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ABSTRACT

Nighttime photography with intense light sources frequently produces significant
flare artefacts that obscure the background, resulting in diminished image qual-
ity. Existing encoder–decoder methods can remove flare, but when trained on
limited datasets, they still suffer from some issues: residual artifacts and color
shifts. In contrast, diffusion-based methods can address these problems to some
extent, but the multi-step diffusion process leads to error accumulation, which
in turn causes background distortion. To address the above issues, we propose
a novel single-step diffusion framework, FGDNet, for nighttime flare removal,
guided by Laplace Pyramid frequency priors. Specifically, Our method lever-
ages stable diffusion combined with frequency prior guidance to achieve high-
fidelity flare removal without requiring flare annotations. The framework con-
sists of three key components: (1) A Latent Diffusion-based Deflare Module
(LDDM) that performs flare removal and preliminary background reconstruction
through single-step diffusion with LoRA fine-tuning; (2) A Multi-scale Frequency
Injection Module (MFIM) that extracts high-frequency details through Lapla-
cian pyramid decomposition, aligns authentic textures, and injects them into the
VAE decoder to restore fine details; (3) A Multi-band Frequency Fusion Module
(MFFM) that employs multi-reference attention to adaptively fuse preliminary re-
sults with high/low-frequency information from the input image, further enhanc-
ing structural and color restoration. Experiments on Flare7K and Flare7K++ show
superior performance in PSNR, SSIM, LPIPS, and no-reference metrics (MUSIQ,
MANIQA), reducing artifacts while enhancing background detail and color fi-
delity in complex nighttime scenes.

1 INTRODUCTION

Lens flare refers to irregular bright spots in images caused by refraction and scattering within the
lens system when using smartphones to capture nighttime scenes with light sources, which often
degrades image quality and aesthetics. Existing flare removal methods can be categorized into
encoder–decoder-based approaches and diffusion-based methods.

More specifically, encoder–decoder approaches (Dai et al., 2022; 2024; Song & Bae, 2023; Zhou
et al., 2023; Chen et al., 2024; Kotp & Torki, 2024; Deng et al., 2024; Ma et al., 2025) typically
focus on training general image restoration models or carefully designing network architectures to
learn flare features for removal. (Dai et al., 2022; 2024) constructed datasets for nighttime flare
removal based on the physics of flare formation, paving the way for supervised training. Building
on these datasets, (Zhang et al., 2023a) built a Swin-Transformer model with Spatial Frequency
Block and Fast Fourier Convolution for long-range and global frequency features. (Zhou et al.,
2023) revised ISP auto-exposure to avoid global brightness shifts and local saturation in synthetic
data. (Chen et al., 2024) introduced LPFSformer with location priors to better localize and suppress
flare. (Kotp & Torki, 2024) integrated depth estimation into Uformer for flare removal. (Deng et al.,
2024) proposed a knowledge-driven flare localization approach that predicts the degree of degrada-
tion by leveraging gradient preservation and template matching rules. (Ma et al., 2025) proposed
SGSFT, a self-prior guided spatial-frequency transformer for nighttime flare removal. While these
methods can remove flares, their performance in real nighttime scenes is limited by the training
datasets, resulting in residual artifacts and background color shifts. Diffusion-based methods can
achieve high-quality visual results, as they are trained on vast datasets with rich prior knowledge,
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Figure 1: Deflaring results on complex flare-corrupted images by our method. By integrating stable
diffusion and laplacian pyramid frequency prior, our proposed FGDNet effectively removes flares,
preserves image color and structure, and produces high-quality results.

thereby opening up possibilities for flare removal (Zhou et al., 2024). (Zhou et al., 2024) proposed a
multi-step diffusion approach for flare removal that operates in latent space by leveraging generative
priors from pre-trained diffusion models, while preserving image structure through Structural Guid-
ance Injection and Adaptive Feature Fusion that incorporates a luminance gradient prior. (Wang
et al., 2024) processed images based on latent diffusion models, employing time-aware encoders for
conditional control and controllable feature encapsulation to achieve image structural fidelity. (Lin
et al., 2024) decomposed the task into degradation removal and content regeneration, utilizes latent
diffusion for reconstruction, and introduces IRControlNet with region-adaptive guidance to balance
naturalness and fidelity. However, the aforementioned methods employ conditional control/VAE
decoding to fuse original image structure information, often depending on damaged source data.
Moreover, the multi-step diffusion process accumulates inference errors, resulting in background
structure loss.

