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ABSTRACT

While 3D content generation has advanced significantly, existing methods still
face challenges with input formats, latent space design, and output representa-
tions. This paper introduces a novel 3D generation framework that addresses
these challenges, offering scalable, high-quality 3D generation with an interac-
tive Point Cloud-structured Latent space. Our framework employs a Variational
Autoencoder (VAE) with multi-view posed RGB-D(epth)-N(ormal) renderings as
input, using a unique latent space design that preserves 3D shape information, and
incorporates a cascaded latent diffusion model for improved shape-texture disen-
tanglement. The proposed method, GAUSSIANANYTHING, supports multi-modal
conditional 3D generation, allowing for point cloud, caption, and single image
inputs. Notably, the newly proposed latent space naturally enables geometry-
texture disentanglement, thus allowing 3D-aware editing. Experimental results
demonstrate the effectiveness of our approach on multiple datasets, outperforming
existing native 3D methods in both text- and image-conditioned 3D generation.

1 INTRODUCTION

3D content generation holds great potential for transforming the virtual reality, film, and gaming
industries. Current approaches typically follow one of two paths: either a 2D-lifting method or
the design of native 3D diffusion models. While the 2D-lifting approach (Shi et al., 2023b; Liu
et al., 2023b) benefits from leveraging 2D diffusion model priors, it is often hindered by expensive
optimization, the Janus problem, and inconsistencies between views. In contrast, native 3D diffusion
models (Jun & Nichol, 2023; Lan et al., 2024; Zhang et al., 2024) are trained from scratch for 3D
generation, offering improved generality, efficiency, and control.

Despite the progress in native 3D diffusion models, several design challenges still persist: (1) Input
format to the 3D VAE. Most methods (Zhang et al., 2024; Li et al., 2024) directly adopt point cloud
as input. However, it fails to encode the high-frequency details from textures. Besides, this limits the
available training dataset to artist-created 3D assets, which are challenging to collect on a large scale.
LN3Diff (Lan et al., 2024) adopt multi-view images as input. Though straightforward, it lacks direct
3D information input and cannot comprehensively encode the given object. (2) 3D latent space
structure. Since 3D objects are diverse in geometry, color, and size, most 3D VAE models adopt
the permutation-invariant set latent (Zhang et al., 2023a; Sajjadi et al., 2022; Zhang et al., 2024) to
encode incoming 3D objects. Though flexible, this design lacks the image-latent correspondence as
in Stable Diffusion VAE (Rombach et al., 2022), where the VAE latent code can directly serve as
the proxy for editing input image (Mou et al., 2023b;a). Other methods adopt latent tri-plane (Wu
et al., 2024; Lan et al., 2024) as the 3D latent representation. However, the latent tri-plane is still
unsuitable for interactive 3D editing as changes in one plane may not map to the exact part of the
objects that need editing. (3) Choice of 3D output representations. Existing solutions either output
texture-less SDF (Wu et al., 2024; Zhang et al., 2024), which requires additional shading model
for post-processing; or volumetric tri-plane (Lan et al., 2024), which struggles with high-resolution
rendering due to extensive memory required by volumetric rendering (Mildenhall et al., 2020).

In this study, we propose a novel 3D generation framework that resolves the problems above and en-
ables scalable, high-quality 3D generation with an interactive Point Cloud-structured Latent space.
The resulting method, dubbed GAUSSIANANYTHING, supports multi-modal conditional 3D gener-
ation, including point cloud, caption, and image. Specifically, we propose a 3D VAE that adopts
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multi-view posed RGB-D(epth)-N(ormal) renderings as the input, which are easy to render and con-
tain comprehensive 3D attributes corresponding to the input 3D object. The information of each
input view is channel-wise concatenated and efficiently encoded with the scene representation trans-
former (Sajjadi et al., 2022), yielding a set latent that compactly encodes the given 3D input. Instead
of directly applying it for diffusion learning (Zhang et al., 2024; Li et al., 2024), our novel design
concretizes the unordered tokens into the shape of the 3D input. Specifically, this is achieved by
cross-attending (Huang et al., 2024b) the set latent via a sparse point cloud sampled from the input
3D shape, as visualized in Fig. 1. The resulting point-cloud structured latent space significantly fa-
cilitate shape-texture disentanglement and 3D editing. Afterward, a DiT-based 3D decoder (Peebles
& Xie, 2023; Lan et al., 2024) gradually decodes and upsamples the latent point cloud into a set of
dense surfel Gaussians (Huang et al., 2024a), which are rasterized to high-resolution renderings to
supervise 3D VAE training.

After the 3D VAE is trained, we conduct cascaded latent diffusion modeling on the latent space
through flow matching (Albergo et al., 2023; Lipman et al., 2023; Liu et al., 2023c) using the
DiT (Peebles & Xie, 2023) framework. To encourage better shape-texture disentanglement, a point
cloud diffusion model is first trained to carve the overall layout of the input shape. Then, a point-
cloud feature diffusion model is cascaded to output the corresponding feature conditioned on the
generated point cloud. The generated featured point cloud is then decoded into surfel Gaussians via
pre-trained VAE for downstream applications.

In summary, we contribute a comprehensive 3D generation framework with a point cloud-structured
3D latent space. The redesigned 3D VAE efficiently encodes the 3D input into an interactive latent
space, which is further decoded into high-quality surfel Gaussians. The diffusion models trained
on the compressed latent space have shown superior performance in text-conditioned 3D generation
and editing, as well as impressive image-conditioned 3D generation on general real world data.

2 RELATED WORK

3D Generation via 2D Diffusion Models. The success of 2D diffusion models (Song et al., 2021;
Ho et al., 2020) has inspired their application to 3D generation. Score distillation sampling (Poole
et al., 2022; Wang et al., 2023) distills 3D from a 2D diffusion model, but faces challenges like ex-
pensive optimization, mode collapse, and the Janus problem. More recent methods propose learning
the 3D via a two-stage pipeline: multi-view images generation (Shi et al., 2023b; Long et al., 2024;
Shi et al., 2023a) and feed-forward 3D reconstruction (Hong et al., 2024b; Xu et al., 2024a; Tang
et al., 2024). Though promising results have been achieved, their performance is bounded by the
multi-view generation results, which usually violate view consistency (Liu et al., 2023b) and fails
to scale up to higher resolution (Shi et al., 2023a). Moreover, this two-stage pipeline limits the 3D
editing capability due to the lack of a 3D-aware latent space.

