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Abstract. Despite the effective progress in automatic abdominal multi-
organ segmentation methods based on deep learning, there are still few
studies on general models for abdominal organ and pan-cancer segmenta-
tion. Additionally, the manual annotation of organs and tumors from CT
scans is a time-consuming and labor-intensive process. To deal with these
problems, an efficient two-stage framework combining self-supervised
pre-training and self-training is proposed. Specifically, in the first stage,
we adopt the Model Genesis method for image reconstruction to pro-
mote the model to learn effective anatomical representation informa-
tion, thereby improving the model’s perception of anatomical structures
in downstream segmentation tasks and generating high-quality tumor
pseudo-labels. Afterward, we fuse partial organ fine-standard of labeled
data with pseudo-labels to improve the organ labeling quality. In the
second stage, we overlay the generated tumor pseudo-labels onto the
corresponding regions of the organ pseudo-labels, and the final pseudo-
label images are used to train the nnU-Net model for efficient inference.
The proposed method has been evaluated on the FLARE2023 validation
cased, and get a relatively good segmentation performance. The average
DSC and NSD for organs are 91.51% and 95.52%, respectively. For tu-
mors, the average DSC is 43.47%, and the average NSD is 33.81%. In
addition, the average running time and area under the GPU memory-
time curve are 85.4 s and 246157.2 MB, respectively. On the test set,
we achieved average organ and tumor DSC of 92.17% and 54.99%, re-
spectively, and average inference time of 95.83 s. Our code is publicly
available at https://github.com/lihe-CV/HiLab_FLARE23

Keywords: Semi-supervised learning · Self-supervised learning · Pseudo
labels.

1 Introduction

Abdominal organ and tumor segmentation is a critically important task in ab-
dominal disease diagnosis, cancer treatment, and radiation therapy planning [11].

https://github.com/lihe-CV/HiLab_FLARE23
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The abdomen is a common site for the occurrence of cancer, and accurate seg-
mentation results can provide valuable information for clinical diagnosis and
surgical planning, like the size and location of organs and tumors, the spatial re-
lationship of multiple organs, etc. In recent years, deep learning-based methods
have been widely used for automatic segmentation of organs and tumors [16].
However, these methods heavily rely on a large amount of annotated data for
training purposes. In past clinical practice, segmentation labels for organs and
tumors was usually performed manually by radiologists. It is time-consuming and
labor-intensive. Thus, it is often challenging to obtain a large number of labeled
cases. In light of this situation, semi-supervised semantic segmentation aims to
utilize limited labeled data and abundant unlabeled data for model training. It
addresses the issue of label scarcity by exploring valuable information from the
unlabeled data.

FLARE [13] is an international challenge focusing on abdominal scene seg-
mentation. Compared with FLARE22, the challenge for FLARE23 adds the pan-
cancer segmentation task and provides only partial organ segmentation labels for
the labeled data in semi-supervised segmentation. The organizer of FLARE23
provided the largest abdomen CT dataset, including 4000 3D CT scans from 30+
medical centers. 2200 cases have partial labels and 1800 cases are unlabeled. For
the task scenario combining semi-supervised and partial-label segmentation, the
main solutions can be divided into two types: (1) consistency-regularization-
based methods [3]. (2) pseudo-label-based methods [10,19]. Since the organizer
invited the FLARE22 champion team to generate pseudo labels for FLARE23
data. We choose the pseudo-labeling-based approach and integrate it with the
nnU-Net framework [9] to train organ segmentation model. However, due to the
uncertainty in tumor shape, size, and location, as well as the scarcity of tumor
labels, we attempt to incorporate self-supervised strategies to learn effective rep-
resentation information from images, thereby enhancing the model’s perception
of tumor category.

In this work, we propose a two-stage training framework that combines self-
supervised and semi-supervised learning to generate high-quality pseudo-labels
and improve the segmentation performance of the model, respectively. Specif-
ically, in the first stage, we employ the Model Genesis method [23] for image
reconstruction to learn effective anatomical representation information. From
2200 labeled images, 735 tumor-containing images and corresponding labels were
further selected, and the pre-trained model was transferred to the tumor seg-
mentation task to generate high-quality pseudo-labels for 3265 tumor-free la-
beled data [2]. For the pseudo-label generation of organs, we simply fused the
pseudo-labels provided by the organizer with partial organ segmentation anno-
tations, and achieved good segmentation results. In the second stage, we overlay
the generated tumor pseudo-labels onto the corresponding regions of the organ
pseudo-labels, and the final pseudo-labeled images are used to train nnU-Net
model [9] for inference.

In summary, we make the following three contributions:
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– We design a two-stage training framework based on nnU-Net to generate
high-quality pseudo-labels and improve the segmentation performance of the
model.

– We adopt self-supervised learning strategy to learn anatomical representa-
tion information, enabling the model to generate high-quality pseudo-labels.

– We optimize the organ segmentation task by fusing pseudo-labels and par-
tial organ segmentation annotations. Models trained with our fused labels
perform better.
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Fig. 1. Overview of our proposed framework.

2 Method

To deal with a training dataset with partial labels on a small part of images, we
propose a two-stage training framework that combines self-supervised and semi-
supervised learning, as shown in Figure 1. We adopt self-supervised learning
and image fusion strategies to generate high-quality pseudo-labels. The self-
training [10] is adopted for semi-supervised semantic segmentation. The detailed
description of this framework is as follows.

2.1 Preprocessing

The preprocessing strategies for labeled data and pseudo-labeled data in the
two-stage segmentation framework are as follows:
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Table 1. Comparison of different segmentation models. The order of axes of input
patch size and spacing is (z,y,x).

