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Abstract

Reinforcement learning (RL) post-training strengthens reasoning in large language
models (LLMs), yet the prevailing GRPO algorithm exhibits persistent issues.
Using a PRAG lens (Probability, Reward, Advantage, Gradient), we diagnose three
mechanisms: (i) probability inflation—clipping induces one-way confidence drift
with weak KL correction, collapsing entropy; (ii) advantage contraction—group
normalization dulls update signals as accuracy rises; and (iii) hierarchical conver-
gence—easy questions improve quickly while hard ones advance slowly via rare
discoveries. We then introduce CoDaPO, a confidence- and difficulty–adaptive
policy optimization framework that rescales per-trajectory advantages by confi-
dence (curbing overconfidence and drift) and difficulty (sustaining learning on hard
questions). Across seven benchmarks, CoDaPO demonstrates improvements on
mathematical reasoning benchmarks for small and middle-scale models.

1 Introduction
Large language models (LLMs) increasingly support decision making through explicit multi-step
reasoning [30, 17, 44]. Reinforcement-learning (RL) post-training algorithms, exemplified by Group
Relative Policy Optimization (GRPO) and its variants, enhance such reasoning without gold-standard
step-by-step traces[33, 34, 24]. This approach yields gains in mathematics, code generation, and
formal logic [34, 26, 40].

Nevertheless, GRPO-style training exhibits three persistent pathologies: (i) Entropy collapse: proba-
bility mass concentrates on few tokens, limiting exploration [38, 5]; (ii) Low-contrast advantages:
update signals weaken as accuracy rises [45]; (iii) Limited learning on hard questions: rapid conver-
gence on easy ones shrinks gradients, hindering harder ones.

To diagnose these shortcomings, we analyze GRPO dynamics via PRAG (probability, reward,
advantage, gradient). We find: (i) Probability drift: clipped updates inflate confidence and non-
essential tokens, collapsing entropy; (ii) Advantage contraction: normalization compresses advantages
near zero, weakening signals; (iii) Hierarchical convergence: easy tasks improve quickly, while hard
tasks advance only via rare breakthroughs, yielding slower gains.

Building on these insights, we propose CoDaPO, a confidence- and difficulty–adaptive RL training
framework for LLM reasoning. CoDaPO dynamically rescales per-trajectory advantages by con-
fidence and difficulty: confidence scaling counteracts probability drift and overconfidence, while
difficulty scaling combats advantage contraction and accelerates learning on hard problems. Together,
these reweighting mechanisms focus updates on the most informative trajectories and mitigate the
shortcomings identified in our analysis. In Fig. 1, we compare GRPO with CoDaPO via i) the
confidence-difficulty weighting effects from the CoDa map and ii) the resulting gradient map.
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(a) GRPO’s CoDa map (b) CoDaPO’s CoDa map (c) GRPO’s gradient map (d) CoDaPO’s gradient map
Figure 1: CoDa maps and gradient maps of GRPO and CoDaPO. Each plot shows trajectories
positioned by the model-estimated difficulty (x-axis) and confidence (y-axis). The CoDa maps show
the joint weighting effect by confidence and difficulty: GRPO uses a constant weight of 1, while
CoDaPO emphasizes more confident trajectories for more difficult questions. Gradient maps plot the
resulting gradients through advantages: raw gradients in GRPO, and weighted gradients in CoDaPO.

Finally, we empirically validate CoDaPO on seven widely used reasoning-task benchmarks. The ex-
perimental results indicate that CoDaPO achieves higher reasoning accuracy and better generalization
across various benchmarks compared to existing algorithms.

The main contributions of this work are summarized as follows:

• We provide an empirical and mathematical understanding of GRPO’s training dynamics; explain
probability inflation, advantage contraction, and hierarchical convergence in post-training (Sec. 3).

• We introduce CoDaPO, a framework that rescales per-trajectory advantages by confidence and
difficulty, prioritizing the most informative trajectories and alleviating GRPO’s limitations (Sec. 4).

• We validate CoDaPO on seven reasoning benchmarks and show that it consistently surpasses
GRPO and other algorithms, with significant gains for non-instruction-tuned base models (Sec. 5).

2 Preliminaries
Notations. A post-training dataset D consists of question–answer pairs (q, a). Given a question q,
a language model fθ generates a trajectory o ∼ fθ(· | q) . Three policies are maintained, ordered by
update frequency: the current policy fθ, a behavior policy fold, and a reference policy fref.
Group Relative Policy Optimization (GRPO). For each q, GRPO [34] sample G rollouts:
{oi}Gi=1 ∼ fold(· | q). After computing deterministic rewards {ri}Gi=1 and advantage Âi ≜ r̃i =
ri−mean({ri}G

i=1)

std({ri}G
i=1)

. GRPO updates the policy by maximizing the following objective:

JGRPO(fθ)≜E(q,a)∼D,{oi}∼fold(·|q)

1
G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ρi,tÂi, clip

(
ρi,t, 1−ϵ, 1+ϵ

)
Âi

)
−βDKL[fθ∥fref ]

,
where clip bounds the ratio to stabilize and DKL penalizes deviation from the reference policy.

3 Analysis of the training dynamics in RL post-training

3.1 The PRAG Framework: Probability, Reward, Advantage, and Gradient
This section analyzes the GRPO using the PRAG framework. For each (q, a) ∈ D, we sample a group
of G trajectories {oi}Gi=1 ∼ fold(· | q) from the behavior policy, where oi = (oi,1, . . . , oi,|oi|). We
present the empirical findings from Figs. 2 and 3 with mathematical understanding in Appendix.A.

3.2 Why probability increases (and entropy collapses)
As can be seen from Fig. 2, during GRPO training, model confidences progressively saturate near
1 (i.e., ≈ 100%). Accuracy improves, but miscalibration emerges: the model also becomes more
confident when it is wrong. For the base model, confidence distributions are similar across difficulty
buckets—higher for correct outputs and highly variable for incorrect ones. As for the post-trained
model, the probability mass shifts toward near-certain predictions for both correct and incorrect
outputs, consistent with the entropy collapse. Full analysis is presented in Appendix.A.

3.3 Why advantage contracts
In Fig. 2, as GRPO increases accuracy, group-normalized advantages concentrate near zero. Early on,
advantages spread widely within response groups; over training, more trajectories are correct, so most
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Figure 2: The confidence-advantage distribution of correct/incorrect trajectories in GRPO training.
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Figure 3: The gradient distribution of correct/incorrect trajectories (the same trajectories as in Fig. 2).

receive small nonnegative advantages, while the few incorrect ones carry large negatives. The net
effect is a sharper mass near 0 and a thinner, rarer negative tail. We provide analysis in Appendix.A.

3.4 Why training converges hierarchically
As in Fig. 2 and Fig. 3, easy questions begin with high confidence, nonnegative advantages, and
relatively large initial gradient norms; GRPO further raises confidence while contracting advantages
and gradients toward zero. Hard questions start with low confidence, mainly nonpositive advantages,
and small initial gradients; training shifts the distribution upward (higher confidence, more positives),
yet gradients decay rapidly and a substantial error mass remains. Analysis is shown in Appendix.A.

4 Confidence and Difficulty-adaptive Policy Optimization

This section introduces CoDaPO, a reinforcement learning framework for LLM reasoning that
rescales per-trajectory advantages by confidence and difficulty. CoDaPO maximizes the objective

JCoDaPO(fθ) ≜ E(q,a)∼D, {oi}Gi=1∼fold(·|q)
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

[
ρi,t Âi ĉi d̂q

]
, (1)

where ρi,t :=
fθ(oi,t|q,oi,<t)
fold(oi,t|q,oi,<t)

and Âi =
ri−mean({rj}G

j=1)

std({rj}G
j=1)

. The factors ĉi (confidence) and d̂q

(difficulty) reweight Âi, which is implemented by

ĉi = σ

(
1
G

∑G
i=1

1
|oi|
∑|oi|

t=1 log fθ(oi,t|q, oi,<t)

1
|oi|
∑|oi|

t=1 log fθ(oi,t|q, oi,<t)

)
, d̂q = 1 + δ(

1

G

G∑
i=1

ri −
1

2
)2, (2)

We present the implementation of CoDaPO (Alg. 1) and explain it in detail in Appendix B.
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5 Experiments
Experiment setup. We post-train Qwen2.5-1.5B-Instruct, Qwen2.5-Math-1.5B, and Qwen2.5-Math-
7B on MATH [20, 11, 42, 43]. Evaluations span seven reasoning benchmarks: MATH500 [20, 11],
AIME 2024, AIME 2025, AMC 2023, OlympiadBench [15], Minerva [18], and GSM8K [4].

Main results. We summarize the following observations w.r.t. the experimental results in Tab. 1:

• Improved reasoning: CoDaPO boosts reasoning performance, e.g., Qwen2.5-Math-1.5B average
accuracy rises from 18.37% to 42.67%, with larger gains on base models.

• Generalization: Despite training only on MATH, CoDaPO generalizes strongly—18.25% to
32.80% on OlympiadBench and 9.63% to 31.69% on Minerva.

• Outperforming baselines: CoDaPO surpasses RL baselines, improving accuracy by 2.85% over
GRPO and 1.44% over DAPO on Qwen2.5-Math-1.5B.