Native 3D Diffusion Models. Native 3D diffusion models (Zhang et al., 2023a; Zeng et al., 2022;
Zhang et al., 2024; Lan et al., 2024; Li et al., 2024) are recently proposed to achieve high-quality,
efficient and scalable 3D generation. A native 3D diffusion pipeline involves a two-stage training
process: encoding 3D objects into the VAE latent space (Kingma & Welling, 2013; Kosiorek et al.,
2021), and latent diffusion model on the corresponding latent codes. Though straightforward, ex-
isting methods differ in VAE input formats, latent space structure and output 3D representations.
While most methods adopt point alone as the VAE input (Zhang et al., 2023a; 2024; Li et al., 2024),
our proposed method encodes a hybrid 3D information through convolutional encoder. Moreover,
comparing to the latent set (Zhang et al., 2023a; Sajjadi et al., 2022) representation, our proposed
method adopts a point cloud-structured latent space, which can be directly used for interactive 3D
editing. Besides, rather than producing textureless SDF, our method directly decodes the 3D la-
tent codes into high-quality surfel Gaussians (Huang et al., 2024a), which can be directly used for
efficient rendering.

Point-based Shape Representation and Rendering. The proliferation of 3D scanners and RGB-
D cameras makes the capture and processing of 3D point clouds commonplace (Gross & Pfister,
2011). In the era of deep learning, learning-based methods are emerging for point set process-
ing (Qi et al., 2016; Zhao et al., 2021), up-sampling (Yu et al., 2018), shape representation (Genova
et al., 2020; Lan et al., 2023b), and rendering (Pfister et al., 2000; Yifan et al., 2019; Lassner &
Zollhöfer, 2021; Xu et al., 2022; Kerbl et al., 2023). Moreover, given its affinity for modern network
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architectures (Huang et al., 2024b; Zhao et al., 2021), more explicit nature against other 3D repre-
sentations (Chan et al., 2022; Mildenhall et al., 2020; Müller et al., 2022), efficient rendering (Kerbl
et al., 2023), and even high-quality surface modeling (Huang et al., 2024a), point-based 3D repre-
sentations are rapidly developing towards the canonical 3D representation for learning 3D shapes.
Thus, we choose (featured) point cloud as the representation for the 3D VAE latent space, and 2D
Gaussians (Huang et al., 2024a) as the output 3D representations.

Feed-forward 3D Reconstruction and View Synthesis. To bypass the per-scene optimization of
NeRF, researchers have proposed learning a prior model through image-based rendering (Wang
et al., 2021; Yu et al., 2021). However, these methods are primarily designed for view synthe-
sis and lack explicit 3D representations. Sajjadi et al. (2022; 2023) propose Scene representation
transformer (SRT) to process RGB images with Vision Transformer (Dosovitskiy et al., 2021) and
infers a “set-latent scene representation”. Though benefiting from the flexible design, its geometry-
free paradigm also fails to generate explicit 3D outputs. Recently, LRM-line of work (Hong et al.,
2024b; Tang et al., 2024; Wang et al., 2024) have proposed a feed-forward framework for generalized
monocular reconstruction. However, they are still regression-based models and lack the latent space
designed for generative modeling and 3D editing. Besides, they are limited to 3D reconstruction
only and fail to support other modalities.

3 GAUSSIANANYTHING

This section introduces our native 3D diffusion model, which learns 3D-aware diffusion prior over
the novel point-cloud structured latent space through a dedicated 3D VAE. The goal of training is to
learn

1. An encoder Eϕ that maps a set of posed RGB-D-N images R = {Ri, ..., RV }, correspond-
ing to the given 3D object to a point-cloud structured latent z = [zx ⊕ zh];

2. A conditional cascaded transformer denoiser ϵhΘ(zh,t, zx,0, t, c) ◦ ϵxΘ(zx,t, t, c) to denoise
the noisy latent code zt given diffusion time step t and condition prompt c;

3. A decoder Dψ (including a Transformer DT and a cascaded attention-base Upsampler
DU ) to map z0 to the surfel Gaussian G̃ corresponding to the input object. Moreover, our
attention-based decoding of dense surfel Gaussian also provides a novel way for efficient
Gaussian prediction

Beyond the advantages shared by existing 3D LDM (Zhang et al., 2024; Lan et al., 2024), our design
offers a flexible point-cloud structured latent space and enables interactive 3D editing.

In the following subsections, we first discuss the proposed 3D VAE with a detailed framework design
in Sec 3.1. Based on that, we introduce the cascaded conditional 3D diffusion stage in Sec. 3.2. The
method overview is shown in Fig. 1.

3.1 POINT-CLOUD STRUCTURED 3D VAE

Unlike image and video, the 3D domain is un-uniform and represented differently for different
purposes. Thus, how to encode 3D objects into the latent space for diffusion learning plays a crucial
role in the 3D generation performance. This challenge is two-fold: what 3D representations to
encode, and what network architecture to process the input.

Versatile 3D Input. Instead of using dense point cloud (Zhang et al., 2024; Li et al., 2024), we
adopt multi-view posed RGB-D(epth)-N(ormal) images as input, which encode the 3D input more
comprehensively and can be efficiently processed by well-established network architectures (Sajjadi
et al., 2022; Wu et al., 2023a) in a flexible manner. Specifically, the input is a set of multi-view
renderings R of a 3D object, where each rendering within the set R = (I,∆, N, π) contains thor-
ough 3D attributes that depict the underlying 3D object from the given viewpoint: the rendered RGB
image I ∈ RH×W×3, depth map ∆ ∈ RH×W , normal map N ∈ RH×W×3, and the corresponding
camera pose π.

To unify these 3D attributes in the same format, we further process the camera π into Plücker co-
ordinates (Sitzmann et al., 2021) pi = (o × du,v,du,v) ∈ R6, where oi ∈ R3 is the camera
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Figure 1: Pipeline of the 3D VAE of GAUSSIANANYTHING. In the 3D latent space learning stage,
our proposed 3D VAE Eϕ encodes V−views of posed RGB-D(epth)-N(ormal) renderings R into a
point-cloud structured latent space. This is achieved by first processing the multi-view inputs into
the un-structured set latent, which is further projected onto the 3D manifold through a cross attention
block, yielding the point-cloud structured latent code z. The structured 3D latent is further decoded
by a 3D-aware DiT transformer, giving the coarse Gaussian prediction. For high-quality rendering,
the base Gaussian is further up-sampled by a series of cascaded upsampler Dk

U towards a dense
Gaussian for high-resolution rasterization. The 3D VAE training objective is detailed in Eq. (5).

origin, du,v ∈ R3 is the normalized ray direction, and × denotes the cross product. Thus, the
Plücker embedding of a given camera π can be expressed as P ∈ RH×W×6. Besides, following
MCC (Wu et al., 2023a), we use π to unproject the depth map into their 3D positionsX ∈ RH×W×3.
The resulting information is channel-wise concatenated, giving R̃ = [I ⊕ X ⊕ N ⊕ P] ∈
RH×W×(3+3+3+6=15).

