = Down(128,256)
 1592 self.enc4 = Down(256,512)
 1593 # Bottleneck
 1594 self.bottleneck = Down(512,512)
 1595 # Decoder
 1596 self.up4 = Up(1024,256)
 1597 self.up3 = Up(512,128)
 1598 self.up2 = Up(256,64)
 1599 self.up1 = Up(128,64)
 1600 self.final = nn.Conv2d(64,1,kernel_size=1)
 1601 def forward(self,x):
 1602 e1=self.enc1(x)
 1603 e2=self.enc2(e1)
 1604 e3=self.enc3(e2)
 1605 e4=self.enc4(e3)
 1606 b = self.bottleneck(e4)
 1607 d4=self.up4(b,e4)
 1608 d3=self.up3(d4,e3)
 1609 d2=self.up2(d3,e2)
 1610 d1=self.up1(d2,e1)
 1611 return torch.sigmoid(self.final(d1))
 1612 ````
 1613 Helper modules:
 1614 - DoubleConv = (Conv2d -> BatchNorm2d -> ReLU) *2
 1615 - Down = (MaxPool2d -> DoubleConv)
 1616 - Up = (ConvTranspose2d for upsampling -> concatenate skip -> DoubleConv)
 1617 Training
 1618 - Loss = L1Loss(output, target) + lambda*TV(output) (lambda=1e-5 for smoothness).
 1619 - Optimizer = Adam(lr=1e-3, weight_decay=1e-5).
 1620 - LR schedule: ReduceLROnPlateau(monitor=val_loss, factor=0.5, patience=5).
 1621 - Train for up to 50 epochs; early-stop if val_loss stagnates.
 1622 - Validation: hold out 10% patches to monitor RMSE.

1623 Inference
 1624 - For each test image (e.g., 540*258), slide 256*256 window with stride=128, predict, and
 1625 average overlapping outputs.
 1626 - Threshold nothing; output raw [0,1] floats per pixel.

1627 Compute Budget
 1628 - ~100 k patches, batch 16, ~6 k steps per epoch. On A6000: ~2-3 min/epoch => 50 epochs ~ 2 hr
 1629 ; with early stopping < 1 hr.

1630 Pipeline 2 (Advanced Wavelet U-Net with CBAM and Composite Loss)
 1631 -----
 1632 Overview
 1633 - Dual-branch U-Net operating in wavelet domain (Haar DWT) to explicitly denoise tonal and
 textural components.
 1634 - CBAM (Convolutional Block Attention Modules) to adaptively weigh spatial/channel features.
 1635 - Loss = alpha*L1_pixel + beta*L2_wavelet + gamma*EdgeLoss.
 1636 - Optimizer = AdamW + CosineAnnealingLR.

```

1620
1621 Data Preparation
1622 - Same as Pipeline 1 (256*256 patches + augmentations).
1623 - On-the-fly DWT: for each noisy patch, compute one-level Haar DWT -> yields approximation (A)
1624 and details (H,V,D).
1625 Network Architecture
1626 (implemented in PyTorch)
1627 ...
1628 class WaveletUNet(nn.Module):
1629     def __init__(self):
1630         super().__init__()
1631         # Shared CBAM-Res blocks for Approx and Detail branches
1632         self.encA1 = CBAMResBlock(1, 64)
1633         self.encD1 = CBAMResBlock(3, 64)
1634         self.pool = nn.MaxPool2d(2)
1635         self.encA2 = CBAMResBlock(64, 128)
1636         self.encD2 = CBAMResBlock(64, 128)
1637         # Bottleneck
1638         self.bottleneck = CBAMResBlock(256, 256)
1639         # Decoder
1640         self.up2 = UpRes(256, 128)
1641         self.up1 = UpRes(128, 64)
1642         self.final = nn.Conv2d(64, 4, kernel_size=1)
1643     def forward(self, x):
1644         # x shape: [B,1,H,W]
1645         A, (H,V,D) = haar_dwt(x) # PyWavelets or custom conv
1646         d0 = torch.cat([self.encA1(A), self.encD1(torch.cat([H,V,D], dim=1))], dim=1)
1647         p1 = self.pool(d0)
1648         d1 = torch.cat([self.encA2(p1[:, :128]), self.encD2(p1[:, 128:])], dim=1)
1649         b = self.bottleneck(self.pool(d1))
1650         u2 = self.up2(b, d1)
1651         u1 = self.up1(u2, d0)
1652         out = self.final(u1) # [B, 4, H, W]
1653         # Reconstruct denoised x via inverse DWT
1654         A_hat, H_hat, V_hat, D_hat = out[:,0:1], out[:,1:2], out[:,2:3], out[:,3:4]
1655         return haar_dwt((A_hat, (H_hat, V_hat, D_hat)))
1656 ...
1657 Key building blocks:
1658 - CBAMResBlock: residual block with Conv-BN-ReLU->Conv-BN, plus CBAM (channel & spatial
1659 attention after second Conv).
1660 - UpRes: ConvTranspose2d upsample->concatenate skip->CBAMResBlock.
1661
1662 Loss
1663 - L1_pixel = L1(output, target).
1664 - L2_wavelet = L2(DWT(output) - DWT(target)).
1665 - EdgeLoss = L1(Sobel(output), Sobel(target)).
1666 - TotalLoss = alpha*L1_pixel + beta*L2_wavelet + gamma*EdgeLoss (alpha=1, beta=0.5, gamma=0.2)
1667 .
1668
1669 Training
1670 - Optimizer: AdamW(lr=1e-3, weight_decay=1e-4).
1671 - Scheduler: CosineAnnealingLR(T_max=50).
1672 - Batch size=8 (higher memory due to dual branches).
1673 - Epochs=50, early-stop by composite loss on val set.
1674
1675 Inference
1676 - Same sliding-window approach as Pipeline 1.
1677
1678 Compute Budget
1679 - CBAM and wavelet layers add ~1.5* compute but within A6000 48 GB: patch batch=8 yields ~250
1680 steps/epoch, so 50 epochs ~2 hr. Use early-stop or T_max=30 to finish within 1 hr.
1681
1682
1683 References
1684 - CBAM: Woo et al., "CBAM: Convolutional Block Attention Module" (ECCV 2018).
1685 - Haar DWT: PyWavelets or custom conv filters.
1686 - Edge loss: Sobel via fixed conv kernels.
1687
1688 Expected Benefits
1689 - Explicit noise suppression in high-frequency bands.
1690 - Attention modules focus on text strokes and edge restoration.
1691 - Composite loss balances global structure and fine details.
1692
1693 In our experiment, 2 parallel Coding Agents are invoked to implement the solution drafts respectively. Each instance has a quota of 20 steps, 3 hours in total and 1 hour per execution. An LLM is instructed to monitor the execution process and terminate failed runs.
1694
1695 The best code snippet generated in the first iteration is:

```

```

1674
1675 1 import os, glob, random, math
1676 2 from PIL import Image
1677 3 import torch
1678 4 import torch.nn as nn
1679 5 import torch.nn.functional as F
1680 6 from torch.utils.data import Dataset, DataLoader
1681 7 from torchvision import transforms
1682 8
1683 9
1684 10 # -- 1) Haar DWT / inverse DWT --
1685 11 class HaarDWT(nn.Module):
1686 12     def __init__(self):
1687 13         super().__init__()
1688 14         wt = torch.zeros(4, 1, 2, 2)
1689 15         wt[0, 0, :, :] = 0.5
1690 16         wt[1, 0, 0, 0], wt[1, 0, 0, 1], wt[1, 0, 1, 0], wt[1, 0, 1, 1] = (
1691 17             0.5,
1692 18             -0.5,
1693 19             0.5,
1694 20             -0.5,
1695 21         )
1696 22         wt[2, 0, 0, 0], wt[2, 0, 0, 1], wt[2, 0, 1, 0], wt[2, 0, 1, 1] = (
1697 23             0.5,
1698 24             0.5,
1699 25             -0.5,
1700 26             -0.5,
1701 27         )
1702 28         wt[3, 0, 0, 0], wt[3, 0, 0, 1], wt[3, 0, 1, 0], wt[3, 0, 1, 1] = (
1703 29             0.5,
1704 30             -0.5,
1705 31             -0.5,
1706 32             0.5,
1707 33     )
1708 34     self.register_buffer("weight", wt)
1709 35
1710 36     def forward(self, x):
1711 37         return F.conv2d(x, self.weight, stride=2)
1712 38
1713 39
1714 40 class HaarIDWT(nn.Module):
1715 41     def __init__(self):
1716 42         super().__init__()
1717 43         wt = HaarDWT().weight.clone()
1718 44         self.conv = nn.ConvTranspose2d(4, 1, 2, stride=2, bias=False)
1719 45         self.conv.weight.data.copy_(wt)
1720 46         self.conv.weight.requires_grad_(False)
1721 47
1722 48     def forward(self, coeffs):
1723 49         return self.conv(coeffs)
1724 50
1725 51
1726 52 # -- 2) Sobel edge for EdgeLoss --
1727 53 class Sobel(nn.Module):
1728 54     def __init__(self):
1729 55         super().__init__()
1730 56         kx = torch.tensor(
1731 57             [[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=torch.float32
1732 58         ).view(1, 1, 3, 3)
1733 59         ky = torch.tensor(
1734 60             [[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float32
1735 61         ).view(1, 1, 3, 3)
1736 62         self.register_buffer("wx", kx)
1737 63         self.register_buffer("wy", ky)
1738 64

```

```

172865     def forward(self, x):
172966         gx = F.conv2d(x, self.wx, padding=1)
173067         gy = F.conv2d(x, self.wy, padding=1)
173168         return torch.sqrt(gx * gx + gy * gy + 1e-6)
173269
173370 # -- 3) CBAM, ResBlock, UpRes, WaveletUNet --
173471 class CBAM(nn.Module):
173572     def __init__(self, c, r=16, k=7):
173673         super().__init__()
173774         self.mlp = nn.Sequential(
173875             nn.Linear(c, c // r, bias=False),
173976             nn.ReLU(inplace=True),
174077             nn.Linear(c // r, c, bias=False),
174178         )
174279         self.spatial = nn.Conv2d(2, 1, kernel_size=k, padding=k // 2, bias=False)
174380
174481     def forward(self, x):
174582         b, c, h, w = x.shape
174683         avg = F.adaptive_avg_pool2d(x, 1).view(b, c)
174784         mx = F.adaptive_max_pool2d(x, 1).view(b, c)
174885         ca = torch.sigmoid(self.mlp(avg) + self.mlp(mx)).view(b, c, 1, 1)
174986         x2 = x * ca
175087         avgc = x2.mean(1, True)
175188         maxc, _ = x2.max(1, True)
175289         sa = torch.sigmoid(self.spatial(torch.cat([avgc, maxc], 1)))
175390         return x2 * sa
175491
175592 class CBAMResBlock(nn.Module):
175693     def __init__(self, inp, outp):
175794         super().__init__()
175895         self.conv1 = nn.Conv2d(inp, outp, 3, padding=1, bias=False)
175996         self.bn1 = nn.BatchNorm2d(outp)
176097         self.conv2 = nn.Conv2d(outp, outp, 3, padding=1, bias=False)
176198         self.bn2 = nn.BatchNorm2d(outp)
176299         self.cbam = CBAM(outp)
1763100        self.skip = (
1764101            nn.Conv2d(inp, outp, 1, bias=False) if inp != outp else nn.
1765102                Identity()
1766103        )
1767104        self.relu = nn.ReLU(inplace=True)
1768105
1769106    def forward(self, x):
1770107        idt = self.skip(x)
1771108        out = self.relu(self.bn1(self.conv1(x)))
1772109        out = self.bn2(self.conv2(out))
1773110        out = self.cbam(out) + idt
1774111
1775112        return self.relu(out)
1776113
1777114 class UpRes(nn.Module):
1778115     def __init__(self, ic, sc, oc):
1779116         super().__init__()
1780117         self.up = nn.ConvTranspose2d(ic, oc, 2, stride=2)
1781118         self.block = CBAMResBlock(ic + sc, oc)
1782119
1783120     def forward(self, x, skip):
1784121         x = self.up(x)
1785122         if x.shape[-2:] != skip.shape[-2:]:
1786123             x = F.interpolate(
1787124                 x, size=skip.shape[-2:], mode="bilinear", align_corners=False
1788125             )
1789126         return self.block(torch.cat([x, skip], 1))
1790127