Base Model Algorithm
Datasets

Average
MATH

500
AIME
2024

AIME
2025

AMC
2023

Olympiad
Bench Minerva GSM8K

Qwen2.5-1.5B-Instruct

Base 49.36 3.00 0.00 23.50 17.01 16.84 59.56 24.18
GRPO 55.08 3.00 1.33 26.00 19.08 22.35 73.92 28.68
DAPO 56.04 2.67 0.00 27.50 18.90 21.91 73.04 28.58
Dr. GRPO 56.24 3.33 0.00 25.50 19.11 21.18 73.80 28.45
GPG 54.36 4.00 1.33 23.00 19.29 21.54 74.10 28.34
CoDaPO (ours) 55.60 3.33 1.33 31.00 19.44 22.21 74.30 29.60

(6.24↑) (0.33↑) (1.33↑) (7.50↑) (2.43↑) (5.37↑) (14.74↑) (5.42↑)

Qwen2.5-Math-1.5B

Base 31.20 6.00 0.00 29.50 18.25 9.63 34.01 18.37
GRPO 68.48 12.67 8.00 51.00 30.55 28.53 79.56 39.82
DAPO 71.12 14.00 8.00 49.00 31.97 32.13 82.38 41.23
Dr. GRPO 70.68 10.67 10.67 49.50 31.67 30.51 82.17 40.84
GPG 70.60 11.33 5.33 47.00 31.97 29.49 82.38 39.73
CoDaPO (ours) 71.68 14.67 10.83 53.50 32.80 31.69 83.50 42.67

(40.48↑) (8.67↑) (10.83↑) (24.00↑) (14.55↑) (22.06↑) (49.49↑) (24.30↑)

Table 1: The main results of the post-training experiments (in accuracy). Note that the boldface
numbers mean the best results, while the underlined numbers indicate the second-best results.

The training dynamics of CoDaPO. Fig. 6 and 7 present the confidence-advantage distribution and
gradient distribution of the Qwen2.5-Math-1.5B model during CoDaPO training. We observe:

• Improved accuracy on difficult problems: CoDaPO concentrates advantages more than GRPO
on Levels 4-5, yielding higher accuracy via difficulty-adaptive weighting (Fig. 6, 2).

• Smoothed gradient updates: CoDaPO reduces gradient magnitudes across all difficulty levels
(Fig. 7, 3), tempering updates on both correct and incorrect samples.

Ablation studies. We further validate the effectiveness of CoDaPO’s reweighting design:

• Individual components: Each reweighting improves over GRPO and together the best (Tab. 3).
• Extension to larger models: On Qwen2.5-Math-7B, CoDaPO achieves the best average accuracy

of 49.34% among all baselines, demonstrating robustness across base models (Tab. 5).
• Hyperparameter sensitivity: Varying δ in difficulty reweighting improves over baseline, (Tab. 9).
• Sampling settings: Across decoding temperatures, CoDaPO outperforms baselines (Tab. 4).
• KL regularization: KL removal improves performance without harming language ability (Tab. 7).
• Test-time scaling: Evaluated on AIME25 with Pass@K metrics, CoDaPO consistently surpasses

baselines across all k, confirming it enhances general reasoning (Fig. 18, Fig. 19).

6 Conclusion
In this work, we use the PRAG lens to GRPO’s core failure modes, probability inflation, advantage
contraction, and hierarchical convergence. We introduce CoDaPO, which rescales per-trajectory
advantages by confidence (tempering overconfidence and one-way drift) and difficulty (re-inflating
signals and sustaining learning on hard items). Across seven benchmarks, CoDaPO delivers consistent
gains for small–mid-scale models, improving both in-domain and out-of-domain mathematical
reasoning. These results suggest that bounded, information-aware reweighting stabilizes RL post-
training and allocates credit more effectively. Future work includes more confidence-difficulty
schedules, integration with verifiers or tools, and extensions to larger models and broader domains.
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A Analysis of the training dynamics in RL post-training

A.1 The PRAG Framework: Probability, Reward, Advantage, and Gradient

This section analyzes the GRPO using the PRAG framework. For each (q, a) ∈ D, we sample a
group of G trajectories {oi}Gi=1 ∼ fold(· | q) from the behavior policy, where oi = (oi,1, . . . , oi,|oi|).

Probability (token-level). We operate in log-probability space for stability. For trajectory oi and
token position t, define ℓθ(oi,t) := log fθ(oi,t | q, oi,<t) and ℓold(oi,t) := log fold(oi,t | q, oi,<t),
yielding the importance ratio ρi,t :=

fθ(oi,t|q,oi,<t)
fold(oi,t|q,oi,<t)

= exp
(
ℓθ(oi,t) − ℓold(oi,t)

)
w.r.t. fold; if

reporting probabilities, pθ(oi,t) = exp(ℓθ(oi,t)). We use post-softmax log-probabilities (not logits).

Reward (trajectory-level). For simplicity, we only adopt the binary accuracy reward ri by
matching the ground-truth answer a and the predicted answer in trajectory oi. Namely, ri :=
CorrectAnswer(oi, a) ∈ {0, 1}, where ri=1 if the predicted answer is correct, and ri=0 otherwise.

Advantage (trajectory-level). GRPO replaces model-based value estimation by group-normalizing

rewards: Âi :=
ri−mean({rj}G

j=1)

std({rj}G
j=1)+ε

with a small ε > 0 (e.g., 10−8) for stability; treat Âi as constant

w.r.t. θ (stop-gradient), and do not backpropagate through the group mean or standard deviation.

Gradient (token-level). GRPO maximizes the clipped surrogate with a reference-KL penalty:

JGRPO(fθ) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ρi,tÂi, clip(ρi,t, 1− ϵ, 1 + ϵ)Âi

)︸ ︷︷ ︸
clipped surrogate

− β DKL

[
fθ
∥∥ fref

]
i,t︸ ︷︷ ︸

KL penalty

)
, (3)

where ϵ > 0, clip(x, 1− ϵ, 1+ ϵ) bounds x to [1− ϵ, 1+ ϵ], and the per-token KL is approximated by
DKL

[
fθ

∥∥ fref
]
i,t

=
fref(oi,t|q,oi,<t)
fθ(oi,t|q,oi,<t)

−log fref(oi,t|q,oi,<t)
fθ(oi,t|q,oi,<t)

−1. Let ℓθ(oi,t) := log fθ(oi,t | q, oi,<t) and

ℓref(oi,t) := log fref(oi,t | q, oi,<t), and define ui,t :=
fref(oi,t|q,oi,<t)
fθ(oi,t|q,oi,<t)

= exp
(
ℓref(oi,t) − ℓθ(oi,t)

)
.

Then the per-token derivative of the KL term is

∇θ DKL

[
fθ
∥∥ fref

]
i,t

=
(
1− fref(oi,t | q, oi,<t)

fθ(oi,t | q, oi,<t)

)
∇θℓθ(oi,t) =

(
1− ui,t

)
∇θℓθ(oi,t). (4)

The clipped surrogate contributes only when the unclipped branch is active:

∇θ min
(
ρi,tÂi, clip(ρi,t, 1− ϵ, 1 + ϵ)Âi

)
=

{
Âi ρi,t∇θℓθ(oi,t), if unclipped,

0, if clipped.
(5)

Gradient (batch-level). Averaging over trajectories and tokens gives the batch-level gradient:

∇θJGRPO(fθ) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

1unclipped Âi ρi,t︸ ︷︷ ︸
group-advantage surrogate

− β
(
1− ui,t

)︸ ︷︷ ︸
reference KL pull

 ∇θℓθ(oi,t), (6)

where the unclipped indicator 1unclipped = I
[
(Âi ≥ 0 ∧ ρi,t ≤ 1+ ϵ)∨ (Âi < 0 ∧ ρi,t ≥ 1− ϵ)

]
.

Empirical setup. To track the training dynamics of GRPO, we post-train Qwen2.5-Math-1.5B [43]
with GRPO on MATH [11] and evaluate on MATH500 [20]. We compute the confidence/difficulty as
Confidence(fθ, q, oi) = 1

|oi|
∑|oi|

t=1 log fθ(oi,t|q, oi,<t), Difficulty(fθ, q, a) = 1− 1
G

∑G
i=1 ri.

We split the training/validation trajectories into five difficulty levels using the difficulty metric: 0-0.2
(level 1), 0.2-0.4 (level 2), 0.4-0.6 (level 3), 0.6-0.8 (level 4), and 0.8-1 (level 5). 2 Next, we present
the empirical findings from Figs. 4 and 5 with mathematical understanding.

2In Appendix G, we verify that the model-estimated difficulty well aligns with the ground truth difficulty.
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Figure 4: The confidence-advantage distribution of correct/incorrect trajectories in GRPO training.
Rows 1 to 3 present the model checkpoints captured at training steps 0 (base model), 60, and 240.
Columns 1 through 5 correspond to the difficulty levels of the training questions, numbered 1 to 5.
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Figure 5: The gradient distribution of correct/incorrect trajectories (the same trajectories as in Fig. 4).

A.2 Why probability increases (and entropy collapses)

Empirical finding. As can be seen from Fig. 4, during GRPO training, model confidences progres-
sively saturate near 1 (i.e., ≈ 100%). Accuracy improves, but miscalibration emerges: the model also
becomes more confident when it is wrong. For the base model, confidence distributions are similar
across difficulty buckets—higher for correct outputs and highly variable for incorrect ones. As for
the post-trained model, the probability mass shifts toward near-certain predictions for both correct
and incorrect outputs, consistent with the entropy collapse reported by Yu et al. [45].

Mechanism analysis. From the per-token ascent direction, a small gradient-ascent step yields

∆ℓθ(oi,t) ∝ 1unclipped Âi ρi,t︸ ︷︷ ︸
group-advantage push

− β (1− ui,t)︸ ︷︷ ︸
reference-KL pull

. (7)

Below, we dissect how the group-advantage term concentrates probability mass, while the reference-
KL term counteracts saturation only weakly when ui,t ≈ 1.