To address these problems, we focus on proposing a more effective method based on latent dif-
fusion models that not only resolves flare artifact residual and color shift issues but also achieves
efficient inference and preserves image structure. Inspired by the reversible and closed-form band
decomposition framework of the Laplace pyramid (LP) (Burt & Adelson, 1987), illumination or
color is mainly expressed in the low-frequency components, and content details are more related
to the high-frequency components. Therefore, we propose FGDNet, a frequency-guided one-step
diffusion framework for nighttime flare removal, where frequency components are obtained via
LP decomposition. FGDNet comprises three key components: a Latent Diffusion-based Deflare
Module (LDDM), which uses LoRA fine-tuning and one-step diffusion to leverage Stable Diffu-
sion’s rich priors and produce a latent representation of the deflared result; a Multi-scale Frequency
Injection Module (MFIM), which decomposes the flare-degraded image into multi-scale frequency
components via LP, aligns these frequencies with ground truth at the texture level, and injects them
into the VAE decoder to enhance LDDM’s generative capacity and yield initial deflare results; and a
Multi-band Frequency Fusion Module (MFFM), which employs a multi-reference attention mecha-
nism to fuse the initial deflared output with the corresponding frequency bands of the original image
while jointly referencing other bands from both sources, followed by image reconstruction to obtain
a visually enhanced result. The visual effects are shown in Fig .1

Our main contributions are summarized as follows:

(1) We propose a novel single-step diffusion framework for nighttime flare removal, guided by
Laplace Pyramid frequency priors.

(2) We construct a Multi-scale Frequency Injection Module (MFIM) to align high-frequency details
across multiple scales in the Laplacian pyramid of the input image and GT, then inject these details
into the VAE decoder to mitigate background distortion.

(3) We construct a Multi-band Frequency Fusion Module (MFFM) to further enhance visual fidelity
by integrating different information across frequency bands from the input and initial deflare results.
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2 RELATED WORK

Flare Removal: Early methods employed hardware optimizations (Raskar et al., 2008; Boynton
& Kelley, 2003; Macleod & Macleod, 2010) or two-stage detection-removal pipelines (Asha et al.,
2019; Chabert, 2015; Vitoria & Ballester, 2019), but faced cost limitations and poor generalization
to complex scenarios. With the growing popularity of deep learning methods, several studies (Qiao
et al., 2021; Jin et al., 2022; Wu et al., 2024c; He et al., 2025) have achieved flare removal without
labeled training datasets, but with unstable performance. With the growing popularity of encoder-
decoder models, numerous encoder-decoder-based methods have achieved flare removal using the
lens flare removal datasets proposed by (Wu et al., 2021; Dai et al., 2022; 2024). Zhang et al. (2023a)
incorporated Spatial Frequency Block and Fast Fourier Convolution into a Swin-Transformer to
capture global frequency features. Song & Bae (2023) designed a cascade network with comparative
learning on tripled outputs. Zhou et al. (2023) revised the ISP automatic exposure principle to
improve synthetic data quality. Chen et al. (2024) introduced LPFSformer for flare localization and
suppression via prior injection. (Deng et al., 2024) propose a knowledge-driven flare localization
approach that predicts the degree of degradation by leveraging gradient preservation and template
matching rules. Kotp & Torki (2024) achieves flare removal by injecting depth estimates from flare-
damaged images into the Uformer model. Ma et al. (2025) proposed a self-prior guided spatial-
frequency transformer. However, the appeal method is constrained by limited datasets and exhibits
poor practical generalisability.

Latent Diffusion based Image Restoration: With the growing popularity of pre-trained diffu-
sion models, leveraging their powerful generative capabilities while preserving image structural
details has become a key research focus in the field of flare removal. (Zhou et al., 2024) proposes
a multi-step diffusion approach for flare removal that operates in latent space by leveraging gener-
ative priors from pre-trained diffusion models, while preserving image structure through structural
guidance injection and adaptive feature fusion that incorporates a luminance gradient prior. In other
fields utilising potential diffusion models for image processing, (Wang et al., 2024) processes im-
ages based on latent diffusion models, employing time-aware encoders for conditional control and
controllable feature encapsulation to achieve image structural fidelity. (Lin et al., 2024) decomposes
the task into degradation removal and content regeneration, utilizes latent diffusion for reconstruc-
tion, and introduces IRControlNet with region-adaptive guidance to balance naturalness and fidelity.
(Jiang et al., 2024) proposes an image restoration framework that automatically identifies and re-
pairs diverse unknown degradations through blind quality assessment and structural-corrected latent
diffusion. However, using the original image to condition the UNet or incorporating it into the VAE
encoder relies on the damaged information in the source image, while multi-step diffusion accumu-
lates errors that lead to distortion in the background structure.