Transformer-based 3D Encoding. Given the 3D renderings R, encoding them into a 3D latent
space remains a significant challenge. Independently processing each input rendering R̃ with exist-
ing network architecture (Wu et al., 2023a; Dosovitskiy et al., 2021) overlooks the information from
other views, leading to 3D inconsistency and content drift across views (Liu et al., 2023b).

Existing multi-view generation alleviates this issue by injecting 3D attention (Shi et al., 2023b;
Tang et al., 2024; Shi et al., 2023a) into the U-Net architecture. Inspired by its effectiveness, here
we directly adopt Scene Representation Transformer (SRT)-like encoder (Sajjadi et al., 2022; 2023)
to process the multi-view inputs, which fully adopts 3D attention transformer block for the 3D
representation learning. Specifically, the encoder first down-samples the multi-view inputs via a
shared CNN backbone, and then processes the aggregated multi-view tokens through the transformer
encoder (Dosovitskiy et al., 2021):

zz = ETX
ϕ (ECNN

ϕ ({R̃)})), (1)
where zz is the set latent corresponding to the 3D input. This can be seen as the full-attention version
of the existing 3D attention-augmented architecture. The resulting latent codes zz fully capture the
intact 3D information corresponding to the input. Compared to existing work that adopts point
clouds only as input (Zhang et al., 2024; Li et al., 2024), our proposed solution supports more 3D
properties as input in a flexible way. In addition, attention operations can be well optimized in
modern GPU architecture (Dao et al., 2022; Dao, 2024).

Point Cloud-structured Latent Space. Though zz fully captures the given 3D input, it is not
ideal to serve as a latent space for our task due to the following limitations: 1) The latent space is
cumbersome to perform diffusion learning. Specifically, zz has a shape of V ×(H/f)×(W/f)×C,
where V is the number of input views, H,W is the input resolution and f is the down-sampling
factor of the CNN backbone. Given V = 8, f = 8, and H = W = 512, the resulting latent codes
will have the shape of 32768 × C. This latent space incurs a high computation cost for multi-view
attention (Shi et al., 2023b). 2) The multi-view features zz are not native 3D representations and
naturally suffer from view inconsistency (Liu et al., 2023b) even with enough compute available (Shi
et al., 2023a). 3) Since zz is an un-structured set (Lee et al., 2019) 3D latent space (Zhang et al.,
2023a; 2024), it also sacrifices an explicit, editable latent space (Mou et al., 2023a) for flexibility.

Here, we resolve these issues by proposing a point cloud-structured latent space. Specifically, we
project the un-structured features zz onto the sparse 3D point cloud of the input 3D shape through
the cross attention layer:

zh := CrossAttn(PE(zx), zz, zz), (2)
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where CrossAttn(Q,K, V ) denotes a cross attention block with query Q, key K, and value V . zx ∈
R3×N is a sparse point cloud sampled from the surface of the 3D input with Farthest Point Sampling
(FPS) (Qi et al., 2017), and PE denotes positional embedding (Tancik et al., 2020). Intuitively, we
define a read cross attention block (Huang et al., 2024b) that cross attends information from un-
structured representation zz into the point-cloud structured feature zh ∈ RCh×N , with Ch ≪ C. In
this way, we obtain the point-cloud structured latent code z = [zx⊕ zh] ∈ R(3+Ch)×N for diffusion
learning.

High-quality 3D Gaussian Decoding. Given the point cloud-structured latent codes, how to decode
them into high-quality 3D representation for supervision remains challenging. Though dense point
cloud (Huang et al., 2024b) is a straightforward solution, it fails to depict high-quality 3D structure
with limited point quantity. Here, we resort to surfel Gaussian (Huang et al., 2024a), an augmented
point-based 3D representation that supports high-fidelity 3D surface modeling and efficient ren-
dering. Specifically, our decoder first decodes the input through the 3D-DiT blocks (Peebles & Xie,
2023; Lan et al., 2024), which has shown superior performance against traditional transformer layer:

z̃ := DT (MLP(z)), (3)

where an MLP layer first projects the input latent to the corresponding dimension, and DT is the DiT
transformer. Since dense Gaussians are preferred for high-quality splatting (Kerbl et al., 2023), we
gradually upsample the latent features through transformer blocks. Specifically, given a learnable
embedding zu ∈ Rfu×C where fu is the up-sampling ratio, we prepend it to each token in the latent
sequence. Then, H layers of transformer blocks are used to model the upsampling process:

z
(k+1)
i := Dk

U ([zu ⊕ z̃i]), (4)

where Dk
U is a transformer block for predicting the k−th levels of details (LoD) Gaussian as shown

in Fig. 1, and z
(k+1)
i ∈ Rfu×C are the upsampled set of tokens. The overall tokens z(k+1) ∈

R(fu×N)×C after up-sampling are used to predict the 13-dim attributes of surfel Gaussians.

To achieve denser Gaussians prediction, we cascade the upsampling transformer defined in Eq. (4)
forK times, giving the final Upsampler DU for high-quality Gaussian output. Note that our solution
outputs a set of Gaussians that are uniformly distributed on the 3D object surface with near 100%
Gaussian utilization ratio. Existing pixel-aligned Gaussian prediction models (Tang et al., 2024;
Yinghao et al., 2024; Szymanowicz et al., 2023), however, usually waste 50% Gaussians due to
view overlaps and empty background color. Besides, our intermediate Gaussians output naturally
serves as K LoD (Takikawa et al., 2021), which can be used in different scenarios to balance the
rendering speed and quality.

Training. Our 3D VAE model is end-to-end optimized across both input views and randomly chosen
views, minimizing image reconstruction objectives between the splatting renderings and ground-
truth renderings. Besides image reconstruction loss, we also impose loss over geometry regulariza-
tions, KL constraints, and adversarial loss:

L(ϕ,ψ) = Lrender + Lgeo + λklLKL + λGANLGAN, (5)

where Lrender is a mixture of the L1 and VGG loss (Zhang et al., 2018), Lgeo improves geometry
reconstruction (Huang et al., 2024a), LKL is the KL-reg loss (Kingma & Welling, 2013; Rombach
et al., 2022) to regularize a structured latent space, and LGAN improves perceptual fidelity. All
loss terms except LKL are applied over a randomly chosen LoD in each iteration, and the Lrender is
applied to both input-view and randomly sampled novel-view images. For details of geometry loss
Lgeo, please refer to Sec. A.1.

3.2 CASCADED 3D GENERATION WITH FLOW MATCHING

After training the point-cloud structured 3D VAE, we get a dataset ofD shapes paired with condition
vectors (e.g., caption or images), {(zi, ci)}i∈[D], where the shape is represented by latent code z
through the 3D VAE aforementioned. Our goal is to train a flow-matching generative model to learn
a diffusion prior on top of it. Below we present how we adapt flow-based models to our case.