Asymmetry from clipping (positive drift). If Âi > 0 (high-reward trajectory), the policy term
stays active until ρi,t hits 1 + ϵ; while active, it increases ℓθ proportionally to ρi,t. If Âi < 0
(low-reward trajectory), the policy term is active only while ρi,t ≥ 1 − ϵ; once ρi,t < 1 − ϵ, the
policy term shuts off (no further downward push). Since ρi,t = exp(ℓθ − ℓold), increases in the
log-probability ℓθ inflate ρi,t, which further amplifies the positive policy term Âiρi,t until it is capped
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at 1 + ϵ. In contrast, decreases in ℓθ for Âi < 0 are self-limiting: when ρi,t drops below 1− ϵ, the
policy term vanishes. This clipping asymmetry creates a one-way drift that favors increasing ℓθ.

KL term cannot fully counteract the drift. The ref-KL contribution is

−β(1− ui,t) = −β
(
1− pref(oi,t)

pθ(oi,t)

)
=

{
−β(1− ui,t) < 0, if pθ(oi,t) > pref(oi,t),

−β(1− ui,t) > 0, if pθ(oi,t) < pref(oi,t).
(8)

Hence, the KL term opposes probability increases when pθ(oi,t) > pref(oi,t), and supports increases
when pθ(oi,t) < pref(oi,t). However, (i) when Âi > 0, the active policy term 1unclippedÂiρi,t is
positive and often dominates unless β is tuned large or pθ(oi,t)≫pref(oi,t); and (ii) when Âi < 0
and ρi,t < 1− ϵ, the policy term is zero while the KL term typically points back toward pref(oi,t),
preventing probabilities from drifting too low. Thus, the KL term creates a floor near the reference,
whereas the positive policy term keeps pushing many tokens upward until the 1 + ϵ cap.

Trajectory-level credit amplifies many tokens. GRPO applies a single scalar advantage Âi to
every token in a trajectory. In high-reward rollouts, even non-essential tokens receive positive updates
while unclipped, concentrating probability and reducing entropy despite limited causal contribution.

A.3 Why advantage contracts

Empirical finding. In Fig. 4, as GRPO increases accuracy, group-normalized advantages concen-
trate near zero. Early on, advantages spread widely within response groups; over training, more
trajectories are correct, so most receive small nonnegative advantages, while the few incorrect ones
carry large negatives. The net effect is a sharper mass near 0 and a thinner, rarer negative tail.

Mechanism analysis. Denote the group correctness rate by r̄ ∈ [0, 1]. GRPO forms advantages
Âi =

ri−r̄√
r̄(1−r̄)+ε

, ε ↓ 0. For correct and incorrect trajectories, the corresponding advantages

Â(+)(r̄) =
1− r̄√
r̄(1− r̄)

=

√
1− r̄

r̄
, Â(−)(r̄) =

−r̄√
r̄(1− r̄)

= −
√

r̄

1− r̄
. (9)

As accuracy improves, r̄ ↑ 1, hence Â(+)(r̄)→ 0 while Â(−)(r̄)→−∞. Pooling across groups
yields the mixture Â ∼ r̄δÂ(+)(r̄) +(1− r̄)δÂ(−)(r̄), whose mass concentrates at 0 because r̄→1 and

Â(+)(r̄)→0, while the heavy negative tail persists with vanishing weight 1− r̄. This explains the
observed contraction, despite per-group standardization (zero mean, unit variance) by construction.

A.4 Why training converges hierarchically

Empirical finding. As in Fig. 4 and Fig. 5, easy questions begin with high confidence, nonnegative
advantages, and relatively large initial gradient norms; GRPO further raises confidence while contract-
ing advantages and gradients toward zero. Hard questions start with low confidence, predominantly
nonpositive advantages, and small initial gradients; training shifts the distribution upward (higher
confidence, more positives), yet gradients also decay rapidly and a substantial error mass remains.

Mechanism analysis. Denote the per-token ascent weight wi,t = 1unclipped Âi ρi,t − β (1− ui,t).
Specifically, wi,t > 0 increases the token’s log-probability, while wi,t < 0 decreases it. Taking
expectation over trajectories for question q gives

E[wi,t | q] ≈ r̄E
[
1
(+)
unclipped Â

(+)(r̄) ρi,t
]
+ (1− r̄)E

[
1
(−)
unclipped Â

(−)(r̄) ρi,t
]
− β E[1− ui,t]. (10)

Easy questions (r̄ large). When r̄ is high, Â(+)(r̄) is small (nonnegative) while Â(−)(r̄) is large in
magnitude but rare. Clipping leaves positives active until ρi,t = 1 + ϵ and deactivates negatives once
ρi,t < 1− ϵ. Thus, a rare incorrect trajectory can cause a strong instantaneous negative push, but it is
(i) down-weighted by 1− r̄, (ii) quickly capped by clipping, and (iii) then countered by the KL pull;
meanwhile, many correct trajectories accumulate small positive pushes. Net effect: E[wi,t | q] ≳ 0

and probabilities rise; as r̄ ↑ 1, Â(+)(r̄) ↓ 0 (implicit annealing), with advantages drifting toward 0+.
At the same time, initial gradient norms are high, but as the model quickly converges on these easy
items, gradients rapidly decay, leaving little room for further updates.
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Hard questions (r̄ small). When r̄ is low, Â(+)(r̄) is large but rare, whereas Â(−)(r̄) is moderate
and frequent. Clipping quickly deactivates negative updates once ρi,t < 1− ϵ, after which the KL
term −β(1− ui,t) maintains a soft floor near fref; in contrast, rare correct trajectories deliver strong
positive pushes (via large Â(+)(r̄)) until ρi,t = 1 + ϵ. Thus E[wi,t | q] is typically positive but
smaller than for easy items. Progress exhibits two phases: discovery, where a correct trajectory
appears with probability 1− (1− r̄)G ≈ Gr̄, and amplification, where discovered correct responses
are reinforced up to the cap and become more likely subsequently. Advantages shift rightward more
slowly, a nontrivial error mass persists until discovery becomes common, and confidence increases
gradually. The slow improvement on hard questions is compounded by the rapid convergence of easy
questions, which lowers the total gradient magnitude and constrains further updates on difficult items.

B Confidence and Difficulty-adaptive Policy Optimization

This section introduces CoDaPO, a reinforcement learning framework for LLM reasoning that
rescales per-trajectory advantages by confidence and difficulty. Confidence scaling curbs one-way
probability drift by tying update size to certainty, penalizing high-confidence mistakes, and tempering
already-saturated tokens. Difficulty scaling re-inflates low-contrast advantages as accuracy rises,
sustaining gradients on hard items and speeding discovery. Together, these bounded reweightings
direct learning to the most informative trajectories and mitigate the shortcomings identified in Sec. A.

B.1 The optimization framework

The optimization objective. Given G rollouts from fold, CoDaPO maximizes the objective

JCoDaPO(fθ) ≜ E(q,a)∼D, {oi}Gi=1∼fold(·|q)
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

[
ρi,t Âi ĉi d̂q

]
, (11)

where ρi,t :=
fθ(oi,t|q,oi,<t)
fold(oi,t|q,oi,<t)

and Âi =
ri−mean({rj}G

j=1)

std({rj}G
j=1)

uses the accuracy reward ri ∈ {0, 1} (as in

Sec. A). The factors ĉi (confidence) and d̂q (difficulty) reweight Âi; detailed in following subsection.

Sample-level normalization. We replace GRPO’s per-trajectory averaging 1
G

∑
i

1
|oi|

∑
t(·) with

a micro-average over tokens 1∑
i |oi|

∑
i,t(·). This gives each token equal weight and removes the

length penalty induced by the extra 1/|oi|, which systematically down-weights longer (often harder,
more explicit) solutions [45, 23]. Micro-averaging also yields an unbiased stochastic gradient for a
per-token objective under variable lengths, reduces variance by aggregating all tokens in the minibatch,
and avoids the pathological incentive to shorten outputs for larger updates. Crucially, it preserves the
relative per-token update directions while eliminating length as a confounder in credit assignment.

Discarding KL regularization. GRPO’s KL term stabilizes training but (i) restricts exploration,
which is undesirable in reasoning tasks, and (ii) increases computation due to an extra fref forward
pass. We therefore omit it, as Yu et al. [45], Chu et al. [3], to reduce cost and encourage discovery of
new solution paths; stability and coherence are maintained by bounded confidence/difficulty weights.

Gradient and effective token weight. For clarity and stability, we stop gradient through Âi, ĉi, d̂q .
The resulting gradient is∇θJCoDaPO = 1∑

i |oi|
∑

i,t

(
ρi,t Âi ĉi d̂q

)
∇θℓθ(oi,t). A small step of gradi-

ent ascent increases token log-probabilities by

∆ℓθ(oi,t) ∝ wCoDaPO
i,t := ρi,t Âi ĉi d̂q. (12)

Thus all deviations from GRPO (no clipping, no ref-KL) enter via the scalar weight wCoDaPO
i,t . Taking

expectation conditioned on q and decomposing over correct or incorrect trajectories yields

E
[
wCoDaPO

i,t | q
]
= r̄ d̂q E

[
Â(+)(r̄) ĉ(+) ρi,t

]
+ (1− r̄) d̂q E

[
Â(−)(r̄) ĉ(−) ρi,t

]
, (13)

where Â(+)(r̄) =
√

1−r̄
r̄ , Â(−)(r̄) = −

√
r̄

1−r̄ (cf. Eqn. (9)), and ĉ(+) and ĉ(−) denote ĉi conditioned

on ri = 1 and ri = 0, respectively. In the following section, we provide an instantiation of ĉi and d̂q .
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B.2 Implementation

Here, we present the implementation of CoDaPO (Alg. 1). The reweighting functions below deliver
the strongest positive reinforcement to correct, high-confidence trajectories on difficult questions.