Laplacian Pyramid: Image Laplace Pyramid (LP) decomposition (Burt & Adelson, 1987) is a
multi-scale representation technique that decomposes an image into different resolution layers, each
capturing a specific frequency band. This structure consists of a band-pass-filtered image with each
level representing the difference between neighboring resolution versions of the original image. Ex-
isting work on CNN-based image processing applies the difference structure of the LP paradigm
(Denton et al., 2015; Ghiasi & Fowlkes, 2016; Lai et al., 2017; Liang et al., 2021; Luo et al., 2023;
Zhang et al., 2023b; Atzmon et al., 2024). (Lai et al., 2017) employs a Laplacian Pyramid Super-
Resolution Network (LapSRN) that progressively reconstructs high-resolution images by predicting
high-frequency residuals at each pyramid level and upsampling to finer levels through a single for-
ward pass. (Liang et al., 2021)proposes a Laplace pyramid-based image translation network for real-
time 4K image translation by processing low-frequency attribute transforms and high-frequency de-
tails separately. (Luo et al., 2023) utilizes a Laplacian pyramid structure to decompose multi-modal
images into different resolution levels, processing high-frequency components with CNN and low-
frequency components with transformers across pyramid levels for effective image fusion. (Zhang
et al., 2023b) employs Laplace pyramid decomposition for HDR-to-LDR conversion, using adaptive
3D LUT for low frequencies and learned Laplace filters for high frequencies to achieve both global
tone mapping and local detail preservation. (Atzmon et al., 2024) generates multi-resolution images
by Laplace pyramid-based noising with varied frequency attenuation and progressive denoising.

Differently, we proposed FGDNet, a single-step diffusion framework based on Laplacian pyramid
frequency priors for nighttime flare removal. Our method integrates stable diffusion models with
frequency prior guidance to slove residual flare, color shifts and structural distortion.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD

Fig. 2 illustrates the overall pipeline of our FGDNet. The flare-degraded image IF is processed by
a U-Net within the LDDM to generate a deflare latent representation ẑ0. The high-frequency lay-
ers {h(f)

1 , h
(f)
2 , h

(f)
3 } obtained from Laplace Pyramid decomposition (LP (·)) of IF are structurally

aligned with the GT via the MFIM, producing refined frequency layers {h(m)
1 , h

(m)
2 , h

(m)
3 }. These

frequency layers are transformed by a feature mapping layer and then injected into the VAE de-
coder of the LDDM. LDDM produces preliminary deflare results Î

′

out by single-step diffusion. The
MFFM fuses the multi-band sequences {h(f)

1 , h
(f)
2 , L(f)} and {h(d)1, h(d)2, L(d)} from LP (IF )

and LP (Îout) into {h(o)
1 , h

(o)
2 , L(o)}, ultimately reconstructing the high-quality output Îout.
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Figure 2: Our FGDNet training pipeline consists of three key components: Latent Diffusion-based
Deflare Module (LDDM), Multi-scale Frequency Injection Module (MFIM), and Multi-band Fre-
quency Fusion Module (MFFM).

3.1 DEFLARE VIA LATENT DIFFUSION MODEL

Our Latent Diffusion-based Deflare Module (LDDM) is composed of a UNet ϵθ, a pre-trained VAE
encoder Eθ, and a VAE decoder Dθ. Given a flare-damaged image IF , we first obtain its latent
representation via the encoder, zl = Eθ(IF ), and then extract a text prompt using a prompt extractor
(Wu et al., 2024b), cp = D(IF ). Conventional diffusion models (Wang et al., 2024; Lin et al.,
2024), employing a multi-step diffusion process, diffuse the latent zl over time steps t ∈ [1, . . . , T ]
to produce zt = αtzl + βt (with time-dependent αt and βt) and then predict noise ϵ̂ with UNet to
recover ẑ0 = zt−βt ϵ̂

αt
. However, these methods suffer from texture distortion due to iterative noise.