Cascaded Flow Matching over Symmetric Data. As detailed in Sec. A.3, flow matching involves
training a neural network ϵΘ to predict the velocity v of the noisy input zt with the straight-line tra-
jectory. After training, ϵΘ can sample from a standard Normal prior N (0, I) by solving the reverse
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Figure 2: Diffusion training of GAUSSIANANYTHING. Based on the point-cloud structure 3D
VAE, we perform cascaded 3D diffusion learning given text (a) and image (b) conditions. We adopt
DiT architecture with AdaLN-single (Chen et al., 2023) and QK-Norm (Dehghani et al., 2023; Esser
et al., 2021). For both condition modality, we send in the conditional feature with cross attention
block, but at different positions. The 3D generation is achieved in two stages (c), where a point cloud
diffusion model first generates the 3D layout zx,0, and a texture diffusion model further generates
the corresponding point-cloud features zh,0. The generated latent code z0 is decoded into the final
3D object with the pre-trained VAE decoder.

ODE/SDE (Karras et al., 2022). In our case, the training data point is the point-cloud structured
latent code z = [zx ⊕ zh] ∈ R(3+Ch)×N , which is symmetric and permutation invariant (Zeng
et al., 2022; Nichol et al., 2022). Based on this property, we opt for diffusion transformer (Peebles
& Xie, 2023) without positional encoding as the ϵΘ parameterization.

Here, rather than modeling zx and zh jointly, we empirically found that a cascaded framework (Ho
et al., 2021; Lyu et al., 2024; 2023) leads to better performance. Specifically, a conditioned sparse
point cloud generative model ϵxΘ is first trained to generate the overall structure of the given object:

Lx
w(x0) = −1

2
Et∼U(t),ϵ∼N (0,I)

[
wFM

t λ′t∥ϵxΘ(zx,t, t, c)− ϵ∥2
]
, (6)

and a point cloud feature generative model ϵhΘ is cascaded to learn the corresponding KL-
regularized feature conditioned on the sparse point cloud:

Lh
w(x0) = −1

2
Et∼U(t),ϵ∼N (0,I)

[
wFM

t λ′t∥ϵhΘ(zh,t, zx, t, c)− ϵ∥2
]
. (7)

The detailed cascading process is detailed Fig. 2 (c). Our proposed design enables better geometry-
texture disentanglement and facilitates 3D editing over specific shape properties. For derivations of
the flow matching training objective, please refer to Sec. A.3 for more details.

Conditioning Mechanism. Compared to LRM (Hong et al., 2024b; Tang et al., 2024) line of work
which intrinsically relies on image(s) as the input, our native diffusion-based method enables more
flexible 3D generation from diverse conditions. As shown in Fig. 2 (a-b), for the text-conditioned
model, we adopt CLIP (Radford et al., 2021) to extract penultimate tokens as the condition embed-
dings; and for the image conditioned model, we use DINOv2 (Oquab et al., 2023) to extract global
and patch features. All conditions are injected into the DiT architecture through a pre-norm (Xiong
et al., 2020) cross-attention block following the common practice Zhang et al. (2024). All the mod-
els are trained with Classifier-free Guidance (CFG) (Ho, 2021) by randomly dropping the conditions
with a probability of 10%.
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Input Open-LRM Splatter	Image Lara LGM LN3Diff OursOne-2-3-45 CRM Shape-E

Single-view	Image	to	3D Multi-view	Image	to	3D Native	3D	Diffusion	Model

Figure 3: Qualitative Comparison of Image-to-3D. We showcase the novel view 3D reconstruc-
tion of all methods given a single image from unseen GSO dataset. Our proposed method achieves
consistently stable performance across all cases. Note that though feed-forward 3D reconstruction
methods achieve sharper texture reconstruction, these method fail to yield intact 3D predictions un-
der challenging cases (e.g., the rhino in row 2). In contrast, our proposed native 3D diffusion model
achieve consistently better performance. Better zoom in.

To cascade two diffusion models, we encode the output of stage-1 model ϵxΘ with PE(zx) as in
Eq. (2), and add it to the first-layer features of ϵhΘ. This guarantees that generated features are paired
with the input sparse point cloud structure.

4 EXPERIMENTS

Datasets. To train our 3D VAE, we use the renderings provided by G-Objaverse (Qiu et al., 2023;
Deitke et al., 2023b) and choose a high-quality subset with around 176K 3D instances, where each
consists of 40 random views with RGB, normal, depth map and camera pose. For text-conditioned
diffusion training, we use the caption provided by Cap3D (Luo et al., 2023; 2024) and 3DTopia Hong
et al. (2024a). For image-conditioned training, we randomly select an image in the dataset of the
corresponding 3D instance as the condition.

Implementation Details. For 3D VAE, we choose V = 8 views of RGB-D-N renderings as input to
guarantee a thorough coverage of the 3D object. The CNN Encoder is implemented with a similar
architecture as LDM VAE (Rombach et al., 2022) with a down-sampling factor of f = 8, and the
multi-view transformer has five layers as in RUST (Sajjadi et al., 2023). The sparse point cloud zx
has a size of N × 3 where N = 768, and the corresponding featured point cloud zh has a dimension
of N × 10. For upsampling blocks, we employ K = 3 blocks with f1u = 8, f1u = 4, and f1u = 3,
giving 73, 768 Gaussians in total. All transformer blocks follow a pre-norm design (Xiong et al.,
2020). During 3D VAE training, the model is supervised by randomly chosen LoD renderings, with
λkl = 2e − 6, λd = 1000, λn = 0.2, and λGAN = 0.1. We adopt batch size 64 with both input and
random novel views for training. During the conditional diffusion training stage, we adopt batch
size 256. All models are efficiently and stably trained with lr = 1e − 4 on 8×A100 GPUs for 1M
iterations with BF16 and FlashAttention (Dao, 2024) enabled. We use CFG=4 and 250 ODE steps
for all sampling results.

4.1 METRICS AND BASELINES

Evaluating Image-to-3D Generation. We evaluate GAUSSIANANYTHING on both image and
text conditioned generation. Regarding image-conditioned 3D generation methods, we compare
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Table 2: Quantitative evaluation of image-conditioned 3D generation. Here, quality of both
2D rendering and 3D shapes is evaluated. As shown below, the proposed method demonstrates
strong performance across all metrics. Although multi-view images-to-3D approaches like LGM
achieves better performance on the FID/KID metrics, they fall short on more advanced image quality
assessment metrics such as CLIP-I, MUSIQ, and performs significantly worse in 3D shape quality.
For multi-view to 3D methods, we also include the number of input views (V=#).

