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ABSTRACT

Extensive work has demonstrated that equivariant neural networks can signifi-
cantly improve sample efficiency and generalization by enforcing an inductive
bias in the network architecture. These applications typically assume that the do-
main symmetry is fully described by explicit transformations of the model inputs
and outputs. However, many real-life applications contain only latent or partial
symmetries which cannot be easily described by simple transformations of the in-
put. In these cases, it is necessary to learn symmetry in the environment instead
of imposing it mathematically on the network architecture. We discover, surpris-
ingly, that imposing equivariance constraints that do not exactly match the domain
symmetry is very helpful in learning the true symmetry in the environment. We
differentiate between extrinsic and incorrect symmetry constraints and show that
while imposing incorrect symmetry can impede the model’s performance, impos-
ing extrinsic symmetry can actually improve performance. We demonstrate that
an equivariant model can significantly outperform non-equivariant methods on
domains with latent symmetries both in supervised learning and in reinforcement
learning for robotic manipulation and control problems.

1 INTRODUCTION

Recently, equivariant learning has shown great success in vari-

ous machine learning domains like trajectory prediction (Wal-
ters et al., 2020), robotics (Simeonov et al., 2022), and re- Object Transform "
. . . . Hard to model V
inforcement learning (Wang et al., 2022c). Equivariant net- ;
works (Cohen & Welling, 2016; 2017) can improve general- ﬁ
ization and sample efficiency during learning by encoding task
symmetries directly into the model structure. However, this e (b)%Helps
requires problem symmetries to be perfectly known and mod- A\ Model
eled at design time — something that is sometimes problematic. .
It is often the case that the designer knows that a latent sym- 32
) . ; @ N\ ;)
metry is present in the problem but cannot easily express how Image Transform =
that symmetry acts in the input space. For example, Figure 1b Easy to model
is a rotation of Figure la. However, this is not a rotation of
the image — it is a rotation of the objects present in the image ©

when they are viewed from an oblique angle. In order to model
this rotational symmetry, the designer must know the viewing
angle and somehow transform the data or encode projective ge-
ometry into the model. This is difficult and it makes the entire
approach less attractive. In this situation, the conventional wis-
dom would be to discard the model structure altogether since it
is not fully known and to use an unconstrained model. Instead,
we explore whether it is possible to benefit from equivariant models even when the way a symmetry
acts on the problem input is not precisely known. We show empirically that this is indeed the case
and that an inaccurate equivariant model is often better than a completely unstructured model. For

Figure 1: Object vs image trans-
forms. Object transform rotates the
object itself (b), while image trans-
form rotates the image (c). We pro-
pose to use the image transform to
help model the object transform.
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example, suppose we want to model a function with the object-wise rotation symmetry expressed in
Figure 1a and b. Notice that whereas it is difficult to encode the object-wise symmetry, it is easy to
encode an image-wise symmetry because it involves simple image rotations. Although the image-
wise symmetry model is imprecise in this situation, our experiments indicate that this imprecise
model is still a much better choice than a completely unstructured model.

This paper makes three contributions. First, we define three different relationships between prob-
lem symmetry and model symmetry: correct equivariance, incorrect equivariance, and extrin-
sic equivariance. Correct equivariance means the model correctly models the problem symme-
try; incorrect equivariance is when the model symmetry interferes with the problem symme-
try; and extrinsic equivariance is when the model symmetry transforms the input data to out-
of-distribution data. We theoretically demonstrate the upper bound performance for an incor-
rectly constrained equivariant model. Second, we empirically compare extrinsic and incorrect
equivariance in a supervised learning task and show that a model with extrinsic equivariance can
improve performance compared with an unconstrained model. Finally, we explore this idea in
a reinforcement learning context and show that an extrinsically constrained model can outper-
form state-of-the-art conventional CNN baselines. Supplementary video and code are available at
https://pointw.github.io/extrinsic_page/.

2 RELATED WORK

Equivariant Neural Networks. Equivariant networks are first introduced as G-Convolution (Co-
hen & Welling, 2016) and Steerable CNN (Cohen & Welling, 2017; Weiler & Cesa, 2019; Cesa et al.,
2021). Equivariant learning has been applied to various types of data including images (Weiler &
Cesa, 2019), spherical data (Cohen et al., 2018), point clouds (Dym & Maron, 2020), sets Maron
et al. (2020), and meshes (De Haan et al., 2020), and has shown great success in tasks including
molecular dynamics (Anderson et al., 2019), particle physics (Bogatskiy et al., 2020), fluid dynam-
ics (Wang et al., 2020), trajectory prediction (Walters et al., 2020), robotics (Simeonov et al., 2022;
Zhu et al., 2022; Huang et al., 2022) and reinforcement learning (Wang et al., 2021; 2022c). Com-
pared with the prior works that assume the domain symmetry is perfectly known, this work studies
the effectiveness of equivariant networks in domains with latent symmetries.

Symmetric Representation Learning. Since latent symmetry is not expressable as a simple trans-
formation of the input, equivariant networks can not be used in the standard way. Thus several works
have turned to learning equivariant features which can be easily transformed. Park et al. (2022) learn
an encoder which maps inputs to equivariant features which can be used by downstream equivariant
layers. Quessard et al. (2020), Klee et al. (2022), and Marchetti et al. (2022) map 2D image inputs
to elements of various groups including SO(3), allowing for disentanglement and equivariance con-
straints. Falorsi et al. (2018) use a homeomorphic VAE to perform the same task in an unsupervised
manner. Dangovski et al. (2021) consider equivariant representations learned in a self-supervised
manner using losses to encourage sensitivity or insensitivity to various symmetries. Our method may
be considered as an example of symmetric representation learning which, unlike any of the above
methods, uses an equivariant neural network as an encoder. Zhou et al. (2020) and Dehmamy et al.
(2021) assume no prior knowledge of the structure of symmetry in the domain and learn the symme-
try transformations on inputs and latent features end-to-end with the task function. In comparison,
our work assumes that the latent symmetry is known but how it acts on the input is unknown.

