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ABSTRACT

Large language models have already demonstrated their formidable capabilities in
general domains, ushering in a revolutionary transformation. However, exploring
and exploiting the extensive knowledge of these models to comprehend multi-
omics biology remains underexplored. To fill this research gap, we first intro-
duce Biology-Instructions, the first large-scale multi-omics biological sequences-
related instruction-tuning dataset including DNA, RNA, proteins, and multi-
molecules, designed to bridge the gap between large language models (LLMs) and
complex biological sequences-related tasks. This dataset can enhance the versa-
tility of LLMs by integrating diverse biological sequenced-based prediction tasks
with advanced reasoning capabilities, while maintaining conversational fluency.
Additionally, we reveal significant performance limitations in even state-of-the-
art LLMs on biological sequence-related multi-omics tasks without specialized
pre-training and instruction-tuning. We further develop a strong baseline called
ChatMultiOmics with a novel three-stage training pipeline, demonstrating the
powerful ability to understand biology by using Biology-Instructions. Biology-
Instructions and ChatMultiOmics are publicly available and crucial resources for
enabling more effective integration of LLMs with multi-omics sequence analysis.

1 INTRODUCTION

Understanding the complex activities across various omics in living organisms is of paramount im-
portance. This includes studying DNA regulatory elements that control gene expression (Emilsson
et al., 2008), RNA regulation (Mattick, 2004) that influences protein synthesis, and the functional
properties of proteins themselves (Marcotte et al., 1999). These molecular processes critically af-
fect the development of diseases and the synthesis of drugs within organisms. Recent BERT-like
encoder-only models (Devlin, 2018) have achieved significant advances in natural language under-
standing tasks. When applied to genome or protein understanding tasks, these models (Zhou et al.,
2023; Rives et al., 2021) are capable of capturing complex intrinsic relationships within biological
sequences, achieving high accuracy in tasks such as promoter prediction. However, their reliance on
specific classification or regression heads to predict a single task at a time limits their versatility, and
their repeated fine-tuning sessions with different prediction heads to address multiple tasks further
complicate the training, inference, and deployment process.

In contrast, powerful general-purpose large language models (LLMs) such as GPT-4 (Achiam et al.,
2023) and Gemini (Achiam et al., 2023; Team et al., 2023) based on vast amounts of natural language
tasks and data that encompass the general knowledge system of humanity, have shown substantial
potential in domain-specific tasks. These decoder-only models approach every task as a comple-
tion task through next-token prediction, and offer an alternative by integrating various biological
sequence-related tasks using natural language as an intermediary while retaining conversational ca-
pabilities. Therefore, utilizing LLMs combined with unified training and dataset construction tech-
niques can make it possible to replace BERT-like models with the complicated fine-tuning pipeline.

Recently, some studies have explored leveraging LLMs for tasks related to biological sequences
through instruction tuning, such as ChatNT (Richard et al., 2024) and ProLlama (Lv et al., 2024).
Although showing promising results, these models are trained on instruction-tuning datasets con-
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Figure 1: Comparative examples showcasing ChatMultiOmics performance against baseline mod-
els on multi-molecular tasks. (a) shows an example from Enhancer-Promoter Interaction Prediction
task (Min et al., 2021) after stage2 training. (b) shows an example from Antibody-Antigen Neutral-
ization (AAN) task (Zhang et al., 2022) after stage3 training. Note that AAN data is not included in
stage3 training, which showcases our model’s task generalization capability.

taining only basic language patterns, underutilizing the full linguistic capabilities of the original
LLMs. Moreover, these models mainly focus on single-omics data for either protein or DNA, limit-
ing their potential to provide important multi-omics understanding ability as a unified foundational
language model. Inspired by multimodal LLMs like MiniGPT-4 (Zhu et al., 2023), we see an oppor-
tunity to extend this approach to biology. In biology, where molecular interactions are fundamentally
grounded in the central dogma (Crick, 1970), integrating multi-omics data holds immense potential
for generating mutually reinforcing insights.

Our study attempts to answer a key question: can instruction-tuned language models, proficient in
understanding human language, also excel in understanding biological sequences to address biologi-
cally critical tasks? The motivation behind this inquiry lies in the intrinsic parallels between biologi-
cal sequence data and human language—both are discrete, sequential, abundant and rich in encoded
information. These shared characteristics suggest that, with appropriate adaptation, instruction-
tuned LLMs could unlock transformative capabilities in biology.

To properly investigate the gap between human language and biological sequences understand-
ing, we introduce Biology-Instructions, the first large-scale, multi-omics biology sequence-related
instruction-tuning benchmark supporting 21 distinct tasks. This benchmark covers DNA, RNA,
proteins and multi-molecular prediction tasks for a comprehensive understanding of biology. With
Biology-Instructions, we conduct a comprehensive evaluation of kinds of open-source and closed-
source LLMs, and reveal that most models including the state-of-the-art GPT-4o, perform at near-
random levels on biological sequence-related understanding tasks without prior specialized training.
This suggests the lack of inherent biological sequence knowledge in LLMs and highlights the need
for methods to effectively integrate these tasks with LLMs.

Furthermore, we attempt to activate the biological multi-omics sequence understanding ability of
LLMs with the constructed instruction data. We discover that solely performing instruction tuning
on Biology-Instructions can not yield satisfactory results. To address this gap, we propose a three-
stage training pipeline: (1) train the model on unsupervised DNA, RNA, and protein sequences;
(2) train the model on the question-answer pairs of Biology-Instructions; (3) train the model on
reasoning data. The first stage serves as a warm-up to enhance the model’s ability to understand
biological sequences. In the second stage, the model follows natural language instructions to inter-
pret biological sequences. In the third stage, the model leverages the implicitly learned knowledge
base to perform reasoning and deepen its understanding of biological sequences. We include rea-
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soning data that starts with biological sequence analysis and concludes with results based on prior
analyses and reasoning. This approach ensures that models maintain comprehensive conversational
abilities while gaining deeper insights into biological sequences and tasks. We have implemented
this training pipeline on Llama3.1-8b-Instruct (Dubey et al., 2024) using Biology-Instructions, re-
sulting in significant performance improvements shown in Figure 1. Our findings and experiences
are thoroughly documented. Our contributions can be summarized as:

• Multi-omics Instruction-Following Data. We present the first dataset specifically de-
signed for multi-omics instruction-following, which includes reasoning instruction data and
multi-sequence, multi-molecule instruction data. This dataset aims to improve the ability
of LLMs to comprehend and analyze biological sequences.

• Multi-omics Instruction-Following Benchmark. We benchmark Biology-Instructions on
open-source and closed-source LLMs. Our results reveal that even current LLMs can not
solve biological sequences-related tasks.

• Biology-Specific LLMs and Three-Stage Training Pipeline. We develop a biology-
focused LLM capable of handling tasks related to multi-omics sequences by training an
open-source LLM on biology-specific instructions. We propose an efficient and novel
three-stage pipeline to enhance the biology learning ability of LLM based on some im-
portant findings.

• Fully Open-Source. We will release three assets to the public: the Biology Instructions
dataset, the entire training pipeline’s codebase and the model checkpoints. The Biology-
Instructions is publicly available through an anonymous data link.1 .

2 RELATED WORKS

2.1 LARGE LANGUAGE MODELS

In recent years, LLMs have demonstrated significant advancements in the field of natural language
processing (NLP). These models undergo self-supervised training on a substantial corpus of data in
order to acquire knowledge. By means of fine-tuning the instructions, the capabilities of the model
are enhanced, enabling it to respond to questions based on the specific prompt. Currently, numerous
open-source models are available, including the Llama series (Dubey et al., 2024), Qwen series (Bai
et al., 2023), GLM series (GLM et al., 2024), and numerous models fine-tuned based on Llama, such
as Alpaca (Taori et al., 2023) and Vicuna (Chiang et al., 2023). Additionally, Galactica (Taylor et al.,
2022) is a model that demonstrates exceptional performance in scientific domains and is trained on
data from a multitude of scientific fields. Furthermore, there are closed-source SOTA models, such
as GPT-4o and GPT-4o-mini. However, these models are not pre-trained on specific biological data,
and their capabilities are severely constrained, even Galactica.

2.2 BIOLOGY LARGE LANGUAGE MODELS

Researchers have concentrated on enhancing the capabilities of LLMs in the biology area. Instruct-
Protein (Wang et al., 2023) aligns human and protein language through knowledge instructions.
Another study (Fang et al., 2023) utilizes the protein part of a specially designed dataset called
Mol-Instructions for instrution tuning with LLaMA-7B. ProLLaMA (Lv et al., 2024) is also a
recent work focusing on multi protein tasks through a two-stage traing process from LLaMA-2.
These methods can only deal with several protein tasks well, limited by fixed instruction tem-
plates. BioMedGPT (Zhang et al., 2023) is equiped with special vision encoder, allowing the
model to answer multi-modal biological questions. However, lack of specialized large-scale bi-
ological instruction datasets, BioMedGPT cannot understand biological sequence languages very
well. ChatNT (Richard et al., 2024) integrates a biological sequence encoder with a LLM, enabling
effective handling of DNA-centric tasks using only an instruction-tuning dataset. However, it faces
challenges in combining multiple encoder models from various omics domains into a unified LLM
due to dependence on the encoder’s capabilities.

1https://anonymous.4open.science/r/Biology-Instructions-FD66/
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Table 1: Comparing with baseline large language models (LLMs). We employ general and domain-
specific LLMs both. We report the number of parameters, expertises and access of them. Params
means the number of parameters.