Method CLIP-I↑ FID↓ KID(%)↓ MUSIQ↑ P-FID↓ P-KID(%)↓ COV(%)↑ MMD(‰)↓
OpenLRM 86.37 38.41 1.87 45.46 35.74 12.60 39.33 29.08
Splatter-Image 84.10 48.80 3.65 30.33 19.72 7.03 37.66 30.69

One-2-3-45 (V=12) 80.72 88.39 6.34 59.02 72.40 30.83 33.33 35.09
CRM (V=6) 85.76 45.53 1.93 64.10 35.21 13.19 38.83 28.91
Lara (V=4) 84.64 43.74 1.95 39.37 32.37 12.44 39.33 28.84
LGM (V=4) 87.99 19.93 0.55 54.78 40.17 19.45 50.83 22.06

LN3Diff 87.24 29.08 0.89 50.39 27.17 10.02 55.17 19.94
Ours 89.06 24.21 0.76 65.17 8.72 3.22 59.50 15.48

the proposed method with three lines of methods: single-image to 3D methods: OpenLRM (He
& Wang, 2023; Hong et al., 2024b), Splatter Image (Szymanowicz et al., 2023), multi-view im-
ages to 3D methods: One-2-3-45 Liu et al. (2023a), CRM (Wang et al., 2024), Lara (Chen et al.,
2024a), LGM (Tang et al., 2024), and native 3D diffusion models: LN3Diff-image (Lan et al., 2024).

Table 1: Quantitative Evaluation on Text-to-3D.
The proposed method outperforms existing methods on
both CLIP scores and aesthetic scores over competitive
alternatives.

Method ViT-B/32↑ ViT-L/14↑ MUSIQ-AVA ↑ Q-Align ↑
Point-E 26.35 21.40 4.08 1.21
Shape-E 27.84 25.84 3.69 1.56
LN3Diff 29.12 27.80 4.16 2.22
3DTopia 30.10 28.11 3.31 1.42

Ours 31.80 29.38 4.99 3.13

Quantitatively, we benchmark rendering metrics with CLIP-I Radford et al. (2021), FID (Heusel
et al., 2017), KID (Bińkowski et al., 2018), and MUSIQ-koniq (Ke et al., 2021; Zhou et al., 2022).
For 3D quality metrics, we adopt Point cloud FID (P-FID), Point cloud KID (P-KID), Cover-
age Score (COV), and Minimum Matching Distance (MMD) as the metrics. Following previous
works Nichol et al. (2022); Zhang et al. (2023a); Yariv et al. (2024), we adopt the pre-trained Point-
Net++ provided by Point-E (Nichol et al., 2022) for calculating P-FID and K-FID. Qualitatively,
GSO (Downs et al., 2022; Zheng & Vedaldi, 2023) dataset is used for visually inspecting image-
conditioned generation.

Evaluating Text-to-3D Generation. Re-
garding text-conditioned 3D generation
methods, we compare against Point-
E (Nichol et al., 2022), Shape-E (Jun
& Nichol, 2023), 3DTopia (Hong et al.,
2024a), and LN3Diff-text (Lan et al.,
2024). CLIP score (Radford et al.,
2021) is reported following the previous
works (Lan et al., 2024; Hong et al.,
2024a), with aesthetic scores MUSIQ-
AVA (Ke et al., 2021) and Q-Align (Wu et al., 2023b) also included.

4.2 EVALUATION

Image-to-3D Generation. Our proposed framework enables 3D generation given single-view im-
age conditions, leveraging the architecture detailed in Fig. 2 (b). Following current method (Chen
et al., 2024a; Tang et al., 2024), we qualitatively benchmark our method in Fig. 3 over the single-
view 3D reconstruction task on the unseen images from the GSO dataset. Our proposed framework
is robust to inputs with complicated structures (row 1,3,4) and self-occlusion (row 2,5), yielding
consistently intact 3D reconstruction. Besides, our generative-based method shows a more natu-
ral back-view reconstruction, as opposed to regression-based methods that are commonly blurry on
uncertain areas.

Quantitatively, we showcase the evaluation in Tab. 2. As can be seen, our proposed method achieves
state-of-the-art performance over CLIP-I and all 3D metrics, with competitive results over conven-
tional 2D rendering metrics FID/KID. Note that LGM leverages pre-trained MVDream (Shi et al.,
2023b) as the first-stage generation, and then maps the generated 4 views to pixel-aligned 3D Gaus-
sians. This cascaded pipeline achieves better visual quality, but prone to yield distorted 3D geometry,
as visualized in Fig. 3.
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Text-to-3D Generation. We demonstrate the text-to-3D generation performance in Fig. 4 and
Tab. 1. The diffusion model trained on GAUSSIANANYTHING’s latent space has demonstrated
high-quality text-to-3D generation of generic 3D objects, yielding superior performance in terms
of object structure, textures, and surface normals. Quantitatively, our proposed method achieves
better text-3D alignment against competitive baselines.

3D-aware Editing. Compared to existing methods that use unstructured tokens for 3D diffusion
learning (Jun & Nichol, 2023), our proposed point-cloud structured latent space naturally facilitates
geometry-texture disentanglement and allows for interactive 3D editing. As visualized in Fig. 5,
given the text-conditioned generated point cloud z0 by ϵxΘ, we sample the final 3D objects with
ϵhΘ with a different random seed. As can be seen, the generated 3D objects maintain a consistent
structure layout while yielding diverse textures. Besides, by directly manipulating the conditioned
point cloud zx,0, our proposed method enables interactive 3D editing, as in 2D models (Pan et al.,
2023; Mou et al., 2023b). This functionality greatly facilitates the 3D content creation process for
artists and opens up new possibilities for 3D editing with diffusion models.

4.3 ABLATION STUDY AND ANALYSIS

Table 3: Ablation of 3D VAE Design. We ablate
the design of our 3D VAE. Input-side, leveraging
multi-view RGB-D-N renderings shows superior
performance against dense point cloud. Besides,
adding Gaussian up-sampling modules leads to
consistent performance gain.

Design LPIPS@100K
Dense PCD as Input 0.174
Multi-view RGB-D as Input 0.163

+ Normal Map 0.157
+ Gaussian SR Module 0.095
+ 3 × Gaussian SR Module 0.067

Table 4: Gaussian Utilization Ratio. We com-
pare the effective Gaussians (opacity > 0.005)
used during splatting here. Pixel-aligned Gaus-
sian prediction methods waste a large portion of
Gaussians when representing 3D object due to
white background and multi-view overlap, while
our proposed Gaussian predictions yields more
compact reconstruction results.

Method High-opacity Gaussians (%)

Splatter Image 17.14
LGM 52.63
Ours 96.84

3D VAE Design. In Tab. 3, we benchmark each component of our 3D VAE architecture over a subset
of Objaverse with 50K instances and record the LPIPS at 100K iterations. As shown in Tab. 3, our
input design performs better against dense (16, 384) colored point cloud (Zhang et al., 2024), and
the reconstruction quality consistently improves by including normal map as input and cascading
more Gaussian upsampling blocks.

