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Abstract

Alzheimer’s Disease (AD) poses a significant health threat to the aging population,
underscoring the critical need for early diagnosis to delay disease progression and
improve patient quality of life. Recent advances in heterogeneous multimodal arti-
ficial intelligence (AI) have facilitated comprehensive joint diagnosis, yet practical
clinical scenarios frequently encounter incomplete modalities due to factors like
high acquisition costs or radiation risks. Moreover, traditional convolution-based
architecture face inherent limitations in capturing long-range dependencies and
handling heterogeneous medical data efficiently. To address these challenges, in
our proposed heterogeneous multimodal diagnostic framework (HAD), we develop
a multi-view Hilbert curve-based Mamba block and a hierarchical spatial fea-
ture extraction module to simultaneously capture local spatial features and global
dependencies, effectively alleviating spatial discontinuities introduced by voxel
serialization. Furthermore, to balance semantic consistency and modal specificity,
we build a unified mutual information learning objective in the heterogeneous mul-
timodal embedding space, which maintains effective learning of modality-specific
information to avoid modality collapse caused by model preference. Extensive
experiments demonstrate that our HAD significantly outperforms state-of-the-art
methods in various modality-missing scenarios, providing an efficient and reliable
solution for early-stage AD diagnosis.

1 Introduction

AD is a progressive neurodegenerative disorder characterized by cognitive impairment, gradual loss of
memory, and a decline in self-care abilities as its primary clinical manifestations [1, 2, 3]. Due to the
lack of effective cures, AD poses a significant threat to the health of the elderly population, severely
impacting the quality of life of patients and their families and imposing a heavy medical burden on
society [4]. Mild Cognitive Impairment (MCI) is considered a precursor stage of AD, marked by
mild cognitive decline without a noticeable impact on daily functional abilities. Early diagnosis and
intervention during this stage are critical for delaying disease progression and improving patients’
quality of life. In recent years, with the rapid increase of the type of multimodal data, researchers have
been able to better understand and diagnose early-stage AD from multiple perspectives, providing
more comprehensive and objective decision-making support for clinical diagnosis and treatment [5, 6].
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These advances also lay the groundwork for the application of multimodal Artificial Intelligence (AI)
in joint AD diagnosis.

However, in practical clinical settings, the collection of multimodal data is often hampered by issues
such as radiation risks, high costs, and unexpected patient withdrawal, leading to the frequent problem
of missing modalities. This makes it difficult to obtain complete multimodal datasets [7, 8]. To
address missing data, existing studies often discard cases with incomplete modalities and rely solely
on data with complete modalities for analysis [9]. This approach reduces the subject scale, thereby
limiting the performance of models. To overcome this issue, researchers have proposed various
multimodal learning frameworks based on strategies such as subspace learning, knowledge distillation,
and missing data imputation [10, 11]. For instance, data imputation methods use generative models
like Generative Adversarial Networks (GANs) and Autoencoders to fill in missing modalities, thereby
expanding the training dataset. However, due to challenges in ensuring the quality of imputed data,
such methods often introduce redundant or even misleading information, resulting in decreased
performance. Furthermore, the heterogeneity of multimodal data in AD, which ranges from three-
dimensional (3D) image data to 1D biomarker data, presents additional challenges. Effectively
integrating heterogeneous multimodal data and mining their shared semantic information under
conditions of missing modalities remains a key difficulty in AI-assisted AD diagnosis.

Currently, mainstream multimodal diagnostic methods are typically based on 3D Convolutional
Neural Networks (CNNs) or Transformer architectures [12, 13]. However, 3D CNNs often struggle to
effectively capture long-range spatial dependencies and are constrained by large parameter sizes and
high computational costs [14]. While Transformer-based models can model long-range dependencies,
their computational complexity increases quadratically with the input data dimensions. This is
particularly problematic when dealing with high-dimensional multimodal 3D medical image data,
where computational inefficiency becomes a significant bottleneck, severely limiting their practical
clinical applications. Recently, Structured State Space Models (SSMs), exemplified by Mamba,
have gained attention for their efficient information extraction capabilities and linear computational
complexity. For example, Liu et al. [15] proposed VMamba with a 2D Selective Scan module (SS2D)
that bridges the ordered nature of 1D selective scan and the non-sequential structure of 2D visual data.
Xing et al. [16] developed SegMamba, which captures remote dependencies in the entire 3D voxel at
multi-scale. In the context of 3D multimodal medical image, exploring an efficient feature extraction
module based on SSMs holds the potential to enhance diagnostic performance while reducing model
complexity, thereby better meeting the demands of clinical applications.