ĉi = σ

(
1
G

∑G
i=1

1
|oi|
∑|oi|

t=1 log fθ(oi,t|q, oi,<t)

1
|oi|
∑|oi|

t=1 log fθ(oi,t|q, oi,<t)

)
, d̂q = 1 + δ(

1

G

G∑
i=1

ri −
1

2
)2, (14)

where ĉi up-weights high-confidence trajectories. The sigmoid function σ(·) bounds ĉi, preventing
extreme weights from heavy-tailed log-probabilities. The quadratic difficulty weight d̂q with scaling
hyperparameter δ yields a U-shaped curriculum that up-weights very hard or easy questions.

Advantage reweighting w.r.t. confidence. We compare each output’s average log-probability to
the group average. Let ℓ̄i := 1

|oi|
∑

t ℓθ(oi,t) and ℓ̄ := 1
G

∑
i ℓ̄i, and define ĉi = σ(ℓ̄/ℓ̄i). Under the

typical regime ℓ̄i, ℓ̄ < 0, one has ∂ĉi/∂ℓ̄i > 0 and ∂ĉi/∂ℓ̄ < 0, so higher-confidence outputs (less
negative ℓ̄i) receive larger |Âi|-scaled updates when correct and stronger penalties when incorrect.
Remark B.1 (Low-confidence emphasis (optional)). If the goal is to prioritize correct but low-
confidence trajectories, an antitone alternative is ĉ⋆i = σ

(
α(ℓ̄ − ℓ̄i)

)
, or its z-score variant ĉzi =

σ
(
α ℓ̄−ℓ̄i

std({ℓ̄j})+ϵ

)
, with temperature α > 0. These variants increase the weight when ℓ̄i is smaller

than the group average (i.e., lower confidence), with the z-score form adding scale invariance.

Advantage reweighting w.r.t. difficulty. For correct trajectories, the effective multiplier is

Sdiff(r̄) = Â(+)(r̄), d̂q =
√

1−r̄
r̄

(
1 + δ

(
r̄ − 1

2

)2)
. As r̄ ↓ 0 (hard items), Sdiff(r̄) ↑ ∞ (strong

emphasis); as r̄ ↑ 1 (easy items), Sdiff(r̄) ↓ 0 (self-annealing). For wrong trajectories, the multiplier

is Sdiff(r̄) = Â(−)(r̄)d̂q = −
√

r̄
1−r̄

(
1 + δ

(
r̄ − 1

2

)2)
, so Sdiff(r̄) → 0− as r̄ ↓ 0 (lenient on very

hard items) and S−
diff(r̄) → −∞ as r̄ ↑ 1 (sharp penalties on easy items). Thus the U-shaped

difficulty weight amplifies rare correct signals on hard questions to speed discovery, while strongly
discouraging mistakes on easy questions. Around r̄ ≈ 1

2 , both effects remain moderate.

Proposition B.1 (U-shaped emphasis across difficulty). For d̂q = 1 + δ(r̄ − 1
2 )

2 with δ≥0, one has
d̂q≥1 with a unique minimum at r̄ = 1

2 , and ∂
∂r̄

(
d̂q E[wCoDaPO

i,t | q]
)

changes sign at r̄ = 1
2 (for fixed

ρi,t and ĉi). Hence, CoDaPO strictly up-weights both very hard (r̄≈0) and very easy (r̄≈1) items,
amplifying rare correct trajectories when r̄ is small and sharpening penalties near r̄≈1.

Strongest positive reinforcement: correct, high-confidence, hard. In the small-step regime with

ρi,t ≈ 1, two correct outputs oi, oj on the same question satisfy
wCoDaPO

i,t

wCoDaPO
j,t

≈ ĉi
ĉj

, since Âi = Âj =

Â(+)(r̄) and d̂q are shared within the group. With a confidence weight increasing in confidence,
high-confidence correct outputs receive larger updates. Across questions, correct rollouts also gain
the multiplicative boost Sdiff(r̄) = Â(+)(r̄)d̂q , which diverges as r̄↓0. Consequently, Â(+)(r̄) d̂q ĉi
is maximized for hard questions with high-confidence, correct trajectories.

C Experiments

This section evaluates CoDaPO and relevant RL methods on mathematical reasoning tasks. Selected
baselines include GRPO [34] and concurrent algorithms DAPO [45], Dr. GRPO [23], and GPG [3].

Training setup. We post-train Qwen2.5-1.5B-Instruct, Qwen2.5-Math-1.5B, and Qwen2.5-Math-7B
on MATH [20, 11, 42, 43], with TRL [37] and 4×A100 GPUs (2 for inference, 2 for optimization).
With a common recipe, we sample 12 rollouts per group for each question, train for 3 epochs with
learning rate 3×10−6, and early-stop on reward convergence. The difficulty weight is set to δ=0.4.

Evaluation setup. We adopt the Qwen2.5-Math evaluation codebase for consistent and reliable
measurement. For each question, we sample 5 responses at temperature 0.6 and report the mean
accuracy. Evaluations span seven reasoning benchmarks: MATH500 [20, 11], AIME 2024, AIME
2025, AMC 2023, OlympiadBench [15], Minerva [18], and GSM8K [4].

Main results. We summarize the following observations w.r.t. the experimental results in Tab. 2:
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Base Model Algorithm
Datasets

Average
MATH

500
AIME
2024

AIME
2025

AMC
2023

Olympiad
Bench Minerva GSM8K

Qwen2.5-1.5B-Instruct

Base 49.36 3.00 0.00 23.50 17.01 16.84 59.56 24.18
GRPO 55.08 3.00 1.33 26.00 19.08 22.35 73.92 28.68
DAPO 56.04 2.67 0.00 27.50 18.90 21.91 73.04 28.58
Dr. GRPO 56.24 3.33 0.00 25.50 19.11 21.18 73.80 28.45
GPG 54.36 4.00 1.33 23.00 19.29 21.54 74.10 28.34
CoDaPO (ours) 55.60 3.33 1.33 31.00 19.44 22.21 74.30 29.60

(6.24↑) (0.33↑) (1.33↑) (7.50↑) (2.43↑) (5.37↑) (14.74↑) (5.42↑)

Qwen2.5-Math-1.5B

Base 31.20 6.00 0.00 29.50 18.25 9.63 34.01 18.37
GRPO 68.48 12.67 8.00 51.00 30.55 28.53 79.56 39.82
DAPO 71.12 14.00 8.00 49.00 31.97 32.13 82.38 41.23
Dr. GRPO 70.68 10.67 10.67 49.50 31.67 30.51 82.17 40.84
GPG 70.60 11.33 5.33 47.00 31.97 29.49 82.38 39.73
CoDaPO (ours) 71.68 14.67 10.83 53.50 32.80 31.69 83.50 42.67

(40.48↑) (8.67↑) (10.83↑) (24.00↑) (14.55↑) (22.06↑) (49.49↑) (24.30↑)

Table 2: The main results of the post-training experiments (in accuracy). Note that the boldface
numbers mean the best results, while the underlined numbers indicate the second-best results. We
also show the absolute improvement of CoDaPO over the base model for each benchmark.
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Figure 6: The confidence-advantage distribution of correct/incorrect trajectories in CoDaPO training.
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Figure 7: The gradient distribution of correct/incorrect trajectories in CoDaPO training.

• CoDaPO can effectively improve LLMs’ reasoning abilities. Applying CoDaPO to various
models trained on the MATH training set consistently yields effectively performance improvements
across different benchmarks. For Qwen2.5-Math-1.5B, the average across seven benchmarks
improves from 18.37% to 42.67%, with larger gains for non-instruction-tuned base models.

• CoDaPO exhibits generalization capabilities across problem types. Though post-trained only
on the MATH training set, CoDaPO demonstrates notably strong generalization to out-of-domain
datasets: accuracy rises from 18.25% to 32.80% on Olympiad Bench and from 9.63% to 31.69%
on Minerva, highlighting its ability to enhance reasoning even on unseen problem types.

• CoDaPO surpasses baseline methods in reasoning accuracy. The comparison of CoDaPO
with other RL algorithms reveals that CoDaPO outperforms these baselines on most benchmarks,
improving average accuracy by 2.85% over GRPO and 1.44% over DAPO on Qwen2.5-Math-1.5B,
showing the effectiveness of CoDaPO’s confidence- and difficulty-adaptive design.

The training dynamics of CoDaPO. Fig. 6 and Fig. 7 present the confidence-advantage distribution
and gradient distribution of the Qwen2.5-Math-1.5B model during CoDaPO training. We observe:
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Model MATH500

Qwen2.5-Math-1.5B (base) 31.20

+ GRPO 68.48
+ confidence reweighting 71.52
+ difficulty reweighting 71.32

+ both (CoDaPO) 71.68

Table 3: Ablation on CoDaPO components.