Gaussian Utilization Ratio. Besides, we showcase a high Gaussian utilization ratio of our proposed
method. Specifically, we calculate the ratio of Gaussians with an opacity greater than 0.005 as
effective Gaussians, as they contribute well to the final rendering. We calculate the statistics over

A voxelized 
dog.

An 18th century
cannon.

Shap-ELN3Diff Point-E3D	TopiaOurs

A MacDonald
Hamburger.

A fancy 
mech suit.

Figure 4: Qualitative Comparison of Text-to-3D. We present text-conditioned 3D objects gener-
ated by GAUSSIANANYTHING, displaying two views of each sample. The top section compares our
results with baseline methods, while the bottom shows additional samples from our method along
with their geometry maps. Our approach consistently yields better quality in terms of geometry,
texture, and text-3D alignment.
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A hydrant.

An astral 
beacon.

Stage-2	𝐳!,#	generation
(Texture	Geometry	Disentanglement) Interactive	EditingStage-1	

𝐳$,# generation

𝜖!" 𝜖!# 𝐳!,#$ 𝜖!#

Figure 5: 3D editing. Given two text prompts, we generate the corresponding point cloud z0,x with
stage-1 diffusion model with ϵxΘ, and the corresponding point cloud features z0,h can be further
generated with ϵhΘ. As can be seen, the samples from stage-2 are consistent in overall 3D structures
but with diverse textures. Thanks to the proposed Point Cloud-structured Latent space, our method
supports interactive 3D structure editing. This is achieved by first modifying the stage-1 point cloud
z0,x → z′0,x, and then regenerate the 3D object with the same Gaussian noise.

A voxelized 
dog.

(a)	No	cascaded	text-to-3D	generation

Editing	on	Gaussians Latent-based	Editing	(Ours)Input

(b)	Editing	on	the	point	cloud	latent	space

Figure 6: Qualitative ablation of Cascaded diffusion and latent space editing. We first show the
effectiveness of our two-stage cascaded diffusion framework in (a). Compared to Fig. 4, the single-
stage 3D diffusion yields worse texture details and 3D structure intactness. In (b), we disjoint the
hydrant cover to demonstrate that our latent point cloud editing yields less 3D artifacts compared to
direct 3D Gaussians editing.

50K 3D instances. As shown in Tab. 4, our proposed Gaussian prediction framework achieves a
much higher utilization ratio. On the contrary, pixel-aligned Gaussian prediction models waste a
noticeable portion of Gaussians on the overlapping views and white backgrounds.

Effectiveness of Cascaded 3D Diffusion. We qualitatively ablate the cascaded 3D diffusion choice
in Fig. 6 (a), where a single text-conditioned DiT is trained to synthesize the 3D point cloud and
features jointly. Clearly, the jointly trained model has a worse texture with 3D shape artifacts to our
cascaded design. Besides bringing better editing capability as shown in Fig. 5, our cascaded design
enables more flexible training, where the models of two stages can be trained in parallel.

3D Editing on the 3D Latent Space. Finally, we ablate the 3D editing performance in Fig. 6 (b).
As can be seen, direct editing on the final Gaussians leads to 3D artifacts, while editing on our 3D
latent space yields more holistic and cleaner results since suitable features are re-generated after
editing. Besides, our method enables easy editing on the sparse point cloud, compared to directly
manipulating dense 3D Gaussians (Dong et al., 2024).

5 CONCLUSION AND DISCUSSIONS

In this work, we present a new paradigm of 3D generative model by learning the diffusion model
over a interactive 3D latent space. A dedicated 3D variational autoencoder encodes multi-view 3D
attributes renderings into a point-cloud structured latent space, where multi-modal diffusion learning
can be efficiently performed. Our framework achieves superior performance over both text- and
image-conditioned 3D generation, and potentially facilitates numerous downstream applications in
3D vision and graphics tasks.

Limitations and Future Work. Our method comes with some limitations to be resolved. 3D
VAE side, we observe that the reconstruction textures are sometimes blurry on 3D objects with in-
tricate textures. A potential solution is to leverage pixel-aligned features (Saito et al., 2019; Lan
et al., 2023a; Melas-Kyriazi et al., 2023) to alleviate this issue. Moreover, incorporating rendering
loss (Anciukevičius et al., 2023) during diffusion training may further boost the generation qual-
ity. Besides, adding more real-world data such as MVImageNet Yu et al. (2023) and more control
conditions Zhang et al. (2023b) is also worth exploring.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 TRAINING DETAILS

VAE Architecture. For the convolutional encoder Eϕ, we adopt a lighter version of LDM Rom-
bach et al. (2022) encoder with channel 64 and 1 residual blocks for efficiency. When training on
Objaverse with V = 8, we incorporate 3D-aware attention Shi et al. (2023b) in the middle layer
of the convolutional encoder. The multi-view transformer architecture is similar to RUST (Sajjadi
et al., 2023; 2022). For each upsampler Dk

U , we have 2 transformer blocks in the middle. All hyper-
parameters remain at their default settings. Regarding the transformer decoder DT , we employ the
DiT-B/2 architecture due to VRAM constraints. Compared to LN3Diff (Lan et al., 2024), we do not
adopt cross-plane attention in the transformer decoder.

Diffusion Model. We mainly adopt the diffusion training pipeline implementation from SiT Ma
et al. (2024), with pred-v objective, GVP schedule, and uniform t sampling. ODE solver with 250
steps is used for all the results shown in the paper. For the DiT architecture with cross attention and
single-adaLN-zero design, we mainly refer to PixArt Chen et al. (2023). The diffusion transformer
is built with 24 layers with 16 heads and 1024 hidden dimension, which result in 458M parameters.
For all the diffusion models, we further add the global token to t features as part of the condition
input.

Details of Geometry Loss in VAE Training. The geometry loss Lgeo is composed of two regular-
ization terms, including the depth distortion loss to concentrate the weight distribution along rays,
inspired by Mip-NeRF (Barron et al., 2021; 2022). Given a ray of pixel, the distortion loss is defined
as

Ld =
∑
i,j

ωiωj |di − dj |, (8)

where ωi = αi Ĝi(u(x))
∏i−1

j=1(1−αj Ĝj(u(x))) is the blending weight of the i−th intersection and
di is the depth of the intersection points. Besides, as surfel Gaussians explicitly model the primitive
normals, we encourage the splats’ normal to locally approximate the actual object surface:

Ln =
∑
i

ωi(1− N̂T
i N), (9)

where N̂ is the predicted normal maps. The final geometry loss is given by Lgeo = λdLd + λnLn.