Model Params Expertise Access

General LLMs
Llama3.1-Instruct 8B General tasks Open

GLM4 9B General tasks Open
Qwen2 7B General tasks Open
Alpaca 7B General tasks Open

Vicuna-v1.5 7B General tasks Open
Galactica 1.3B General scientific tasks Open

Llama2-chat 7B General tasks Open
GPT-4o - General tasks Close

GPT-4o-mini - General tasks Close

Domain-specific LLMs
InstructProtein 1.3B Protein tasks Open

LLama-molinstruct-protein 7B Protein tasks(mainly) Open
BioMedGPT 7B Protein and DNA tasks Open
ProLLaMA 7B Protein tasks 1-stage Open

ChatNT 7B+500M DNA tasks(mainly) Not released yet

Our ChatMultiOmics 8B Multi-omics tasks Open

3 BIOLOGY-INSTRUCTIONS

3.1 OVERVIEW OF BIOLOGY-INSTRUCTIONS

To build a large-scale biology instruction-following dataset, we have gathered biology sequence data
from a substantial aggregation of sources. This effort has resulted in a dataset encompassing 21 sub-
tasks related to multi-omics fields. The Biology-Instructions exhibits the following characteristics:

Multi-omics Biology-Instructions comprises 21 subtasks across three types of omics, including
single-omics tasks and multi-omics interaction tasks. Joint training of different omics not only
enhances efficiency by accomplishing multiple omics tasks with a single model but also improves
the model’s capability in a specific omics domain.

Large Scale With over 3 million training samples, the Biology-Instructions dataset provides an ex-
tensive foundation for biological sequences-related instruction data. This large-scale dataset enables
models to better understand the traits and functions of biological sequences, leading to more accurate
and comprehensive responses to given questions.

High Quality To ensure the quality of the dataset, we manually draft question and answer templates
for each task type and expand the template pool using Cluade-3.5-sunnet and GPT-4o. The resulting
number of question-answer template pairs for each task range from 10,000 to 100,000, depending
on the data magnitude of each task type. Throughout this process, we emphasize the importance of
diversity in grammar and language style, ensuring that samples in the Biology-Instructions dataset
have different question-answer style. For examples of question-answer template pairs, please refer
to Table 10.

Reasoning data Although previous studies (Richard et al., 2024; Liu et al., 2024b; Lv et al., 2024)
have demonstrated large-scale primary instruction-following datasets can teach LLMs to answer bi-
ological sequences-related questions, they often fail to fully harness the powerful language abilities
of LLMs, as they focus primarily on basic language patterns. In other words, they failed to lever-
age the powerful conversational abilities of these models to form natural and fluent dialogues, and
further utilize reasoning to enhance the validity of the output results. To address this limitation, we
design a prompt that requires powerful closed-source LLMs to reformulate answers for a subset of
Biology-Instructions’ validation set and provide polished answers ready for end-users to read and
understand, based on given questions and original answers. We encourage the model to deeply ana-
lyze the sequence and question first and then generate a final polished answer grounded in previous
analysis and reasoning.
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Figure 2: Distribution of tasks across four omics types in our dataset.

3.2 BIOLOGY-INSTRUCTIONS CONSTRUCTION

3.2.1 TASKS

As presented in Figure 2, the Biology-Instructions dataset comprises 21 tasks: 6 DNA tasks, 6 RNA
tasks, 5 protein tasks, and 4 multi-molecule tasks. When considering the number of input sequences,
there are 4 multi-molecule interaction tasks and 17 single-molecule tasks. Tasks were sourced from
high-impact literature, journals, and competitions, ensuring coverage of biologically critical aspects
in structure, function, and engineering across DNA, RNA, proteins, and their interactions. We fo-
cus on predictive sequence-understanding tasks, leaving generative applications, such as sequence
design, for future research. To the best of our knowledge, Biology-Instructions is the first instruc-
tion dataset to include multi-omics tasks and multi-molecule interaction tasks. For detailed task
definitions and distribution, please refer to Appendix A.2.

3.2.2 TEMPLATES

To convert the original classification and regression task dataset into an instruction tuning dataset,
we employ question-answer templates to integrate the data. The primary objective of creating these
templates is to teach the model how to follow biological instructions and complete tasks without
overfitting to specific language patterns. To achieve this, we prioritize diversity in language styles,
tones and lengths during the template construction process. We manually constructed 10 question
templates and 10 answer templates for each task, covering various styles including, but not limited
to, request, concise, informal, and academic styles. Then, we used GPT-4o and Claude-3.5-sunnet
to expand the templates. Depending on the data volume for each task, we included 100 to 300
question templates and 100 to 300 answer templates. Ultimately, each task resulted in 10,000 to
100,000 question-answer template pairs. Since biological sequences are generally much lengthier
than natural language prompts, we place the biological sequence at the very beginning of question
templates for single biology sequence tasks for non-interaction tasks. This approach helps prevent
the prompts from being overwhelmed by the lengthy biological sequences, ensuring that the model
can accurately understand the question and complete the task. Figure 3 provides examples of the
instruction prompts constructed for each type of omics, illustrating the diversity and structure of the
templates used in the dataset.
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Figure 3: Examples of instruction prompts constructed for each omics type.

3.2.3 REASONING DATA CONSTRUCTION

Similar to the data construction method used by LlaVA (Liu et al., 2024a). For a biology sequence
Xs and its related question Xq , simple answer Ys, we prompt GPT-4o-Mini to construct optimized
answer Yo base on the given information. Generally, the instruction data were transformed to the
format USER:Xs, Xq ASSISTANT:Yo.

In the system prompt used for GPT-4o-Mini, as shown in Figure 10, we emphasized the following
key points to ensure the production of high-quality data: (1) first understand the provided biological
sequence and the question; (2) analyze the biological sequence at the nucleotide or amino acid level,
aiming to extract question-related information from the sequence; (3) refine the answer based on the
previous analysis, including a rational explanation and a chain of thought approach, especially for
complex questions; (4) list any relevant knowledge and information from reliable sources, and cite
these sources appropriately; (5) return the polished answer in an end-to-end style, excluding any
information from the standard answer and task hint. By following this approach, we gathered 8000
final AI-polished training data points without two multi-molecule tasks: antibody-antigen neutral-
ization and RNA-protein interaction prediction to study transfer learning for reasoning capability.
Figure 4 provides an overview of the complete construction process for Biology-Instructions, in-
cluding the data collection, template construction, and reasoning data construction stages.

3.3 EVALUATION PIPELINE AND METRICS

Our evaluation framework is designed to assess the performance of each model’s output across the
diverse set of tasks included in Biology-Instructions in a robust approach. The task types, regardless
of their respective omics, can be organized into single-label regression, multi-label regression, binary
classification, multi-class classification, and multi-label classification, each requiring specialized
evaluation metrics to capture model performance nuances. The evaluation pipeline involves pre-
processing data from models’ output, grouping entries by task, and then computing task-specific
metrics. The metrics outcomes for reporting are all scaled by 100 and rounded to 2 decimals for
enhanced readability. For detailed information on specific metrics, please refer to Appendix A.3.

4 MODEL

As shown in Figure 5, we train a model based on Llama3.1-8B-Instruct (Dubey et al., 2024) named
ChatMultiOmics using multi-omics pre-training data and Biology-Instructions. In general, we per-
form a three stages training paradigm to enhance the interactive biological sequence-related chat
performance of the final biology assistant. For specific training details, please refer to Appendix B.

4.1 STAGE 1: BIOLOGICAL SEQUENCES CONTINUED PRE-TRAINING

Although the memory savings facilitated by LoRA (Devalal & Karthikeyan, 2018) are not that ob-
vious when optimizer states are distributed across GPUs compared with training on single GPU,
LoRA can still significantly reduce training time by minimizing communication between data paral-
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Figure 4: Overview of our data construction pipeline. Step1 shows primary databases for data
collection, downstream tasks categorized by omics types, supervised tasks types involved in our
benchmark. Step2 shows how we construct our instruction prompts based on downstream tasks
and by diversifying prompt styles. Step3 illustrate how we leverage LLMs to augment high quality
datasets. Step4 shows the key values we adhere to for reasoning data construction.

lel ranks. However, directly applying LoRA to train a chat model on Biology-Instructions results in
suboptimal performance on specific downstream tasks. Specifically, the model shows near-random
performance in classification and regression tasks. As noted by (Ghosh et al.), LoRA supervised
fine-tuning (SFT) primarily leverages pre-trained knowledge to generate well-formed answers based
on the output format learned from SFT data. We suspect that large-scale LoRA instruction tuning on
biological sequence-related data suffers due to the lack of pre-training on biological sequence data,
which is evident from the baseline results. Therefore, continued pre-training of the model is essential
for better performance. This involves teaching the model with biological sequences to enable it to
understand the nature and functions of biological sequences. For this process, we utilized unlabeled
human DNA data from the Genome Reference Consortium Human genome (GRCh) (Harrow et al.,
2012), human non-coding RNA data from RNACentral (rna, 2019), and protein sequences from
UniRef50 (Suzek et al., 2007) during the first phase of pre-training. This initial pre-training served
as a foundational warm-up to improve the model’s comprehension across multi-omics biological
sequences.

We employed LoRA+ (Hayou et al., 2024) for all linear layers of our model, training on a con-
tinued pre-training dataset. LoRA+ demonstrates superior convergence compared to vanilla LoRA
by increasing the learning rate of the zero-initialized weight B relative to the base learning rate
for normal-initialized weight A and other trainable parameters. (Hayou et al., 2024) observed that
setting the learning rate of weight B to 16 times that of weight A results in more effective model con-
vergence. However, our experiments revealed that while LoRA+ indeed improves convergence rates,
applying a large learning rate multiplier can lead to instability during the continued pre-training pro-
cess for biological sequences. Based on this observation, we opted for a more conservative learning
rate multiplier of 4. We trained the normalization layers of the model alongside LoRA parameters.