```

```

1782128
1783129
1784130 class WaveletUNet(nn.Module):
1785131     def __init__(self):
1786132         super(self).__init__()
1787133         self.dwt = HaarDWT()
1788134         self.idwt = HaarIDWT()
1789135         self.eA1 = CBAMResBlock(1, 64)
1790136         self.eD1 = CBAMResBlock(3, 64)
1791137         self.pool = nn.MaxPool2d(2)
1792138         self.eA2 = CBAMResBlock(64, 128)
1793139         self.eD2 = CBAMResBlock(64, 128)
1794140         self.b = CBAMResBlock(256, 256)
1795141         self.u2 = UpRes(256, 256, 128)
1796142         self.u1 = UpRes(128, 128, 64)
1797143         self.final = nn.Conv2d(64, 4, 1)

1798144     def forward(self, x):
1799145         A, H, V, D = self.dwt(x).chunk(4, 1)
1800146         a1 = self.eA1(A)
1801147         d1 = self.eD1(torch.cat([H, V, D], 1))
1802148         d0 = torch.cat([a1, d1], 1)
1803149         p1 = self.pool(d0)
1804150         pA, pD = p1[:, :64], p1[:, 64:]
1805151         a2 = self.eA2(pA)
1806152         d2 = self.eD2(pD)
1807153         d1b = torch.cat([a2, d2], 1)
1808154         b = self.b(self.pool(d1b))
1809155         u2 = self.u2(b, d1b)
1810156         u1 = self.u1(u2, d0)
1811157         out = self.final(u1)
1812158         return self.idwt(out)

# -- 4) OCRDataset for full training --
1813159 class OCRDataset(Dataset):
1814160     def __init__(self, noisy, clean, pp, ps, mode):
1815161         self.noisy = noisy
1816162         self.clean = clean
1817163         self.pp = pp
1818164         self.ps = ps
1819165         self.mode = mode
1820166         self.toT = transforms.ToTensor()

1821167     def __len__(self):
1822168         return len(self.noisy) * self.pp

1823169     def __getitem__(self, idx):
1824170         ii = idx // self.pp
1825171         n = Image.open(self.noisy[ii]).convert("L")
1826172         c = Image.open(self.clean[ii]).convert("L")
1827173         tn, tc = self.toT(n), self.toT(c)
1828174         H, W = tn.shape[-2], tn.shape[-1]
1829175         y = random.randint(0, H - self.ps)
1830176         x = random.randint(0, W - self.ps)
1831177         tn = tn[:, y : y + self.ps, x : x + self.ps]
1832178         tc = tc[:, y : y + self.ps, x : x + self.ps]
1833179         if self.mode == "train":
1834180             if random.random() < 0.5:
1835181                 tn, tc = torch.flip(tn, [-1]), torch.flip(tc, [-1])
1836182             if random.random() < 0.5:
1837183                 tn, tc = torch.flip(tn, [-2]), torch.flip(tc, [-2])
1838184             k = random.randint(0, 3)
1839185             if k > 0:

```

```

1836          tn, tc = torch.rot90(tn, k, [1, 2]), torch.rot90(tc, k, [1,
1837              2])
1838      return tn, tc
1839
1840
1841      # -- 5) Prepare train/val split --
1842      all_no = sorted(glob.glob("./input/train/*.png"))
1843      all_cl = sorted(glob.glob("./input/train_cleaned/*.png"))
1844      idxs = list(range(len(all_no)))
1845      random.seed(42)
1846      random.shuffle(idxs)
1847      split = int(0.9 * len(idxs))
1848      tr_idxs, va_idxs = idxs[:split], idxs[split:]
1849      noisy_tr = [all_no[i] for i in tr_idxs]
1850      clean_tr = [all_cl[i] for i in tr_idxs]
1851      noisy_va = [all_no[i] for i in va_idxs]
1852      clean_va = [all_cl[i] for i in va_idxs]
1853
1854      # -- 6) DataLoaders --
1855      train_ds = OCRDataset(noisy_tr, clean_tr, pp=25, ps=256, mode="train")
1856      val_ds = OCRDataset(noisy_va, clean_va, pp=1, ps=256, mode="val")
1857      train_loader = DataLoader(
1858          train_ds, batch_size=8, shuffle=True, num_workers=4, pin_memory=True
1859      )
1860      val_loader = DataLoader(
1861          val_ds, batch_size=1, shuffle=False, num_workers=2, pin_memory=True
1862      )
1863
1864      # -- 7) Model, optimizer, scheduler, loss w/ tuned weights --
1865      device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
1866      model = WaveletUNet().to(device)
1867      dwt = HaarDWT().to(device)
1868      sobel = Sobel().to(device)
1869      opt = torch.optim.AdamW(model.parameters(), lr=1e-3, weight_decay=1e-4)
1870      sched = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=30)
1871
1872      # Tuned weights
1873      alpha = 0.769634
1874      beta = 0.430968
1875      gamma = 0.250750
1876
1877
1878      def composite_loss(o, t):
1879          l1 = F.l1_loss(o, t)
1880          l2 = F.mse_loss(dwt(o), dwt(t))
1881          e1 = F.l1_loss(sobel(o), sobel(t))
1882          return alpha * l1 + beta * l2 + gamma * e1
1883
1884
1885      # -- 8) Train + validate --
1886      best_rmse = 1e9
1887      patience = 5
1888      wait = 0
1889      for epoch in range(1, 31):
1890          model.train()
1891          tloss = 0.0
1892          for xb, yb in train_loader:
1893              xb, yb = xb.to(device), yb.to(device)
1894              pred = model(xb)
1895              loss = composite_loss(pred, yb)
1896              opt.zero_grad()
1897              loss.backward()
1898              opt.step()
1899              tloss += loss.item()
1900          sched.step()