Temp. 0 0.2 0.4 0.6 0.8 1.0

Base Model 27.80 30.00 31.00 31.20 30.20 23.40
GRPO 69.20 69.40 68.40 68.48 67.80 64.20

CoDaPO 69.80 72.40 70.60 71.68 69.60 68.60

Table 4: Performance of Qwen2.5-Math-1.5B on the
MATH500 under different sampling temperatures.

Models MATH
500

AIME
2024

AIME
2025

AMC
2023

Olympiad
Bench Minerva GSM8K Average

Qwen2.5-Math-7B 47.24 12.92 5.00 33.91 14.44 9.81 47.84 24.45
GRPO 74.62 26.35 11.25 59.06 36.51 37.64 89.40 47.83

CoDaPO 78.41 24.79 13.33 60.31 39.96 40.30 88.28 49.34

Table 5: Results of post-training experiments on Qwen2.5-Math-7B.

• CoDaPO enhances the model’s accuracy on difficult problems. On high-difficulty subsets
(Levels 4-5), CoDaPO’s advantage distribution is more positively concentrated than GRPO (Fig. 6,
2), indicating higher accuracy on these questions. This arises from its difficulty-adaptive mechanism
(Sec. B), which assigns greater weights to challenging questions with sparse rewards.

• CoDaPO smooths gradient updates across difficulty levels. Compared to GRPO (Fig. 7, Fig. 3),
CoDaPO consistently reduces gradient magnitude across all levels. CoDaPO tempers updates on
both correct and incorrect responses, ensuring the model learns from all samples effectively while
preventing rapid convergence on easy questions from dominating updates on harder questions.

Ablation studies. We further validate the effectiveness of CoDaPO’s reweighting design:

• Individual components. We train with each mechanism separately, as shown in Tab. 3. Both
confidence and difficulty reweighting independently improve upon vanilla GRPO, while their
combination yields the largest performance gain.

• Extension to larger models. We apply CoDaPO to Qwen2.5-Math-7B, and the results are shown
in Tab. 5. CoDaPO achieves the best average performance of 49.34%, demonstrating its robustness
and consistent effectiveness across different base models.

• Hyperparameter sensitivity. We vary the δ parameter in the difficulty reweighting term. As
shown in Tab. 9, all choices yield improvements over the baseline, indicating that CoDaPO is
insensitive to hyperparameters and that the difficulty reweighting term is robust.

• Sampling settings. We evaluate under different decoding temperatures. As shown in Tab. 4,
CoDaPO consistently outperforms the baseline across all settings. Moreover, performance shifts
caused by temperature are largely synchronous across methods (i.e., accuracy rises or falls together).

• KL regularization. We train the model with a KL coefficient of 0.01. As shown in Tab. 7,
removing the KL term yields better performance without degrading language ability.

• Test-time scaling. To ensure that CoDaPO genuinely improves reasoning ability rather than merely
narrowing the scope of solvable problems, we evaluate on AIME25 using Pass@K metrics. As
shown in Fig. 18 and Fig. 19, CoDaPO consistently surpasses baselines across all k. This confirms
that CoDaPO strengthens general reasoning rather than overfitting to a subset of problems.

Case studies. We present several representative case studies in Appendix H.

D Further Discussions

Limitation. While our results are promising, several important limitations should be noted. First,
our evaluation is limited to 1.5B parameter models, and the scaling behavior of CoDaPO to models
with tens or hundreds of billions of parameters remains unknown. This is particularly important as
larger models may exhibit different advantage-confidence dynamics. Second, although we bench-
marked on seven reasoning tasks, post-training was confined to the MATH dataset, so the robustness
of CoDaPO to other domains (e.g., coding) remains unclear. Third, our experiments were conducted
under moderate compute, typical for small-scale models, and we have yet to quantify resource usage
or optimize for large-scale or production-scale efficiency in RL-based post-training.
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E Related Work

Supervised Fine-tuning (SFT) finetunes the policy model to predict the next token on data that
is more relevant to the downstream task. The objective of SFT is to maximize the token-wise log
probability of dataset-collected outputs O, which are treated as the ground truth for training. Namely,

JSFT(fθ) ≜ E(q,a)∼D,o∼O(q)

 1

|o|

|o|∑
t=1

log fθ(ot|q, o<t)

 . (15)

Although simple in optimization, SFT has several significant drawbacks. SFT focuses on exploiting
(memorizing, to some extent) the dataset-collected outputs, resulting in limited generalization power,
especially in the out-of-distribution scenarios [2]. Besides, collecting and annotating the output data
can be expensive and often requires domain-specific knowledge in solving particular questions.

Proximal Policy Optimization (PPO) [33] is an actor-critic RL algorithm that is widely used in the
RL fine-tuning stage of LLMs. Simplifying the TRPO [31], PPO maximizes the advantage At of the
model-generated output o without the need to collect ground truth outputs. Here, the advantage At is
computed by the Generalized Advantage Estimation (GAE) [32], taking 1) the output value estimated
by a trainable value model and 2) the KL penalty between fθ and fref. PPO maximizes the objective:

JPPO(fθ)≜E(q,a)∼D,o∼fold(·|q)
1

|o|

|o|∑
t=1

min

[
fθ(ot|q, o<t)

fold(ot|q, o<t)
At, clip

( fθ(ot|q, o<t)

fold(ot|q, o<t)
, 1−ϵ, 1+ϵ

)
At

]
.

(16)
Although widely used in alignment tasks, PPO has several limitations. Its learning process is unstable,
computationally expensive, and requires extensive hyperparameter tuning. The clipped objective can
slow convergence and yield suboptimal policies [6]. Notably, training the value model is challenging
due to high variance and poor generalization [1]. Besides, PPO is also prone to reward hacking,
struggles with long-term credit assignment, and suffers from the issue of sample inefficiency [10].

Group Relative Policy Optimization (GRPO) [34] simplifies PPO via removing the learnable
value model. Instead, GRPO uses the average reward of multiple sampled outputs for the same
question. Specifically, given a question q, GRPO requires to sample G outputs from the old policy as
{oi}Gi=1 ∼ fold(·|q). Then, it computes the reward ri for each output oi (through deterministic reward
functions) and obtains a group of rewards {ri}Gi=1. The advantage Âi of GRPO is estimated as:

Âi = r̃i =
ri −mean({ri}Gi=1)

std({ri}Gi=1)
. (17)

The objective of GRPO, shown below, is to maximize the advantage (the first term) while ensuring
that the policy model remains close to the reference policy (the second term of KL divergence):

JGRPO(fθ) ≜ E(q,a)∼D,{oi}G
i=1∼fold(·|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(18)[
min

(
fθ(oi,t|q, oi,<t)

fold(oi,t|q, oi,<t)
Âi, clip

( fθ(oi,t|q, oi,<t)

fold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi

)
− βDKL [fθ||fref]

]
.

Here, the clip(·, 1− ϵ, 1 + ϵ) ensures that updates do not deviate excessively from the old policy by
bounding the policy ratio between 1− ϵ and 1 + ϵ. Besides, the KL divergence is estimated as:

DKL [fθ||fref] =
fref(oi,t|q, oi,<t)

fθ(oi,t|q, oi,<t)
− log

fref(oi,t|q, oi,<t)

fθ(oi,t|q, oi,<t)
− 1. (19)

Nonetheless, GRPO can be challenging to implement because it sometimes produces outputs with
unintended token distributions or incoherent language patterns [8]. It also demands careful reward
function design to balance fairness constraints and meaningful group-based advantage estimation [35].
The RL training process in GRPO can be unstable due to its reliance on group-based relative
advantages, and it remains computationally expensive, especially for large-scale implementations [33,
28]. Furthermore, while GRPO introduces optimizations to post-training, it does not consistently
outperform simpler methods like SFT, particularly in small-scale training or with smaller models.
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This highlights the trade-offs between complexity, computational cost, interpretability, and practical
effectiveness [28].

In addition, several RL algorithms have been developed primarily for alignment tasks. Therein,
DPO [29], CPO [41], and their variants [19, 9, 27, 12, 39] rely on pairs of outputs labeled by human
preference. In contrast, KTO [7] and BCO [16] require only a single binary label (like or dislike) for
each output. Besides, the PRM [36, 20] and Step-KTO [21] offer step-by-step guidance by incor-
porating feedback at each reasoning step rather than focusing solely on the final outputs. Recently,
the follow-up work of GRPO improves the optimization objective, e.g., DAPO [45], Dr. GRPO [23],
REINFOECE++ [13], CPPO [22], and GPG [3]. Another line of research generalizes GRPO to
broader applications such as multimodal reasoning [48, 14, 3, 25, 47] and logical reasoning [40].

We present CoDaPO algorithm in Alg. 1 and provide Tab. 6 to compare the fine-grained components
in CoDaPO and relevant RL-based algorithms.

Algorithm 1 CoDaPO: Confidence and Difficulty-Adaptive Policy Optimization
Input: Initial policy model πθ, training set D, group size G

1: for step = 1, · · · ,M do
2: Sample a batch Db from D
3: Update the old policy model: πθold ← πθ
4: // Group-based Rollout Sampling
5: for i = 1, · · · , G do
6: Sample response oi ∼ πθold(· | q) for each training sample q ∈ Db

7: end for
8: Compute rewards {ri}Gi=1 for each sampled response oi
9: // Confidence and difficulty-adaptive reweighting

10: for every training sample q’s response group {oi}Gi=1 do
11: Compute confidence reweighting factor {ĉi}Gi=1 via Equation 2
12: Compute difficulty reweighting factor d̂q via Equation 2
13: For each oi, compute Âi,t for the t-th token of oi
14: Apply reweighting to the advantage: Âi,t ← Âi,t · ĉi · d̂q
15: end for
16: // Update policy
17: for iteration = 1, · · · , µ do
18: Update the policy model πθ by maximizing the CoDaPO objective via Equation 1
19: end for
20: end for
Output: πθ

F Implementation Details

Experiment framework. In this work, we utilize Transformer Reinforcement Learning (TRL) as the
training backbone, specifically version 0.16.1. To ensure consistency with the vanilla GRPO algorithm,
we revise the original GRPO trainer in TRL accordingly since it has some discrepancies in loss
computation from Shao et al. [34]. Building upon this implementation, we develop several baseline
methods evaluated in this work, including DAPO, Dr.GRPO, GPG, and our proposed approach,
CoDaPO. The evaluation adapts Qwen2.5-Math’s evaluation codebase3, ensuring consistent and
reliable measurement across all experiments.