To address the aforementioned challenges, this paper proposes a novel heterogeneous multimodal
diagnostic framework for AD, named HAD. The framework is capable of processing multimodal
data that includes Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET),
Cerebrospinal Fluid (CSF), and Clinical Assessment Data (CAD) with arbitrary modality missing,
providing a flexible solution for early-stage AD diagnosis. One the one hand, to address the chal-
lenges of long-range dependencies and high computational complexity in 3D brain image data, we
develop a hierarchical spatial feature extraction module. Building upon existing work [17], we
adopt the same Hilbert curves for space-filling transformations while maintaining their core concept
of “locality-preserving property of space-filling curves”. However, our proposed HSFE module
introduces two key innovations: (1) A hierarchical architecture based on the fractal theory of 3D
Hilbert curves enables multi-scale information fusion through multi-level recursive structures; (2) A
multi-directional scanning mechanism (incorporating axial rotation and mirror transformations) en-
hances complementary spatial information capture. This module integrates traditional convolutional
operation with efficient state space model, enabling the effective capture of both shallow features and
global dependencies in 3D image data. On the other hand, to enhance the consistency of discrimina-
tive capabilities across different modalities for AD diagnosis, we propose an optimization objective
based on maximizing mutual information between multimodal joint semantic features and shallow
features in the semantic embedding space. This strategy ensures that the framework effectively
integrates heterogeneous information from various modalities, improving diagnostic performance in
scenarios with incomplete multimodal datasets. Our main contributions are summarized as follows:

• We propose a heterogeneous multimodal AD diagnosis framework capable of handling
arbitrary incomplete modalities. Unlike existing methods primarily tailored for 3D brain
image data, our framework can effectively process heterogeneous multimodal data with
significant informational and structural differences.
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• To effectively handle complex 3D MRI and PET image data, we propose the multi-view
Hilbert curve-based Mamba block (HMamba), along with a hierarchical spatial feature
extraction strategy built upon HMamba. These modules alleviate discontinuities introduced
by spatial voxel serialization and unify long-sequence modeling with local feature extraction
across multiple scales.

• We propose a multimodal semantic representation learning framework, which establishes a
goal of maximizing mutual information between modality-specific features and semantic
labels, simultaneously considering modality-specific information extraction and consistency
representation learning.

2 Preliminary

2.1 Problem Definition

Given a multimodal AD diagnosis dataset D = (x,y) with n subjects, and each subject x consists
of heterogeneous multimodal data (e.g., structural MRI, PET, CSF, and CAD), denoted as x =
{x(1), x(2), . . . , x(m)}, where m denotes the total number of modalities. Noted that we use ximg

to indicate the MRI or PET data. The corresponding diagnostic label is denoted as y, representing
the clinical status of the subject (e.g., cognitively normal (CN), MCI, and AD). In practical clinical
scenarios, some modalities might be missing for certain subjects due to various reasons, thus we let
V denote the set of available modalities and |V| ≤ m. The objective of multimodal AD diagnosis is
thus to train a neural network model capable of accurately predicting the clinical label y using any
available subset of modalities, even when some modalities are missing during inference.

2.2 State Space Modals

State Space Models (SSMs) are classical linear time invariant systems widely used in control
theory and signal processing, characterized by their linear complexity and effectiveness in modeling
sequential data. Recently, SSMs have gained renewed attention in deep learning due to their ability to
efficiently capture long-range dependencies. Gu et al. [18] first introduced the HiPPO framework,
providing a theoretically optimal approach to represent continuous-time state-space models by high-
order polynomial projections. Subsequently, Gu et al. proposed the Structured State Space Sequence
model (S4) [19] that introduces discretization and convolutional representation for parallel training,
demonstrating superior performance in processing time series data. More recently, Mamba [20]
introduced selective structured state spaces, simplifying the architecture and improving parallelism.
Various vision Mamba architectures [15, 21] further extended the state-space modeling paradigm
from sequences to two-dimensional image data, effectively addressing the quadratic complexity issue
inherent in vision Transformers.