4.2 STAGE 2: MASSIVE INSTRUCTION TUNING

In Stage 2, we employ the Biology-Instructions dataset, excluding the reasoning sub-dataset.
In the initial attempts of training, we find that the imbalance among tasks within the dataset
can pose challenges for the model in distinguishing between different tasks. To mitigate this,
we randomly select 30 percent of the training data and prepend a task label in the format
”[Classification/Regression:task name]” at the beginning of each question. This
method effectively aids the model in identifying different tasks and output objectives.

We use a system prompt Psc: ”You are a knowledgeable and helpful biology assistant. Please answer
my biology sequence-related questions in a clear and concise manner. For regression tasks, please

7
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Figure 5: Overview of our three-stage training pipeline.

return a number.” This prompt helps the model to differentiate biology sequence-related tasks from
other tasks. As illustrated in Figure 8, we maintain the data format: SYSTEM:Psc USER:Xs, Xq

ASSISTANT:Yo consistent with the Llama3.1 instruct-tuned model chat completion format, which
is crucial for optimal model performance.

4.3 STAGE 3: REASONING INSTRUCTION TUNING

In stage 3, we use reasoning sub-dataset from Biology-Instructions to fine-tune the model. To keep
the classification and regression performance of the model, we additionally select 3000 samples
from validation set composed of non-reasoning data to be trained simultaneously.

To better control the behavior of the model, a more detail system prompt Psd was used for rea-
soning data: ”You are a highly knowledgeable AI assistant specializing in biology, particularly in
sequence-related topics. Your primary task is to provide clear, accurate, and comprehensive answers
to biology questions. When analyzing and interpreting sequences, ensure to provide step-by-step
explanations to make your responses natural and easy to understand. Engage with the user by ask-
ing clarifying questions if needed and offer detailed insights into the biological sequences.” In this
case, the format of training sample of reasoning data is transformed to SYSTEM:Psd USER:Xs, Xq

ASSISTANT:Yo.

5 RESULTS

5.1 EXPERIMENTAL SETUPS

To evaluate the biological sequence understanding capabilities of current LLMs and determine if our
method can enhance LLMs performance, we compare ChatMultiOmics with various open-source
general-purpose LLMs: Llama3.1-8B-Instruct (Dubey et al., 2024), Llama2-7B-Chat (Touvron
et al., 2023), Alpaca-7B (Taori et al., 2023), Vicuna-v1.5-7B (Chiang et al., 2023), Qwen2-7B (Bai
et al., 2023), GLM4-9B-Chat (GLM et al., 2024), and Galactica-1.3b (Taylor et al., 2022). Addi-
tionally, we include comparisons with SOTA closed-source LLMs: GPT-4o and GPT-4o-Mini We
also evaluate biology-specialized LLMs: InstructProtein-1.3B (Wang et al., 2023), Llama-molinst-
protein-7B (Fang et al., 2023), and BioMedGPT-LM-7B (Zhang et al., 2023). To ensure well-formed
and quantifiable answers, we restrict the output format for all baselines and provide them with task
information, enabling them to understand both what to output and how to format their output. The
experimental results are visualized in Figure 6, showcasing the comparative performance of various
LLMs across four types of datasets: DNA, RNA, protein, and multi-molecule interactions. For the
full experimental results, please refer to Appendix C.

5.2 FINDINGS.1: GENERAL PURPOSE LLMS ARE NOT CAPABLE OF BIOLIGICAL SEQUENCES
UNDERSTANDING

To assess whether LLMs can effectively tackle tasks related to biological sequences, we conducted
comprehensive experiments using both open-source and closed-source general-purpose LLMs. For
open-source LLMs, we selected models of comparable size to our model, ChatMultiOmics. For
closed-source LLMs, we evaluated SOTA models such as GPT-4o and its streamlined version, GPT-
4o-mini.The results unequivocally demonstrate that all open-source LLMs of similar size to Chat-
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Figure 6: Radar plot comparing the performance of ChatMultiOmics with SOTA baselines on all 21
downstream tasks grouped by omics including DNA, RNA, Protein, and Multi-molecule tasks.

Figure 7: Ablation studies showing the performance across different training stages. One down-
stream task from each omics type is selected for display. Each bar color corresponds to a specific
training approach. The blue dashed line indicates where random performance is for each task ac-
cording to the respective metric. Note that all metrics values are scaled by 100 and rounded to 2
decimals for enhanced readability.

MultiOmics fail to surpass average performance levels. Similarly, the closed-source LLMs, GPT-4o
and GPT-4o-mini, exhibit performance on par with the open-source models.

Notably, models within the same series but with different versions, such as Llama2-7B-Chat and
Llama3.1-8B-Instruct, as well as models within the same series but of different sizes, like GPT-
4o and GPT-4o-mini, show comparable performance on tasks involving biological sequences.These
findings suggest that the language capabilities of these models do not directly correlate with their
performance in understanding biological sequences. This implies that natural language performance
does not determine the effectiveness of these models in biological sequence understanding tasks,
indicating a significant lack of pre-trained biological sequences knowledge. Despite LLMs possess-
ing extensive text-based biological knowledge, they struggle to establish a connection between this
knowledge and biological sequences, and they are unable to delve into the molecular level to analyze
biological sequences effectively.

5.3 FINDINGS.2: CURRENT BIOLOGY-SPECIFIED LLMS CAN NOT HANDLE MULTI-OMICS
TASKS

Biology-specified LLMs have demonstrated remarkable performance on a variety of reported tasks.
For instance, the Llama-molinst-protein-7B model excels in five key areas of protein understanding,
including the prediction of catalytic activity, protein design, protein function prediction, and more.
Despite these impressive achievements, these methods exhibit limitations. Notably, they lack trans-
fer learning capabilities across multi-omics tasks and fail to outperform general-purpose baselines
even in single-omics tasks and in some cases these models even can not follow the input instructions.
This indicates that while specialized LLMs are highly effective within their specific domains, their
applicability and efficiency in broader, more integrative biological studies remain constrained.

5.4 FINDINGS.3: CONTINUED PRE-TRAINED ON BIOLOGICAL SEQUENCES HELPS
INSTRUCTION TUNING

Previous studies have utilized LoRA (Fang et al., 2023; Lv et al., 2024) for model training. However,
our experimental findings suggest that employing LoRA to fine-tune models on Biology-Instructions
does not result in performance enhancements. For LoRA fine-tuning, the quality and quantity of
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the pre-training on related knowledge appears to be a critical factor for achieving good results, as
indirectly proved by the experimental setup in (Fang et al., 2023), where full fine-tuning was applied
to protein-related tasks and LoRA fine-tuning was used for other tasks, alongside the near-random
performance of the baselines on biological-sequences understanding tasks. After continued pre-
training on multi-omics sequences, LoRA fine-tuning on Biology-Instructions does help the model
leverage the intrinsic relationships and dependencies from pre-trained knowledge. The results of the
second stage clearly surpass those of instruction-tuning without continued pre-training, as shown in
Figure 7.

5.5 FINDING.4: REASONING DATA BOOST OVERALL PERFORMANCE AND DEMONSTRATE
TRANSFER LEARNING CAPCABILITY

We hypothesize that the model’s performance can be enhanced by incorporating text-form task in-
formation and reasoning steps, which can aid the model in better understanding the task and conse-
quently lead to improved results. We tested the third-stage model using the system prompt Psc to
facilitate results computation. The results indicate that in most tasks, performance was enhanced in
the third stage. However, for some regression tasks, the performance was slightly adversely affected
by the third-stage training.

Furthermore, when the reasoning system prompt Psd was used, the model demonstrated excellent
reasoning capabilities and extended its performance to untrained tasks, such as antibody-antigen
neutralization and RNA-protein interaction prediction, as illustrated in Figure 1 (b).

6 DISCUSSION

Summary. In this work, we present Biology-Instructions, the first large-scale, multi-omics bio-
logical sequences-related instruction-tuning dataset. Biology-Instructions bridges the gap between
LLMs and complex biological tasks by including 21 different tasks involving DNA, RNA, pro-
teins, and multi-molecule interactions, covering both single-sequence and interaction analyses. By
incorporating reasoning capabilities, Biology-Instructions make LLMs versatile in handling com-
plex biological tasks while maintaining conversational fluency. Our evaluation shows that SOTA
LLMs, like GPT-4, struggle with biological sequence-related tasks without specialized training. Us-
ing Biology-Instructions for instruction tuning, we demonstrate significant improvements, proving
its value in enhancing LLMs for multi-omics sequence analysis. We also develop a strong baseline,
ChatMultiOmics, with a three-stage training pipeline: biological sequences continued pre-training,
massive instruction tuning, and reasoning instruction tuning. This pipeline leads to notable perfor-
mance gains, providing an effective approach to train LLMs for addressing biological challenges.