A.2 DATA AND BASELINE COMPARISON

Training Data. For Objaverse, we use a high-quality subset from the pre-processed rendering from
G-buffer Objaverse Qiu et al. (2023) for experiments. Since G-buffer Objaverse splits the subset
into 10 general categories, we use all the 3D instances except from “Poor-quality”: Human-Shape,
Animals, Daily-Used, Furniture, Buildings&Outdoor, Transportations, Plants, Food and Electronics.
The ground truth camera pose, rendered multi-view images, normal, depth maps, and camera poses
are used for stage-1 VAE training.

Details about Baselines. We use the official released code and checkpoint for all the comparisons
shown in the paper. For the evaluation on the GSO dataset, we use the rendering provided by
Free3D (Zheng & Vedaldi, 2023).

Evaluation details. For quantitative benchmark in Tab. 2, we use 600 instances from Objaverse
with ground truth 3D mesh for evaluation. To calculate the visual metrics (FID/KID/MUSIQ), we
use the first rendered instance as the image condition and render 24 images with fixed elevation (+15
degrees) with uniform azimuths trajectory (24 × 15 degrees) with radius= 1.8. For 3D metrics, we
export the extracted 3D mesh and sample 4096 points using FPS sampling on the mesh surface. The
ground truth surface point cloud is processed in the same way. The pre-trained PointNet++ model
from Point-E is used for P-FID and P-KID evaluation. All generated 3D models are aligned into
the same canonical space before 3D metrics calculation. All intermediate results of the baselines for
evaluation will be released.
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A.3 MORE PRELIMINARIES

2D Gaussian Splatting (2DGS). Since 3DGS (Kerbl et al., 2023) models the entire angular radiance
in a blob, it fails to reconstruct high-quality object surfaces. To resolve this issue, Huang et al.
(2024a) proposed 2DGS (surfel-based GS) that simplifies the 3-dimensional modeling by adopting
“flat” 2D Gaussians embedded in 3D space, which enables better alignment with thin surfaces.

Notation-wise, the 2D splat is characterized by its central point pk, two principal tangential vectors
tu and tv , and a scaling vector S = (su, sv) that controls the variances of the 2D Gaussian. Notice
that the primitive normal is defined by two orthogonal tangential vectors tw = tu × tv . Thus, the
2D Gaussian is parameterized with

P (u, v) = pk + sutuu+ svtvv = H(u, v, 1, 1)T (10)

whereH =

[
sutu svtv 0 pk

0 0 0 1

]
=

[
RS pk

0 1

]
(11)

Where H parameterizes the local 2D Gaussian geometry. For the point u = (u, v) in uv space, its 2D
Gaussian value can then be evaluated by standard Gaussian G(u) = exp

(
−u2+v2

2

)
, and the center

pk, scaling (su, sv), and the rotation (tu, tv) are all learnable parameters. Following 3DGS Kerbl
et al. (2023), each 2D Gaussian primitive has opacity α and view-dependent appearance c, and can
be rasterized via volumetric alpha blending:

c(x) =
∑
i=1

ci αi Ĝi(u(x))

i−1∏
j=1

(1− αj Ĝj(u(x))), (12)

where the integration process is terminated when the accumulated opacity reaches saturation. During
optimization, pruning and densification operations are iteratively applied.

Flow Matching and Diffusion Model. Diffusion models create data from noise (Song et al., 2021)
and are trained to invert forward paths of data towards random noise. The forward path is constructed
as zt = atx0 + btϵ, where ϵ ∼ N (0, I) , at and bt are hyper parameters. The choice of forward
process has proven to have important implications for the backward process of data sampling (Lin
et al., 2023).

Recently, flow matching (Liu et al., 2023c; Albergo et al., 2023; Lipman et al., 2023) has introduced
a particular choice for the forward path, which has better theoretical properties and has been verified
on the large-scale study (Esser et al., 2024). Given a unified diffusion objective (Karras et al., 2022):

Lw(x0) = −1

2
Et∼U(t),ϵ∼N (0,I)

[
wtλ

′
t∥ϵΘ(zt, t)− ϵ∥2

]
, (13)

where λt := log
a2
t

b2t
denotes signal-to-noise ratio, and λ′t denotes its derivative. By settingwt =

t
1−t

with zt = (1− t)x0 + tϵ, flow matching defines the forward process as a straight path between the
data distribution and the Normal distribution. The network ϵΘ directly predicts the velocity vΘ, and
please check the following section for more detailed derivation.

Derivation of the Training Objective of Flow Matching. Since three works (Liu et al., 2023c;
Albergo et al., 2023; Lipman et al., 2023) proposed the flow matching idea simultaneously, we
adopt the unified formulation defined in Esser et al. (2024) in Eq. 6 and Eq. 7. Here we brief the
background of conditional flow matching, and please read the Sec.2 of Esser et al. (2024) for in-
depth analysis.

Specifically, consider the forward diffusion process (Ho et al., 2020)

zt = atx0 + btϵ, where ϵ ∼ N (0, I). (14)

To express the relationship between zt, x0, and ϵ, we define the mappings ψt and ut as:

ψt(· | ϵ) : x0 7→ atx0 + btϵ, (15)

ut(z | ϵ) := ψ′
t

(
ψ−1
t (z | ϵ) | ϵ

)
, (16)

where ψ−1
t and ψ′

t are the inverse and derivative of ψt, respectively.
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Since zt can be viewed as a solution to the ODE

z′t = ut(zt | ϵ), with initial condition z0 = x0, (17)

the conditional vector field ut(· | ϵ) generates the conditional probability path pt(· | ϵ).
Remarkably, one can construct a marginal vector field ut that generates the marginal probability
paths pt (Lipman et al., 2023), using the conditional vector fields ut(· | ϵ):

ut(z) = Eϵ∼N (0,I)

[
ut(z | ϵ)

pt(z | ϵ)
pt(z)

]
. (18)

The marginal vector field ut can be learned by minimizing the Conditional Flow Matching objective:

LCFM = Et,pt(z|ϵ),p(ϵ)
∥∥vΘ(z, t)− ut(z | ϵ)

∥∥2
2
. (19)

To make this objective explicit, we substitute:

ψ′
t(x0 | ϵ) = a′tx0 + b′tϵ, (20)

ψ−1
t (z | ϵ) = z − btϵ

at
, (21)

into the expression for ut(z | ϵ):

z′t = ut(zt | ϵ) =
a′t
at
zt − ϵbt

(
a′t
at

− b′t
bt

)
. (22)

Next, consider the signal-to-noise ratio λt := log
a2
t

b2t
. With λ′t = 2

(a′
t

at
− b′t

bt

)
, the expression for

ut(zt | ϵ) can be rewritten as:

ut(zt | ϵ) =
a′t
at
zt −

bt
2
λ′tϵ. (23)

Using this reparameterization, the LCFM objective can be reformulated as a noise-prediction objec-
tive:

LCFM = Et,pt(z|ϵ),p(ϵ)

∥∥∥∥vΘ(z, t)− a′t
at
z +

bt
2
λ′tϵ

∥∥∥∥2
2

(24)

= Et,pt(z|ϵ),p(ϵ)

(
− bt

2
λ′t

)2∥∥ϵΘ(z, t)− ϵ
∥∥2
2
, (25)

where we define:

ϵΘ :=
−2

λ′tbt

(
vΘ − a′t

at
z
)
. (26)

Since the optimal solution remains invariant to time-dependent weighting, one can derive various
weighted loss functions that guide optimization towards the desired solution. For a unified analysis
of different approaches, including classic diffusion formulations, we express the objective as Kingma
& Gao (2023):

Lw(x0) = −1

2
Et∼U(t),ϵ∼N (0,I)

[
wtλ

′
t

∥∥ϵΘ(zt, t)− ϵ
∥∥2], (27)

where wt = − 1
2λ

′
tb

2
t corresponds to wFM

t used in Eq. 6 and Eq. 7.