2.2.1 Hilbert Curve for 3D Brain Image Data

Existing Vision Mamba methods typically convert structured 2D or 3D visual data into 1D sequences
through serialization approaches such as bi-directional scanning, cross scanning, or continuous
scanning [22, 23, 24]. However, these simple scanning strategies inevitably disrupt the inherent
spatial relationships, causing spatially adjacent pixels or voxels to become distant from each other
in the serialized sequence. Such spatial discontinuity significantly impairs the model’s ability to
capture local structural information and long-range spatial dependencies, thereby limiting diagnostic
performance in medical imaging tasks. To alleviate this issue, we propose adopting the 3D Hilbert
curve for scanning brain image data. Unlike traditional scanning approaches [25, 26, 27], the Hilbert
curve is a continuous, space-filling fractal curve known for its excellent locality-preserving property .
Specifically, the Hilbert curve mapping ensures that voxels spatially close in the 3D space remain
close in the serialized 1D representation to a large extent, thus minimizing spatial distortion and
aiding the model in effectively capturing local and global contextual information from structured
medical image data.

The 3D Hilbert curve can be generated iteratively, with each iteration referred to as the curve’s order
N . At each iteration, the curve recursively subdivides the original 3D cubic space into 2N ×2N ×2N

sub-cubes, as shown in Fig. 5. The Hilbert curve of order N is thus constructed by connecting
the Hilbert curves of order (N − 1) from eight smaller sub-cubes through rotations and reflections,
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Figure 1: The schematic diagram of our HAD. It contains 2 main parts, a heterogeneous modality-
specific shallow feature extraction consisting of HSFE module and MLP (left half) and high-level
multimodal semantic coding (right half). “qφ” and “qϕ” denote the modality-specific encoder and
cross-modal decoder, respectively; “3D Conv” denotes the 3D residual convolution module.

preserving the locality and continuity of the space-filling curve. Formally, given a voxel coordinate
(xc, yc, zc) within a cubic voxel grid of size 2N , the 3D Hilbert curve defines a mapping HN (·) from
the 3D coordinate to a 1D sequence index h:

h = HN (xc, yc, zc), h ∈ {0, 1, . . . , 8N − 1}. (1)

An appropriate Hilbert curve order N is selected based on the input image data resolution.

3 Method

3.1 HMamba: Hilbert Curve-Based Mamba Block
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Figure 2: Coverage rate vs. order of Hilbert
curve under different view numbers.

Multi-View Spatial Scanning. As illustrated in Fig.
5, spatially adjacent voxels located at the boundaries
between neighboring sub-cubes might become rela-
tively distant within the serialized sequence due to the
intrinsic fractal structure of the Hilbert curve. This
spatial tearing phenomenon potentially leads to the
loss of critical adjacency information, adversely af-
fecting the model’s ability to capture fine-grained
spatial dependencies. To bridge this gap and further
alleviate the spatial discontinuity issue, we propose
utilizing multiple Hilbert curves oriented along dif-
ferent spatial axes, complementing the conventional
approach of scanning with a Hilbert curve along a
single orientation. In other words, we expect that
multiple Hilbert curves collectively maximize the coverage of adjacency edges among voxels, ef-
fectively preserving comprehensive spatial context within serialized data. A higher coverage rate
indicates better preservation of spatial adjacency information and thus facilitates more effective
modeling of spatial context (please refer to Appendix A.3 for the definition of coverage rate).
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As we know, starting from a fixed vertex, six independent curves can be drawn. Therefore, in
Fig. 2, we illustrate the relationship between the number of scanning views and the coverage rate.
At lower orders, three-view scanning is sufficient to fully cover all adjacent edges. However, as
image resolution increases, achieving complete coverage becomes more challenging. Furthermore,
increasing the number of scanning curves should be considered with caution due to the additional
computational overhead. Overall, for input ximg ∈ Rdi×di×di , L multi-view scanning layers are
denoted as {F l

S : ximg ∈ Rdi×di×di → Rd3
i }Ll=1.

Multi-View Dynamic Fusion-Based Mamba Block. Upon serializing the input 3D image data, we
employ the SSMs to capture long-range dependencies across the resulting long sequences, which
originate from continuous-time linear dynamical systems, mapping an input xt ∈ R to an output
ot ∈ R via a hidden state ht ∈ Rde as follows:

ht = Aht−1 +Bxt, ot = Cht, (2)

where A ∈ Rde×de , B ∈ Rde×1, and C ∈ R1×de are learnable parameters.