The single-step diffusion method reduces such distortion and errors by completing the mapping in
a single pass. Therefore, we employ a single-step diffusion method (Wu et al., 2024a) to denoise
the latent variable zl by ϵθ during the inference process. Conditioned on the text prompt cl, the
denoising process is formulated as ẑ0 = ϵθ(zl, tf , cp). tf denotes fixed time step, ẑ0 is the denoised
latent representation, which is subsequently converted into a pixel representation via Dθ.

To fine-tune diffusion models, the primary approaches are full fine-tuning and parameter-efficient
fine-tuning (PEFT). Given the high computational cost of the former, existing tasks mainly employ
PEFT methods. We leverage Low-Rank Adaptation (LoRA) (Hu et al., 2022), an efficient fine-tuning
method that achieves effective parameter adjustment through low-rank decomposition. Given a pre-
trained original weight matrix W0, the update process is formulated as: W = W0 + ∆W . During
training, W0 remains frozen, while low-rank increment ∆W is updated.

During training, we observed that the VAE decoder focuses more on structural image reconstruction
compared to the UNet. Therefore, directly injecting texture information as a conditioning signal
into the decoding process via our MFIM proves more effective. To enable efficient fine-tuning of
the diffusion model and adapt to MFIM’s injection mechanism, we apply LoRA to both the UNet and
the VAE decoder. The fine-tuned UNet generates deflare-optimized latent representations, while the
LoRA-adapted decoder reconstructs high-quality images with enhanced detail through our proposed
injection mechanism.
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(a) Laplace pyramid decomposition visualization
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(b) Multi-reference attention mechanism

   

   

Figure 3: Detail of Laplace pyramid frequency layers and multi-reference attention mechanism.

3.2 FREQUENCY PRIOR STRATEGY BASED LAPLACIAN PYRAMID

The Laplacian Pyramid (LP) decomposition technique (Burt & Adelson, 1987) separates an image
into distinct frequency bands via a multi-scale representation. Owing to its effectiveness in reveal-
ing textural and structural information within images, this decomposition method has demonstrated
significant value in various image processing tasks (Liang et al., 2021; Lai et al., 2017). Building on
this foundation, we observe through the LP framework that illumination and color information are
primarily distributed in low-frequency components, while structural and textural details predomi-
nantly manifest in high-frequency components, a decomposition highly consistent with the inherent
structural hierarchy of images.

However, flare degradation presents a more complex scenario, as it is not confined to a single fre-
quency band. As a high-intensity localized artifact, flare manifests not only in high-frequency com-
ponents (e.g., edges and textures) but also significantly affects low-frequency layers that primarily
encode brightness and color information (See in Fig. 3 (a)). To address this multi-frequency nature
of flare artifacts, we introduce a frequency prior strategy based on LP decomposition. Specifically,
given a flare-damaged image IF , we obtain different frequency components Ln(IF ) ∈ R

H

2n−1 × W

2n−1

via the LP decomposition operation:

Lk = Gk(I)− δk<n · Up(Gk+1(I)), (1)

in which Gk and Up denote the standard Gaussian pyramid and its upsampling operation, respec-
tively. In the constructed Laplacian pyramid Ln(IF ), the lower n− 1 levels capture high-resolution
images/features rich in detail and texture, while the top layer contains low-frequency image content
with the lowest spatial resolution. Therefore, we introduced a frequency prior strategy based on LP
decomposition: high-frequency components serve as priors for reconstructing textural details dur-
ing the decoding process of the diffusion model, while the integration of high- and low-frequency
components provides priors for enhancing structure consistency and restoring color fidelity.

Based on the frequency prior strategy, we designed two core modules:

(1) The Multi-scale Frequency Injection Module (MFIM) injects multi-scale high-frequency com-
ponents into the VAE decoder after structurally aligning them with the ground truth (GT) image,
thereby ensuring accurate detail restoration during the image reconstruction process in the LDDM.
(2) The Multi-band Frequency Fusion Module (MFFM) integrates the initial deflared output with
corresponding frequency information from the input image using a multi-reference attention mech-
anism. By multi-band fusion, it enhances structural and color fidelity to produce refinements.

