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Abstract

In this paper, we address the growing need for new types of memories to enable
deployment of on-device large language models (LLMs) to resource-constrained
augmented reality (AR) edge devices. We evaluate the memory power and area
savings using 3D-stacked memory (3D-DRAM, 3D-SRAM) versus conventional
2D memory (LPDDR-DRAM, SRAM). At target inference rates of 5-100 infer-
ences per second, 3D-DRAM consumes the least memory power across all the
memory options, achieving ∼7-15x improvement in memory power consumption
compared with conventional 2D memory across our benchmark suite of on-device
LLMs (Distilled GPT-2, GPT-2, BART Base, and BART Large). While 3D-SRAM
can reduce memory dynamic power, the leakage power consumption for storing
such a large model becomes prohibitively costly, hence why 3D-DRAM becomes a
better option than 3D-SRAM for on-device LLMs. Additionally, since 3D-DRAM
significantly reduces the memory power consumption for on-device LLMs to 10’s
of mWs, 3D-DRAM enables the deployment of much larger LLMs that previously
could not be deployed with conventional DRAM and 2D SRAM solutions.

1 Introduction and Motivation

Modern augmented reality (AR) and edge devices are integrating more and more AI/ML capabilities.
With recent advancements in large language models (LLMs), the feasibility of using one multimodal
AI model on AR devices to enable a smart and context-aware AI assistant is becoming more of a
reality [1, 2, 3]. AR wearable devices, however, are highly resource constrained and require major
technological innovations to meet the strict real-time latency, power, and area requirements while
enabling key user experiences [4] such as multimodal AI. Integrating LLMs on-device is not a easy
task, as even a LLM such as LLaMA 7B [5] with 8-bit weights can exceed the low single GB’s of
DRAM allocated for AR devices and wearables. Additionally, factoring in LLM energy consumption
(∼0.1 J/token per billion in model parameters [6, 7]), a 7B LLM consumes ∼0.7 J/token, which
greatly exceeds power budget requirements for battery-powered edge devices [7].

Notably, LLMs tend to be highly memory-bound and improving memory bandwidth and reducing
memory power consumption of LLM inference [8, 9] is a key enabler of on-device LLM deployment.
Figure 1 illustrates the memory hierarchy of conventional edge devices. Currently, for on-device LLM
use cases which are expected to fit in the form factor of <200 MB on AR glasses and consume <100
mW [10], there exists a gap between low capacity on-chip SRAM and power hungry off-chip LPDDR
memory to meet the power budget and capacity needs of deploying LLMs for AR devices. Off-chip
LPDDR-DRAM end-to-end memory power is significantly high (∼85 pJ/B) and pushes current edge
devices to include large on-chip SRAMs to reduce the number of off-chip memory accesses. However,
scaling on-chip SRAMs to mitigate off-chip DRAM power and latency shortcomings is increasingly
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Figure 1: Memory hierarchy for conventional 2D edge devices versus our proposed 3D-stacked
memory hierarchy. The table provides our memory modeling specifications for the three types of
memories being considered (Conventional: LPDDR-DRAM, versus 3D-Stacked Memories: 3D-
DRAM and 3D-SRAM).

a costly solution, as on-chip SRAM can consume a significant portion of die area, SRAM area is not
scaling with process nodes, and leakage power can become significant for large SRAM capacities.
Additionally, many on-device AI applications need to be always-on so techniques like power gating
to reduce SRAM leakage may not necessarily help or be applicable. Ideally, we would like to have a
memory solution with power and bandwidth close to SRAM, leakage and density close to DRAM,
and options for a more scalable physical footprint.

Because of this, a new class of ultra-low power and high bandwidth memory optimized for on-device
AI is necessary to enable the deployment of LLMs for wearable devices, especially for AR. As shown
in Figure 1, we propose using 3D-stacked memory to integrate one or multiple memory dies on
top of the logic die in the vertical dimension, allowing for high bandwidth and ultra-low power 3D
connections while achieving the same or smaller footprints with larger memory capacities [10]. With
the goal of enabling on-device LLMs on AR devices for privacy and real-time latency considerations,
we quantify the benefits of using 3D-stacked memory compared to conventional 2D DRAM and
SRAM solutions and analyze the trade-offs between different memory hierarchies with 3D-stacked
memories. Since LLMs and Transformer-style models are typically memory bound [8, 9], our
analysis focuses on memory power and area for LLM inference, which can easily become the
dominant consumer of total AR device power and area.