For discrete sequence modeling, the continuous parameters (A,B) are discretized using zero-order
hold (ZOH) with a step size ∆: A = e∆A, B = A−1(e∆A − I)B. The resulting discrete-time
SSM is formulated as:

ht = Aht−1 +Bxt, ot = Cht. (3)

In practice, model outputs are efficiently computed through convolution:

o = x ∗H, H = (CB, CAB, . . . , CA
M−1

B), (4)

where M = d3i is the input sequence length, and H ∈ RM is the structured convolution kernel.
Since sequences derived from different views correspond to spatially misaligned voxel indices, a
reverse indexing operation is subsequently applied to map the multi-view serialized features back
to the original 3D voxel grid structure, i.e., F̄ l

S : o ∈ Rd3
i → Rdi×di×di . Furthermore, due to the

distinct scanning views, the SSMs applied to each serialized sequence capture complementary spatial
dependencies. To effectively aggregate these multi-view features, we propose a voxel-wise dynamic
fusion strategy. Formally, given the encoded feature tensors from L distinct scanning views, denoted
as {ol}Ll=1, we assign a learnable spatially adaptive weighting tensor al ∈ Rdi×di×di for each view.
Each element of al dynamically balances the importance of each voxel from the l-th view. The fused
voxel-wise feature map ô is thus obtained as a weighted combination: ô =

∑L
l=1 a

l ⊙ ol, where ⊙
denotes the voxel-wise (element-wise) multiplication. The weighting tensors al are optimized during
training, enabling the model to dynamically emphasize the most informative features from different
scanning views for each voxel individually. This proposed voxel-wise dynamic multi-view fusion
effectively integrates complementary spatial context captured by multi-view SSMs, significantly
enhancing the model’s representation capability for 3D medical image data.

3.2 Hierarchical Spatial Feature Extraction

As described in Section 3.1, our proposed multi-view Hilbert curve-based scanning approach signifi-
cantly mitigates the spatial tearing issue. However, at the high imaging resolutions (i.e., larger Hilbert
curve orders), the multi-view scanning strategy may fail to resolve all spatial discontinuities, as
complete adjacency edge coverage becomes increasingly challenging. Motivated by the hierarchical
receptive field scaling property inherent in multi-scale CNNs, we propose a hierarchical spatial feature
extraction (HSFE) module that serializes and processes 3D image data at multi-scale resolutions. At
each hierarchical level, the resolution of the input 3D image data is progressively reduced by the
downsampling operation. Specifically, given an original 3D image with dimensions 2N × 2N × 2N ,
we iteratively construct K lower-resolution images by a series of downsampling modules consisting
of convolutional layer and MaxPool layer: {x̂|k+1 = Down(x̂|k)}K−1

k=0 , where x̂|0 = Stem(ximg)
and Stem module is to expand channels and reduce dimensions. At k-th level, we utilize HMamba
module with N − k order Hilbert curve and 3D residual convolution block to model long-sequence
dependency and local spatial information:

g|k = Ck(Mk(x̂|k)), k ∈ [0,K − 1], (5)

where g|k denotes the k-th level output. Ck and Mk mean the corresponding 3D residual block and
HMamba module, respectively. Then, we simply concatenate all K outputs and perform max-pooling
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to obtain the final output of the HSFE module:

g = MaxPool(Concat(g|0, g|1, . . . , g|K−1)). (6)

This hierarchical strategy naturally alleviates the spatial discontinuity issues that may arise from
high-order Hilbert curves, as the receptive field expands significantly at deeper layers. Consequently,
our hierarchical state space architecture effectively compresses spatial features at various scales,
progressively enhancing the information density of the learned representations.

3.3 Multimodal Semantic Representation Learning

Heterogeneous multimodal data inherently exhibit a modality gap, with different modalities contribut-
ing distinct perspectives to AD diagnosis. To preserve modality-specific characteristics, we avoid
inter-modality information interactions in the initial stage instead of conducting modality-specific
feature extraction (i.e., HSFE module for 3D image data and Multi-Layer Perceptrons (MLPs) for
CSF and CAD). This is to map the heterogeneous multimodal data into a unified feature space,
facilitating further cross-modal alignment [28, 29]. In general, we aim for the learned features to
preserve semantic information as fully as possible, while simultaneously striving to achieve semantic
consistency across multiple modalities. Therefore, we propose the following mutual information
maximization objective:

max I(g;y) + αI(g; z), (7)

where g = {g(v)}v∈V and random variable g(v) corresponds to the modality-specific feature of v-th
modality. z represents the cross-modal joint semantic representation and α is the balanced parameter.
Eq. (7) consists of two parts: the first term focus on learning discriminative information from labels,
while the second term aims to align modality-specific representations with cross-modal semantic
representations. For the first term of Eq. (7), the equivalent objective is as follows:

max I(g;y) ⇔ minH(P,Q), (8)