Limitations and Future Work. While Biology-Instructions is a significant advancement, it still
has areas for improvement. The dataset covers primarily the predictive tasks. Future version should
include generative tasks, such as designing novel protein sequences, which could greatly enhance
its utility in protein engineering. ChatMultiOmics shows promising reasoning capabilities, yet
further enhancements are needed to make its outputs more practical and reliable. To enhance model
performance, we could use hybrid architectures that combine specialized biological tokenizers or
encoders with LLMs. This could reduce information loss during the tokenization of biological
sequences. Integrating structural data, such as 3D molecular coordinates, could improve the model’s
ability to capture functional implications of molecular structures. Incorporating multi-hop data
could be another potential enhancement for the model to reason over interconnected biological
datasets and capture more intricate relationships across multiple omics layers. Future efforts
should also expand evaluation metrics beyond accuracy to include interpretability, robustness, and
computational efficiency, offering a more holistic view of model performance. Addressing these
limitations will help develop advanced AI models that improve our understanding of biological
systems, support multi-omics integration, and drive innovations in disease research, genetic
regulation, and therapeutic development.
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A DETAIL INFORMATION OF BIOLOGY-INSTRUCTIONS AND EVALUATION
METRICS

A.1 IMPACT

The Biology-Instructions dataset addresses critical challenges in computational biology across mul-
tiple omics domains. DNA instructions improve our understanding of regulatory elements in gene
expression. RNA instructions tasks offer insights into transcriptomics and regulation at the RNA
level. Protein instructions enhance our knowledge of protein functions, interactions, and their rele-
vance in drug development. Multi-molecular instructions explore biomolecular interactions, such
as RNA-protein and promoter-enhancer, revealing regulatory networks. By supporting these diverse
tasks, Biology-Instructions advances multi-omics research and fosters new discoveries in genetic
regulation and therapeutic development.

A.2 TASKS DEFINITION

Table 2: Tasks information of Biology-Instructions
Task Omics #Training/Validation/Test

DNA Tasks
Epigenetic Marks Prediction (EMP) DNA 229885/28741/28741

EA Prediction (EA) DNA 402296/40570/41186
Promoter Detection 300 (PD300) DNA 94712/11840/11840
Core Promoter Detection (CPD) DNA 94712/11840/11840

Transcription Binding Sites Detection Human (TB-H) DNA 128344/5000/5000
Transcription Binding Sites Detection Mouse (TB-M) DNA 80018/10005/10005

RNA Tasks
APA Isoform Prediction (APA) RNA 1575557/33170/49755

Non-coding RNA Function Classification (ncRNA) RNA 5670/650/4840
Modification Prediction (Modif) RNA 304661/3599/1200

Mean Ribosome Loading Prediction (MRL) RNA 76319/7600/7600
Programmable RNA Switches (PRS) RNA 73227/9153/11019

CRISPR On Target Prediction (CRI-On) RNA 1453/207/416
Protein Tasks

Enzyme Commission Number Prediction (EC) Protein 15551/1729/1919
Stability Prediction (Sta) Protein 53614/2512/12851

Fluorescence Prediction (Flu) Protein 21446/5362/27217
Solubility Prediction (Sol) Protein 62478/6942/2001

Thermostability Prediction (Ther) Protein 5056/639/1336
Multi-molecular Tasks

Antibody-Antigen Neutralization (AAN) Multi-molecule 22359/1242/3301
RNA-Protein Interaction Prediction (RPI) Multi-molecule 14994/1666/4164

Enhancer-Promoter Interaction Prediction (EPI) Multi-molecule 14288/1772/308
siRNA Efficiency Prediction (siRNA) Multi-molecule 53592/6707/6688

Total
All 3330232/190946/244681

A.2.1 DNA TASKS

Epigenetic Marks Prediction This is a binary classification task that predicts whether a DNA se-
quence has chemical modifications affecting gene regulation without changing the DNA itself. Epi-
genetic marks are crucial for understanding gene regulation and its impact on health and disease. We
use part of the DNABERT-2 dataset (Zhou et al., 2024), containing 28,740 DNA sequences, some
of which are chemically modified. Model performance is evaluated using the Matthews Correlation
Coefficient (MCC).

EA Prediction This is a regression task that predicts the activity levels of enhancer regions in the
DNA sequences. By predicting the activity levels of enhancers, scientists can gain deeper insights
into how genes are regulated in specific tissues or under certain conditions. The target value are
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two numeric numbers that reflects the housekeeping and developmental activity level. The dataset
is sourced from the DeepSTARR (de Almeida et al., 2022), consisting of DNA sequences anno-
tated with enhancer activities. We evaluate performance of the model using Pearson Correlation
Coefficient (PCC), reflecting its ability to decide levels of activity across different DNA sequences.

Promoter Detection 300 & Promoter Detection Core These two tasks are both binary classifica-
tion tasks for identifying promoter regions in DNA sequences(exist or not). Promoter Detection 300
refers to detecting promoter regions within a 300 base pair (bp) window, which includes both the
core promoter region and the surrounding regulatory elements. While promoter detection core refers
to detect a shorter, core sequence (usually around 50-100 bp) directly upstream of the transcription
start site. Both tasks are important for understanding gene regulation and can aid in studying tran-
scriptional activity, identifying novel genes, and mapping gene expression patterns. For these tasks,
we also adopt the dataset part of DNABERT-2 (Zhou et al., 2024). Evaluation of the model perfor-
mance is done using MCC, capturing the model’s ability to predict the existence of promoters on
different sequence contexts balancedly.

Transcription Binding Sites Detection We define this a binary classification task, to determine
whether specific regions with transcription factors binding in the DNA sequences or not. These
transcription binding sites (TBS) are critical for controlling the initiation, enhancement, or repres-
sion of transcription. Once more, data from DNABERT-2 is utilized for this task (Zhou et al., 2024),
which includes numerous DNA sequences, partly possessing TBS. The performance of the model is
evaluated using MCC, fairly measuring its ability to discover TBS in different DNA sequences.

Enhancer-Promoter Interaction Prediction This is a binary classification task, which involves
identifying the interactions between enhancer regions and their corresponding promoter regions in a
pair of DNA sequences. Predicting these interactions helps researchers understand the complex reg-
ulatory networks governing DNA activity, which is essential for studying developmental processes
and potential therapeutic targets. We extract our dataset from the research (Min et al., 2021), which
all contains two DNA sequences. The model needs to figure out whether they interact with each
other. We evaluate the performance of the model using the metric MCC, to test whether the model
can identify these interactions correctly.

A.2.2 RNA TASKS

APA Isoform Prediction This is a regression task which predicts the usage of alternative polyadeny-
lation (APA) isoforms by analyzing RNA sequences and outputting a proportion between 0 and 1
that represents the relative expression of each APA isoform. Accurate APA isoform prediction is
critical for understanding the regulation of gene expression at the RNA level, which plays a funda-
mental role in transcriptome diversity. For this task, we adopt APARENT’s (Bogard et al., 2019)
APA isoform prediction dataset, which consists of isoform usage data derived from synthetic and
human 3’UTRs. The output represents the proportion of isoform usage, capturing the variability in
polyadenylation signal processing. The performance of the prediction is evaluated using the Coeffi-
cient of Determination (R2).

Non-coding RNA Function Classification This is a multi-label classification task that predicts the
functional class of non-coding RNA (ncRNA) sequences. The model outputs one or more class
labels from a set of 13 possible ncRNA classes, such as ’tRNA’, ’miRNA’, and ’riboswitch’. Accu-
rately classifying ncRNAs is essential for improving our understanding of their regulatory roles in
gene expression, as well as their contributions to diverse biological processes and diseases. For this
task, we adopt the nRC (non-coding RNA Classifier) dataset from (Fiannaca et al., 2017), which
utilizes features derived from ncRNA secondary structures. The output assigns each RNA sequence
to one or more functional classes, enabling a detailed examination of the functional diversity within
ncRNAs. The performance of the model is evaluated using accuracy (Acc), reflecting the model’s
ability to correctly classify ncRNA functions across all categories.

Modification Prediction This is a multi-label classification task that predicts post-transcriptional
RNA modifications from RNA sequences. The model outputs one or more modification types from
a set of 12 widely occurring RNA modifications, including ’m6A’, ’m1A’, and ’m5C’. Precise iden-
tification of RNA modification sites is essential for understanding the regulatory mechanisms of
RNA and their roles in various biological processes. For this task, we adopt the MultiRM dataset
from (Song et al., 2021), which contains RNA sequences annotated with multiple modification types.
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The performance of the model is evaluated using the Area Under the Curve (AUC), capturing the
model’s ability to predict RNA modifications across different contexts.

Mean Ribosome Loading Prediction This is a regression task that predicts ribosome loading effi-
ciency by analyzing RNA sequences and outputting a numeric value, representing mean ribosome
loading, with two decimal precision. Accurate prediction of ribosome loading is essential for under-
standing how cis-regulatory sequences, such as 5’ untranslated regions (UTRs), influence translation
efficiency, which is crucial for both fundamental biological research and applications in synthetic
biology and mRNA therapeutics. For this task, we adopt the dataset from (Sample et al., 2019),
which includes polysome profiling data of 280,000 randomized 5’ UTRs and 35,212 truncated hu-
man 5’ UTRs. The performance of the model is evaluated using the Coefficient of Determination
(R2), measuring its ability to predict ribosome loading across different sequence contexts.