3.3 STRUCTURE RESTORATION VIA FREQUENCY PRIOR

In MFIM, we set n = 4 in equation 1 and extract the high-frequency component sequence
{h(f)

1 , h
(f)
2 , h

(f)
3 } as strong prior conditions. For the high-frequency components at each scale

(h(f)
i ∈ R

H

2i−1 × W

2i−1 ×C), we employ a single frequency alignment block composed of multiple
self-attention transformer blocks to process h

(f)
i . The self-attention transformer block performs

modeling based on multi-head self-attention mechanism (SA), with SA formula defined as follows:

SA(Q,K,V) = Softmax

(
QK⊤
√
dk

)
V, (2)
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where Q,K,V are the query, key and value matrices; d is the dimension of the query and key
vectors. Finally, the high-frequency bands {h(m)

1 , h
(m)
2 , h

(m)
3 } obtained through multiple single

frequency alignment blocks are fed into a feature mapping module. The feature mapping module
performs a series of progressive convolutional operations that gradually increase the channel dimen-
sion while reducing spatial resolution, constructing multi-scale deep semantic features {Fa, Fb, Fc}
to support feature fusion and reconstruction in the upsampling path of the VAE decoder. Following
the reconstruction process through the VAE decoder, a preliminary result Î ′out can be obtained.

In MFFM, we set n = 3 in equation 1 to obtain the frequency pyramid for the input image IF and
the preliminary deflare result Î ′out using LP decomposition. This process yields the frequency bands
{h(f)

1 , h
(f)
2 , L(f)} from IF and {h(d)

1 , h
(d)
2 , L(d)} from Î ′out. For each pair p of the frequency com-

ponent combination list P = {(h(d)
1 , h

(f)
1 ), (h

(d)
2 , h

(f)
2 ), (L(d), L(f))}, we employ a multi frequency

fusion alignment block composed of multiple multi-reference attention transformer blocks. The
multi-reference attention transformer block based on multi-reference attention mechanism (MA).
Integrating frequency combinations p, information from other combinations within P is referenced.

Within MA (See in Fig. 3 (b)), one feature is designated as the primary feature xm, while the others
serve as reference features xr1 ,xr2 . First, the primary feature undergoes a linear projection layer
to generate the query Qm, key Km, and value Vm. Reference features were projected to generate
keys Kr1 , Kr2 and values Vr1 , Vr2 . The MA is implemented as follows:

MA(Qm,Ki,Vi) = Softmax

(
QmK⊤

i√
dk

)
Vi, i ∈ (m, r1, r2) (3)

This attention mechanism computes matrix multiplication between the main feature query Qm and
Km, Kr1 , Kr2 respectively. Following softmax normalization, it yields attention scores Am, Ar1 ,
Ar2 . These are then combined with Vm, Vr1 , Vr2 through matrix multiplication to produce the
final output {x′

m,x′
r1 ,x

′
r2}. We concatenate the outputs along the channel dimension and pass

them through a fusion projection layer to perform information fusion, yielding the corresponding
fused features x′

m.

Finally, we employ the fused frequency pyramid {h(o)
1 , h

(o)
2 , L(o)} to reconstruct the original image

by iteratively descending through the pyramid hierarchy. This process involves upsampling and
superimposing high-frequency details layer by layer, ultimately yielding precise colour output Îout.

3.4 TRAINING STRATEGY

Unlike previous multi-stage training approaches, Our FGDNet is an end-to-end framework that
is trained in a single stage. We utilize the data consistency loss Ldata to train LDDM, evalu-
ating the difference between the preliminary deflare result Î ′out and the ground truth (GT). The
frequency consistency loss Lfreq is employed to train MFIM, assessing the discrepancy between
{h(m)

1 , h
(m)
2 , h

(m)
3 } and the high-frequency pyramid of GT. We jointly train the MFFM using Ldata

and Lfreq , evaluating the difference between the final result Îout and GT. In summary, we assess the
discrepancy between model results and GT across both pixel and frequency dimensions.
Data consistency loss: Our data consistency loss is composed of the mean squared error loss LMSE

and the perceptual similarity loss LLPIPS , as expressed by the following formula:

LMSE = ∥S − T∥2, LLPIPS =
∑
l

∥wl ⊙ (Ŝl − T̂ l)∥22, (4)

Ldata = λ1LMSE(S, T ) + λ2LLPIPS(S, T ). (5)

in which S is the module’s output image, T is the GT, wl is a learnable weight, Ŝl and T̂ l are the
channel-wise unit-normalized feature maps from the l-th layer of VGG network for S and T .