Sample Efficient Reinforcement Learning. One traditional solution for improving sample effi-
ciency is to create additional samples using data augmentation (Krizhevsky et al., 2017). Recent
works discover that simple image augmentations like random crop (Laskin et al., 2020b; Yarats
et al., 2022) or random shift (Yarats et al., 2021) can improve the performance of reinforcement
learning. Such image augmentation can be combined with contrastive learning (Oord et al., 2018)
to achieve better performance (Laskin et al., 2020a; Zhan et al., 2020). Recently, many prior works
have shown that equivariant methods can achieve tremendously high sample efficiency in reinforce-
ment learning (van der Pol et al., 2020; Mondal et al., 2020; Wang et al., 2021; 2022c¢), and realize
on-robot reinforcement learning (Zhu et al., 2022; Wang et al., 2022a). However, recent equivariant
reinforcement learning works are limited in fully equivariant domains. This paper extends the prior
works by applying equivariant reinforcement learning to tasks with latent symmetries.
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3 BACKGROUND

Equivariant Neural Networks. A function is equivariant if it respects symmetries of its input and
output spaces. Specifically, a function f : X — Y is equivariant with respect to a symmetry group
G if it commutes with all transformations g € G, f(pz(9)z) = py(g) f(x), where p, and p, are the
representations of the group G that define how the group element g € G actsonz € X andy € Y,
respectively. An equivariant function is a mathematical way of expressing that f is symmetric with
respect to G: if we evaluate f for differently transformed versions of the same input, we should
obtain transformed versions of the same output.

In order to use an equivariant model, we generally require the symmetry group G and representation
p. to be known at design time. For example, in a convolutional model, this can be accomplished by
tying the kernel weights together so as to satisty K(gy) = pout(9)K (y)pin(g) L, where p;, and
Pout denote the representation of the group operator at the input and the output of the layer (Cohen
et al., 2019). End-to-end equivariant models can be constructed by combining equivariant convo-
lutional layers and equivariant activation functions. In order to leverage symmetry in this way, it
is common to transform the input so that standard group representations work correctly, e.g., to
transform an image to a top-down view so that image rotations correspond to object rotations.

Equivariant SAC. Equivariant SAC (Wang et al., 2022c¢) is a variation of SAC (Haarnoja et al.,
2018) that constrains the actor to an equivariant function and the critic to an invariant function with
respect to a group G. The policy is a network 7w : S — A x A, where A, is the space of action stan-
dard deviations (SAC models a stochastic policy). It defines the group action on the output space of
the policy network network @ € A x A, as: ga = g(aequivs Ginv, Go) = (Pequiv(9)Tequiv; Ginvs Go )
where dequiv € Aequiv 18 the equivariant component in the action space, @iny € Ajny is the invariant
component in the action space, a, € A,, g € G. The actor network 7 is then defined to be a
mapping s — a that satisfies the following equivariance constraint: 7(gs) = g(n(s)) = ga. The
critic is a @Q-network ¢ : S x A — R that satisfies an invariant constraint: ¢(gs, ga) = ¢(s, a).

4 LEARNING SYMMETRY USING OTHER SYMMETRIES

4.1 MODEL SYMMETRY VERSUS TRUE SYMMETRY 0O ®®
O ®
. . . G i

This paper focuses on tasks where the way in which the g 1refecton g 1 I 1
symmetry group operates on the input space is unknown. |O >® ' l )
In this case the ground truth function f : X — Y is OO ®®
equivariant with respect to a group G which acts on X Oo G scaling ®e
and Y by p, and p, respectively. However, the action @ [|G, rotation \ (b)
po on the input space is not known and may not be a ncorrect
simple or explicit map. Since p,, is unknown, we cannot 5@°2%2 > o° o
pursue the strategy of learning f using an equivariant | @ »~ N\ % o\ /

. . ~ N XK
model class f, constrained by p,. As an alternative, we |© X o X
propose restricting to a model class f, which satisfies ‘7{, xx %/’ X ,\‘\
equivariance with respect to a different group action py, @ ® o/
. N - R Deox® Oo
ie., fo(pz(g)x) = py(g)fs(x). This paper tests the hy-

pothesis that if the model is constrained to a symmetry
class p,, which is related to the true symmetry p,, thenit Figure 2: An example classification
may help learn a model satisfying the true symmetry. For task for correct, incorrect, and extrinsic
example, if x is an image viewed from an oblique angle equivariance. The grey ring shows the in-
and p, is the rotation of the objects in the image, p, can put distribution. Circles are the training
be the rotation of the whole image (which is different data in the distribution where the color
from p, because of the tilted view angle). Section 4.4 shows the ground truth label. Crosses
will describe this example in detail. show the group transformed data.

4.2 CORRECT, INCORRECT, AND EXTRINSIC EQUIVARIANCE

Our findings show that the success of this strategy depends on how p, relates to the ground truth
function f and its symmetry. We classify the model symmetry as correct equivariance, incorrect
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equivariance, or extrinsic equivariance with respect to f. Correct symmetry means that the model
symmetry correctly reflects a symmetry present in the ground truth function f. An extrinsic sym-
metry may still aid learning whereas an incorrect symmetry is necessarily detrimental to learning.
We illustrate the distinction with a classification example shown in Figure 2a. (See Appendix B for
a more in-depth description.) Let D C X be the support of the input distribution for f.

Definition 4.1. The action p,. has correct equivariance with respect to f if p,(g)x € D for all
x€D,g e Gand f(pu(g)x) = py(9)f(2).

That is, the model symmetry preserves the input space D and f is equivariant with respect to it.
For example, consider the action p,, of the group G; = C5 acting on R? by reflection across the
horizontal axis and p, = 1, the trivial action fixing labels. Figure 2b shows the untransformed data
x € D as circles along the unit circle. The transformed data j,(g)x (shown as crosses) also lie on
the unit circle, and hence the support D is reflection invariant. Moreover, the ground truth labels
f(x) (shown as orange or blue) are preserved by this action.

Definition 4.2. The action ., has incorrect equivariance with respect to f if there exist x € D and
g € G such that p;(g)z € D but f(p(9)z) # py(9)f(2).

In this case, the model symmetry partially preserves the input distribution, but does not correctly
preserve labels. In Figure 2c, the rotation group G2 = (Rot,) maps the unit circle to itself, but the
transformed data does not have the correct label. Thus, constraining the model fy by fs(p.(9)z) =
fs(x) will force f, to mislabel data. In this example, for a = v/2/2, f(a,a) = ORANGE and
f(—a,—a) = BLUE, however, fs(a,a) = fy(Rot(a,a)) = fs(—a, —a).

Definition 4.3. The action p,, has extrinsic equivariance with respectto f if forx € D, p.(g)x & D.

Extrinsic equivariance is when the equivariant constraint in the equivariant network f, enforces
equivariance to out-of-distribution data. Since p,(g)z ¢ D, the ground truth f(p,(g)x) is unde-
fined. An example of extrinsic equivariance is given by the scaling group G'3 shown in Figure 2d.
For the data € D, enforcing scaling invariance fy(p.(g)x) = f¢(x) where g € G5 will not
increase error, because the group transformed data (in crosses) are out of the distribution D of the
input data shown in the grey ring. In fact, we hypothesize that such extrinsic equivariance may even
be helpful for the network to learn the ground truth function. For example, in Figure 2d, the network
can learn to classify all points on the left as blue and all points on the right as orange.