B DISCUSSIONS OF LIMITATIONS

We acknowledge that the texture quality of our proposed method is still inferior to the state-of-
the-art multi-view based 3D generative models, i.e., LGM. Besides, the visual quality of the text-
conditioned 3D generation of native 3D generation methods is worse compared to SDS-based alter-
natives, despite being much faster and shows better diversity. We believe our method has made a
step forward towards bridging the gap. To further improve the performance, we list some potential
directions in the following:
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1. Enhancing the 3D VAE Quality.. The performance of the 3D VAE could be improved by
increasing the number of latent points and incorporating a pixel-aligned 3D reconstruction
paradigm, such as PiFU (Saito et al., 2019), to achieve finer-grained geometry and texture
alignment.

2. Incorporating Additional Losses in Diffusion Training.. Currently, the diffusion training
relies solely on latent-space flow matching. Prior work, such as DMV3D (Xu et al., 2024b),
demonstrates that incorporating a rendering loss can significantly enhance the synthesis of
high-quality 3D textures. Adding reconstruction supervision during diffusion training is
another promising avenue to improve output fidelity.

3. Leveraging 2D Pre-training Priors.. At present, the models are trained exclusively on
3D datasets and do not utilize 2D pre-training priors as effectively as multi-view (MV)-
based 3D generative models. A potential improvement is to incorporate 2D priors more
effectively, for instance, by using multi-view synthesized images as conditioning during
training instead of single-view images.

4. Expanding Dataset Diversity.. Utilizing more diverse and extensive 3D datasets, such
as Objaverse-XL (Deitke et al., 2023a) and MVImageNet (Yu et al., 2023), could further
enhance the quality and generalizability of 3D generation.

By addressing these aspects, the proposed method could achieve significant advancements in both
the quality and versatility of its 3D generation capabilities.

C MORE VISUAL RESULTS AND VIDEOS

Please also check our supplementary video demo and attached folders for video results.

Overview of the Qualitative Performance. In Fig. 7, we include an overview of the qualitative
performance of the proposed method, GAUSSIANANYTHING. Here, we show the single-view con-
ditioned 3D generation, text-conditioned 3D generation, and 3D-aware editing capabilities.

3D VAE Reconstruction. In Fig. 8, we include the 3D VAE reconstruction results of our model
at 3 level of details (LoD). Thanks to the versatile multi-view 3D attributes input and transformer
design, our 3D VAE enables high-quality 3D reconstruction with visually attractive textures and
smooth surface. The encoded point cloud-structured latent codes, z, serves as a compact proxy for
efficient 3D diffusion training. Besides, the 2D Gaussians Upsampler naturally facilitates LoD and
facilitates speed / quality trade off in practice.

More Text-to-3D results. In Fig. 9, we present additional qualitative comparisons of text-to-3D
generation with GAUSSIANANYTHING. For this evaluation, we use relatively complex captions
as input conditions and display two random samples generated by our model. As shown, GAUS-
SIANANYTHING produces visually appealing results that characterized rich textures, smooth sur-
face, and notable diversity. To further demonstrate the generality of our proposed method, in Fig. 10
we include the uncurated text-to-3D results over DF-415 (Poole et al., 2022) prompts with captions
and more detailed descriptions.

Point-to-3D Generation with Cascaded Point-E. Moreover, the cascaded design of our stage-2
diffusion model, ϵhΘ, enables flexible 3D generation given point clouds from diverse sources. To
demonstrate this capability, we integrate the output of a state-of-the-art 3D point cloud generative
model, such as Point-E (Nichol et al., 2022), into the GAUSSIANANYTHING generation pipeline.
Specifically, we first generate the point cloud using Point-E based on a caption condition c. This
generated point cloud is then used as input zx to our stage-2 point cloud/text-conditioned diffusion
model ϵhΘ. As shown in Fig. 11, the generated surfel Gaussians exhibit significantly improved
texture quality and geometry fidelity compared to the Point-E point cloud outputs. This capability
broadens the applicability of our method, enabling it to benefit from recent advances in point cloud
generation (Huang et al., 2024b) and mesh generation (Siddiqui et al., 2023; Chen et al., 2024b) for
producing high-quality object-level surfel Gaussians.

Broader Social Impact. In this paper, we introduce a new latent 3D diffusion model designed
to produce high-quality surfel Gaussians using a single model. As a result, our approach has the
potential to be applied to generate DeepFakes or deceptive 3D assets, facilitating the creation of
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Figure 7: Our method generates high-quality and editable surfel Gaussians through a cascaded 3D
diffusion pipeline, given single-view images or texts as the conditions.

falsified images or videos. This raises concerns, as individuals could exploit such technology with
malicious intent, aiming to spread misinformation or tarnish reputations.
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LoD =	2 LoD =	3LoD =	1

Figure 8: 3D VAE Reconstruction. Here, we visualize the 3D VAE reconstruction performance
across different level of details (LoD). As shown, higher LoD results in sharper textures and
smoother surface. Better zoom in.
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Figure 9: More Qualitative Comparison of Text-to-3D. We present more text-conditioned 3D
objects generated by GAUSSIANANYTHING, alongside comparisons with competitive alternatives,
including Point-E, Shape-E, and 3DTopia. As demonstrated, our approach consistently achieves
superior quality in geometry, texture, and alignment between text and 3D content.
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Figure 10: More Qualitative Results of Text-to-3D over DF-415 Captions. Our proposed method
generalizes to long captions with detailed descriptions. All results are uncurated.
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Figure 11: Cascaded Text-to-3D with Point-E. Thanks to our cascaded 3D generation design, the
stage-2 diffusion model in GAUSSIANANYTHING seamlessly integrates with other point cloud gen-
erative models. To illustrate this capability, we leverage the state-of-the-art Point-E model. As
demonstrated, our stage-2 diffusion model effectively transforms the point clouds generated by
Point-E into diverse surfel Gaussians with more visually appealing features and enhanced geometric
details.
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