General hyperparameters. To ensure fair comparisons, we train all algorithms using the same set of
hyperparameters.

• Sampling setting. For each question, we sample 12 responses to form a response group. The
sampling temperature is set to 0.9, and we use a top-p value of 1.0 to consider the full token
distribution.

• Learning rate. We use a learning rate of 3.0e − 6 and apply a warm-up over the first 10% of
global training steps. A cosine learning rate scheduler is employed to gradually reduce the learning
rate to zero throughout training.
3https://github.com/QwenLM/Qwen2.5-Math/tree/main/evaluation
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Normalization Advantage Regularization Note

GRPO [34]
E
(q,a)∼D,{oi}Gi=1

∼fold(·|q)
1
G

∑G
i=1

1
|oi|

∑|oi|
t=1

[ min
( fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
Âi,

clip(
fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
, 1 − ϵ, 1 + ϵ)Âi

)−β
( fref(oi,t|q,oi,<t)

fθ(oi,t|q,oi,<t)

− log
fref(oi,t|q,oi,<t)

fθ(oi,t|q,oi,<t)
− 1

)]
.

Âi=
ri−mean({ri}

G
i=1)

std({ri}Gi=1
)

.

Dr. GRPO [23]
E
(q,a)∼D,{oi}Gi=1

∼fold(·|q)
1

G·c
∑G

i=1

∑|oi|
t=1

[ min
( fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
Âi,

clip(
fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
, 1 − ϵ, 1 + ϵ)Âi

)−β
( fref(oi,t|q,oi,<t)

fθ(oi,t|q,oi,<t)

− log
fref(oi,t|q,oi,<t)

fθ(oi,t|q,oi,<t)
− 1

)]
.
Âi=ri − mean({ri}G

i=1).

DAPO [45]
E
(q,a)∼D,{oi}Gi=1

∼fold(·|q)
1∑G

i=1
|oi|

∑G
i=1

∑|oi|
t=1

[ min
( fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
Âi,

clip(
fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
, 1−ϵlow, 1+ϵhigh)Âi

)]
.

None Âi=
ri−mean({ri}

G
i=1)

std({ri}Gi=1
)

.

GPG [3]
E
(q,a)∼D,{oi}Gi=1

∼fold(·|q)
1∑G

i=1
|oi|

∑G
i=1

∑|oi|
t=1

[ log fθ(oi,t|q, oi,<t)Âi

]
. None Âi = α ·

(
ri − mean({ri}G

i=1)
)

.

CoDaPO (ours)

E
(q,a)∼D,{oi}Gi=1

∼fold(·|q)
1∑G

i=1
|oi|

∑G
i=1

∑|oi|
t=1

[ fθ(oi,t|q,oi,<t)

fold(oi,t|q,oi,<t)
· Âi · ĉi · d̂q

]
. None

Âi =
ri−mean({ri}

G
i=1)

std({ri}Gi=1
)

, ĉi = σ
(

1
G

∑G
i=1

1
|oi|

∑|oi|
t=1 log fθ(oi,t|q,oi,<t)

1
|oi|

∑|oi|
t=1 log fθ(oi,t|q,oi,<t)

)
,

d̂q = 1+δ( 1
G

∑G
i=1 ri − 1

2
)2 .

Table 6: Comparing the components in different RL algorithms for reasoning. Note that the high-
lighted contents indicate the differences with the original implementation of the GRPO algorithm.
Specifically, (1) the advantage term evaluates the quality of model-generated outputs, (2) the regular-
ization term measures the divergence between the policy model and a frozen reference model, and (3)
the normalization term scales the final optimization signal across multiple problems and outputs.

• Batch size. We set the batch size to 6 to evenly distribute the generated responses across training
devices. To mitigate the variance introduced by different question samples, we use a gradient
accumulation step of 12.

• Randomness control. To ensure reproducibility, we set the random seed to 42 and enable full
determinism.

Prompt template. We use the prompt template shown in Fig. 8 for both training and evaluation.
Furthermore, we apply chat template shown in Fig. 9 when processing the raw data.

Prompt Template

Please reason step by step, and put your final answer within \boxed{}.

Figure 8: Prompt template used during training and evaluation.

Chat Template

<|im_start|>system
Please reason step by step, and put your final answer within \boxed{}.
<|im_end|>
<|im_start|>user
Find the sum of all integer bases $b>9$ for which $17_b$ is a divisor of
$97_b$.
<|im_end|>
<|im_start|>assistant

Figure 9: Example of a prompt used after applying the chat template.
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Reward setting. We observe that although using a format reward can improve the readability of
LLM outputs to some extent, it may lead to reward hacking in the later stages of training, potentially
resulting in irreversible training collapse. This observation is consistent with the findings of [46].
Therefore, in all experiments conducted in this work, we rely solely on the accuracy reward, defined
as follows:

ri(yi, ŷ) =

{
1, is_equivalent(yi, ŷ)
0, otherwise

.

Here, yi denotes the answer produced for the i-th output and ŷ represents the corresponding ground
truth. To accurately determine whether yi and ŷ are equivalent, we employ Math-Verify4 as our
reward evaluation system, where all LaTeX expressions are parsed and compared for mathematical
equivalence.

Completion length constraint. Following the work of [46], which argues that overly lenient length
constraints—or any heuristics that encourage the model to produce excessively long chains of
thought—can, in many cases, lead to overthinking, we impose a strict maximum completion length
of 1024 tokens during both training and evaluation. While this constraint may appear intuitively
unreasonable, our experimental results demonstrate that reinforcement learning post-training under
such a short-CoT constraint can still yield strong performance (see Fig. 12).

G Other Results

Difficulty estimation. Accurate estimation of question difficulty plays a crucial role in our proposed
algorithm, CoDaPO, as it directly influences the computation of difficulty-adaptive weights in the
optimization objective. However, relying solely on pre-existing difficulty annotations presents
significant limitations. First, not all datasets contain ground-truth difficulty labels. Second, since
the model’s performance evolves during training, the perceived difficulty of a question may vary
over time. Consequently, fixed difficulty labels may fail to reflect the dynamic nature of the model’s
learning process.

To explore a more adaptive and robust difficulty estimation approach, we conduct preliminary
experiments on the MATH dataset, which includes human-annotated difficulty levels. Using GRPO
on Qwen2.5-Math-1.5B, we analyze the accuracy trajectories for different difficulty levels throughout
training. As shown in Fig. 10, model accuracy aligns well with the ground-truth difficulty labels:
easier questions correspond to higher accuracy, and harder questions to lower accuracy. Moreover,
the accuracy gap between different difficulty levels increases and stabilizes as training progresses,
indicating a consistent difficulty signal.

These observations motivate us to estimate question difficulty based on the model’s own accuracy.
This approach is naturally integrated into the online RL process without requiring any additional
evaluation model, as multiple samples per question are generated during training. It generalizes well
to datasets without difficulty annotations and provides a dynamic estimation mechanism that adapts
to the model’s evolving capabilities over time, overcoming the limitations of static difficulty labels.

Completion length. In Figs. 11 and 12, we illustrate how the length of model responses evolves
throughout the training process. Contrary to prior studies that advocate for encouraging longer
responses as a means of enhancing model performance, our observations reveal a different perspec-
tive—namely, that even under stringent response length constraints (e.g., 1024 tokens), models can
still achieve substantial performance gains. In fact, although we explicitly impose a hard stop when a
model’s response exceeds 1024 tokens, the model never actually reaches this limit during training.

Interestingly, performance improvements are often accompanied by a decrease in output length. We
observe a similar trend in vanilla GRPO as well. We hypothesize that this phenomenon stems from
the nature of the math questions, which typically do not require excessively long reasoning chains.
Instead, longer responses from the base model often reflect overthinking, including the generation of
unnecessary reasoning steps or placeholder verification logic (e.g., writing pseudo Python code to
"verify" results without external execution support).

4https://github.com/huggingface/Math-Verify
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Figure 10: The GRPO training accuracy curves for questions of different difficulty levels
on Qwen2.5-Math-1.5B.

RL mitigates these tendencies by discouraging redundant generation and encouraging the model to
produce concise, solution-oriented answers. As a result, we observe a consistent downward trend in
average completion length, which aligns with improved performance.

Figure 11: The GRPO training curves for comple-
tion length on Qwen2.5-Math-1.5B.

Figure 12: The CoDaPO training curves for com-
pletion length on Qwen2.5-Math-1.5B.

Reward curves. We present the reward curve and its standard deviation throughout the training
process in Figs. 13 and 14, where Qwen2.5-Math-1.5B is trained on the MATH dataset using CoDaPO.
Note that since we adopt accuracy as the sole reward, the reward values are equivalent to the model’s
average accuracy. Overall, CoDaPO consistently improves model performance, exhibiting a stable
upward trend in accuracy across training steps.