4.3 THEORETICAL UPPER BOUND ON ACCURACY FOR INCORRECT EQUIVARIANT MODELS

Consider a classification problem over the set X with finitely many classes Y. Let G be a finite
group acting on X. Consider a model f,: X — Y with incorrect equivariance constrained to be
invariant to G. In this case the points in a single orbit {gz : ¢ € G} must all be assigned the
same label f;(gx) = y. However these points may have different ground truth labels. We classify
how bad this situation is by measuring p(x), the proportion of ground truth labels in the orbit of z
which are equal to the majority label. Let ¢, be the fraction of points x € X which have consensus
proportion p(x) = p.

Proposition 4.1. The accuracy of f4 has upper bound acc(fy) < Zp cpD

See the complete version of the proposition and its proof in Appendix A. In the example in Figure 2c,
we have p € {0.5} and ¢5 = 1, thus acc(f,) < 0.5. In contrast, an unconstrained model with a
universal approximation property and proper hyperparameters can achieve arbitrarily good accuracy.

4.4 OBJECT TRANSFORMATION AND IMAGE TRANSFORMATION

In tasks with visual inputs (X = R*"*™) incorrect or extrinsic equivariance will exist when the
transformation of the image does not match the transformation of the latent state of the task. In such
case, we call p,, the object transform and p, the image transform. For an image input x € X, the
image transform p,(g)x is defined as a simple transformation of pixel locations (e.g., Figure la-c
where g = 7/2 € SO(2)), while the object transform p,(g)x is an implicit map transforming the
objects in the image (e.g., Figure la-b where ¢ = 7/2 € SO(2)). The distinction between object
transform and image transform is often caused by some symmetry-breaking factors such as camera
angle, occlusion, backgrounds, and so on (e.g., Figure 1). We refer to such symmetry-breaking
factors as symmetry corruptions.
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Figure 3: (a) The rotation estimation task requires the network to estimate the relative rotation be-
tween the two input states. (b) Different symmetry corruptions in the rotation estimation experiment.

5 EVALUATING EQUIVARIANT NETWORK WITH SYMMETRY CORRUPTIONS

Although it is preferable to use an equivariant model to enforce correct equivariance, real-world
problems often contain some symmetry corruptions, such as oblique viewing angles, which mean
the symmetry is latent. In this experiment, we evaluate the effect of different corruptions on an
equivariant model and show that enforcing extrinsic equivariance can actually improve performance.
We experiment with a simple supervised learning task where the scene contains three ducks of
different colors. The data samples are pairs of images where all ducks in the first image are rotated
by some g € Cy to produce the second image within each pair. Given the correct g, the goal is to
train a network f,, : R2X4xhixw _y RIs! to classify the rotation (Figure 3a). If we have a perfect
top-down image observation, then the object transform and image transform are equal, and we can
enforce the correct equivariance by modeling the ground truth function f as an invariant network
folpz(9)x) = fo(x) where g € SO(2) (because the rotation of the two images will not change
the relative rotation between the objects in the two images). To mimic symmetry corruptions in
real-world applications, we apply seven different transformations to both pairs of images shown
in Figure 3b (more corruptions are considered in Appendix E.1). In particular, for invert-label,
the ground truth label g is inverted to —g when the yellow duck is on the left of the orange duck
in the world frame in the first input image. Notice that enforcing SO(2)-invariance in fy under
invert-label is an incorrect equivariant constraint because a rotation on the ducks might change their
relative position in the world frame and break the invariance of the task: f(gz) # f(x),3g € SO(2).
However, in all other corruptions, enforcing SO(2)-invariance is an extrinsic equivariance because
gz will be out of the input distribution. We evaluate the equivariant network defined in group Cy
implemented using e2cnn (Weiler & Cesa, 2019). See Appendix D.1 for the training details.

Comparing Equivariant Networks with CNNs. We first compare the performance of an equiv-
ariant network (Equi) and a conventional CNN model (CNN) with a similar number of trainable
parameters. The network architectures are relatively simple (see Appendix C.1) as our goal is to eval-
uate the performance difference between an equivariant network and an unconstrained CNN model
rather than achieving the best performance in this task. In both models, we apply a random crop after
sampling each data batch to improve the sample efficiency. See Appendix E.1 for the effects of ran-
dom crop augmentation on learning. Figure 4 (blue vs green) shows the test accuracy of both models
after convergence when trained with varying dataset sizes. For all corruptions with extrinsic equiv-
ariance constraints, the equivariant network performs better than the CNN model, especially in low
data regimes. However, for invert-label which gives an incorrect equivariance constraint, the CNN
outperforms the equivariant model, demonstrating that enforcing incorrect equivariance negatively
impacts accuracy. In fact, based on Proposition 4.1, the equivariant network here has a theoretical
upper bound performance of 62.5%. First, p € {1,0.5}. Then p = 1 when f(x) € {0,7} C Cs
where f(x) = —f(z) (i.e., negating the label won’t change it), and ¢; = 2/8 = 0.25. The consen-
sus proportion p = 0.5 when f(z) € {n/4,7/2,37 /4,57 /4,3 /2, Tr/4} C Cs, where half of the
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Figure 4: Comparison of an equivariant network (blue), a conventional network (green), and CNN
equipped with image transformation augmentation using Cg rotations (red). The plots show the
prediction accuracy in the test set of the model trained with different number of training data. In all
of our experiments, we take the average over four random seeds. Shading denotes standard error.

labels in the orbit of = will be the negation of the labels of the other half (because half of g € Cy
will change the relative position between the yellow and orange duck), thus ¢g5 = 6/8 = 0.75.
acc(fy) < 1 x0.25+ 0.5 x 0.75 = 0.625. This theoretical upper bound matches the result in
Figure 4. Figure 4 suggests that even in the presence of symmetry corruptions, enforcing extrinsic
equivariance can improve the sample efficiency while incorrect equivariance is detrimental.

Extrinsic Image Augmentation Helps in Learning Correct Symmetry. In these experiments,
we further illustrate that enforcing extrinsic equivariance helps the model learn the latent equiv-
ariance of the task for in-distribution data. As an alternative to equivariant networks, we consider
an older alternative for symmetry learning, data augmentation, to see whether extrinsic symmetry
augmentations can improve the performance of an unconstrained CNN by helping it learn latent
symmetry. Specifically, we augment each training sample with Cs image rotations while keeping
the validation and test set unchanged. As is shown in Figure 4, adding such extrinsic data augmen-
tation (CNN + Img Trans, red) significantly improves the performance of CNN (green), and nearly
matches the performance of the equivariant network (blue). Notice that in invert-label, adding such
augmentation hurts the performance of CNN because of incorrect equivariance.