Programmable RNA Switches This is a multi-label regression task that predicts the behavior of
programmable RNA switches by analyzing RNA sequences and outputting three numeric values
representing the ’ON’, ’OFF’, and ’ON/OFF’ states, each with two decimal precision. Accurate
prediction of these states is critical for advancing synthetic biology, as RNA switches are essential
tools for detecting small molecules, proteins, and nucleic acids. For this task, we adopt the dataset
from (Angenent-Mari et al., 2020), which includes synthesized and experimentally characterized
data for 91,534 toehold switches spanning 23 viral genomes and 906 human transcription factors.
The performance of the model is evaluated using the Coefficient of Determination (R2), measuring
the model’s ability to predict the functional states of RNA switches across diverse sequence contexts.
(Ren et al., 2024)

This is a multi-label regression task that predicts the behavior of programmable RNA switches by
analyzing RNA sequences and outputting three numeric values representing the ’ON’, ’OFF’, and
’ON/OFF’ states, each with two-decimal precision. Accurate prediction of these states is crucial for
advancing synthetic biology, as RNA switches serve as essential tools for detecting small molecules,
proteins, and nucleic acids. For this task, we use the dataset from (Angenent-Mari et al., 2020),
which includes synthesized and experimentally characterized data for 91,534 toehold switches span-
ning 23 viral genomes and 906 human transcription factors. This dataset is also included in the
RNA-related tasks benchmark BEACON (Ren et al., 2024). Model performance is evaluated using
the Coefficient of Determination (R2), assessing the model’s ability to predict the functional states
of RNA switches across diverse sequence contexts.

CRISPR On Target Prediction This is a regression task that predicts the on-target knockout effi-
cacy of single guide RNA (sgRNA) sequences using CRISPR systems. The model outputs a numeric
value that represents the predicted sgRNA knockout efficacy for a given RNA sequence. Accurate
prediction of on-target efficacy is essential for optimizing the design of sgRNAs with high speci-
ficity and sensitivity, which is crucial for successful CRISPR-based genome editing. For this task,
we adopt the DeepCRISPR dataset from (Chuai et al., 2018), which includes sgRNA sequences and
their corresponding on-target knockout efficacy data. The performance of the model is evaluated
using Spearman’s correlation, measuring the model’s ability to predict the effectiveness of sgRNAs
across different genetic contexts.

siRNA Efficiency Prediction This is a regression task that predicts the efficiency of siRNA in si-
lencing target genes by analyzing modified siRNA sequences and corresponding target sequences,
outputting a numeric value representing the percentage of mRNA remaining after siRNA treatment.
Accurate prediction of siRNA efficiency is crucial for optimizing siRNA design in RNA interfer-
ence (RNAi) applications, which plays a critical role in gene expression regulation and has signif-
icant implications in therapeutic interventions. For this task, we adopt the dataset from the com-
petition (SAIS, 2020), which contains chemically modified siRNA sequences and their measured
silencing efficiency data. The performance of the model is evaluated using a mixed score, reflecting
its ability to predict the mRNA remaining percentage across different chemical modifications and
experimental conditions.

A.2.3 PROTEIN TASKS

Enzyme Commission (EC) Number Prediction. This is a multi-label classification task which
predicts enzyme functions by annotating protein sequences with all corresponding EC numbers. We
adopt DeepFRI’s (Gligorijević et al., 2021) EC annotation dataset from PDB chains, whose binary
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multi-hot vectors are converted back into corresponding EC numbers for language capability in our
task. The performance of the prediction is evaluated using the Fmax metrics. Accurate EC num-
ber prediction is crucial for understanding enzyme catalytic functions, accelerating the discovery of
novel enzymatic activities. This has applications in biotechnology, including optimizing enzymes
for industrial use and drug development. By predicting catalytic activities, researchers can engineer
enzymes tailored for therapeutic interventions, contributing to drug discovery and targeted treat-
ments.

Stability Prediction. This is a regression task to assess the intrinsic stability of proteins under vari-
ous conditions, with each protein sequence mapped to a continuous stability score that reflects how
well the protein maintain its fold above a certain concentration threshold like EC50. We adopt the
dataset from Rocklin et al. (Rocklin et al., 2017), which includes protease EC50 values derived from
experimental data. The model’s performance is assessed using Spearman’s correlation. Predicting
protein stability is essential in protein engineering, especially for therapeutic applications where pro-
tein integrity is crucial. These predictions reduce the need for experimental screening, facilitating
the design and refinement of stable proteins for industrial, pharmaceutical, and research purposes.

Fluorescence Prediction. This is a regression task that aims to evaluate the model’s ability to pre-
dict fluorescence values for higher-order mutated green fluorescent protein (GFP) sequences. This is
a regression task where each protein sequences is mapped to the logarithm of its florescence inten-
sity (Sarkisyan et al., 2016). Following the setting in TAPE (Rao et al., 2019), the model is trained
on a set of mutants with a low number of mutations, while tested on mutants with four or more
mutations. The task is designed to assesses how well the model generalized to unseen combinations
of mutations by leveraging Spearman’s correlation to evaluate predictive performance. Accurate
fluorescence prediction in higher-order mutated GFP aids in understanding mutation effects and
interactions. These predictions provide insights into protein function and help efficiently explore
mutational landscapes, facilitating the design of fluorescent proteins for applications in synthetic
biology and protein engineering.

Solubility Prediction. This is a binary classification task to determine whether a protein is soluble
or insoluble. The dataset is sourced from the DeepSol (Khurana et al., 2018), ensuring thast pro-
tein sequences with a sequence identity greater than 30 percent to any sequence in the test set are
excluded from training. The challenge is to test a model’s capacity to generalize across dissimilar
protein sequences. Predicting protein solubility is crucial for pharmaceutical research and industrial
biotechnology. Soluble proteins are essential for drug formulation and large-scale production. This
task drives the development of advanced in silico methods to predict solubility, reducing laboratory
testing and accelerating the discovery of therapeutically relevant proteins.

Thermostability Prediction. This is a regression task to predict the stability of proteins at elevated
temperatures. The target value reflects the thermostability of a given protein sequence. We focus on
the Human-cell split from the FLIP (Dallago et al., 2021), sequences are clustered by identity and
divided into training and test sets. Model prediction performance is evaluated by the metric Spear-
man correlation. Accurate prediction of protein thermostablity enhances understanding of protein
function and stability, which is critical for protein engineering. These predictions support protein
optimization in biotechnological applications, including drug and vaccine development (Chen &
Gong, 2022), and provide a framework for selecting thermostable proteins.

A.2.4 MULTI-MOLECULE TASKS

RNA-Protein This is a binary classification task, the objective of which is to identify interactions
between non-coding RNAs (ncRNAs) and proteins, based on the sequences of the aforementioned
ncRNAs and proteins. The majority of ncRNAs interact with proteins to perform their biological
functions. Consequently, inferring the interactions between ncRNAs and proteins can facilitate the
comprehension of the potential mechanisms underlying biological activities involving ncRNAs (Li
et al., 2016). The dataset employed in this study was derived from (Han & Zhang, 2023), comprising
14,994 samples. The evaluation metric employed was MCC.

Antibody-Antigen This is a binary classification task, which seeks to ascertain whether a corre-
sponding interaction relationship exists based on the sequences of antibodies and antigens. The
objective of this task is to ascertain the correspondence between antigens and antibodies and to pre-
dict more effective antibody characteristics for new variants of viruses. The dataset was sourced
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from (Zhang et al., 2022), which contains 22,359 antibody-antigen pairs. MCC is employed for the
assessment of the model’s performance.

A.3 EVALUATION METRICS

Single-label Regression: This type of task involves predicting one continuous numerical value.
The evaluation process extracts the numeric values from model outputs using regular expressions,
avoiding over- and underflow by limiting values to six significant digits. Metrics computed for
regression tasks include:

• Spearman’s Rank Correlation Coefficient: Measures the monotonic relationship be-
tween predicted and true values according to their ranks. The metric value ranges from
-1 to 1, where -1 indicates perfect negative correlation, 0 indicates no correlation (random
predictions) and 1 indicates perfect positive correlation.

• Coefficient of Determination (R2): Obtained by squaring the Pearson correlation coeffi-
cient to reflect the proportion of variance in the dependent variable explained by the inde-
pendent variable. The metric value ranges from 0 to 1, where 1 indicates perfect prediction
and 0 indicates predictions as good as the mean value (randomness).

• Mixed Score: A custom metric (SAIS, 2020) balances regression error and classification
accuracy by integrating F1 score (harmonic mean of precision and recall), Mean Absolute
Error (MAE), and range-based MAE (MAE computed within a range threshold). Calcula-
tion details will be further explained in A.3.1.

Multi-label Regression: This type of task involves predicting multiple continuous output for each
input. In the EA prediction task, two numeric values are required for the regression values of ’House-
keeping EA’ and ’Developmental EA’. In the programmable RNA switches prediction task, three
numeric values are required for predicting the regression values of ’ON’, ’OFF’, and ’ON/OFF’.

• Pearson Correlation Coefficient (PCC): Assesses the linear correlation between two sets
of data. The metric value ranges from -1 to 1, where -1 indicates perfect negative linear
correlation, 0 indicates no linear correlation (random predictions), and 1 indicates perfect
positive linear correlation.

• Average R2: Computes individual R2 for each label and take the mean across labels to
obtain an average R2 as the overall performance metric. The metrics values shares the
same range and interpretations similar to the single-label R2.

Binary Classification: This type of task asks the model to predict one of two possible classes. In
our case, either positive or negative. The evaluation pipeline involves first classifying via keywords
based on the presence of predefined positive or negative keywords. If keywords classification fails,
the pre-trained sentiment analysis model Twitter-roBERTa-base ¡cite source?¿ will be utilized as
fallback to determine the class based on the sentiment polarity assigned with a higher probability
score.

• Matthews Correlation Coefficient (MCC): Provides a balanced measure for binary clas-
sifications, even when classes are imbalanced. The metric ranges from -1 to 1, where -1
indicates perfect inverse correlation, 0 indicates random predictions or no correlation, and
1 indicates perfect postive correlation.

• Accuracy Score: Calculates the proportion of correct predictions out of all predictions
made. It ranges from 0 to 1, where 0 indicates no correct predictions, 1 indicates all correct
predictions and 0.5 as random predictions.