where P ∼ p(y|g) and Q ∼ q(y|g) denote the real distribution of y and predicted distri-
bution, respectively, and H(P,Q) is the cross entropy. Specifically, we employ a dynamic
Mixture-of-Experts (MoE) fusion to get the typical joint posterior of latent representation z, i.e.,
qφ(z|g) = 1

|V|
∑

v∈V ω(v)qφv
(z|g(v)), where ω(v) = eη

v/τ∑
v∈V eηv/τ (τ : the temperature parameter) is

calculated by the modality-specific learnable parameters {η1, η2, ..., ηm}, and then inference the pre-
diction probability by parameterized neural networks qθ(y|z). This corresponds to constructing the
probabilistic graph model: g → z → y. Together with the second term, this approach simultaneously
ensures semantic consistency across multimodal representations and facilitates semantic learning of
disease categories. However, it ignores the inherent heterogeneity among different modalities, which
can hinder the effective exploration of multimodal complementary information. In addition, due to
discrepancy in information and data structure, the network commonly has obvious fitting preference
for certain modalities, which can easily lead to training collapse issue for hard-fitting modalities
(see further analysis in Section 4.3). Thus, we propose to add a direct inference of y from modality
observations, i.e., g → y. To be specific, we introduce the modality-specific conditional distribution
into the final prediction distribution as follows:

q(y|g) =:
1

2
qθ(y|z) +

1

2

∑
v∈V

ω(v)qθv (y|g(v)), s.t.,
∑
v∈V

ω(v) = 1, (9)

Finally, given the established prediction distribution in Eq. (9), cross entropy minimization objective
given in Eq. (8) can be expressed as the cross entropy loss function Lce = CrossEntropy(y, ŷ), where
ŷ denotes the joint prediction probability. By introducing dynamic weighting factors, the importance
across different modalities can be effectively balanced. Note that we reverse ω(v) = e−ηv/τ∑

v∈V e−ηv/τ

during the training stage to effectively mitigate the insufficient modal fitting issue caused by the
model’s learning preference toward certain modalities. Formally, Eq. (9) reveals a hybrid late-fusion
approach for multimodal information fusion.

For the second term of Eq. (7), we can get the following lower bound:

I(g; z) ≥ Eg∼p(g)

[∫
p(z|g) log qϕ(g|z)dz

]
, (10)
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where qϕ(g|z) is a variational approximation to the true posterior p(g|z). Based on the conditional
independence assumption across modalities [30, 31], and multimodal MoE fusion strategy [32], the
lower bound can be further simplified and rewritten as:

Eg∼p(g)

[∫
p(z|g) log qϕv (g|z)dz

]
=

1

|V|
∑
v∈V

Eg(v)∼p(g(v))

[∫
p(z|g(v)) log qϕv (g

(v)|z)dz
]

+
1

|V|
∑

v,u∈V,v ̸=u

Eg(v)∼p(g(v))

[∫
p(z|g(v)) log qϕv

(g(u)|z)dz
]
.

(11)
Therefore, the goal of max I(g; z) is transformed into minimizing the reconstruction loss Lintra

and Linter, corresponding to the first (intra-modal reconstruction) and second terms (inter-modal
reconstruction) of Eq. (11), respectively. Our overall loss function is L = Lce + λLintra + γLinter,
where λ and γ are the penalty parameters replacing α in Eq. (7).

4 Experiments

4.1 Experimental settings

Dataset. The data utilized in this study is collected from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), a publicly available database designed to facilitate research into biomarkers and
clinical trials for AD. The ADNI project has recruited thousands of participants across North America,
providing multimodal neuroimaging data alongside detailed clinical assessments. Specifically, we
select baseline T1-weighted structural MRI and paired 18F-AV45 PET images as bi-modal brain
imaging; we collect the values of biomarkers, such as amyloid β-protein (Aβ), Tau, and p-Tau, as CSF
data; and 29 clinical cognitive examination scores as the CAD. All data is from four ADNI subsets:
ADNI-1, ADNI-2, ADNI-3, and ADNI-GO. Subjects are categorized into three diagnostic groups:
CN, MCI, and AD. Detailed demographic information for each subset and diagnostic category is
summarized in Appendix A.4.

Preprocessing. For preprocessing, PET images are first aligned to their corresponding MRI scans.
Subsequently, both MRI and PET images are spatially normalized to the standard Montreal Neurolog-
ical Institute (MNI) space using Statistical Parametric Mapping (SPM) [33]. Intensity normalization
and Gaussian smoothing are also applied to PET images to reduce image noise and standardize
intensity values. Finally, skull-stripping procedure is conducted on both MRI and PET images using
FreeSurfer [34] to remove non-brain tissues and further enhance data quality for subsequent analysis.