In this paper, we demonstrate benefits of adding 3D-DRAM for lower memory power for on-device
LLM use cases, opportunities to reduce and alleviate large SRAM area on-chip, and reduce/eliminate
expensive off-chip accesses to LPDDR-DRAM. Overall, 3D-DRAM can provide ∼7-15x improve-
ment in memory power consumption over conventional 2D memory for on-device LLMs <200M
parameters and more notably, reduces memory power to acceptable ranges of 10’s of mW for AR
devices. Additionally, the reduction in memory power allows us to deploy larger variants of LLMs
(BART Large vs. BART Base, GPT-2 vs. Distilled GPT-2) not previously feasible in the constraints
of AR power budgets with conventional 2D memory. From an area perspective, 3D-DRAM is also
more competitive than conventional 2D memory options since 3D-stacking enables continued scaling
of on-device memory capacity in the vertical dimension.

2 Methods and Evaluation Setup

2.1 Models and Use Cases

To analyze on-device LLM use cases which can reasonably fit in the form factor of <200 MB, we
model four on-device LLMs targeting deployment on AR devices as shown in Table 1: Distilled
GPT-2 [11], GPT-2 [12], BART Base [13], and BART Large [13]. While there are newer variants
of LLMs such as MobileLLM [7] and MiniLLM [14] which target on-device mobile use cases <1B
parameters, these models are still too large and power hungry for the stringent form factors and
budgets of AR devices. We target LLMs <200M parameters (∼200 MB with quantization to 8-bits)
to analyze the feasibility of edge deployment given AR device footprint and power limitations. Note
that while <200M parameter LLMs may not be as accurate as their larger variants in mobile or

2



Table 1: On-device LLMs Evaluation Benchmark Suite <200M parameters

Models Distilled GPT-2 GPT-2 BART Base BART Large
[11] [12] [13] [13]

Model Footprint (8-bits) 79 MB 119 MB 88 MB 195 MB
GFLOPs 1.37 2.74 1.67 4.85

Operational Intensity (Ops/B) 16.1 20.9 17.6 22.9

cloud, we see this becoming more feasible as new distillation and compression techniques are getting
better [7, 14]. For sequence length, we constrain to short sequence lengths of 16 since on-device use
cases generally involve short message responses and quick summarizations [2, 3]. We leave to future
work to analyze use cases in which much longer sequence lengths are necessary.

Table 1 summarizes the memory capacities needed for these models and illustrates that they are
generally memory bound, since the operational intensity or number of operations per byte (Ops/B)
is small (<25 Ops/B). Given these models are memory-bound, we focus this work on optimizing
the memory aspects of on-device LLM deployment by: (1) analyze/quantify the memory power
reduction achievable using 3D-stacked memories (3D-DRAM, 3D-SRAM) and (2) demonstrate
the feasibility of deploying larger LLMs not previously possible in the stringent power budget and
footprint constraints of AR devices.

2.2 3D-Stacked Memory Modeling Parameters

We investigate two types of advanced 3D-stacked memory, 3D-SRAM and 3D-DRAM, as shown in
Figure 1, compared with conventional LPDDR-DRAM and/or SRAM solutions (our 2D baselines).
We use the memory modeling specifications in the table of Figure 1 for the three different memory
options, 3D-DRAM, 3D-SRAM, and LPDDR-DRAM, to perform our analysis. We assume LPDDR-
DRAM is based off of LPDDR4X technology, 3D-SRAM numbers in 7nm technology were obtained
from [15], and 3D-DRAM numbers [10] use specifications based off DRAM technology but optimized
for much lower dynamic power due to a custom wide-direct, PHY-less, low pin-speed interface and
controller. Note that 2D SRAM power numbers are similar to 3D-SRAM as shown in [15, 16]
but thanks to 3D-stacking, 3D-SRAM can have much smaller footprints. From Figure 1, we see
that conventional LPDDR-DRAM has high cell density and low leakage power but consumes high
dynamic energy. 3D-SRAM has the lowest dynamic energy but has high leakage power and the
lowest density. 3D-DRAM is a trade-off between the two other memory technologies, but consumes
<10 pJ/B memory power access (∼12x lower than LPDDR-DRAM) with a balance of slightly higher
leakage power while achieving similar memory density to LPDDR-DRAM.