Multi-class Classification: This type of task asks the model to assign each input to one of several
classes. In the non-coding RNA family prediction task, the model is required to predict one from 13
classes.

• Accuracy Score: Calculates the proportion of correct predictions out of all predictions
made. It ranges from 0 to 1, where 0 indicates no correct predictions, 1 indicates all correct
predictions and 0.5 as random predictions.
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Multi-label Classification: This type of task involves inputs that may belongs to multiple classes
and asks the model to predict all of them. The evaluation process includes first extracting all relevant
labels from the model outputs and converting them into binary multi-hot vectors representing the
presence or absence of each class.

• Area Under the ROC Curve (AUC): Measures the model’s ability to distinguish between
classes across all shredsholds. The metrics ranges from 0 to 1, where 1 indicates perfect
ability to distinguish classes and 0.5 as random performance.

• Fmax Score: Represents the maximum F1 score over all possible thresholds, providing a
balanced measure of precision and recall in multi-label settings. The metric ranges from
0 to 1, where 0 indicates worst balance of no correct predictions and 1 indicates perfect
balance between precision and recall.

A.3.1 MIXED SCORE CALCULATION

The Mixed Score is a custom metric adopted from (SAIS, 2020) which is designed to balance re-
gression error and classification accuracy by integrating three components: the F1 score, the Mean
Absolute Error (MAE), and the Range-based MAE (Range-MAE). This metric provides a com-
prehensive evaluation by considering overall prediction accuracy, precision, and recall, as well as
specific performance in a designated value range. The calculation is detailed below:

• Mean Absolute Error (MAE): This measures the average magnitude of prediction errors
across all samples, providing an indication of the model’s overall regression accuracy. The
MAE is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi|,

where n is the total number of samples, yi is the ground truth value, and ŷi is the predicted
value. The range of MAE is [0, 100].

• Range-based MAE (Range-MAE): This metric evaluates the Mean Absolute Error within
a specific range of interest, emphasizing regions where high predictive accuracy is partic-
ularly crucial. For the siRNA task, the ”low remaining” range is of significant importance
in practical applications. Following (SAIS, 2020), we define this range as [0, 30]. The
Range-MAE is computed as:

Range-MAE =
1

m

m∑
j=1

|yj − ŷj |,

where m is the number of samples within the specified range, and yj , ŷj represent the
ground truth and predicted values within this range. The Range-MAE is also bounded
within [0, 100].

• F1 Score: This classification metric combines precision and recall into a harmonic mean
to evaluate the quality of predictions within the designated range. For the range [0, 30],
precision and recall are calculated for predictions falling within this interval, and the F1
score is derived as:

F1 = 2 · Precision · Recall
Precision + Recall

.

The final Mixed Score integrates these three components to provide a balanced assessment of re-
gression and classification performance. The formula for the Mixed Score is:

Mixed Score = 50% · (1− MAE/100) + 50% · F1 · (1− Range-MAE/100),

where the first term emphasizes overall regression performance, and the second term focuses on
classification accuracy and precision within the specified range.

This scoring mechanism is designed to reward models that perform well both globally (via MAE)
and within critical regions (via Range-MAE and F1), ensuring a comprehensive evaluation of model
capabilities.
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B MODEL TRAINING DETAILS

As shown in TABLE 3, we adopt different training methods for each stage due to limitations in
computational resources while attempting to improve model performance as much as possible.

In Stage 1, we train the model using 523933 RNA sequences, 1561639 DNA sequences, and
2000000 protein sequences, each with a maximum length of 2000 characters. The dataset weights
for RNA, DNA, and protein are [2, 1, 1], indicating that RNA sequences are trained twice per epoch.
This stage consumes the majority of computational resources. To reduce training time, we apply
LoRA to every linear layer in the model and additionally train each RMS normalization (Zhang
& Sennrich, 2019) layer. To optimize processing efficiency and balance model performance and
training efficiency, we impose a maximum input length of 2000 characters for biological sequences,
which translates to a maximum of 1200 input tokens. To address the potential inefficiency arising
from varying input sequence lengths, we implement a packing strategy2. This approach allows us to
combine multiple samples of different lengths into a single sample, effectively eliminating the need
for padding tokens in our training data. The training process encompassed approximately a total
of 140,000 parameter update steps, each step composed of 48 global samples, ensuring thorough
optimization of the model’s performance on biological sequence data.

In Stage 2, we train the model with 3330232 samples. As noted by (Ghosh et al.), we discover
that using LoRA and it’s variants (Hayou et al., 2024; yang Liu et al., 2024; Kalajdzievski, 2023)
for the entire model during supervised fine-tuning leads to sub-optimal performance. Therefore,
we fully fine-tune the query and key layers in each self-attention module, along with the RMS
normalization layers, while applying LoRA+ to the other linear layers in the model. This approach
ensure the update for the whole model and improves model performance while maintaining relatively
low training times by reduce the communication quantity of optimizer states.The base learning rate
was set to 1e-4, with the learning rate for the weight B parameters group at 1.6e-3. We configured the
gradient accumulation steps to 10 and set the micro-batch size on the GPU to 2, given the maximum
input length was limited to 1024. This configuration result in a global batch size of 400. In Stage 3,
minimal computational resources is required. Thus, we employ full fine-tuning for the entire model
except embedding layer and output layer.

We use DeepSpeedCPUAdam and adamw_mode=True for Stage 1 and Stage 2 as LoRA
efficiently reduces the communication time between CPU and GPU for offloaded optimizers.
For Stage 3, we use FusedAdam and adam_w_mode=True to reduce training time. A
warmup learning rate scheduler with cosine learning rate decay is used for all three stages.
All stages employ a mixed precision training strategy where model parameters, gradients,
and activations are stored in torch.bfloat16. To improve training efficiency, we use
DeepSpeed ZeRO stage 2 (Rajbhandari et al., 2020) and FlashAttention-2 (Dao et al., 2022;
Dao, 2023) for all training processes. We adopt PyTorch2.2.1’s scaled dot product attention
(torch.nn.functional.scaled_dot_product_attention) for FlashAttention-2 im-
plementation which is more convenient than FlashAttention official library with a Python environ-
ment torch.backends.cuda.sdp_kernel(enable_flash=True). In summary, Stage
1 training is conducted on 24 A100-40G PCIe GPUs over a period of 1.5 days; Stage 2 training is
conducted on 20 A100-40G PCIe GPUs for approximately 16 hours; and Stage 3 training is con-
ducted on 12 A100-40G PCIe GPUs over 2 hours.

C ADDITIONAL RESULTS

Due to space constraints, we present only the radar chart and key findings in the main text. Compre-
hensive results across 21 tasks, detailed in Tables 4, 5, 6, and 7, further demonstrate the effectiveness
of our dataset and three-stage training pipeline.

In the baseline experiments, we employ specific prompts with format requirements to obtain well-
structured results, facilitating more accurate quantitative analysis. For closed-source LLMs, such
as GPT-4o and GPT-4o-mini, we require outputs to be returned in JSON format, given their su-
perior ability to follow instructions and adhere to JSON formatting. For open-source LLMs, we

2https://github.com/meta-Llama/Llama-recipes/tree/main/recipes/quickstart/finetuning/datasets
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Figure 8: Example of a training sample in stage 2.

Table 3: Hyper parameters at each stage. Wq,Wk,Wv,Wo: Four linear parameters in the self-
attention modules corresponding to query, key, value, and output. W1,W2,W3: Three linear pa-
rameters in the feed-forward modules corresponding to up projection, gate projection, and down
projection. RMSnorm: parameters in RMS normalization layers. All: Parameters in RMS normal-
ization layers. All: All parameters in the model.

Hyper Parameters stage 1 stage 2 stage 3
Fine-tune method Mixed Mixed Full

LoRA target modules All linear Wv ,Wo,W1,W2,W3 -
Trainable parameters LoRA, RMSNorm LoRA, RMSNorm, wq , wv All

Base learning rate 1e-4 1e-4 1e-5
LoRA+ scaler 4 16 -

LoRA rank 128 64 -
LoRA α 32 32 -

Max input length 1200 1024 1024
Batch size per gpu 2 2 2

Gradient accumulation steps 1 10 1
Global batch size 48 400 24

Global steps 140000 80000 2750

opt for relatively brief format requirements to encourage more diverse outputs, acknowledging their
comparatively weaker instruction-following capabilities.

As shown in Table 8, we also provide task-relevant information as a hint to the baselines to ensure
a fair comparison and clarify the expected output content. Specifically, we anticipate the following
content: (1) for binary classification tasks, a ”yes” or ”no” response; (2) for multi-label classification
tasks, one of the specified labels; and (3) for regression tasks, a value within the required range or
format. The final prompt formats are detailed in Table 9.

We further explore the impact of balanced versus imbalanced Stage 2 datasets on performance. Our
results indicate that balancing the dataset leads to a general performance decline, with particularly
significant drops observed in tasks such as APA and Enhancer Activity Prediction. We believe
that balanced datasets may distort the natural distribution of real-world biological data and reduced
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overall data size to match the smallest task, which contains only a few thousand samples, limiting
the model’s ability to fully utilize available data.

Figure 9 illustrates two comparison examples between ChatMultiOmics and baseline models. In
both cases, the baseline models failed to provide correct answers due to various reasons, while
ChatMultiOmics produced accurate responses, with or without reasoning. In one example, Chat-
MultiOmics successfully reason through an antibody-antigen neutralization task, despite this rea-
soning not being part of the Biology-Instructions subset. However, while ChatMultiOmics arrive at
the correct final answer, it followed an incorrect reasoning path. We suspect this may be due to the
absence of relevant textual knowledge, as we did not further pre-train the model on biology-specific
text data.