6 EXTRINSIC EQUIVARIANCE IN REINFORCEMENT LEARNING

The results in Section 5 suggest that enforcing extrinsic equivariance can help the model better learn
the latent symmetry in the task. In this section, we apply this methodology in reinforcement learning
and demonstrate that extrinsic equivariance can significantly improve sample efficiency.

6.1 REINFORCEMENT LEARNING IN ROBOTIC MANIPULATION

We first experiment in five robotic manipulation environ-
ments shown in Figure 6. The state space S = R**/1xw
is a 4-channel RGBD image captured from a fixed cam-  ©
era pointed at the workspace (Figure 5). The action space  °
A = R? is the change in gripper pose (z,v, z,0), where
0 is the rotation along the z-axis, and the gripper open .
width \. The task has latent O(2) symmetry: when a
rotation or reflection is applied to the poses of the grip-
per and the objects, the action should rotate and reflect
accordingly. However, such symmetry does not exist in
image space because the image perspective is skewed in-
stead of top-down (we also perform experiments with an-
other symmetry corruption caused by sensor occlusion in

Figure 5: The image state in the Block
Picking task. Left image shows the
RGB channels and right image shows
the depth channel.
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Figure 6: The manipulation environments from BulletArm benchmark Wang et al. (2022b) imple-
mented in PyBullet Coumans & Bai (2016). The top-left shows the goal for each task.
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Figure 7: Comparison of Equivariant SAC (blue) with baselines. The plots show the performance
of the evaluation policy. The evaluation is performed every 200 training steps.

Appendix E.3). We enforce such extrinsic symmetry (group D,) using Equivariant SAC (Wang
et al., 2022c;a) equipped with random crop augmentation using RAD (Laskin et al., 2020b) (Equi
SAC + RAD) and compare it with the following baselines: 1) CNN SAC + RAD: same as our
method but with an unconstrained CNN instead of an equivariant model; 2) CNN SAC + DrQ: same
as 1), but with DrQ (Yarats et al., 2021) for the random crop augmentation; 3) FERM (Zhan et al.,
2020): a combination of 1) and contrastive learning; and 4) SEN + RAD: Symmetric Embedding
Network (Park et al., 2022) that uses a conventional network for the encoder and an equivariant
network for the output head. All baselines are implemented such that they have a similar number
of parameters as Equivariant SAC. See Appendix C.2 for the network architectures and Appendix F
for the architecture hyperparameter search for the baselines. All methods use Prioritized Experience
Replay (PER) (Schaul et al., 2015) with pre-loaded expert demonstrations (20 episodes for Block
Pulling and Block Pushing, 50 for Block Picking and Drawer Opening, and 100 for Block in Bowl).
We also add an L2 loss towards the expert action in the actor to encourage expert actions. More
details about training are provided in Appendix D.2.

Figure 7 shows that Equivariant SAC (blue) outperforms all baselines. Note that the performance of
Equivariant SAC in Figure 7 does not match that reported in Wang et al. (2022c) because we have a
harder task setting: we do not have a top-down observation centered at the gripper position as in the
prior work. Such top-down observations would not only provide correct equivariance but also help
learn a translation-invariant policy. Even in the harder task setting without top-down observations,
Figure 7 suggests that Equivariant SAC can still achieve higher performance compared to baselines.

6.2 INCREASING CORRUPTION LEVELS

In this experiment, we vary the camera angle by tilting to
see how increasing the gap between the image transform = = I
and the object transform affects the performance of ex-  * .
trinsically equivariant networks. When the view angle is | E‘ AR A
at 90 degrees (i.e., the image is top-down), the object and Y ¥

image transformation exactly match. As the view angle is
decreased, the gap increases. Figure 8 shows the obser-
vation at 90 and 15 degree view angles. We remove the
robot arm except for the gripper and the blue/white grid
on the ground to remove the other symmetry-breaking
components in the environment so that the camera angle

D @ w0 1m0 w0

Figure 8: Left: view angle at 90 de-
grees. Right: view angle at 15 degrees.
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Figure 9: Comparison between Equivariant SAC (blue) and CNN SAC (green) as the view angle
decreases. The plots show the evaluation performance of Equivariant SAC and CNN SAC at the end
of training in different view angles.
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Figure 11: Comparison between Equivariant SAC (blue) and CNN SAC (green) in an environment
that will make Equivariant SAC encode incorrect equivariance. The plots show the performance of
the evaluation policy. The evaluation is performed every 200 training steps.

is the only symmetry corruption. We compare Equi SAC + RAD against CNN SAC + RAD. We
evaluate the performance of each method at the end of training for different view angles in Figure 9.
As expected, the performance of Equivariant SAC decreases as the camera angle is decreased, espe-
cially from 30 degrees to 15 degrees. On the other hand, CNN generally has similar performance for
all view angles, with the exception of Block Pulling and Block Pushing, where decreasing the view
angle leads to higher performance. This may be because decreasing the view angle helps the network
to better understand the height of the gripper, which is useful for pulling and pushing actions.

6.3 EXAMPLE OF INCORRECT EQUIVARIANCE

We demonstrate an example where incorrect - "
equivariance can harm the performance of - ’ u
Equivariant SAC compared to an unconstrained - . . .
model. We modify the environments so that . : . J . L

the image state will be reflected across the ver- oo T MR N,
tical axis with 50% probability and then also

reflected across the horizontal axis with 50% Figure 10: The environment conducts a random
probability (see Figure 10). As these random reflection on the state image at every step. The
reflections are contained in Dy, the transformed four images show the four possible reflections,
state reflect(s), s € S is affected by Equivari- each has 25% probability.

ant SAC’s symmetry constraint. In particular, as the actor produces a transformed action for reflect
when the optimal action should actually be invariant, the extrinsic equivariance constraint now be-
comes an incorrect equivariance for these reflected states. As shown in Figure 11, Equivariant SAC
can barely learn under random reflections, while CNN can still learn a useful policy.

6.4 REINFORCEMENT LEARNING IN DEEPMIND CONTROL SUITE

We further apply extrinsically equivariant networks to continuous control tasks in the DeepMind
Control Suite (DMC) (Tunyasuvunakool et al., 2020). We use a subset of the domains in DMC that
have clear object-level symmetry and use the D; group for cartpole, cup catch, pendulum, acrobot
domains, and D5 for reacher domains. This leads to a total of 7 tasks, with 4 easy and 3 medium
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Figure 12: Comparison between Equivariant DrQv2 and Non-equivariant DrQv2 on easy tasks (top)
and medium tasks (bottom). The evaluation is performed every 10000 environment steps.

level tasks as defined in (Yarats et al., 2022). Note that all of these domains are not fully equivariant
as they include a checkered grid for the floor and random stars as the background.