We explored one-level and two-level memory hierarchies with the 3D-stacked memory options. To
determine how to utilize the two levels in the memory hierarchy, we evaluate: (1) storing parameters
and activations for layers with lower Ops/B in the larger memory and (2) storing all parameters in the
larger memory and activations in the smaller memory. We found that strategy (1) yielded two-level
memory hierarchies with prohibitively large SRAM sizes (e.g., 48 MB SRAM for Distilled GPT-2
and 80 MB SRAM for GPT-2) that are not as reasonable from an AR device form-factor perspective,
while strategy (2) resulted in more reasonable SRAM sizes (16 MB for the GPT-2 models). Thus, our
evaluation going forward will utilize strategy (2) for determining where to store data in the two-level
memory hierarchies evaluated. We benchmark against two baselines:

• LPDDR-DRAM: All data stored in LPDDR4X DRAM

• LPDDR-DRAM + X MB SRAM: Two-level 2D memory hierarchy with LPDDR4X
DRAM and X MB of SRAM

Then we compare against three 3D-stacked memory options:

• X MB 3D-SRAM: All data is stored in X MB of 3D-SRAM

• X MB 3D-DRAM + Y MB 3D-SRAM: Two-level memory hierarchy with X MB of
3D-DRAM and Y MB of 3D-SRAM

• X MB 3D-DRAM: All data stored in X MB of 3D-DRAM
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6.8x - 11.8x 7.4x - 13.9x

7.1x - 12.2x 7.6x - 14.6x

2D Baseline 2D Baseline

2D Baseline 2D Baseline

Figure 2: Memory power consumption for on-device LLMs across target inference rates of 5 - 100
Inf/s. The lowest memory power point is highlighted and consistently shows that 3D-DRAM provides
the optimal memory power consumption for these models.

The values of X and Y are set based on the minimum memory size required to support the given
model footprint, given the unit capacities assumed from the table of Figure 1.

2.3 Modeling Tool

An in-house modeling tool was built in Python to import pre-trained PyTorch models, extract the
layers, calculate the dimensions per layer, memory requirements, FLOP count, and operations per
byte. We assume all parameters and activations can be quantized to 8-bits, and the model parameters
include both the weights and biases. We assume a weight-stationary dataflow for the architecture, in
which we calculate the memory required for the model parameters and only the activations for the
layer with the largest activation size. Since our goal is to estimate the benefits of using 3D-stacked
memory versus conventional 2D memory, this modeling assumption provides sufficient high-level
estimation for our purposes.

3 Results and Analysis

In this section, we sweep and analyze our modeling results for our on-device LLM benchmark suite.
Since multimodal on-device AI use cases and requirements can vary widely and are constantly being
redefined, we consider a broad range of target inference rates from 5-100 inferences per second (Inf/s)
to understand the scenarios in which 3D-stacked memory is most beneficial.

Memory Power Savings Using 3D-DRAM Figure 2 summarizes the total memory power consump-
tion for our on-device LLM benchmark suite across the target range of inference rates. Compared
to LPDDR-DRAM and the hybrid LPDDR-DRAM + 16MB of SRAM memory configurations (2D
memory baselines), 3D-DRAM consumes the lowest memory power for all target inference rates,
achieving 6.8 - 14.6x improvement in memory power consumption compared with the conventional
2D baselines. For higher target inference rates (>30 Inf/s), the memory power consumption of the 3D
hybrid option (3D-DRAM + 16MB of 3D-SRAM) comes close to the memory power consumption
of the 3D-DRAM only option, indicating that for higher inference rates, some on-chip SRAM may
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Figure 3: Memory power breakdown for on-device LLMs for target inference rate of 30 Inf/s. SRAM
leakage power becomes dominant as you scale up in memory capacity, leading to diminishing returns
on increasing SRAM sizes for optimal memory power consumption.

be beneficial for speed considerations. However, for these target rates and memory capacities, 3D-
DRAM is the clear winner in terms of lowest memory power consumption compared to all of the
other memory configurations.