Table 4: Evaluation results on DNA tasks
Model/Task EA (hk) EA (dev) EMP TF-H TF-M PD300 CPD
Metrics % PCC PCC MCC MCC MCC MCC MCC

Literature SOTA
Literature DeepSTARR DeepSTARR DNABERT2 DNABERT2 DNABERT2 DNABERT2 DNABERT2
SOTA 68.00 74.00 58.83 66.84 71.21 83.81 71.07

Open source LLM
LLaMA3.1-8B-Instruct 0.61 0.27 -0.37 0.00 -1.42 0.01 0.00
Qwen2-7B 0.40 0.35 -0.66 -0.21 -1.59 -4.83 1.35
Llama2-7B-Chat 0.55 0.13 0.94 1.84 0.97 -0.29 -0.55
Alpaca-7B -0.11 0.31 -0.36 2.00 0.00 -0.15 -1.30
GLM-4-9B-Chat 0.87 0.17 -0.22 0.00 0.00 -0.25 -2.53
Vicuna-v1.5-7B 0.18 0.69 0.00 0.00 0.00 0.00 0.00
Galactica-1.3B 0.13 0.09 0.07 3.00 -2.81 0.41 -1.01

Closed source LLM
GPT-4o-mini -0.76 0.09 -0.91 0.14 -0.31 -4.44 -2.95
GPT-4o -1.17 -1.49 -0.49 -1.70 -1.38 8.67 -0.84

Biology-specialize LLM
InstructProtein-1.3B 0.00 0.39 0.22 -1.29 1.19 2.75 -0.33
Llama-molinst-protein-7B (Mol-Ins) 0.02 0.10 -0.29 2.40 0.33 -5.76 1.98

Our Model on Balanced Dataset
ours (stage 1 + balanced stage 2) 0.92 0.06 1.40 2.46 0.88 5.19 5.57

Our Model on Our Dataset
ours (stage 2 only) -0.16 0.08 0.31 0.86 0.13 0.87 1.8
ours (stage 1 + stage 2) 59.74 46.82 8.1 19.07 27.94 49.01 41.18
ours (stage 1 + stage 2 + stage 3) 57.24 45.92 3.64 24.45 39.91 58.18 44.54

Table 5: Evaluation results on RNA tasks
Model/Task APA ncRNA Modif MRL PRS CRI-On
Metrics % R2 Acc Auc R2 R2 Spearman’s ρ

Literature SOTA
Literature APARENT GCN MultiRM Optimus MLP-O SCC
SOTA 50.82 85.73 84.00 78.00 55.67 44.10

Open-Source LLM
LLaMA3.1-8B-Instruct 0.01 6.32 50.52 0.01 0.02 -0.09
Qwen2-7B 0.00 7.08 50.34 0.00 0.01 -6.21
Llama2-7B-Chat 0.00 4.88 50.40 0.00 0.01 0.92
Alpaca-7B 0.00 7.42 50.00 0.03 0.01 -3.55
GLM-4-9B-Chat 0.00 8.23 50.05 0.00 0.01 -0.02
Vicuna-v1.5-7B 0.01 3.81 50.27 0.01 0.00 1.88
Galactica-1.3B 0.00 6.73 53.78 0.00 0.02 -5.56

Closed-Source LLM
GPT-4o-mini 0.05 3.00 50.49 0.01 0.03 3.77
GPT-4o 0.00 5.60 50.47 0.01 0.00 -3.31

Specific Biology LLM
InstructProtein-1.3B 0.00 0.00 51.08 0.02 0.00 0.00
Llama-molinst-protein-7B (Mol-Ins) 0.02 0.00 52.51 0.00 0.02 -0.10
BioMedGPT-LM-7B 0.00 1.62 51.65 0.01 0.03 0.12

Our Model on Balanced Dataset
ours (stage 1 + balanced stage 2) 0.01 35.68 53.76 0.00 0.01 -0.31

Our Model on Our Dataset
ours (stage 2 only) 0.00 0.00 51.21 0.00 0.00 2.87
ours (stage 1 + stage 2) 50.68 62.77 57.45 29.12 26.65 -2.99
ours (stage 1 + stage 2 + stage 3) 59.01 63.09 59.06 47.64 26.57 -0.02
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Figure 9: Comparison of ChatMultiOmics with baseline models in two examples.
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Table 6: Evaluation results on protein tasks
Model/Task EC Sta Flu Sol Ther
Metrics % Fmax Spearman’s ρ Spearman’s ρ Acc Spearman’s ρ

Literature SOTA
Literature SaProt-GearNet Evoformer Shallow CNN DeepSol ESM-1v
SOTA 88.9 79.00 69.00 77.00 78.00

Open-Source LLM
LLaMA3.1-8B-Instruct 1.42 -0.61 0.91 50.27 4.67
Qwen2-7B 0.90 -5.86 0.81 52.52 -0.93
Llama2-7B-Chat 0.97 -0.51 0.28 49.48 0.40
Alpaca-7B 0.88 2.05 -0.20 50.12 2.27
GLM-4-9B-Chat 0.91 -2.72 0.63 50.72 1.40
Vicuna-v1.5-7B 0.88 5.65 -0.51 51.57 0.90
Galactica-1.3B 0.91 -0.52 -0.73 46.78 -0.58

Closed-Source LLM
GPT-4o-mini 1.73 -1.52 -0.47 50.02 0.32
GPT-4o 5.89 0.09 0.69 51.67 3.50

Specific Biology LLM
InstructProtein-1.3B 1.85 0.35 -0.03 47.88 -0.50
Llama-molinst-protein-7B (Mol-Ins) 1.85 0.05 0.27 48.33 1.07
BioMedGPT-LM-7B 1.07 -0.92 0.43 49.78 -0.72

Our Model on Balanced Dataset
ours (stage 1 + balanced stage 2) 10.76 0.48 0.55 52.37 39.97

Our Model on Our Dataset
ours (stage 2 only) 1.85 0.23 0.37 49.28 -0.51
ours (stage 1 + stage 2) 19.35 56.76 1.49 62.07 44.59
ours (stage 1 + stage 2 + stage 3) 19.79 60.25 2.57 63.02 45.07

Table 7: Evaluation results on multi-molecule tasks
Model/Task EPI siRNA AAN RPI
Metrics % MCC Mixed Score MCC MCC

Literature SOTA
Literature EPI-DLMH – DeepAAI ncRPI-LGAT
SOTA 53.59 – 54.9 93.2

Open-Source LLM
LLaMA3.1-8B-Instruct 0.00 32.76 -1.05 3.82
Qwen2-7B 0.00 33.39 2.98 -2.15
Llama2-7B-Chat 0.00 17.43 -0.63 5.87
Alpaca-7B 0.00 19.12 -0.81 4.38
GLM-4-9B-Chat 0.00 23.33 1.32 0.13
Vicuna-v1.5-7B 0.00 14.28 2.00 0.00
Galactica-1.3B 0.00 33.55 0.01 0.24

Closed-Source LLM
GPT-4o-mini -0.39 30.37 1.59 1.22
GPT-4o 0.00 0.00 -3.29 1.17

Specific Biology LLM
InstructProtein-1.3B 0.00 5.58 1.53 -1.55
Llama-molinst-protein-7B (Mol-Ins) 0.00 13.85 -1.38 3.71
BioMedGPT-LM-7B 0.00 19.71 0.92 -2.39

Our Model on Balanced Dataset
ours (stage 1 + balanced stage 2) 4.13 42.92 -1.48 8.29

Our Model on Our Dataset
ours (stage 2 only) 4.77 4.25 0.72 1.61
ours (stage 1 + stage 2) 1.68 56.31 10.26 70.80
ours (stage 1 + stage 2 + stage 3) 3.37 56.25 1.06 74.26

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 8: Hints for each task
Task Hint
Epigenetic Marks Prediction Return yes or no.
Promoter Detection Return yes or no.
Core Promoter Detection Return yes or no.
Enhancer-Promoter Interaction Predic-
tion

Return yes or no.

RNA-Protein Interaction Prediction Return yes or no.
Antibody-Antigen Neutralization Return yes or no.
Transcription Binding Sites Detection
Human

Return yes or no.

Transcription Binding Sites Detection
Mouse

Return yes or no.

EA Prediction Return two numeric values with two decimal places for
’Housekeeping EA’ and ’Developmental EA’.

Fluorescence Prediction Return one numeric value with two decimal places.
Enzyme Commission Number Predic-
tion

Return Enzyme Commission number(s), e.g., 2.7.11.12

Solubility Prediction Return yes or no.
Stability Prediction Return one numeric value with two decimal places.
Thermostability Prediction Return one numeric value with two decimal places.
APA Isoform Prediction Return one numeric value with two decimal places.
Non-coding RNA Function Classifica-
tion

Return one RNA class: 5S rRNA, 5 8S rRNA, tRNA, ri-
bozyme, CD-box, miRNA, Intron gpI, Intron gpII, HACA-
box, riboswitch, IRES, leader, or scaRNA.

Modification Return RNA modification(s): Am, Cm, Gm, Um, m1A,
m5C, m5U, m6A, m6Am, m7G, Psi, AtoI, or none.

Mean Ribosome Loading Prediction Return a numeric value with two decimal places.
Programmable RNA Switches Return three numeric values with two decimal places for

’ON’, ’OFF’, and ’ON/OFF’.
CRISPR On Target Prediction Return a numeric value with two decimal places.
siRNA Efficiency Prediction Return a numeric value with two decimal places.