We use DrQv2 Yarats et al. (2022), a SOTA model-free RL algorithm for image-based control, as
our base RL algorithm. We create an equivariant version of DrQv2, with an equivariant actor and
invariant critic with respect to the environment’s symmetry group. We follow closely the architecture
and training hyperparameters used in the original paper except in the image encoder, where two
max-pooling layers are added to further reduce the representation dimension for faster training.
Furthermore, DrQv2 uses convolution layers in the image encoder and then flattens its output to
feed it into linear layers in the actor and the critic. In order to preserve this design choice for the
equivariant model, we do not reduce the spatial dimensions to 1 x 1 by downsampling/pooling or
stride as commonly done in practice. Rather we flatten the image using a process we term action
restriction since the symmetry group is restricted from Z? x Dy, to Dy. Let I € R'*%*¢ denote
the image feature where D}, acts on both the spatial domain and channels. Then we add a new

axis corresponding to Dy by I = (gI)gep, € R ®@*ex2k We then flatten to I = (gI),ep, €

RIx1xhwex2k The intermediate step I is necessary to encode both the spatial and channel actions
into a single axis which ensures the action restriction is Dj-equivariant. We now map back down to
the original dimension with a Dy-equivariant 1 X 1 convolution. To the best of our knowledge, this
is the first equivariant version of DrQv2.

We compare the equivariant vs. the non-equivariant (original) DrQv2 algorithm to evaluate whether
extrinsic equivariance can still improve training in the original domains (with symmetry corrup-
tions). In figures 12, equivariant DrQv2 consistently learns faster than the non-equivariant version
on all tasks, where the performance improvement is largest on the more difficult medium tasks. In
pendulum swingup, both methods have 1 failed run each, leading to a large standard error, see Fig-
ure 27 in Appendix E.4 for a plot of all runs. These results highlight that even with some symmetry
corruptions, equivariant policies can outperform non-equivariant ones. See Appendix E.4.1 for an
additional experiment where we vary the level of symmetry corruptions as in Section 6.2.

7 DISCUSSION

This paper defines correct equivariance, incorrect equivariance, and extrinsic equivariance, and iden-
tifies that enforcing extrinsic equivariance does not necessarily increase error. This paper further
demonstrates experimentally that extrinsic equivariance can provide significant performance im-
provements in reinforcement learning. A limitation of this work is that we mainly experiment in
reinforcement learning and a simple supervised setting but not in other domains where equivariant
learning is widely used. The experimental results of our work suggest that an extrinsic equivariance
should also be beneficial in those domains, but we leave this demonstration to future work. An-
other limitation is that we focus on planar equivariant networks. In future work, we are interested in
evaluating extrinsic equivariance in network architectures that process different types of data.
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A THEORETICAL UPPER BOUND ON ACCURACY FOR MODELS WITH
INCORRECT SYMMETRY

We consider a classification problem over the set X with finitely many classes Y. Let m = |Y|
be the number of classes. Let [: X — Y be the true labels. Let G be a finite group acting on
X. We assume the action of G on X is density preserving. That is, if px is the density function
corresponding to the input domain, then px (gx) = px(x). Denote the orbit of a point € X by
Gz = {gx : g € G} and the stabilizer by G, = {g € G : gz = x}. By the orbit-stabilizer theorem
|G| = |Ga||Gx.

Now consider a model f: X — Y with incorrect equivariance constrained to be invariant to G. We
partition the input set into subsets X = [[;_

k—1 Xk Where
Xi={z € X : |l(Gz)| = k}.

If f has correct equivariance then X = X;. Incorrect equivariance implies that there are orbits Gz
which are assigned more than one label. Since f is constrained to be equivariant such orbits will
necessarily result in some errors. We give an upper bound on that error. Define ¢, = P(z € Xy).
Note that since X}, give a partition, Y, ; ¢, = 1. Also, X}, is empty for k& > |G| since the number
of labels assigned to an orbit is also upper bounded by the number of points in the orbit which is at

most |G|. Letting K = min(|Y], |G|), we have X = ]_[szl X
Proposition A.1. The accuracy of | has upper bound acc(f) <1 — Ele ce(k—1)/|G].

In contrast, we can choose an unconstrained model from a model class with a universal approx-
imation property and given properly chosen hyperparameters find a model with arbitrarily good
accuracy.

Proof. Lety = I(x). Then acc(f) = Ezex[0(f(z) = y)|. Since the action of G is density pre-
serving, applying an element of G before sampling does not affect the expectation, E,c x [0(f(z) =

y)] = Ezex[0(f(gx) = y)] and so
ace(f |G| ZE,GX gz) =y)].
geq

If we split the expectation over the partition X = ]_[szl X we get

Z Z CkExEXk ) = y)]

gEG k=1
Interchanging sums gives

K

Z Ck EIEXk |G| Z 6 g.’I} - y)

k=1 geG

By the orbit-stabilizer theorem,

5 —
|G\Z 9z) =) |G|

geG

1
S5(f el
which is the average accuracy over the orbit Gx. Since f is constrained to a single value of the orbit,
and k different true labels appear, the highest accuracy attainable is when |G| = |Gx| and the true
labels are maximally unequally distributed such that 1 point in the orbit takes each of £ — 1 labels
and all the other |G| — (k — 1) points receive a single label. In this case accuracy can be maximized
by choosing f (') to be this majority label, and

|1| AN B
@ Z 5(f(93)*y)§1*W~

z'eGr
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Figure 13: Demonstration of the upper bound of an equivariant model under invert label corruption
in our supervised learning experiment. The number on each partition shows the ground truth label.

Substituting back in,

k=1
K
k—1
=1- c

2 ( g )

k=1
since % is constant over X} and Zi{:l cp =1 O
Note that the assumption that |G| = |Gz| and that the labels on a given orbit are maximally un-

equally distributed need not hold in general and thus this bound is not tight. In order to produce
a tight upper bound, consider a partition X = [], X, where X, = {z € X : (max,|f~(y) N
Gz|)/|Gz| = p} and define ¢, = P(x € X,,). The set X, contains points in orbits where the
majority label covers a fraction p of the points. Note that although p is a fraction between 0 and 1,
there are only finitely many possible values of p since the numerator and denominator and bounded
natural numbers. We may thus sum over the values of p.

Proposition A.2. The accuracy of f has upper bound acc(f) < >_ cpp.

Proof. The proof is similar to the proof of Proposition A.1 replace X;, and ¢, with X, and ¢,

respectively. For x € X, the term % > weae 0(f(2") = y) can be upper bounded by choosing

the majority label yielding \‘G%I > wece 0(f(2") = y) < p. The bound then follows as before. [

This is a tight upper bound since assigning any but the majority label would result in lower accuracy.

Figure 13 demonstrates the upper bound of an incorrectly constrained equivariant network with the
invert label corruption in Section 5, where acc(f) < 0.25 x 1+ 0.75 x 0.5 = 0.625.