Additionally, we see that not only does 3D-DRAM achieve reductions in memory power consumption
across the suite of on-device LLMs compared to conventional 2D memory baselines, it significantly
reduces memory power consumption to 10’s of mW. This is critical for battery-powered AR devices in
which <100 mW of power consumption would be ideal but is often challenging for deploying LLMs
on-device. The 2D baseline memory hierarchy options significantly exceed the memory power budget
for GPT-2 and BART Large (>100 mW), but 3D-DRAM reduces the memory power consumption to
5 - 93 mW. Enabling deployment of these larger models on edge devices allows for improved model
accuracy compared to the smaller counterparts for these models (i.e., Distilled GPT-2 and BART
Base).

3D-DRAM vs. 3D-SRAM Trade-off To understand why the 3D-SRAM only memory configura-
tion and the hybrid 3D-DRAM and 3D-SRAM solution is not as competitive with the 3D-DRAM
only solution, Figure 3 dives deeper into one of the target inference rates, 30 Inf/s, which is in the
middle of the target ranges. For a target inference rate of 30 Inf/s, 3D-DRAM only consumes the
lowest power across these workloads with a range of model footprint sizes, achieving ∼10-11x
lower power compared to the 2D memory baselines. When observing the memory power breakdown
between dynamic and leakage power, we note that while 3D-SRAM reduces memory dynamic power
significantly, the leakage power consumption for storing such a large model becomes dominant, hence
why 3D-DRAM becomes a better option than 3D-SRAM at these memory capacities.

When comparing the hybrid 3D-DRAM + 16MB 3D-SRAM option with 3D-DRAM only, we note
dynamic power is competitive but the hybrid option with 3D-SRAM adds additional leakage, making
the hybrid option less attractive. Additionally, in the case of BART Large, 224 MB of 3D-DRAM is
required due to the 3D-DRAM unit capacity of 32 MB, while only 208 MB of SRAM is required due
to a SRAM unit capacity of 16 MB (taken from the table of Figure 1). However, this slightly larger
224 MB 3D-DRAM is still better from a power and area perspective compared to the smaller 208
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Figure 4: Memory area-power product figure of merit across the benchmark suite of on-device LLMs
for the target inference rates of 5 - 100 Inf/s. "*" indicates the optimal configuration point.

MB 3D-SRAM since 3D-DRAM requires ∼18x lower leakage power, and 3D-DRAM is far more
dense than 3D-SRAM (∼2x).

Case Study: using Figure of Merit = Area-Power Product Since AR devices are very area-
limited, we propose using a figure of merit weighting memory area and power equally (area x power)
similar to [16] to find the sweet spot for optimizing both memory power and area. We plot in Figure 4
the area-power product across the range of target inference rates and workloads to understand the point
at which 3D-SRAM and/or hybrid 3D-DRAM + 3D-SRAM configurations may become competitive
with 3D-DRAM only. Figure 4 highlights the lowest memory area-power products across the suite
of workloads and target inference rates. At 50-100 Inf/s, we start to see the 3D-SRAM only and
3D-DRAM + 3D-SRAM hybrid options become more competitive from both a memory power and
area optimization objective, while lower inference rate (<50 Inf/s) still favor the 3D-DRAM only
memory configuration.

4 Conclusion

In this paper, we present benefits of using 3D-stacked memory for reducing memory power con-
sumption for on-device LLMs. At target inference rates of 5-100 inferences per second, 3D-DRAM
consumes the lowest memory power across all the memory options, achieving ∼7-15x improvement
in memory power consumption compared with the conventional 2D memory across our benchmark
suite of on-device LLMs (Distilled GPT-2, GPT-2, BART Base, and BART Large). While 3D-SRAM
can reduce memory dynamic power, the leakage power consumption for storing such a large model
becomes dominant, hence why 3D-DRAM becomes a better option than 3D-SRAM for on-device
LLMs. If inference speed becomes critical for these applications, however, we note that from an
area-power perspective, it may be optimal to use 3D-SRAM + 3D-DRAM hybrid memory hierarchies.
Finally, since 3D-DRAM significantly reduces the memory power consumption for on-device LLMs
to 10’s of mWs, 3D-DRAM enables the deployment of much larger LLMs that previously could not
be deployed with conventional DRAM and 2D SRAM solutions.
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