Table 9: Prompt format for baselines

Prompt format for open-source LLMs:
My question is {input} This is a {task type} task. {hint} Do not explain or repeat.
Prompt format for closed-source LLMs:
You are an expert biology AI assistant specializing in sequence-related topics. Focus on:
DNA, RNA, and protein sequences When answering questions, please follow this format:
First give a direct answer in JSON dict such as: {”answer”: ”Yes”}:

Remember to follow the provided rules:
- For binary classification questions: Answer ”Yes” or ”No”.
- For multi-label classification questions: State the specific label(s).
- For regression questions: Provide the numerical value or range.

Answer the question: ”{input}”.
Task type: {task type}.
For better understanding the task, hint: {hint}.
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D DATA QUALITY CONTROL FOR STAGE 3 REASONING DATA

To ensure the quality and reliability of Stage 3 reasoning data, we have established a robust multi-
step validation process:

D.1 SELF-VALIDATION BY THE MODEL

Once the data is generated, the large language model conducts a self-check to ensure compliance
with four core criteria outlined in the data generation prompt, as illustrated in Figure 10:

• Providing a detailed and accurate analysis of the sequence
• Accurately recalling task-related knowledge from studies, databases, or academic sources;
• Engaging in comprehensive reasoning to draw logical conclusions for the question
• Citing relevant references where applicable. The model is required to output the results of

its self-check and provide recommendations for improvement in cases that do not meet the
standards

For outputs that fail to meet these criteria, specific issues are identified, and the model is instructed
to regenerate outputs that adhere to the required standards based on the evaluation results.

D.2 SECONDARY REVIEW BY AN INDEPENDENT MODEL

Following the initial validation, a second large language model, Gemini-1.5-pro, is employed to
independently review and verify the accuracy and consistency of the reasoning paths. Additionally,
GPT4o-mini is tasked with reconstructing any unqualified cases based on feedback from Gemini-
1.5-pro.

This rigorous quality assurance process not only ensures the integrity of the data but also lays a
strong foundation of high-quality training data, enhancing interpretability in downstream tasks.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 10: An example of a prompt used to generate reasoning data. The system prompt outlines the
requirements for the data construction task for GPT-4o-mini. Answers are refined, and correspond-
ing questions are placed within specific prompts.
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Table 10: Examples of question and answer template pairs in stage 2 training data.
Task Question template Answer template
Epigenetic Marks
Prediction

<dna>{DNA}</dna> Are there any
characteristic epigenetic marks in this
DNA?

After careful EMP analysis, there
is conclusive evidence of epige-
netic marks in the given DNA se-
quence. (Positive case)

Core Promoter
Detection

<dna>{DNA}</dna>: Evaluate this
sequence for potential promoter re-
gions.

No, a promoter region is not
present in the given genomic frag-
ment. (Negative case)

Enhancer Activity
Prediction

<dna>{DNA}</dna> Enhancer activ-
ity in this sequence - what’s the deal?

The enhancer activity prediction
yields: HK - {hk enrichment},
Dev - {dev enrichment}

CRISPR On Target
Prediction

<rna>{RNA}<rna> What is the pre-
dicted on-target activity of the se-
quence?

The sequence has an on-target effi-
ciency score of {label}.

Programmable RNA
Switches

<rna>{RNA}<rna> What ON/OFF
ratio can be expected from the se-
quence?

The ON state for this sequence
is {label ON}, the OFF state is
{label OFF}, and the ON/OFF ra-
tio is {label ON OFF}.

Modification Prediction <rna>{RNA}<rna> [RNA modifica-
tion classification] Which RNA modifi-
cations are inferred from the sequence?

The RNA modifications for the se-
quence are predicted as {label}.

Fluorescence Prediction <protein>{protein}<protein>
How effective is the predicted fluores-
cence for this GFP sequence?

The GFP’s fluorescence is calcu-
lated to be {label}.

Enzyme Commission
Number Prediction

<protein>{protein}<protein>
What is the specific activity of this pro-
tein as an enzyme?

Specific enzyme activities are de-
fined by EC number {label}.

Solubility Prediction <protein>{protein}<protein>
Can solubility be confirmed for this
protein?

This protein shows positive solu-
bility. (Positive case)

Enhancer-Promoter
Interaction Prediction

<dna>{DNA1}<dna> promoter +
<dna>{DNA2}<dna> enhancer: con-
nected?

We find no support for promoter-
enhancer communication in this
genetic material. (Negative case)

Antibody-Antigen
Neutralization

Is there any molecular recogni-
tion between this Ab-Ag pair:
<protein>{AB}<protein>>-
<protein>{AG}<protein>>?

The computational predictions do
not support any significant Ab-Ag
interaction. (Negative case)

siRNA Efficiency
Prediction

<rna>{SiRNA}<rna>
<dna>{targetDNA}<dna> How
does the target RNA perform in terms
of siRNA-induced mRNA reduction?

The siRNA treatment results in
an mRNA remaining percentage of
{label}.
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Table 11: An example of question and answer pairs in stage 3 training data for siRNA Efficiency
Prediction task.

Task: siRNA Efficiency Prediction
Question <rna>{SiRNA}<rna> <dna>{targetDNA}<dna> How much

mRNA remains after siRNA treatment of the target RNA?

Answer To assess the amount of mRNA remaining after siRNA treatment, we first
need to understand the mechanisms involved in RNA interference (RNAi)
and its impact on mRNA levels.

siRNA (small interfering RNA) is a class of double-stranded RNA
that can lead to the degradation of complementary mRNA molecules,
effectively silencing their expression. When siRNA binds to target mRNA,
it recruits the RNA-induced silencing complex (RISC), which then cleaves
the mRNA, reducing its stability and leading to its degradation.

To determine how much mRNA remains after treatment, one typi-
cally considers:
1. The initial concentration of mRNA.
2. The efficacy of siRNA in degrading the target mRNA.
3. The kinetic parameters related to both the mRNA decay rate and the
siRNA efficacy.

For instance, if initial studies or assays show that treatment with
specific siRNA reduces target mRNA levels by approximately 80% under
standard experimental conditions, then we can assume that 20% of the
original mRNA remains. However, the problem states that the final
calculated remaining mRNA is estimated to be 80.6% of the original
mRNA.

This indicates that the siRNA treatment was not completely effec-
tive, or there might be factors such as incomplete targeting or secondary
structures in the mRNA that protected it from degradation.

In summary, after siRNA treatment of the target RNA, the remaining
amount of mRNA is therefore 80.6%, indicating a less than complete
silencing effect. This percentage reflects the balance of mRNA decay, the
effectiveness of the siRNA treatment, and the biological context in which
the treatment was performed.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 12: An example of question and answer pairs in stage 3 training data for Noncoding RNA
Family Prediction task.

Task: Noncoding RNA Family Prediction
Question <rna>{RNA}<rna> How does this RNA sequence contribute to gene

regulation?

Answer This RNA sequence represents a component that likely plays a crucial
role in gene regulation, particularly through its classification as a ”leader”
RNA. In the context of molecular biology, leader RNAs are typically
found at the 5’ end of mRNA sequences and can influence gene expression
by engaging in regulatory interactions with ribosomes or other molecular
partners.

Leader sequences can have multiple functions, including:
1. **Regulatory Functions:** They may harbor sequences that can bind
small regulatory molecules or proteins, thus modulating the transcription
or translation of the downstream coding region.
2. **Secondary Structures:** The folding patterns in leader sequences can
form intricate secondary structures that contribute to transcriptional atten-
uation or the formation of a riboswitch. These structures can determine
whether the RNA remains in a transcriptionally active state or folds into a
configuration that halts transcription or translation.
3. **Interaction with Ribosomes:** The leader region often acts as a
signal for ribosomes to initiate translation. For mRNAs, the presence of
specific motifs within this region can influence how efficiently translation
occurs, impacting overall protein synthesis levels and thus the expression
of the associated gene.

In summary, the RNA sequence presented can be classified as a leader,
contributing to gene regulation through its interactions and structural
characteristics. This underscores the importance of untranslated regions
(UTRs) in controlling gene expression. Understanding such RNA se-
quences and their functions provides valuable insights into the mechanisms
of gene regulation, highlighting how sequences beyond coding regions
play vital roles in cellular processes.
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Table 13: An example of question and answer pairs in stage 3 training data for Core Promoter
Detection.

Task: Core Promoter Detection
Question <dna>{DNA}<dna> Identify potential core promoter region in this se-

quence.

Answer The provided DNA sequence shows characteristics that warrant careful
examination for core promoter elements. Core promoters are essential
in initiating transcription and are typically located upstream of the tran-
scription start site. They often contain specific motifs, such as the TATA
box, initiator sequences (Inr), and other regulatory elements that facilitate
binding of transcription factors and RNA polymerase II.

In the sequence provided, critical components of core promoters
might include:
1. **Initiator sequences (Inr):** These sequences often span the transcrip-
tion start site and can exhibit variability but typically include consensus
elements that help delineate the start of transcription.
2. **TATA box:** A common feature among many eukaryotic promoters,
which is usually located about 25-30 bases upstream from the transcription
start point.
3. **GC-rich regions:** These regions can also play a role in promoter
activity by providing binding sites for transcription factors.

Upon examining the sequence:
- There are no clear TATA boxes or Inr motifs that align with typical core
promoter signatures.
- The sequence appears GC-rich, notably towards the middle, but does
not show significant promoter elements consistent with those typically
required for core promoter identification.

Given these observations, we can conclude that this sequence does
not contain recognizable features indicative of a core promoter region.
Therefore, the response to whether a potential core promoter region is
present in this sequence is negative.
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