B CORRECT, INCORRECT, AND EXTRINSIC EQUIVARIANCE EXAMPLES

In this section, we describe how the model symmetry transforms data under correct, incorrect, and
extrinsic equivariance and how such transformations relate to the true symmetry present in the task
using the example of Section 4.2. The ground truth function f : X — Y is a mapping from X = R?
to Y = {ORANGE, BLUE}. Let (a,a), (—a, —a), (—a, a), (b, ¢) be the coordinates of four points in
the data distribution on the unit circle (Figure 14a). The ground truth labels for these points are:
f(a,a) = ORANGE, f(—a, —a) = BLUE, f(—a, a) = BLUE, f(b,¢) = ORANGE.
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Figure 14: An example classification task for correct, incorrect, and extrinsic equivariance. The
input distribution is shown as a gray ring. The training data samples are shown as circles, where the
color is the ground truth label. Crosses represent the group transformed data. The opaque points
highlight the example points while other points are semitransparent.

B.1 CORRECT EQUIVARIANCE

Definition 4.1. The action p,, has correct equivariance with respect to f if p,(g)x € D for all
x € D,g € Gand f(pa(g)x) = py(9)f ().

Consider the reflection group G = Cy = {1,r} (where r is the reflection along the horizontal
axis) acting on X by p,(1) = Id or p.(r) = (§ %) and Y via p, = Id, the trivial action fix-
ing the labels (Figure 14b). If we define an equivariant model with respect to p, and p,, then
the model’s symmetry preserves the problem symmetry. For example, consider the point (—a, a),
r € G is the reflection so that p,(r) = (§ %) and p,(r)(—a,a) = (—a,—a). Since the
model f, is Gi-equivariant, fy(pz(r)x) = py(r)fs(x). Substituting p, = Id and z = (—a,a),
we obtain fy(—a,—a) = fy(—a,a), meaning that the output of fy(—a,—a) and fy(—a,a)
are constrained to be equal. Thus the invariance property in the ground truth function f where
f(—=a,—a) = f(—a,a) = BLUE is preserved (notice that this applies to all z € X). We call this
correct equivariance.

B.2 INCORRECT EQUIVARIANCE

Definition 4.2. The action j, has incorrect equivariance with respect to f if there exist z € D and
g € G such that p,(g)x € D but f(p.(9)z) # py(9)f(2).

Consider the rotation group G = (Rot, ) (Figure 14c) which acts via j,, on X via a rotation matrix
of 7 and acts on Y via p, = Id. If we define an equivariant model with respect to p, and p,, the
network’s symmetry will conflict with the problem’s symmetry. For example, consider the point
(a,a) and let g € G+ be the rotation action so that p,(g) = (' %} ) and p,(g)(a,a) = (—a, —a).
As the model f; is Go-equivariant, fy(p,(g)x) = py(g)fs(x). Substituting p, = Idand z = (a, a),
we get fo(—a, —a) = fy(a, a). However, this constraint interferes with the ground truth function f
as f(—a, —a) = BLUE and f(a,a) = ORANGE. We call this incorrect equivariance.

B.3 EXTRINSIC EQUIVARIANCE
Definition 4.3. The action p,, has extrinsic equivariance with respectto f if forx € D, p.(g)x & D.
Consider the scaling group G's acting on X by scaling the vector and on Y via p,, = Id (Figure 14d).

If we define an equivariant model with respect to p, and p,, the group-transformed data will be
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outside the input distribution. Consider the point (b, ¢) and let g € G be the scaling action so that
pz(9)(b,¢) = (V', ). Since the model f, is Gg-equivariant, f4(p.(g)x) = py(g)fs(x). Substitut-
ing p, = Id and x = (b, c) we have f,(b',¢’) = f;(b, c) meaning that the output of f4(V', ') and
f4(b, c) are constrained to be equal. However, (', ¢’) is outside of the input distribution (gray ring)
and thus the ground truth f(b', ¢’) is undefined. We call this extrinsic equivariance.

Intuitively, it is easy to see in this example how extrinsic equivariance would help the model learn
f. If the model f; is equivariant to the scale group G'3, then it can generalize to “scaled” up or down
versions of the input distribution and “covers” more of the input space R?. As such, the model may
learn the decision boundary (the vertical axis) more easily because of its equivariance compared to
a non-equivariant model, even if the equivariance is extrinsic.

C NETWORK ARCHITECTURE
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Figure 15: Network architecture of the equivariant network in the supervised learning experiment.
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Figure 16: Network architecture of the CNN network in the supervised learning experiment.

Table 1: Number of trainable parameters of the equivariant network (Equi) and conventional CNN
network (CNN) in the supervised learning task.

Network Equi CNN

Number of Parameters 1.11 million 1.28 million

C.1 SUPERVISED LEARNING

Figure 15 shows the network architecture of the equivariant network and Figure 16 shows the net-
work architecture of the CNN network in Section 5. Both networks are 8-layer convolutional neural
networks. The equivariant network is implemented using the e2cnn (Weiler & Cesa, 2019) library,
where the hidden layers are defined using the regular representation and the output layer is defined
using the trivial representation. Table 1 shows the numbers of trainable parameters in both networks,
where both networks have a similar number with a slight advantage in the CNN.

C.2 REINFORCEMENT LEARNING IN ROBOTIC MANIPULATION

Figure 17 shows the network architecture of Equivariant SAC used in manipulation tasks in Sec-
tion 6.1. All hidden layers are implemented using the regular representation. For the actor (top),
the output is a mixed representation containing one standard representation for the (x,y) actions,
one signed representation for the 6 action, and seven trivial representations for the (z, \) actions and
the standard deviations of all action components. Figure 18 shows the network architecture of CNN
SAC for both RAD and DrQ. Figure 19 shows the network architecture of FERM. Figure 20 shows
the network architecture of SEN.

Table 2 shows the number of trainable parameters for each model. All baselines have slightly more
parameters compared with Equivariant SAC.
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Figure 17: Network architecture of Equivariant SAC in robotic manipulation tasks.
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Figure 18: Network architecture of CNN SAC in robotic manipulation tasks.

D TRAINING DETAILS

D.1 SUPERVISED LEARNING

We implement the environment in the PyBullet simulator (Coumans & Bai, 2016). The ducks are
located in a workspace with a size of 0.3m x 0.3m. The pixel size of the image is 152 x 152 (and
will be cropped to 128 x 128 during training). We implement the training in PyTorch (Paszke et al.,
2017) using a cross-entropy loss. The output of the model is the score for each g € Cg. We use
the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 10~%. The batch size is 64. In all
training, we perform a three-way data split with /N training data, 200 holdout validation data, and
200 holdout test data. The training is terminated either when the validation prediction success rate
does not improve for 100 epochs or when the maximum epoch (1000) is reached.