Frequency consistency loss: Our frequency consistency loss employs mean squared error loss to
constrain different frequency layers, as expressed by the following formula:

Lfreq(S, T ) =
∑
j

2j∥Lj(S)− Lj(T )∥2. (6)

where j ∈ [1, 2, · · ·n] and Lj(S) is the j-th level of the Laplacian pyramid representation of S. 2j
is the weighting coefficient for the j-th layer.
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4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Datasets: Our method is trained on the Flare7K (Dai et al., 2022) and Flare7K++ (Dai et al., 2024)
datasets. Flare7K contains 5,000 scattered and 2,000 reflected flare images. The synthesis pipeline
applies inverse gamma correction (γ ∼ U(1.8, 2.2)), random RGB scaling (U(0.5, 1.2)), and Gaus-
sian noise (σ2 ∼ 0.01χ2) to flare-free images from 24K Flickr (Zhang et al., 2018b), then blends
them with randomly transformed (rotation, translation, scaling, etc.) flare components to generate
degraded images. Flare7K++ extends Flare7K by adding 962 real flare-only images (Flare-R) cap-
tured with various camera lenses. We mix Flare7K and Flare-R images (Dai et al., 2024) 1:1 to
create the Flare7K++ dataset. Our experiments follow the synthesis settings of Flare7K/Flare7K++
and are evaluated on the Flare7K++ test set containing 100 real sample pairs.

Experimental settings: Our FGDNet employs the Adam optimizer during training, with learning
rate, total iterations, and batch size set to 5e-5, 180k, and 2 respectively. The LoRA level in the UNet
and VAE decoder is set to 4. The SD 2.1-base is used as the pre-trained T2I model. The weighted
scalars λ1 and λ2 are set to 2 and 1, respectively. During evaluation, we employ reference metrics
PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018a), along with non-reference metrics
MANIQA (Yang et al., 2022) and MUSIQ (Ke et al., 2021) as target objectives.

Comparison approaches: Based on the Flare7K training dataset, we compared our method with
existing flare removal methods (Dai et al., 2022; Zhou et al., 2023) for comparison. These methods
were trained without light source labels. We also compared previous work trained on the Daytime
flare dataset (Wu et al., 2021). For light source restoration after flare removal, we employed the same
brightness-threshold segmentation approach as (Dai et al., 2022). Based on the Flare7K++ training
dataset, we compared our method with existing flare removal methods (Dai++ (Dai et al., 2024),
Kotp (Kotp & Torki, 2024), Ma (Ma et al., 2025)) trained using light source and flare labels. Notably,
our method does not utilize flare labels for training, whereas the aforementioned approaches all
employ flare labels.

4.2 EXPERIMENTAL RESULTS

Qualitative Comparison: On real-world nighttime flare datasets, we conducted a series of qual-
itative comparisons with state-of-the-art flare removal methods. Fig. 4 displays the visual results
of existing methods on the real-world paired flare dataset provided by (Dai et al., 2024), while Fig.
5 shows their performance on the real-world captured dataset from the same study. The visual re-
sults in Fig. 4 demonstrate that our method effectively removes complex flare combinations and
large-area flares without introducing artifacts, while successfully restoring the colors of background
regions obscured by flares, achieving superior visual quality compared to other methods. The results
in Fig. 5 indicate that existing methods exhibit limited generalization in real nighttime flare scenes,
often leaving color artifacts after flare removal. In contrast, our method outperforms others in visual
performance (rows 1) and also shows effective removal of multi-colored flares (rows 2–3).

Quantitative Comparison: Our FGDNet achieves strong performance on the real-world nighttime
flare dataset provided by (Dai et al., 2024). Results are shown in Table 1. Among methods trained
on the Flare7K dataset, our approach (Ours1) achieves the best performance on objective evaluation
metrics. For reference-based metrics PSNR, SSIM, and LPIPS, our results surpass the second-place
method by 0.57, 0.01, and 0.006, respectively. For non-reference metrics MUSIQ and MANIQA,
our results outperform the second-place method by 0.28 and 0.0048, respectively. For methods
trained on the Flare7K++ dataset, our approach (Ours) achieved higher PSNR and SSIM scores than
the second-best method by 0.19 and 0.001, respectively. For MUSIQ and MANIQA metrics, our
method outperformed the second-best approach by 0.11 and 0.0038, respectively.

4.3 ABLATION STUDY

Effectiveness of LDDM: We removed the MFIM and MFFM from FGDNet to validate the effec-
tiveness of the LDDM module. As shown in Fig. 6 (a) (LDDM), our LDDM module effectively
removes nighttime flares, with the text structure in the lower-left corner exhibiting minimal distor-
tion, highlighting the advantage of the single-step diffusion approach in texture preservation. LDDM

7
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Table 1: Quantitative comparison on the Flare7K++ real test dataset. ↓/↑ denote lower/higher is
better. Best and second-best results are in black and underlined, respectively.