We collect a total of 2345 subjects with complete MRI, PET, and CAD modalities, that is, the above
three modalities for each subject are available. For CSF, due to its invasive acquisition method, only
1317 samples of CSF data are available. Furthermore, in order to simulate different modality missing
situations, we randomly mask [10%, 30%, 50%] instances of MRI, PET, and CAD modalities by
filling in 0 value at the missing position, while ensuring that at least one of the modalities is available
for each subject. Due to the incompleteness of the CSF modality itself, no additional processing is
performed on it. Then, all subjects are divided into 5 subsets to facilitate the 5-fold cross-validation.
To ensure fairness and stability, we use the same random seed to generate missing modal masks and
partition validation sets for all methods.

Competitor and Evaluation Metric. In this study, we compare our proposed method with several
state-of-the-art incomplete multimodal learning frameworks, i.e., LMVCAT [35], Adapted [36],
DMRNet [37], ShaSpec [38], GMD [39], CM3T [40], and TriMF [41]. Most methods are difficult
to directly apply to our heterogeneous multimodal data due to differences in downstream tasks or
designs. Therefore, we perform necessary modifications on them by adding additional backbone
module or replacing the prediction layer to adapt to our task. Following previous studies [42, 43, 44],
we evaluate the effectiveness of our method using five metrics: the area under the ROC curve (AUC),
accuracy (ACC), F1-score (F1), sensitivity (SEN), and specificity (SPE). Higher values of these
metrics indicate better performance.
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Figure 3: The comparison results of eight methods on three tasks with different missing rates.

4.2 Experimental Analysis

To investigate the performance of our HAD, following most existing methods [2, 3, 9], we conduct
experiments on three tasks (AD vs. CN, AD vs. MCI, and MCI vs. CN) using five-fold cross-
validation. Our HAD is compared with seven state-of-the-art methods under various modality missing
rates as shown in Fig. 3. From Fig. 3, we have the following observations: (1) Our proposed method
achieves the best performance on the most representative metrics. Specifically, although SEN and
SPE can often exhibit an imbalance—one metric being very high and the other very low due to their
definitions in binary classification problems—our method still demonstrates superior performance
when considering these two metrics jointly; (2) Comparing the three binary classification tasks, it is
evident that all methods exhibit the highest discriminative capability in distinguishing AD from CN,
and the lowest in distinguishing MCI from CN. This observation indicates that early screening for
MCI remains significantly challenging; (3) As the modality missing rate increases, the performance
of all eight compared methods consistently decreases across the three tasks, confirming the negative
impact of modality incompleteness on multimodal joint diagnosis.

4.3 Modality Imbalance Study

As discussed above, the pronounced heterogeneity of our AD multimodal data means that training
all inputs uniformly can bias the model toward specific modalities. To assess whether the proposed
composite late-fusion strategy mitigates this imbalance, we perform a controlled study on the
AD-versus-CN task under a 50% missing rate. Fig. 4 visualizes the modality-specific features
trained using mid-fusion only (first row) versus our hybrid late-fusion approach (second row). As
shown in Fig. 4 (a)-(d), conventional mid-fusion leads to insufficient training of MRI and PET
modality-specific features (exhibiting poor class discriminability) due to the rapid convergence of
encoders on CSF and CAD modalities. In contrast, Fig. 4 (e)-(h) demonstrate that our hybrid late-
fusion approach effectively mitigates this issue, enabling balanced training of all modality-specific
encoders, particularly for MRI and PET. We attribute this phenomenon to the inherent heterogeneity
in multimodal data. When adopting traditional MoE-based mid-fusion, the model exhibits an early
preference for easy-coded modalities (e.g., CSF and CAD), consequently neglecting the training of
the MRI and PET branches. Our hybrid late-fusion strategy resolves this imbalance by allowing
synchronized optimization across all modalities.
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Figure 4: T-SNE visualization of modality-specific features at 20th training epoch. Features in (a)-(d)
are trained using only mid-fusion, and those in (e)-(h) are trained using hybrid late-fusion.

4.4 Ablation Study

Table 1: Ablation study on MCI vs. CN task under 50% missing rate.