D.2 REINFORCEMENT LEARNING IN ROBOTIC MANIPULATION

We use the environments provided by the BulletArm benchmark (Wang et al., 2022b) implemented
in the PyBullet simulator (Coumans & Bai, 2016). The workspace’s size is 0.4m x 0.4m x 0.24m.
The pixel size of the image observation is 152 x 152 (and will be cropped to 128 x 128 during
training). The action space is A;, A,, A, = [—0.05m, 0.05m] for the change of (z,y, z) position
of the gripper; Ag = [—7, 7] for the change of top-down rotation of the gripper; and Ay = [0, 1]
for the open width of the gripper where O means fully close and 1 means fully open. All environ-
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Figure 19: Network architecture of FERM in robotic manipulation tasks.
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Figure 20: Network architecture of SEN in robotic manipulation tasks.

ments have a sparse reward: +1 for reaching the goal and 0 otherwise. During training, we use 5
parallel environments where a training step is performed after all 5 parallel environments perform
an action step. The evaluation is performed every 200 training steps. We implement the training in
PyTorch (Paszke et al., 2017). We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate
of 1073, The batch size is 128. The entropy temperature for SAC is initialized at 10~2. The target
entropy is —5. The discount factor v = 0.99. The Prioritized Experience Replay (PER) (Schaul
et al., 2015) has a capacity of 100,000 transitions with prioritized replay exponent of o = 0.6 and
prioritized importance sampling exponent 3y = 0.4 as in Schaul et al. (2015). The expert transitions
are given a priority bonus of 5 = 1.

The contrastive encoder of the FERM baseline has an encoding size of 50 as in Zhan et al. (2020).
The FERM baseline’s contrastive encoder is pre-trained for 1.6k steps using the expert data as
in Zhan et al. (2020). In DrQ, the number of augmentations for calculating the target K and the
number of augmentations for calculating the loss M are both 2 as in Yarats et al. (2021).
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Table 2: Number of trainable parameters of Equivariant SAC, CNN SAC, FERM, and SEN in the
reinforcement learning task in robotic manipulation. Notice that FERM has a shared encoder be-
tween the actor and the critic so the total number of parameters is smaller than the sum of the actor
parameter and the critic parameter.

Network Equi SAC CNN SAC FERM SEN

Number of Actor Parameters 1.11 million 1.13 million 1.79 million 1.22 million

Number of Critic Parameters 1.18 million 1.27 million 1.90 million 1.24 million

Number of Total Parameters  2.29 million 2.40 million 2.34 million 2.46 million

D.3 REINFORCEMENT LEARNING IN DEEPMIND CONTROL SUITE

Sample images of each environment are shown in Figure 21. Environment observations are 3 con-
secutive frames of RGB images of size 85 x 85, in order to infer velocity and acceleration. Note
that we use odd-sized image sizes instead of 84 x 84 used in Yarats et al. (2022), as the DrQv2
architecture contains a convolutional layer with stride 2 and this breaks equivariance for even-sized
spatial inputs (Mohamed et al., 2020). For each environment, an episode lasts 1000 steps where
each step has a reward between 0 and 1.

l

(a) Cartpole Balance  (b) Cartpole Swingup  (c) Pendulum Swingup (d) Cup Catch

(e) Acrobot Swingup (f) Reacher easy (g) Reacher hard

Figure 21: DeepMind Control Suite: images of easy (top) and medium (bottom) tasks.

We modify the original DrQv2 by making the encoder map down to a smaller spatial output, leading
to faster training. The second and third convolutional blocks have an added max-pooling layer,
leading to a spatial output size of 7 x 7. As the equivariant version of DrQv2 has an additional
convolutional layer after the action restriction, the non-equivariant version also has an additional
convolutional layer at the end of the encoder. We also scale the number of channels by \/@ in
order to preserve roughly the same number of parameters as the non-equivariant version.

The policy is evaluated by averaging the return of 10 episodes every 10000 environment steps. In all
DMC experiments, we plot the mean and the standard error over 4 seeds. All other training details
and hyperparameters are kept the same as in Yarats et al. (2022).
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Figure 22: All symmetry corruptions in the rotation estimation experiment.

E ADDITIONAL EXPERIMENTS

E.1 SUPERVISED LEARNING WITH MORE SYMMETRY CORRUPTION TYPES

In this section, we demonstrate the experiment in Section 5 in more symmetry corruptions. Fig-
ure 22 shows the 15 different corruptions. We also show the performance of ‘Equi’, ‘CNN’, and
‘CNN + Img Trans’ without the random crop augmentation used in Section Section 5 (labeled as
‘no Crop’ variations). The result is shown in Figure 23. First, comparing blue vs green, and pur-
ple vs orange, the equivariant network always outperforms the CNN with or without random crop
augmentation, especially with fewer data. Second, comparing blue vs purple, and green vs orange,
random crop generally helps both the equivariant network and the CNN network. Third, comparing
red vs green, and cyan vs orange, adding the image transformation augmentation improves the per-
formance of CNN. Notice that the condition reverse is an outlier because the equivariant network has
incorrect equivariance, where the CNN methods (green and orange) without image transformation
augmentation have the best performance.

E.2 RL IN MANIPULATION WITHOUT RANDOM CROP

In this section, we demonstrate the performance of Equivariant SAC and CNN SAC without random
crop augmentation using RAD. As is shown in Figure 24, both methods work poorly without the
random crop augmentation.

E.3 RL IN MANIPULATION WITH OCCLUSION CORRUPTION

In this section, we perform the same experiment as in Section 6.1 with a different type of symmetry
corruption: occlusion due to orthographic projection using a single camera. Instead of using an
RGBD image observation as in Section 6.1, we take the depth channel from the RGBD image and
perform an orthographic projection at the gripper’s position (Figure 25). This is the same process as
in Wang et al. (2022a) to generate a top-down image for equivariant learning, however, since we only
have one camera instead of two as in the prior work, this orthographic projection will have missing
depth values due to occlusion and thus leads to an extrinsic equivariant constraint. Figure 26 shows
the results. Similar as in Section 6.1, Equivariant SAC outperforms all baselines with a significant
margin.
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Figure 23: Comparison of an equivariant network (blue), a conventional network (green), CNN
equipped with image transformation augmentation (red), and their variation without random crop
augmentation (purple, orange, cyan). The plots show the prediction accuracy in the test of the model
trained with different number of training data. Results are averaged over four runs. Shading denotes
standard error.
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Figure 24: Comparison between Equivariant SAC and CNN SAC without data augmentation using
RAD. The plots show the performance (in terms of discounted reward) of the evaluation policy.
The evaluation is performed every 200 training steps. Results are averaged over four runs. Shading
denotes standard error.