Despite removing the KL regularization term, the training process remains stable, and we do not
observe any catastrophic degradation in accuracy—an issue sometimes encountered in RL-based
training. Notably, the most significant performance gain occurs within the first 200 steps, which
corresponds to our designated warm-up phase, highlighting the early-stage effectiveness of CoDaPO
in guiding the model toward better reasoning behaviors.

Confidence curves. We present the average confidence curve of model responses, along with separate
confidence curves for correct and incorrect responses, in Fig. 15. To compute the confidence for each
output, we first calculate the log probability of each token in the response and take the average at
the token level. Given the unbounded nature of log probabilities, we exponentiate the average log
probability to obtain a normalized confidence score for each response.
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Figure 13: The CoDaPO training curves for re-
ward on Qwen2.5-Math-1.5B.

Figure 14: The CoDaPO training curve for reward
standard deviation on Qwen2.5-Math-1.5B.

From the confidence curves, we observe a clear and consistent gap between correct and incorrect
responses throughout the CoDaPO training process: the model assigns significantly higher confidence
to correct outputs compared to incorrect ones. This demonstrates that CoDaPO not only improves
accuracy, but also enhances the model’s ability to calibrate its confidence in a more meaningful and
discriminative manner.

Figure 15: The CoDaPO training curves for response confidence on Qwen2.5-
Math-1.5B.

Extension to larger models. We apply CoDaPO to Qwen2.5-Math-7B, and the results are shown
in Tab. 5. CoDaPO achieves 78.41% accuracy on MATH500, outperforming both the base model
(47.24%) and GRPO (74.62%), and achieves the best average performance of 49.34%, demonstrating
its robustness and consistent effectiveness across different base models.

Discarding KL regularization. In CoDaPO, we remove the KL regularization term to encourage the
model to explore more freely, without being overly constrained by the base model’s output distribution.
Further, to evaluate whether the removal of the KL term negatively affects the linguistic quality of the
model outputs, we perform additional ablation studies where we reapply the KL regularization. The
evaluation results on the MATH500 dataset confirm that removing KL improves reasoning accuracy.
To assess general language modeling ability, we also evaluate the model’s perplexity on a generic
corpus, wikitext-2 5. The results are summarized in Tab. 7 and show that removing KL does not lead
to any notable increase in perplexity, suggesting that the model’s linguistic fluency remains intact.

5https://huggingface.co/datasets/mikasenghaas/wikitext-2

21

https://huggingface.co/datasets/mikasenghaas/wikitext-2


Models Qwen2.5-Math-1.5B CoDaPO w/ KL CoDaPO wo/ KL

Accuracy on MATH500 31.20 69.20 71.68
Perplexity on wikitext-2 35.62 36.10 36.40

Table 7: Results of ablation study on KL regularization.

Confidence dynamic. Due to the large number of samples, overlapping points in the confidence-
advantage distribution may have obscured fine-grained details. To address this, we provide more
detailed level-wise statistics demonstrating that CoDaPO mitigates the overconfidence issue. The
comparison level-wise probability is shown in Tab. 8. These results show that CoDaPO consistently
reduces the model’s confidence across all difficulty levels, thereby alleviating overconfidence. This
is particularly important in the RL setting, where excessive confidence leads to higher sampling
probability, which in turn reduces intra-group variance, ultimately causing group-wise advantage
collapse. In addition, we observe that CoDaPO induces greater reductions in confidence for incorrect
responses on harder problems, e.g., for Level 5, the log probability of incorrect responses decreased
by a much larger 17.01%. These observations indicate that CoDaPO produces more conservative
(i.e., lower-confidence) predictions than GRPO, with the effect being particularly pronounced for
incorrect responses at higher difficulty levels.

Level Prob
(GRPO)

Prob
(CoDaPO)

Difference
in Prob (%)

Log Prob
(GRPO)

Log Prob
(CoDaPO)

Difference in
Log Prob (%)

Overall 0.892243 0.878914 -1.49% -0.114878 -0.130072 -13.23%
Level 1 0.888831 0.876010 -1.44% -0.118636 -0.133318 -12.38%
Level 2 0.897471 0.884609 -1.43% -0.108690 -0.123172 -13.32%
Level 3 0.898096 0.884135 -1.55% -0.108254 -0.123972 -14.52%
Level 4 0.892173 0.878437 -1.54% -0.115166 -0.130887 -13.65%
Level 5 0.884646 0.871380 -1.50% -0.123643 -0.139012 -12.43%

Table 8: The comparison level-wise probability between CoDaPo and GRPO.
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The full training dynamics. In Figs. 16 and 17, we present the full confidence-advantage distribution
and gradient distribution of different checkpoints during CoDaPO training on the MATH training.
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Figure 16: The confidence-advantage distribution of the Qwen2.5-Math-1.5B model, post-training on
the MATH dataset with the CoDaPO algorithm. We present the distribution of model checkpoints
captured at every 60 training steps. Columns 1 through 5 correspond to difficulty levels 1 through 5.
Additionally, the marginal distributions (i.e., the density distributions) of advantage and confidence
across all samples are shown above and to the right of each confidence-advantage distribution.
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Figure 17: The gradient distribution of the Qwen2.5-Math-1.5B model, post-training on the MATH
dataset with the CoDaPO algorithm. We present the distribution of model checkpoints captured at
every 60 training steps. Columns 1 through 5 correspond to difficulty levels 1 through 5. (consistent
with Fig. 16).
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Benchmarks. We evaluate our proposed method and other baselines on the following diverse
benchmarks.

1. MATH 500 [11]. A curated set of 500 challenging problems from the MATH dataset, focusing on
high school-level mathematics across algebra, geometry, number theory, and combinatorics.

2. AIME 2024 6. A benchmark based on the 2024 American Invitational Mathematics Examination,
testing advanced problem-solving skills with 15 short-answer math problems designed for top
high school students.

3. AIME 2025 7. The 2025 version of the AIME benchmark is similarly structured, providing a
fresh set of high-difficulty pre-Olympiad level math problems.

4. AMC 2023 8. Based on the 2023 American Mathematics Competitions (AMC 10/12), this
benchmark assesses middle-to-advanced high school math across a range of topics in a multiple-
choice format.

5. Olympiad Benchmark [15]. A collection of problems from various math olympiads (e.g.,
USAMO, IMO), aimed at evaluating models on deep mathematical reasoning and multi-step
proofs.

6. Minerva [18]. A benchmark and model suite by Google DeepMind that tackles math and science
questions (from grade school to graduate level) using CoT reasoning and LLMs.

7. GSM8K [4]. A dataset of 8,500 grade-school level math word problems designed to test models’
ability to perform multi-step numerical reasoning in natural language.

Test-time scaling. We present the test-time scaling results in Fig. 18 and 19. Specifically,
we report the pass@k accuracy on AIME25 before and after CoDaPO training, where k ∈
{1, 2, 4, 8, 16, 32, 64, 128}. Across all values of k, CoDaPO consistently improves the model’s
performance. Notably, for Qwen2.5-Math-1.5B, the pass@8 accuracy after CoDaPO training sur-
passes the pass@32 accuracy of the model before training, effectively reducing the number of required
responses by 24 while achieving better results. This result demonstrates that CoDaPO effectively
improves the quality and reliability of model outputs under constrained sampling budgets. The fact
that fewer samples are needed to achieve a given level of accuracy indicates that the model becomes
more confident and consistent in producing correct answers.

Furthermore, for the instruction-tuned Qwen2.5-1.5B-Instruct model, CoDaPO also leads to sub-
stantial improvements in pass@k accuracy. The performance gain becomes more pronounced as
k increases. This indicates that CoDaPO also improves the diversity and calibration of the output
distribution. The model is not only better at generating the correct answer in the top few samples
but also more likely to include it somewhere in a wider sampling set, which further confirms the
effectiveness of CoDaPO in enhancing both single-shot reliability and multi-sample robustness.

Figure 18: Pass@k result of Qwen2.5-Math-1.5B
with CoDaPO on AIME25.

Figure 19: Pass@k result of Qwen2.5-1.5B-
Instruct with CoDaPO on AIME25.

Hyperparameter sensitivity. In our work, δ is an integral part of our difficulty-based reweighting
mechanism, which controls the degree of reward or penalty applied to problems of varying difficulty

6https://huggingface.co/datasets/HuggingFaceH4/aime_2024
7https://huggingface.co/datasets/opencompass/AIME2025
8https://huggingface.co/datasets/math-ai/amc23
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during training. To demonstrate the effectiveness and robustness of this design, we conducted a series
of experiments under different δ. The results in Tab. 9 show that CoDaPO consistently benefits from
a range of settings, indicating that our method is not sensitive to the selection of this hyperparameter.

δ 0 0.2 0.4 0.6 0.8

Accuracy on MATH500 71.52 72.00 71.68 71.60 71.80

Table 9: CoDaPO’s Performance under different δ.

H Case Studies

In-domain case. We analyze the performance gap between CoDaPO and GRPO through a symbolic
reasoning task that requires algebraic manipulation, base conversion, and number-theoretic reasoning
in Fig. 20. While both methods adopt similar initial steps, only CoDaPO successfully arrives at the
correct and complete solution. This discrepancy reveals a broader insight: CoDaPO demonstrates a
stronger capacity for maintaining symbolic consistency and handling algebraic constraints, whereas
GRPO is more susceptible to local errors and brittle logic execution.