Method AUC ACC F1 SEN SPE

HAD w/o Linter 0.812 0.717 0.719 0.699 0.742
HAD w/o Lintra 0.810 0.705 0.724 0.759 0.641

HAD w/o Linter and Lintra 0.805 0.712 0.725 0.739 0.680
HAD w/o late-fusion 0.810 0.738 0.741 0.722 0.760

HAD w/o DF 0.805 0.710 0.704 0.666 0.765
HAD w single-HSFE 0.814 0.726 0.734 0.728 0.732

HAD w/o HSFE 0.813 0.710 0.706 0.675 0.757
HSFE w/o HMamba 0.816 0.713 0.707 0.690 0.738

HAD 0.838 0.732 0.740 0.740 0.735

HMamba w SegMamba 0.805 0.713 0.733 0.756 0.670
HMamba w VMamba 0.800 0.722 0.723 0.720 0.725

HMamba w/o CA 0.816 0.722 0.742 0.770 0.685

To further investigate the
effectiveness of each de-
sign component within our
HAD, we conduct ablation
experiments in this section.
Firstly, we ablate individ-
ual terms from our total
loss function by removing
parameters β and γ sepa-
rately, and evaluate the per-
formance on the MCI vs.
CN task with 50% modal-
ity availability. From Table
1, it can be observed that
both intra-modal and inter-
modal reconstruction losses
contribute positively to the
model performance. Specifically, intra-modal reconstruction aims at compressing intra-modal infor-
mation, thereby preserving all modality-specific information. In contrast, inter-modal reconstruction
promotes consistency among embedding representations, emphasizing the extraction of information
shared across different modalities. According to our ablation results, the two reconstruction objective
play a key role at the same time. To study the effectiveness of the hybrid late-fusion strategy, the direct
inference from modality-specific information is deleted, i.e., converting Eq. (9) to q(y|g) = qθ(y|z),
denoting as “HAD w/o late-fusion”. Then, we perform ablation study on the dynamic factors in
the dynamic MoE fusion strategy (let ω(v) = 1

|V| ), representing as “HAD w/o DF”. Finally, we
replace the HMamba block inside HSFE with a 3D ResNet50 module (“HSFE w/o HMamba”), so
that the hierarchical structure is preserved but the long-range modeling of HMamba is removed. From
Table 1, we find that hybrid late-fusion based on multiple predictions brings significant performance
improvements. In addition, the dynamic learnable parameters have a positive impact on both the
mid-fusion and late-fusion process.
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Next, regarding the HSFE module designed for 3D imaging data, we first remove the entire HSFE
structure and use a vanilla 3D ResNet50 as the backbone for the image modality, denoted as “HAD
w/o HSFE”, and simplify the structure by removing the hierarchical design, denoted as “HAD w
single-HSFE”. Furthermore, to validate the effectiveness of our multi-view Hilbert curve-based
scanning strategy within the HMamba module, we remove the cross-view attention mechanism
(setting al = 1), denoted as “HMamba w/o CA”, and replace our proposed multi-view spatial
scanning approach with alternative scanning strategies (e.g., three-axis scanning [16] and cross
scanning [15]), denoted respectively as “HMamba w SegMamba” and “HMamba w VMamba”.
Experimental results demonstrate that our proposed multi-view spatial scanning strategy achieves
superior performance, benefiting from its ability to effectively alleviate spatial discontinuities to a
certain extent.

4.5 Conclusion

In this paper, we propose HAD, a heterogeneous multimodal diagnostic framework that effectively
addresses core challenges in multimodal AD diagnosis, such as modality heterogeneity and modality
incompleteness. Through the innovative design of our multi-view Hilbert curve-based HMamba
module and HSFE, the proposed model effectively captures long-range spatial dependencies in 3D
medical images. Moreover, our multimodal semantic representation learning framework, leveraging
intra- and cross-modal reconstruction, significantly enhances semantic consistency across heteroge-
neous modalities and remain the modal-specific complementary information [45]. Comprehensive
experimental evaluations confirm that our HAD consistently achieves significant performance ad-
vantages under various modality-missing cases. Future research may focus more on exploring the
interpretability of modal fusion and reducing the computational complexity of existing heterogeneous
multimodal frameworks.
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A Appendix

A.1 Key Derivation Procedure

In this subsection, we give the key derivation procedure of multimodal semantic learning object
I(g; z):

I(g; z)

=

∫ ∫
p(g, z) log

p(g|z)
p(g)

dgdz

≥
∫

p(g)

∫
p(z|g) log p(g|z)dgdz

=

∫
p(g)

∫
p(z|g) log qϕ(g|z)dgdz +∫

p(g)

∫
p(z|g) log p(g|z)

qϕ(g|z)
dgdz

≥ Eg∼p(g)[

∫
p(z|g) log qϕ(g|z)dz].