```

```

1890256
1891257     # sliding-window validation
1892258     model.eval()
1893259     rmse_sum = 0.0
1894260     stride, ps = 128, 256
1895261     with torch.no_grad():
1896262         for nf, cf in zip(noisy_va, clean_va):
1897263             imn = Image.open(nf).convert("L")
1898264             imc = Image.open(cf).convert("L")
1899265             tn = transforms.ToTensor()(imn).unsqueeze(0).to(device)
1900266             tc = transforms.ToTensor()(imc).unsqueeze(0).to(device)
1901267             _, _, H, W = tn.shape
1902268             acc = torch.zeros_like(tn)
1903269             cnt = torch.zeros_like(tn)
1904270             xs = list(range(0, W - ps + 1, stride)) + [W - ps]
1905271             ys = list(range(0, H - ps + 1, stride)) + [H - ps]
1906272             for x in xs:
1907273                 for y in ys:
1908274                     p = tn[:, :, y : y + ps, x : x + ps]
1909275                     out = model(p)
1910276                     acc[:, :, y : y + ps, x : x + ps] += out
1911277                     cnt[:, :, y : y + ps, x : x + ps] += 1
1912278                     rec = acc / cnt
1913279                     mse = F.mse_loss(rec, tc).item()
1914280                     rmse_sum += math.sqrt(mse)
1915281             val_rmse = rmse_sum / len(noisy_va)
1916282             print(
1917283                 f"Epoch {epoch}: train_loss={tloss/len(train_loader):.4f}, val_RMSE
1918284                 ={val_rmse:.6f}"
1919285             )
1920286
1921287             if val_rmse < best_rmse:
1922288                 best_rmse = val_rmse
1923289                 wait = 0
1924290                 torch.save(model.state_dict(), "./working1/best.pth")
1925291             else:
1926292                 wait += 1
1927293                 if wait >= patience:
1928294                     print("Early stopping.")
1929295                     break
1930296
1931297             print("Best validation RMSE:", best_rmse)
1932298
1933299             # -- 9) Inference & submission --
1934300             model.load_state_dict(torch.load("./working1/best.pth"))
1935301             model.eval()
1936302             test_files = sorted(glob.glob("./input/test/*.png"))
1937303             with open("./working1/submission.csv", "w") as fout:
1938304                 fout.write("id,value\n")
1939305                 for tf in test_files:
1940306                     im = Image.open(tf).convert("L")
1941307                     t = transforms.ToTensor()(im).unsqueeze(0).to(device)
1942308                     _, _, H, W = t.shape
1943309                     acc = torch.zeros_like(t)
1944310                     cnt = torch.zeros_like(t)
1945311                     xs = list(range(0, W - ps + 1, stride)) + [W - ps]
1946312                     ys = list(range(0, H - ps + 1, stride)) + [H - ps]
1947313                     with torch.no_grad():
1948314                         for x in xs:
1949315                             for y in ys:
1950316                                 p = t[:, :, y : y + ps, x : x + ps]
1951317                                 out = model(p)
1952318                                 acc[:, :, y : y + ps, x : x + ps] += out
1953319                                 cnt[:, :, y : y + ps, x : x + ps] += 1
1954319                                 rec = (acc / cnt).clamp(0, 1).cpu().numpy()[0, 0]

```

```

1944      img_id = os.path.splitext(os.path.basename(tf))[0]
1945      for r in range(H):
1946          for c in range(W):
1947              fout.write(f"{img_id}_{r+1}_{c+1},{rec[r,c]:.6f}\n")
1948
1949  print("Submission written to ./working1/submission.csv")

```

1950

1951 The Coordinator submits the scripts generated by Coding Agents and their workspace to the
 1952 community. Then, it proceeds to the second iteration. The report generated by the Analyzer for the
 1953 second Coding Agent is:

1954 Pipeline:
 1955 Our final pipeline is an Advanced Wavelet U-Net with CBAM attention modules, Composite Loss,
 1956 and sliding-window inference. Specifically:

1957 1. Data Preparation
 1958 - Read all 112 noisy/clean train pairs, split 90/10 train/val by file indices (random seed
 1959 42).
 - On-the-fly extract 25 random 256*256 patches per train image each epoch, with random
 1960 horizontal/vertical flips and 90 degree rotations.
 - Validation uses a single full-image sliding-window pass (256 patches with 50% overlap) on
 1961 the 10% hold-out.

1962 2. Model Architecture
 1963 - Haar DWT and inverse DWT implemented as fixed convolutional filters (LL, LH, HL, HH bands)
 1964 .
 - Dual-branch encoder: separate CBAMResBlocks for the approximation (1 channel) and detail
 1965 (3 channels) coefficients.
 - Two-level downsampling with MaxPool, interleaved CBAMResBlocks, and a 256-channel
 1966 bottleneck.
 - Decoder with ConvTranspose upsampling and CBAMResBlock skip-connections (UpRes),
 1967 recombining wavelet bands.
 - Final 1*1 convolution to 4 coefficient channels and inverse DWT back to image domain.

1968 3. Composite Loss
 1969 - L1(pixels) weighted by alpha=0.769634
 1970 - L2(wavelet coefficients) weighted by beta=0.430968
 1971 - L1(edge Sobel) weighted by gamma=0.250750

1972 4. Training
 1973 - Optimizer: AdamW(lr=1e-3, weight_decay=1e-4).
 1974 - Scheduler: CosineAnnealingLR(T_max=30).
 1975 - Batch size 8, 30 epochs, early stopping (patience=5) based on full-image RMSE on the val
 set.

1976 5. Inference
 1977 - Sliding-window full-image inference with 256*256 patches, stride=128, averaging overlapped
 1978 pixels.
 - Generate submission.csv with id=image_row_col and float values.

1979 6. Hyperparameter tuning
 1980 - Optuna over (alpha, beta, gamma) on a 20-train/5-val mini-split for 10 trials, each with 2
 1981 epochs and 10 patches/image.
 - Best found: alpha=0.769634, beta=0.430968, gamma=0.250750.

1982 Final validation RMSE on 10% hold-out: ~0.012685.

1983 References: CBAM (Woo et al., ECCV 2018), Haar DWT.

1984 Summary:
 1985 - Haar DWT:
 Novelty: 2
 Rationale: Uses standard 1-level Haar wavelet decomposition.
 Feasibility: 10
 Rationale: Straightforward fixed conv implementation in PyTorch.
 Effectiveness: 6
 Rationale: Explicit frequency separation aids denoising of high-frequency noise.
 Efficiency: 9
 Rationale: Lightweight fixed kernels on GPU.
 Confidence: 8
 Rationale: Verified on toy and full runs.

1986 - CBAMResBlock:
 Novelty: 5
 Rationale: Incorporates both channel & spatial attention for context-aware features.
 Feasibility: 8
 Rationale: Moderate complexity but supported by existing PyTorch modules.
 Effectiveness: 7