Metric\Method
Previous work Works trained on Flare7K Works trained on Flare7K++

Wu Dai Zhou Ours1 Dai++ Kotp Ma Ours

PSNR↑ 25.15 26.60 25.18 27.17 27.63 27.66 28.08 28.27
SSIM↑ 0.883 0.892 0.872 0.902 0.894 0.897 0.904 0.905
LPIPS↓ 0.0576 0.0511 0.0548 0.0451 0.0428 0.0422 0.0417 0.0432

MUSIQ↑ 59.27 59.09 59.09 59.55 59.29 59.05 59.60 59.71
MANIQA↑ 0.6257 0.6262 0.6304 0.6352 0.6283 0.6282 0.6377 0.6415

Input Wu Dai Zhou Ma OursDai++ Kotp GTOurs1

Previous work Works trained on Flare7K Works trained on Flare7K++

Figure 4: Qualitative comparison on the real-world paired test dataset (with GT) provided by (Dai
et al., 2024).

Input Ma OursDai++ KotpWu Dai Zhou Ours1

Previous work Works trained on Flare7K Works trained on Flare7K++

Figure 5: Qualitative comparison on the real-world captured dataset (without GT) provided by (Dai
et al., 2024).

demonstrates limited performance in color restoration. By calculating the colour map (Wang et al.,
2021), it can be observed that the LDDM results have color shifts (red box) compared to the GT.
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Effectiveness of MFIM: Building upon the LDDM, we integrated the MFIM module to validate
the additional improvement it provides. While our LDDM module successfully removes flares,
structural discrepancies persist. To address this, we proposed the MFIM, which injects image high-
frequency layers as supplementary information into the VAE decoder to assist reconstruction. As
shown in Fig. 6(a) (LDDM+MFIM), the text structure in the lower-left corner aligns well with the
GT. Quantitative results in Table 3 demonstrate that incorporating the MFIM significantly improves
performance metrics. Our MFIM effectively preserves background texture details while avoiding
the introduction of high-frequency artefacts caused by flare, significantly enhancing night-time flare
suppression and background recovery performance.

Table 2: Ablation Study of FGDNet
LDDM MFIM MFFM PSNR↑ SSIM↑ LPIPS↓

✓ 25.05 0.811 0.0687
✓ ✓ 26.84 0.899 0.0461
✓ ✓ 27.09 0.898 0.0447
✓ ✓ ✓ 27.17 0.902 0.0447

Table 3: Ablation study of MA
W/O reference: SA(xm)→ x

′

m

W/ reference: MA(xm,xr1,xr2)→ x
′

m

Method PSNR↑ SSIM↑ LPIPS↓

W/O reference 26.83 0.89 0.0484
W/ reference 27.09 0.898 0.0447

Input Without Reference With Reference GT

(b) Multi-reference attention mechanism(a) FGDNet architecture

Input LDDM LDDM+MFIM FGDNet GTLDDM+MFFM

Figure 6: Visual results from ablation studies on our method. (a) Results of the FGDNet architecture.
(b) Results of the multi-reference attention mechanism in our MFFM.

Effectiveness of MFFM: Based on the LDDM, we incorporated the MFFM to validate its effec-
tiveness. The red-boxed region in Fig. 6(a) (LDDM+MFFM) demonstrates the module’s ability
to preserve texture details, while its color map indicates improved color retention. Subsequently,
integrating the MFFM with the LDDM and MFIM forms the complete FGDNet. The color map in
the red-boxed region of Fig. 6(a) (FGDNet) shows that the resulting color characteristics are closer
to the GT. As shown in Table 3, the inclusion of the MFFM enhances the model’s performance in
both flare removal and color retention. We performed ablation experiments on the multiple reference
attention mechanism to validate its efficacy. We primarily validated two schemes: one incorporates
references to other features (xr1, xr2) when processing the xm feature, while the other employs
self-attention without external references. Both visually (Fig. 6) and quantitatively (Table 3), the
multi-reference attention mechanism outperforms the non-reference mechanism, validating that in-
corporating reference frequency layers enhances restoration performance.