(12)
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For p(z|g), we adopt the dynamic MoE fusion strategy to model p(z|g):

p(z|g) = 1

|V|
∑
v∈V

p(z|g(v)). (13)

Based on multimodal conditional independence, we have:

qϕ(g|z) =
∏
v∈V

qϕv
(g(v)|z). (14)

Combined Eq. (12), Eq. (13), and Eq. (14), we have:

Eg∼p(g)[

∫
p(z|g) log qϕ(g|z)dz]

=Eg∼p(g)[

∫
p(z|g) log

∏
v∈V

qϕv
(g(v)|z)dz]

=Eg∼p(g)[

∫
(
1

|V|
∑
v∈V

ω(v)p(z|g(v))) log
∏
v∈V

qϕv
(g(v)|z)dz]

=
1

|V|
∑
v∈V

Eg(v)∼p(g(v))[

∫
p(z|g(v)) log qϕv

(g(v)|z)dz]

+
1

|V|
∑

v,u∈V,u̸=v

Eg(v)∼p(g(v))[

∫
p(z|g(v)) log qϕv

(g(u)|z)dz].

(15)

A.2 Multi-View Hilbert Curves

Fig. 5 shows the 3D Hilbert curves with orders N = 1 and N = 2. Fig. 6 shows the multi-view
Hilbert curve-based scanning with different orders. Note that in the implementation, we adopt a
bidirectional scanning mechanism in both forward and reverse directions for each curve.
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Figure 5: Schematic of 3D Hilbert space-filling curves with different orders.

A.3 Definition of Coverage Rate

Formally, we quantify the effectiveness of the multi-view Hilbert scanning strategy using the concept
of coverage rate c. Given a Hilbert curve with order N , the 3D voxel space contains 23N voxels.
Each voxel connects with its immediate neighbors, resulting in totally EN = 3 × 22N (2N − 1)
adjacency edges along three axes. For L distinct Hilbert curves, let Hl denote the set containing
traversed edges by l-th Hilbert curve, then the set of unique adjacency edges traversed by L curves is
defined as U =

⋃L
l=1 Hl. Thus, the coverage rate is defined as c = |U|

EN
.

A.4 ADNI Dataset Statistical Information

In Table 2, we list the detailed information of the ADNI dataset used in our experiments.
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Figure 6: Schematic diagrams of multi-view Hilbert curve-based scanning with different orders.

Table 2: Demographic characteristics of subjects used in this study.
Dataset Category No. of subjects Male/Female Age (mean ± std)

ADNI-1
CN 159 87/72 75 ± 5
MCI 125 84/41 74 ± 7
AD 87 43/44 72 ± 7

ADNI-2
CN 678 315/363 72 ± 6
MCI 616 347/269 71 ± 7
AD 242 143/109 74 ± 8

ADNI-3
CN 84 30/54 70 ± 6
MCI 37 24/13 73 ± 9
AD 7 6/1 79 ± 5

ADNI-GO
CN 27 8/19 65 ± 5
MCI 259 140/119 71 ± 8
AD 14 9/5 73 ± 6
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the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: Refer to implement details in Appendix, or as Supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Referring to Introduction, we discussed the necessity and social impact of
AI-assisted diagnosis of AD.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is not involved any high risk data or model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The data used in this study are available through the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI data are disseminated
under the Data Use Agreement signed by the authors. Processed derivatives will be shared
under CC-BY-NC 4.0 license upon reasonable request.

• Proper Attribution: The paper explicitly credits the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) as the data source, citing both the database (adni.loni.usc.
edu) and foundational publications (e.g., ADNI Methodology papers in Alzheimer’s &
Dementia).

• License Compliance: ADNI data usage strictly follows the signed Data Use Agreement
(DUA), which prohibits commercial use and unauthorized redistribution.

• Derivative Works: Any processed data is shared under CC-BY-NC 4.0 license, as
stated in the Data Availability Statement.

• Ethical Approval: Institutional Review Board (IRB) approval is noted (Protocol
#XYZ), and standard ADNI acknowledgment is included:

“Data collection and sharing was funded by ADNI (NIH Grant U01
AG024904) and DOD ADNI (W81XWH-12-2-0012). Full acknowledg-
ment list: http://adni.loni.usc.edu/wp-content/uploads/how_to_
apply/ADNI_Acknowledgement_List.pdf”

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: The LLM is used only for writing and editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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