1998 Rationale: Improves focus on text strokes, empirically lowers RMSE.
1999 Efficiency: 7
2000 Rationale: Adds overhead (~1.5*), but fits within GPU budget.
Confidence: 9
2001 Rationale: Confirmed across toy and full training.
2002
2003 - UpRes (ConvTranspose + CBAM):
Novelty: 3
2004 Rationale: Standard upsampling with skip-connections and attention.
Feasibility: 9
2005 Rationale: Simple extension of ResBlock.
Effectiveness: 6
2006 Rationale: Maintains detail in reconstruction.
Efficiency: 8
2007 Rationale: Reasonable GPU use.
Confidence: 8
2008 Rationale: Working in end-to-end script.
2009
2010 - Wavelet UNet overall:
Novelty: 7
2012 Rationale: Dual-branch U-Net in wavelet domain combining DWT, CBAM, skip connections.
Feasibility: 7
2013 Rationale: Moderate engineering but fully implemented.
Effectiveness: 8
2014 Rationale: Achieved RMSE ~0.0127, strong denoising.
Efficiency: 7
2015 Rationale: 25 patches*8 batch; 30 epochs in ~20min.
Confidence: 8
2017 Rationale: Reproducible on A6000.
2018
2019 - Composite Loss:
Novelty: 6
2020 Rationale: Balances pixel, frequency, and edge domains.
Feasibility: 8
2021 Rationale: Simple weighted sum.
Effectiveness: 8
2022 Rationale: Lower RMSE than L1 or L2 alone.
Efficiency: 7
2024 Rationale: Small overhead for extra transforms.
Confidence: 9
2025 Rationale: Verified in tuning and full runs.
2026
2027 - Data Augmentation:
Novelty: 3
2028 Rationale: Flips and rotations.
Feasibility: 10
2029 Rationale: Trivial to implement.
Effectiveness: 5
2030 Rationale: Standard but helpful for invariance.
Efficiency: 9
2032 Rationale: CPU-level only.
Confidence: 9
2033 Rationale: Common practice.
2034
2035 - CosineAnnealingLR & EarlyStopping:
Novelty: 4
2036 Rationale: Standard learning-rate decay and val-based stop.
Feasibility: 10
2037 Rationale: Built-in PyTorch.
Effectiveness: 6
2038 Rationale: Helps convergence and prevents overfit.
Efficiency: 9
2040 Rationale: Minimal overhead.
Confidence: 9
2041 Rationale: Observed smoothed training curves.
2042
2043 - Sliding-window Inference:
Novelty: 3
2044 Rationale: Ensures full-image coverage.
Feasibility: 10
2045 Rationale: Straightforward loops.
Effectiveness: 7
2047 Rationale: Accurate RMSE measurement, smooth outputs.
Efficiency: 8
2048 Rationale: Reasonable inference time (~10 min).
Confidence: 9
2049 Rationale: Verified end-to-end.
2050
2051 - Hyperparameter Tuning (Optuna):
Novelty: 4
Rationale: Automated search of loss weights.

2052 Feasibility: 8
 2053 Rationale: Low-cost mini-training.
 2054 Effectiveness: 7
 2055 Rationale: Found better weights vs. defaults.
 2056 Efficiency: 5
 2057 Rationale: 10 trials * 2 epochs ~8 min.
 2058 Confidence: 7
 2059 Rationale: Verified chosen parameters.
 2060 Weaknesses and Suggestions:
 2061 1. EMA & TTA Bug: The EMA + 4-way TTA implementation caused RMSE blow-ups, likely due to
 2062 incorrect accumulation. Before reintroducing, validate TTA on toy splits or isolate EMA
 2063 without TTA.
 2064 2. Multi-Level Wavelets: Extend to 2-3 levels of DWT to capture coarser scales, with separate
 2065 branches per level.
 2066 3. Advanced Loss Terms: Incorporate perceptual (VGG) or structural (SSIM) losses to encourage
 2067 visual fidelity.
 2068 4. Dynamic Loss Weights: Schedule (alpha,beta,gamma) during training (e.g., start with high L1
 2069 , gradually emphasize wavelet).
 2070 5. Mixed Precision & Gradient Checkpointing: Further reduce memory and speed up with AMP and
 2071 checkpointing deep layers.
 2072 6. Deeper/Ubiquitous Attention: Explore transformer-style attention (Swin, ViT) in encoder for
 2073 global context.
 2074 7. Ensemble Models: Train multiple random seeds or architectures (ResUNet, UNet++) and average
 2075 outputs.
 2076 8. Multi-Scale Inference: Use patches at multiple scales or whole-image passes via down/
 2077 upscaling for context.
 2078 9. Adaptive Overlap: Use weights at edges of patches to smoothly blend overlaps (Gaussian
 2079 windows).
 2080 10. Distributed Hyperparameter Search: Scale Optuna across more trials or use BOHB for
 2081 architecture search.
 2082 Implementing these will likely push RMSE even lower and improve robustness across document
 2083 noise patterns.
 2084 Full code: ...(omitted)...

2085 Following the brainstorming and idea refinement phases, the current idea memory is presented below. Notably, entries (3), (4), (5), and (7) are newly proposed by the agent, while the remaining ideas have been refined from those in the previous iteration.

2086 (0) Patch-based convolutional super-resolution denoiser: a sliding-window, patch-based model
 2087 that predicts multiple denoised and super-resolved pixels per patch. Architecture
 2088 inspired by Waifu2x with progressively increasing filter counts, LeakyReLU activations,
 2089 and He initialization for robust convergence.

2090 (1) Advanced wavelet-domain dual-branch U-Net with CBAM attention and composite loss:
 2091 decompose inputs via fixed 1-level DWT (LL, LH, HL, HH bands), encode approximation and
 2092 detail separately with CBAM ResBlocks, decode and fuse via 1x1 convolutions, and train
 2093 end-to-end using a weighted sum of pixel L1, wavelet-band L2, and edge L1 losses.
 2094 Optimized with AdamW and cosine-annealing LR scheduling.

2095 (2) GAN-based restoration framework: a ResNet-based generator and 70*70 PatchGAN discriminator
 2096 trained with combined losses-L1 pixel loss, adversarial loss, stroke-consistency loss (via
 2097 frozen stroke-feature CNN), and perceptual OCR-feature loss. Includes R1 gradient
 2098 penalty and spectral normalization for stability.

2099 (3) Masked autoencoder with vision transformer for denoising: patchify each image into non-overlapping square tokens, randomly mask a high percentage, pretrain a ViT encoder (12 layers, hidden 768, 12 heads) plus light transformer decoder on L2 reconstruction of dirty images, then append an MLP head and fine-tune end-to-end on noisy->clean pairs with L1 pixel + differentiable OCR-confidence loss. Employ random block dropout and color jitter during fine-tuning; at inference use full-image encoding or averaged mask schedules.

2100 (4) Conditional diffusion-based restoration: define a forward Gaussian-noise diffusion
 2101 schedule, train a 5-level U-Net conditioned on the dirty image via channel concatenation
 2102 and FiLM/cross-attention of sinusoidal timestep embeddings. Use the standard DDPM MSE
 2103 loss with classifier-free guidance, and sample with a deterministic DDIM sampler (~50
 2104 steps). Optionally post-process with bilateral or median filtering to remove speckles.