5 CONCLUSION

This paper addresses the issues of residual flare, color distortion, and background structure distor-
tion that exist in current methods for complex nighttime scenes, and proposes FGDNet, a single-step
diffusion framework based on Laplacian pyramid frequency priors for nighttime flare removal. This
method integrates stable diffusion models with frequency prior guidance to achieve high-fidelity
flare removal without relying on flare annotations. First, a Latent Diffusion Deflare Module (LDDM)
is proposed, which performs flare removal and preliminary background reconstruction through
single-step diffusion with LoRA fine-tuning. Simultaneously, the proposed Multi-scale Frequency
Injection Module (MFIM) utilizes Laplacian pyramid decomposition to extract high-frequency de-
tails, aligns realistic textures, and injects them into the VAE decoder to restore fine structures in the
preliminary flare removal results. Subsequently, the proposed Multi-band Frequency Fusion Module
(MFFM) adaptively fuses high and low-frequency information from the preliminary deflare results
and input images through a multi-reference attention mechanism, further enhancing the quality of
structure and color restoration. This method not only addresses the problems existing in current ap-
proaches but also provides new insights for research on flare removal while preserving background
structures based on latent diffusion models.
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A APPENDIX

A.1 EXPERIMENTAL RESULTS OF SYNTHETIC TEST DATASETS

We evaluated our method on the synthetic test dataset provided by (Dai et al., 2024). This test dataset
contains 100 pairs of nighttime flare images (With GT). Ours1 indicates that FGDNet was trained
on Flare7K training datasets, and ours indicates that FGDNet was trained on the Flare7K++ training
datasets. As shown in Fig. 7 and Table 4, our method outperforms other methods in flare removal
performance.

Table 4: Quantitative comparison on the Flare7K++ synthetic test dataset. ↓/↑ denote lower/higher
is better. Best and second-best results are in black and underlined, respectively.

Metric\Method
Previous work Works trained on Flare7K Works trained on Flare7K++

Wu Dai Zhou Ours1 Dai++ Kotp Ma Ours

PSNR↑ 28.26 30.13 28.78 30.17 29.50 29.57 29.58 29.75
SSIM↑ 0.954 0.965 0.939 0.963 0.962 0.961 0.966 0.965
LPIPS↓ 0.0331 0.0205 0.0286 0.0200 0.0428 0.0205 0.0200 0.0197

MaDai++ Kotp Ours

Input Wu Dai Zhou Ours1 GT

GTInput

Figure 7: Qualitative comparison on the synthetic paired test dataset (with GT) provided by (Dai
et al., 2024).
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A.2 MORE VISUAL EFFECTS

We provided additional visual results on the real flare-damaged image test datasets provided by (Dai
et al., 2024) and (Zhou et al., 2023). As shown in Fig. 8 and Fig. 9, our method demonstrates
superior visual performance on real-world night-time flare-damaged images compared to other ap-
proaches. Concurrently, we tested flare-damaged images captured using various consumer electronic
devices, as illustrated in Fig. 10. Our method exhibits favourable results in both flare removal and
background preservation.
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Figure 8: Qualitative comparison on the real-world paired test dataset (with GT) provided by (Dai
et al., 2024). Ours indicates that FGDNet was trained on the Flare7K++ training dataset.
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MaDai++ Kotp OursInput

Input Wu Dai Zhou Ours1

Figure 9: Qualitative comparison on the real-world captured dataset (without GT) provided by (Dai
et al., 2024). Ours1 indicates that FGDNet was trained on Flare7K training dataset, and ours indi-
cates that FGDNet was trained on Flare7K++ training dataset.
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Figure 10: Qualitative comparison on the real-world captured dataset (without GT) by diverse con-
sumer electronics (The dataset is provided by (Zhou et al., 2023)). Ours indicates that FGDNet was
trained on the Flare7K++ training dataset
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A.3 USE OF LLMS

We utilized Large Language Models (LLMs), including ChatGPT and related systems, during the
preparation of this paper. Their use was strictly confined to assisting with language-related tasks,
such as grammar correction, spelling checks, and wording refinement, to enhance the manuscript’s
clarity and readability. All scientific ideas, experimental design, analysis, and conclusions were
independently formulated and verified by the authors.

17


	INTRODUCTION
	RELATED WORK
	METHOD
	Deflare via Latent Diffusion model
	Frequency Prior strategy based Laplacian Pyramid
	Structure Restoration via Frequency Prior
	Training Strategy

	EXPERIMENTS
	Experimental Details
	Experimental Results
	Ablation Study

	CONCLUSION
	Appendix
	Experimental Results of Synthetic test datasets
	More visual effects
	Use of LLMs