A key distinction lies in how the two models approach intermediate decision points. CoDaPO tends
to preserve the symbolic structure of the problem throughout the reasoning process, producing
interpretable and logically coherent derivations. In contrast, GRPO is more prone to heuristic
or trial-based reasoning patterns, which may yield superficially plausible but ultimately incorrect
results—especially in cases requiring discrete enumeration or careful constraint satisfaction.

This case exemplifies a common challenge in reinforcement learning for language models: small
reasoning errors in early steps often cascade into incorrect final answers, and methods lacking robust
symbolic understanding struggle to recover. CoDaPO mitigates this through more structured reasoning
and better alignment between confidence and difficulty signals, which enhances its robustness in
solving multi-step, discrete, and mathematically grounded problems.

These findings suggest that CoDaPO is not only effective in improving accuracy but also in enhancing
reasoning fidelity and interpretability, especially in domains like mathematics, programming, and
logic that require precise, symbolic manipulation.

Out-of-domain case. In tasks that require translating natural language descriptions into symbolic
formulations grounded in domain knowledge—such as those involving physical systems or scientific
laws (Fig. 21)—we observe a consistent performance gap between the two methods. CoDaPO
demonstrates stronger semantic alignment between the problem description and the constructed
solution model. Its responses tend to follow a coherent chain of physical and mathematical reasoning,
with clear transitions from qualitative understanding to quantitative execution.

In contrast, GRPO is more prone to semantic drift: it often introduces irrelevant concepts, misapplies
formulas, or incorrectly anchors symbolic steps to the problem’s actual objective. This can lead to
answers that are numerically plausible but logically invalid, due to disconnects between intermediate
computations and the final question. Such behavior suggests difficulties in maintaining global
consistency across multi-step derivations—particularly when domain-specific reasoning is required.

More generally, these observations highlight the importance of model capabilities in selective
abstraction and structured model-building. An effective llm solver must not only recall relevant
formulas or operations, but also identify the appropriate scope of reasoning, exclude irrelevant
detail, and maintain logical consistency through multi-step symbolic transformations. CoDaPO
exhibits greater stability along these dimensions, making it more reliable on tasks that blend symbolic
reasoning with physical interpretation.
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AIME25 Question

Find the sum of all integer bases b > 9 for which 17b is a divisor of 97b.

Ground Truth: 70

CoDaPO Response

To solve this problem, we need to convert the numbers
17b and 97b from base b to base 10 and then find the
values of b for which 17b divides 97b.
1. Convert 17b to base 10:

17b = 1 · b + 7 = b + 7.

2. Convert 97b to base 10:

97b = 9 · b + 7 = 9b + 7.

We need 17b to be a divisor of 97b, so:

9b + 7 ≡ 0 (mod b + 7).

This means:
9b + 7 = k(b + 7)

for some integer k. Simplifying this, we get:

9b + 7 = kb + 7k

9b − kb = 7k − 7

b(9 − k) = 7(k − 1)

So:

b =
7(k − 1)

9 − k
.

Since b > 9, k must be chosen such that b is an integer
greater than 9. Let’s find the valid values of k and corre-
sponding b.
We check the values of k for which the right-hand side is
an integer and b > 9:

• For k = 2: b =
7(2−1)
9−2 = 7

7 = 1, not greater
than 9.

• For k = 3: b =
7(3−1)
9−3 = 14

6 = 7
3 , not an

integer.

• For k = 4: b =
7(4−1)
9−4 = 21

5 , not an integer.

• For k = 5: b =
7(5−1)
9−5 = 28

4 = 7, not greater
than 9.

• For k = 6: b =
7(6−1)
9−6 = 35

3 , not an integer.

• For k = 7: b =
7(7−1)
9−7 = 42

2 = 21, valid.

• For k = 8: b =
7(8−1)
9−8 = 49

1 = 49, valid.

• For k = 9: b =
7(9−1)
9−9 is undefined.

• For k = 10: b =
7(10−1)
9−10 = 63

−1 = −63, not
greater than 9.

So the valid values for b are 21 and 49. The sum of these
values is:

21 + 49 = 70.

Thus, the final answer is:

70

GRPO Response

To solve the problem, we need to translate the numbers
17b and 97b from base b to base 10.
The number 17b in base 10 is:

1 · b + 7 = b + 7

The number 97b in base 10 is:

9 · b + 7 = 9b + 7

We need to find the values of b such that 17b (which is
b+7) is a divisor of 97b (which is 9b+7). This means
that:

b + 7 | 9b + 7

or equivalently:

9b + 7 ≡ 0 (mod b + 7)

We can express this congruence as an equation:

9b + 7 = k(b + 7)

for some integer k. Rearranging the equation:

9b + 7 = kb + 7k

9b − kb = 7k − 7

b(9 − k) = 7(k − 1)

b =
7(k − 1)

9 − k

For b to be an integer greater than 9, the right-hand
side must be an integer. This means 7(k − 1) must
be divisible by 9 − k. We can iterate through possible
integer values of k to find valid solutions for b:

# Python code to find valid bases
valid_bases = []
for k in range(10): # Try k from 0 to 9

if (9 - k) != 0:
b = 7 * (k - 1) / (9 - k)
if b.is_integer() and b > 9:

valid_bases.append(int(b))

sum_of_bases = sum(valid_bases)
print((valid_bases, sum_of_bases))

Running this code yields:

valid bases: [16, 21] ⇒ sum = 16+21 = 37

Therefore, the final answer is:

37

Figure 20: Case study of CoDaPO and GRPO Responses to an AIME25 Question.
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Minerva Question

An eclipsing binary consists of two stars of different radii and effective temperatures. Star 1 has
radius R1 and T1, and Star 2 has R2 = 0.5R1 and T2 = 2T1. Find the change in bolometric
magnitude of the binary, ∆mbol , when the smaller star is behind the larger star. (Consider only
bolometric magnitudes so you don’t have to worry about color differences.)
Ground Truth: 1.75

CoDaPO Response

To solve this problem, we need to calculate the change
in bolometric magnitude of the binary system when the
smaller star (Star 2) is behind the larger star (Star 1). The
bolometric magnitude of a star is given by:

mbol = −2.5 log10(Lbol)

where Lbol is the bolometric luminosity of the star. The
bolometric luminosity of a star is proportional to its sur-
face area and its effective temperature:

Lbol ∝ R
2
T

4

So, the bolometric luminosities of Star 1 and Star 2 are:

Lbol,1 ∝ R
2
1T

4
1

Lbol,2 ∝ R
2
2T

4
2 = (0.5R1)

2
(2T1)

4

= 0.25R
2
1 · 16T 4

1 = 4R
2
1T

4
1

The total bolometric luminosity of the binary system
when both stars are visible is:

Lbol,total = Lbol,1 + Lbol,2 = kR
2
1T

4
1 + k · 4R2

1T
4
1

= 5kR
2
1T

4
1

When Star 2 is behind Star 1, the total bolometric lumi-
nosity is just the luminosity of Star 1:

Lbol,total = Lbol,1 = kR
2
1T

4
1

The change in bolometric magnitude is given by:

∆mbol = mbol,after − mbol,before

= −2.5 log10

(
Lbol,total,after

Lbol,total,before

)

= −2.5 log10

(
kR2

1T
4
1

5kR2
1T

4
1

)

= −2.5 log10

(
1

5

)
= −2.5 log10(5

−1
)

= −2.5(− log10(5))

= 2.5 log10(5)

Using the value log10(5) ≈ 0.6990, we get:

∆mbol = 2.5 × 0.6990 = 1.7475 ≈ 1.75

Thus, the change in bolometric magnitude is:

1.75

GRPO Response

To find the change in bolometric magnitude of the binary
when the smaller star (Star 2) is behind the larger star (Star
1), we need to consider the effect of the limb darkening
and the phase angle of the eclipsing binary.
The bolometric magnitude of a star can be approximated
using the Stefan-Boltzmann law, which states that the lu-
minosity of a star is proportional to the fourth power of its
temperature and the square of its radius. The bolometric
magnitude mB of a star is related to its luminosity by:

mB = −2.5 log10(L) + C

where L is the luminosity of the star and C is a constant.
For a binary system, the change in bolometric magnitude
when one star passes in front of the other can be approxi-
mated by considering the change in the effective area of
the star that is visible during the eclipse.
The effective area of a star that is visible during an eclipse
is given by:

A = R
2

(
1 −

(
R

d

)2

sin
2
(θ)

)
where R is the radius of the star, d is the distance to
the star, and θ is the phase angle. The change in the
effective area when Star 2 is behind Star 1 is given by the
difference in the areas of the two stars:

∆A = πR
2
1 − πR

2
2

(
1 −

(
R2

d

)2

sin
2
(θ)

)
Since we are considering only the bolometric magnitude,
we can simplify the problem by considering the ratio of
the luminosities of the two stars. The change in bolomet-
ric magnitude is given by:

∆mbol = −2.5 log10

(
L2

L1

)
where L1 and L2 are the luminosities of Star 1 and Star 2,
respectively. Using the Stefan-Boltzmann law, we have:

L2

L1

=

(
T2

T1

)4 (R2

R1

)2

=

(
2T1

T1

)4 ( 0.5R1

R1

)2

= 2
4 · 0.52 = 16 · 0.25 = 4

Thus, the change in bolometric magnitude is:

∆mbol = −2.5 log10(4) = −2.5 · 0.60206
= −1.50515 ≈ −1.51

Therefore, the change in bolometric magnitude of the
binary when the smaller star is behind the larger star is:

−1.51

Figure 21: Case study of CoDaPO and GRPO Responses to a Minerva Question.
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