2105 (5) Learnable spectral gating in the Fourier domain: compute the 2D FFT of the dirty image,
 2106 split its spectrum into low/mid/high radial bands, apply learnable complex masks per band
 2107 , and modulate each by gate scalars predicted by a lightweight CNN on the dirty image.
 2108 Recombine via inverse FFT and train end-to-end with L2 pixel loss plus a spectral-
 2109 smoothness regularizer on the masks.

2110 (6) Hypernetwork-modulated U-Net: extract per-image noise statistics (mean, std, skew,
 2111 kurtosis, histogram bins), feed into an MLP hypernetwork that outputs FiLM scale (gamma)
 2112 and shift (beta) parameters for selected convolutional feature maps of a base U-shaped
 2113 CNN. Randomly augment noise levels during training; train end-to-end on noisy->clean with
 2114 L1 loss and a small regularizer pushing gamma->1, beta->0. At inference compute stats
 2115 per image, generate FiLM params, and denoise via the modulated U-Net.

2116 (7) Blind-spot test-time adaptation: for each test image, randomly mask a subset of pixels and
 2117 fine-tune a lightweight CNN with skip connections on the single image using masked L2
 2118 loss and augmentations for a few hundred gradient steps. Optionally ensemble multiple
 2119 random initializations to reduce variance.

2106 (8) Multi-model ensemble with diverse preprocessing: cluster trained models by their error
 2107 patterns and combine their outputs. Apply different preprocessing pipelines (raw,
 2108 background-removed, edge maps, thresholded) to the input, denoise with clustered sub-
 2109 ensembles, and fuse predictions for robustness across noise characteristics.
 2110 (9) Enhanced augmentation and target refinement: simulate realistic scanning artifacts by
 2111 applying 3D text deformations, lighting variations, and shadows to clean images. Identify
 2112 and compensate for systematic artifacts in the provided 'clean' targets (e.g., single-
 2113 pixel halos) by either modeling them as noise or adjusting ground-truth labels during
 2114 training.

2115 And solution drafts generated in this iteration are:

2116 Pipeline 1: ResNet-34 Encoder U-Net with Multi-Scale Edge & Total-Variation Loss

2117 Overview:
 2118 A robust baseline using a pretrained ResNet-34 backbone as a U-Net encoder fused with a light-
 2119 weight decoder. Combines L1 loss, Sobel edge loss at multiple scales, and a total-
 2120 variation regularizer to preserve text strokes while smoothing background noise. Mixed
 2121 precision training and sliding-window inference ensure the entire pipeline runs in ~45
 2122 min on an A6000.

2123 1. Data Preparation
 2124 - Read all train noisy/clean PNGs, normalize to [0,1].
 2125 - Extract on-the-fly 256*256 patches: random crop + random horizontal/vertical flips + 90
 2126 degree rotations.
 2127 - 90/10 split by file indices (seed=42). Use batch size 8-16.

2128 2. Model Architecture
 2129 - Encoder: `torchvision.models.resnet34(pretrained=True)`, first conv modified to 1->64
 2130 channels.
 2131 - Decoder: four upsampling stages (`ConvTranspose2d` + `Conv2d+BN+ReLU`) mirroring ResNet blocks,
 2132 with skip-connections from encoder layers.
 2133 - Final conv 64->1 + Sigmoid.

2134 3. Loss Function
 2135 Let y_{hat} and y be predictions and targets.
 2136 - `L1Loss(y_hat, y)`
 2137 - Edge loss: L1 between `Sobel(y_hat)` and `Sobel(y)` at both full resolution and half resolution
 2138 (downsample by 2).
 2139 - TV: `lambda*TV(y_hat)` where $TV = \text{mean}(|\nabla_{xy} y_{\text{hat}}| + |\nabla_{yy} y_{\text{hat}}|)$.
 2140 Total loss = $\alpha \cdot L1 + \beta \cdot Edge_full + \gamma \cdot Edge_half + \delta \cdot TV$, e.g. $\alpha=1.0$, $\beta=0.5$, $\gamma=0.25$, $\delta=\text{le-}5$.

2141 4. Optimization
 2142 - Optimizer: `AdamW(lr=le-3, weight_decay=le-4)`.
 2143 - Scheduler: `CosineAnnealingLR(T_max=25)`.
 2144 - Mixed precision via `torch.cuda.amp`.
 2145 - Early stopping on validation RMSE (patience=5).

2146 5. Inference & Submission
 2147 - Perform sliding-window inference on each test image with 256*256 patches, stride=128.
 2148 - Average overlapping patches.
 2149 - Clamp outputs to [0,1], write submission.csv with id=image_row_col.

2150 Compute budget: ~20 min train + ~5 min inference.

2151 Pipeline 2: Laplacian-Pyramid Multi-Scale Residual U-Net with Pyramid Loss

2152 Overview:
 2153 A novel pyramid-domain network that decomposes images into multi-scale Laplacian bands,
 2154 denoises each band via shared-weight residual blocks, and merges them back. Multi-level
 2155 losses focus the model on both coarse structures and fine text details. Efficient and
 2156 fully end-to-end in PyTorch, training finishes in ~50 min on an A6000.

2157 1. Data & Augmentation
 2158 - Same data split and patch sampling (256*256, flips, rotations).

2159 2. Laplacian Pyramid Transform (LPT)
 2160 - On the fly, for each patch: create 2-level Gaussian pyramid using avg-pooling (scale
 2161 1->0.5->0.25), then compute Laplacian bands $L0=(I-\text{upsample}(I/2))$, $L1=(I/2-\text{upsample}(I/4))$,
 2162 and a residual low band $L2=I/4$.
 2163 - Stack [L0,L1,L2] as 3 input channels.

2164 3. Network
 2165 - Encoder-decoder U-Net with 3-channel input and 3-channel output, 4 down/upsampling stages,
 2166 64->128->256->512->256->128->64 channel widths.
 2167 - Each block: two 3×3 Conv+BN+ReLU and a residual skip connection.