E.4 RL IN DEEPMIND CONTROL SUITE

Figure 27 is another visualization of equivariant vs non-equivariant DrQv2 on the original pendulum
swingup environment. As each method has 1 failed seed, we plot all runs with slightly different color
shades. If we exclude the failed run from each method, it can easily be seen that equivariant DrQv2
learns faster than the non-equivariant version.

E.4.1 INCREASING SYMMETRY CORRUPTIONS

In these experiments, we modify some domains to have different levels of symmetry-breaking cor-
ruptions. For cartpole and cup catch, we either remove the gridded floor and background (None)
to make the observation perfectly equivariant or keep the floor and background and further change
the camera angle by rolling (30° — 75°), increasing the level of corruption. For reacher, we use the
same modifications but tilt the camera instead of rolling. See Figure 3 for sample images. In order
to see the effects of increasing corruption on learning, we plot the mean discounted reward when
both methods have converged (30k frames for cartpole and cup catch, 1.5M frames for reacher).
Figure 28 shows that both the equivariant and non-equivariant DrQv2 surprisingly perform quite
well across all corruption levels, with the exception of 75° on reacher. The equivariant policy seems
to converge to a slightly higher discounted reward than the non-equivariant version, though the dif-
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Figure 25: Left: the depth image taken from a depth camera. Right: the orthographic projection
centered at the gripper position generated from the left image, where the black areas are missing
depth values due to occlusions.
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Figure 26: Comparison of Equivariant SAC (blue) with baselines in environments with occlusion
corruption. The plots show the performance (in terms of discounted reward) of the evaluation policy.
The evaluation is performed every 200 training steps. Results are averaged over four runs. Shading
denotes standard error.

ference is not significant. On reacher, changing the camera angle may have affected both methods
by making the task more difficult for both an equivariant and regular CNN encoder.

F BASELINE ARCHITECTURE SEARCH

F.1 CNN SAC ARCHITECTURE SEARCH

This section demonstrates the architecture search for CNN SAC. We consider three different archi-
tectures (all with a similar amount of trainable parameters): 1) conv (Figure 18): a CNN network
with the same structure as Equivariant SAC, where all layers are implemented using convolutional
layers. 2) fcl (Figure 29): a CNN network that replaces some layers in 1) with fully connected lay-
ers. 3) fc2 (Figure 30): similar as 2), but with fewer convolutional layers and more weights in the FC
layer. We evaluate the three network architectures with SAC equipped random crop augmentation
using RAD (Laskin et al., 2020b).

Figure 31 shows the result, where all three variations have a similar performance. We use conv in
the main paper since it has a similar structure as Equivariant SAC.

F.2 FERM ARCHITECTURE SEARCH

This section demonstrates the architecture search for FERM. We consider four different architec-
tures: 1) sim total 1 (Figure 33) and 2) sim total 2 (Figure 19) are two different architectures with
the similar amount of total trainable parameters as Equivariant SAC. 3) sim enc (Figure 32) has
similar amount of trainable parameters in the encoder as Equivariant SAC’s encoder. Notice that
since FERM share an encoder between the actor and the critic while Equivariant SAC has separate
encoders, having the similar amount of parameters in the encoder will lead to fewer total parameter
in FERM compared with Equivariant SAC. 4) ferm ori (Figure 34) is the same network architecture
used in the FERM paper (Zhan et al., 2020).

Figure 35 shows the comparison across the four architectures. ‘sim total 2” has a marginal advantage
compared with the other three variations, so we use it in the main paper.
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Figure 27: All runs of equivariant and non-equivariant DrQv2 on the DMC pendulum swingup
task. Each method has 1 failed seed - the failed equivariant policy (blue) run is consistently near
zero reward and the failed non-equivariant policy run (red) is around 200. Overall, the equivariant
DrQv2 learns faster than the non-equivariant version when it succeeds.

Cup Catch

Reacher hard
None Orig 30° 45° 60° 75°

Table 3: Modifications to DMC domains for varying symmetry corruption levels. The gridded
floor and background are removed to be fully equivariant (None) or the camera angle is modified to
increase the level of symmetry corruption (roll for cartpole and cup catch, tilt for reacher).

F.3 SEN ARCHITECTURE SEARCH

This section shows the architecture search for SEN. We consider three variations (all with similar
amount of trainable parameters): 1) SEN conv (Figure 36): all layers are implemented using con-
volutional layers. 2) SEN fcl (Figure 37) and SEN fc2 (Figure 20) replaces some layers in 1) with
fully connected layers.

Figure 38 shows the comparison across the three variations. ‘SEN fc2’ shows the best performance.
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Figure 28: DMC performance comparison on various levels of symmetry corruptions. Both the
equivariant and non-equivariant DrQv2 perform quite well even with increasing levels of corruption.
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Figure 29: Network architecture of the ‘fc1’ variation for CNN SAC.

= 55

s
'
| 91 ‘AUOD EXE |
'
Jjood xew
v
| 26 AU0D EXE |
v
jood xew
'
| 9 ‘AUOD EXE |
v
jood xew
v
[ sz nuooexe |
Vv
|ood xew
v
| 9 ‘AU0D gXE |
v
952 04
¥
0104

w w w (<) w
3 3 & 3 s 3 @ 3 5 - 8 -n
& 8 8 & 2 ) 2 & 3 3 a n
] 3 8 X 8 ] x 8 ol (e} 2
0 >SS > >S > PSPPI P >SN F N> O 2
=< o < o = o = o = o =1 o -
= =1 w = > =3 = =2 & > 2 o
o =
@ N & @ s @
pul
[e] m o
o ‘y};‘—>0—>,\,
&

Figure 30: Network architecture of the ‘fc2’ variation for CNN SAC.
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Figure 31: Architecture search for CNN SAC. The plots show the performance (in terms of dis-
counted reward) of the evaluation policy. The evaluation is performed every 200 training steps.
Results are averaged over four runs. Shading denotes standard error.
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Figure 32: Network architecture of the ‘sim enc’ variation for FERM.
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Figure 33: Network architecture of the ‘sim total 1’ variation for FERM.
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Figure 34: Network architecture of the ‘ferm ori’ variation for FERM.
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Figure 35: Architecture search for FERM. The plots show the performance (in terms of discounted
reward) of the evaluation policy. The evaluation is performed every 200 training steps. Results are
averaged over four runs. Shading denotes standard error.
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Figure 36: Network architecture of ‘SEN conv’ variation of SEN.
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Figure 37: Network architecture of ‘SEN fc1’ variation of SEN.
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Figure 38: Architecture search for SEN. The plots show the performance (in terms of discounted
reward) of the evaluation policy. The evaluation is performed every 200 training steps. Results are
averaged over four runs. Shading denotes standard error.
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