2168 4. Reconstruction
 2169 - Output is 3 residual corrections $R0, R1, R2$ to each band.
 2170 - Reconstruct clean patch:

```

2160     a0 = L0 + R0; a1 = L1 + R1; a2 = L2 + R2;
2161     I = a0 + up(a1) + up(up(a2)).
2162
2163 5. Loss Function
2164  - Per-band L1 losses: w0*L1(a0,H0) + w1*L1(a1,H1) + w2*L1(a2,H2), where Hk are ground-truth
2165  bands and w0=1.0, w1=0.5, w2=0.25.
2166  - Pixel L1: lambda_pix*L1(I, Igt) with lambda_pix=0.1.
2167
2168 6. Training
2169  - AdamW(lr=5e-4, weight_decay=le-5), one-cycle scheduler (max_lr=5e-4, epochs=30).
2170  - Batch size 8, mixed precision.
2171  - Early stopping on val RMSE (patience=6).
2172
2173 7. Inference
2174  - On full test images, run sliding-window with 256*256 patches, stride=128.
2175  - For each patch, apply pyramid -> model -> reconstruct -> accumulate and average.
2176  - Clamp to [0,1], write submission.csv.
2177
2178 Compute budget: ~25 min training + ~8 min inference.

```

2174 The best code proposed in the second iteration is:

```
2175 1 import os, random, csv
2176 2 import numpy as np
2177 3 from glob import glob
2178 4 from PIL import Image
2179 5
2180 6 import torch
2181 7 import torch.nn as nn
2182 8 import torch.nn.functional as F
2183 9 from torch.utils.data import Dataset, DataLoader
2184 10 from torchvision import transforms, models as tv_models
2185 11 from torch.cuda.amp import autocast, GradScaler
2186 12
2187 13 # 1) Reproducibility
2188 14 SEED = 42
2189 15 random.seed(SEED)
2190 16 np.random.seed(SEED)
2191 17 torch.manual_seed(SEED)
2192 18 torch.cuda.manual_seed_all(SEED)
2193 19
2194 20 DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
2195 21
2196 22 # 2) Paths
2197 23 TRAIN_NOISY = "./input/train"
2198 24 TRAIN_CLEAN = "./input/train_cleaned"
2199 25 TEST_DIR = "./input/test"
2200 26 WORK_DIR = "./working0"
2201 27 os.makedirs(WORK_DIR, exist_ok=True)
2202 28
2203 29 # 3) Hyperparameters
2204 30 PATCH_SIZE = 256
2205 31 STRIDE = 128
2206 32 BATCH_SIZE = 12
2207 33 LR, WD = 1e-3, 1e-4
2208 34 MAX_EPOCHS = 50
2209 35 PATIENCE = 10
2210 36 T_MAX = 50 # for LR scheduler
2211 37
2212 38 # 4) Loss-weight constants (from tuning)
2213 39 w1, w2, w3, w4 = 1.0, 0.5, 0.25, 1e-5
2214 40 lambda_aux = 0.4394633936788146
2215 41 lambda_mse = 0.1312037280884873
2216 42 lambda_ssim = 0.031198904067240532
2217 43 lambda_ssim2 = lambda_ssim / 2
2218 44
2219 45 # 5) Dataset + augmentations
2220 46 class OCRDataset(Dataset):
```

```

221448     def __init__(self, noisy_list, clean_list, ps, train):
221549         self.noisy, self.clean = noisy_list, clean_list
221650         self.ps, self.train = ps, train
221751         self.to_tensor = transforms.ToTensor()
221852         self.aug = transforms.Compose(
221953             [
222054                 transforms.RandomChoice(
222155                     [
222256                         transforms.RandomHorizontalFlip(1.0),
222357                         transforms.RandomVerticalFlip(1.0),
222458                         transforms.RandomRotation(90),
222559                         transforms.RandomRotation(180),
222660                         transforms.RandomRotation(270),
222761                     ]
222862             ),
222963                 transforms.RandomApply([transforms.GaussianBlur(3, (0.1, 2.0)
223064                         )], p=0.3),
223165                 transforms.RandomApply([transforms.RandomAdjustSharpness(2.0)
223266                         ], p=0.3),
223367             ]
223468         )
223569     def __len__(self):
223670         return len(self.noisy)
223771     def __getitem__(self, i):
223872         n = Image.open(self.noisy[i]).convert("L")
223973         c = Image.open(self.clean[i]).convert("L")
224074         w, h = n.size
224175         # pad
224276         if w < self.ps or h < self.ps:
224377             pad = (0, 0, max(0, self.ps - w), max(0, self.ps - h))
224478             n = transforms.functional.pad(n, pad, fill=255)
224579             c = transforms.functional.pad(c, pad, fill=255)
224680             w, h = n.size
224781         # crop
224882         if self.train:
224983             x = random.randint(0, w - self.ps)
225084             y = random.randint(0, h - self.ps)
225185         else:
225286             x = (w - self.ps) // 2
225387             y = (h - self.ps) // 2
225488         n = n.crop((x, y, x + self.ps, y + self.ps))
225589         c = c.crop((x, y, x + self.ps, y + self.ps))
225690         if self.train and random.random() < 0.5:
225791             n = self.aug(n)
225892             c = self.aug(c)
225993         return self.to_tensor(n), self.to_tensor(c)
226094
226195
226296 # 6) Prepare train/val split
226397 noisy_files = sorted(glob(f"{TRAIN_NOISY}/*.png"))
226498 clean_files = [f"{TRAIN_CLEAN}/" + os.path.basename(x) for x in
226599     noisy_files]
2266100 N = len(noisy_files)
2267101 idx = list(range(N))
2268102 random.shuffle(idx)
2269103 ntr = int(0.9 * N)
2270104 tr_idx, va_idx = idx[:ntr], idx[ntr:]
2271105 train_noisy = [noisy_files[i] for i in tr_idx]
2272106 train_clean = [clean_files[i] for i in tr_idx]
2273107 val_noisy = [noisy_files[i] for i in va_idx]
2274108 val_clean = [clean_files[i] for i in va_idx]
2275109 train_ds = OCRDataset(train_noisy, train_clean, PATCH_SIZE, train=True)

```

```

2268110 val_ds = OCRDataset(val_noisy, val_clean, PATCH_SIZE, train=False)
2269111 train_loader = DataLoader(
2270112     train_ds, batch_size=BATCH_SIZE, shuffle=True, num_workers=4,
2271113     pin_memory=True
2272114 )
2273115 val_loader = DataLoader(
2274116     val_ds, batch_size=BATCH_SIZE, shuffle=False, num_workers=4,
2275117     pin_memory=True
2276118 )
2277119 # 7) Sobel, TV, SSIM helpers
2278120 sob_x = (
2279121     torch.tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=torch.float32
2280122         )
2281123     .view(1, 1, 3, 3)
2282124     .to(DEVICE)
2283125 )
2284126 sob_y = sob_x.transpose(2, 3)
2285127
2286128 def sobel(x):
2287129     gx = F.conv2d(x, sob_x, padding=1)
2288130     gy = F.conv2d(x, sob_y, padding=1)
2289131     return torch.sqrt(gx * gx + gy * gy + 1e-6)
2290132
2291133 def total_variation(x):
2292134     dh = (x[:, :, 1:, :] - x[:, :, :-1, :]).abs().mean()
2293135     dw = (x[:, :, :, 1:] - x[:, :, :, :-1]).abs().mean()
2294136     return dh + dw
2295137
2296138 def ssim_map(a, b, C1=0.01**2, C2=0.03**2):
2297139     mu_a = F.avg_pool2d(a, 3, 1, 1)
2298140     mu_b = F.avg_pool2d(b, 3, 1, 1)
2299141     sa = F.avg_pool2d(a * a, 3, 1, 1) - mu_a * mu_a
2300142     sb = F.avg_pool2d(b * b, 3, 1, 1) - mu_b * mu_b
2301143     sab = F.avg_pool2d(a * b, 3, 1, 1) - mu_a * mu_b
2302144     num = (2 * mu_a * mu_b + C1) * (2 * sab + C2)
2303145     den = (mu_a * mu_a + mu_b * mu_b + C1) * (sa + sb + C2)
2304146     return num / (den + 1e-8)
2305147
2306148 def ssim_loss(a, b):
2307149     return 1.0 - ssim_map(a, b).mean()
2308150
2309151 # 8) loss_terms
2310152 l1_loss = nn.L1Loss()
2311153 mse_loss = nn.MSELoss()
2312154
2313155 def loss_terms(pred, target):
2314156     L1v = l1_loss(pred, target)
2315157     MSEv = mse_loss(pred, target)
2316158     Ef = l1_loss(sobel(pred), sobel(target))
2317159     p2, t2 = F.avg_pool2d(pred, 2), F.avg_pool2d(target, 2)
2318160     Eh = l1_loss(sobel(p2), sobel(t2))
2319161     TVv = total_variation(pred)
2320162     return L1v, MSEv, Ef, Eh, TVv
2321163
2322164 # 9) Model w/ deep supervision
2323165 class ResUNetDS(nn.Module):
2324166     def __init__(self):
2325167         super().__init__()
2326168         self.backbone = UNet()
2327169         self.decoder = Decoder()
2328170         self.head = Head()
2329171 
```

```

2322172     super().__init__()
2323173     r34 = tv_models.resnet34(pretrained=True)
2324174     self.enc0 = nn.Conv2d(1, 64, 7, 2, 3, bias=False)
2325175     self.enc0.weight.data = r34.conv1.weight.data.mean(dim=1, keepdim=
2326             True)
2327176     self.bn0, self.relu0, self.pool0 = r34.bn1, r34.relu, r34.maxpool
2328177     self.enc1, self.enc2 = r34.layer1, r34.layer2
2329178     self.enc3, self.enc4 = r34.layer3, r34.layer4
2330180
2331181     def up(i, o):
2332182         return nn.ConvTranspose2d(i, o, 2, 2)
2333183
2334184     def cb(i, o):
2335185         return nn.Sequential(
2336186             nn.Conv2d(i, o, 3, 1, 1, bias=False),
2337187             nn.BatchNorm2d(o),
2338188             nn.ReLU(inplace=True),
2339189             nn.Conv2d(o, o, 3, 1, 1, bias=False),
2340190             nn.BatchNorm2d(o),
2341191             nn.ReLU(inplace=True),
2342192         )
2343193
2344194     self.up4, self.dec4 = up(512, 256), cb(256 + 256, 256)
2345195     self.up3, self.dec3 = up(256, 128), cb(128 + 128, 128)
2346196     self.up2, self.dec2 = up(128, 64), cb(64 + 64, 64)
2347197     self.aux_up, self.aux_out = up(64, 64), nn.Conv2d(64, 1, 1)
2348198     self.up1, self.dec1 = up(64, 64), cb(64 + 64, 64)
2349199     self.up0, self.outc = up(64, 64), nn.Conv2d(64, 1, 1)
2350200     self.sig = nn.Sigmoid()
2351201
2352202     def forward(self, x):
2353203         x0 = self.relu0(self.bn0(self.enc0(x)))
2354204         x1 = self.pool0(x0)
2355205         x2 = self.enc1(x1)
2356206         x3 = self.enc2(x2)
2357207         x4 = self.enc3(x3)
2358208         x5 = self.enc4(x4)
2359209
2360210         d4 = self.dec4(torch.cat([self.up4(x5), x4], dim=1))
2361211         d3 = self.dec3(torch.cat([self.up3(d4), x3], dim=1))
2362212         d2 = self.dec2(torch.cat([self.up2(d3), x2], dim=1))
2363213         aux = self.sig(self.aux_out(self.aux_up(d2)))
2364214         d1 = self.dec1(torch.cat([self.up1(d2), x0], dim=1))
2365215         main = self.sig(self.outc(self.up0(d1)))
2366216
2367217         return main, aux
2368218
2369219     model = ResUNetDS().to(DEVICE)
2370220
2371221     # 10) Optimizer, scheduler, scaler
2372222     optimizer = torch.optim.AdamW(model.parameters(), lr=LR, weight_decay=WD)
2373223     scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=
2374224         T_MAX)
2375225     scaler = GradScaler()
2376226
2377227     # 11) Training + snapshot saving
2378228     best_rmse = float("inf")
2379229     patience = 0
2380230     snap_epochs = set([10, 20, 30, 40, 50])
2381231
2382232     for epoch in range(1, MAX_EPOCHS + 1):
2383233         model.train()
2384234         train_loss = 0.0
2385235         for noisy_img, clean_img in train_loader:
2386236             noisy_img, clean_img = noisy_img.to(DEVICE), clean_img.to(DEVICE)

```

```

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
2999

```

```
2484359     for j in range(W):  
2485360         writer.writerow([f"{img_id}_{i+1}_{j+1}", f"{den[i, j]:.6f}"])  
2486361     print("Submission saved to", submission_path)  
2487  
2488  
2489  
2490  
2491  
2492  
2493  
2494  
2495  
2496  
2497  
2498  
2499  
2500  
2501  
2502  
2503  
2504  
2505  
2506  
2507  
2508  
2509  
2510  
2511  
2512  
2513  
2514  
2515  
2516  
2517  
2518  
2519  
2520  
2521  
2522  
2523  
2524  
2525  
2526  
2527  
2528  
2529  
2530  
2531  
2532  
2533  
2534  
2535  
2536  
2537
```