Settings Default Tumor Organ&Pan-cancer
convolution kernel sizes (1, 3, 3) (3, 3, 3) (1, 3, 3)

step size for sliding window 0.5 0.5 1
input patch size (64×160×192) (112×160×160) (56×160×192)
input spacing (2.0, 0.8, 0.8) (1.8, 1.8, 1.8) (2.5, 0.8, 0.8)

– Image cropping: Crop the bounding box of the image to the non-zero area,
thereby reducing the image size and improving computational efficiency.

– We adopt image resampling to ensure that the actual physical space of each
voxel is consistent across different image data.

– We applied z-score normalization based on the mean and standard deviation
of foreground intensity values across the training set.

– The detailed configurations and the comparison with default nnU-Net are
listed in Table 1.

2.2 Generate High-quality Pseudo-labels

We employ pseudo-label generation as a simple and effective method to utilize
unlabeled data for model training. Specifically, we make full use of the pseudo-
labels of abdominal organs provided by the organizer. To improve the labeling
quality, we fuse partial organ fine-standard of labeled data with pseudo-labels.
However, tumor category is difficult to segment due to the uncertainty of tumor
shape, size and location, as well as the scarcity of tumor labels. We utilize self-
supervised learning strategy to facilitate tumor segmentation model Stum to
understand local and global features, thereby boosting the model’s awareness of
tumor category and generating high-quality tumor pseudo-labels.

Self-supervised Pre-training. Model Genesis [23] learns from scratch on un-
labeled images with the goal of learning a universal visual representation that can
be generalized and transferred across diseases, organs, and modalities. In order
to improve the model’s transfer and perception capabilities for tumor category,
we use similar self-supervised training strategies as the Model Genesis [23] to pre-
train Stum with the provided FLARE23 dataset. Throughout the pre-training
process, Stum reconstructs the original patches according to the augmented vari-
ants, thereby learning anatomical representation information of 3D abdominal
CT images. The generation process of augmented variants is shown in Figure 2.

Specifically, four transformations are randomly combined and applied to the
original patch to generate augmented variants. The transformations include: 1)
Non-linear transformation. By integrating Bézier Curve [17] to assign a uniquely
determined value to each pixel, to encourage self-supervision focusing on the
information of image appearance, shape and intensity distribution. 2) Local pixel
shuffling. By sampling a window smaller than the model’s receptive field in the
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Fig. 2. The transformations made to the original patch during the pre-training.
I:Nonlinear transformation, II:local pixels shuffling, III: in-painting, IV: out-painting.
(RC: random combine.)

patch and rearranging the internal pixels, to encourage model learning the local
texture and boundary of the image. 3) Out-painting and In-painting. By blending
windows of different sizes to create a complex shape. Out-painting sets the outer
pixels of the shape to random values, while the inner pixels retain their original
intensities. In-painting is the opposite.

Then, the pre-training model Stum will learn the anatomical representation
information by reconstructing the original patch. The mean squared error (MSE)
loss is used for training Stum by minimizing a reconstruction error Lrec:

Lrec =
1

N

N∑
i=1

∣∣Xi − X̂i

∣∣ (1)

where i is the voxel index, N is the number of the voxels, Xi is original patch and
X̂i is the prediction of the model. Finally, we screened out 735 tumor-containing
images and corresponding labels from 2200 labeled data, and transferred the
pre-trained model Stum to the tumor segmentation task. We adopt an average
of cross-entropy loss and Dice loss to supervise the tumor segmentation model:

Lseg =
1

2N t

Nt∑
i=1

(
LDice(pi, yi) + Lce(pi, yi)

)
(2)

where yi is the tumor label, N t is the number of training images and pi is the
prediction of the model Stum.

Label Fusion. Due to the organizer invited FLARE22 champion team to use
its docker to generate pseudo labels for FLARE23 data. Therefore, we adopt a
simple but effective label fusion strategy. Specifically, we achieve high-quality
fusion by replacing the corresponding organ regions in the pseudo-labels with
accurately annotated organ parts from the labeled data.

ŷ = yp ⊕ yq (3)

where yp is ground truth and yq is pseudo label. At the same time, the unlabeled
data retains the corresponding pseudo-labels as supervision signals.
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2.3 Model Training and Inference

We adopt similar label fusion strategy to the high-quality organ and tumor
pseudo-labels obtained in the first stage, generating a dataset D = {xi, yi}Ni=1

for training organ and pan-cancer segmentation model S. In addition, in order
to improve the inference efficiency of the model S, we try using small patch size
as in Table 1 to increase the training and inference speed of each patch and
reduce GPU memory. Finally, the segmentation model S learns from organ and
pan-cancer data by minimizing a supervised loss function:

Lseg =
1

2Nd

Nd∑
j=1

(
LDice(pj , yj) + Lce(pj , yj)

)
(4)

where yj is the organ and pan-cancer label, Nd is the number of training images
and pj is the prediction of the model S.

Due to the high resolution of 3D medical images, nnU-Net [9] adopts the slid-
ingwindow strategy for inference. However, this strategy significantly consumes
the time and space complexity. Therefore, we set the step-size to 1 during in-
ference to effectively improve inference speed and reduce resource consumption
while ensuring accuracy.

2.4 Post-processing

A connected component analysis of segmentation mask is applied on the outputs
to remove small connected areas. And then the results are resampled back to
original spacing for the convenience of the following evaluation.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [13][14],
aiming to promote the development of foundation models in abdominal disease
analysis. The segmentation targets cover 13 organs and various abdominal le-
sions. The training dataset is curated from more than 30 medical centers under
the license permission, including TCIA [4], LiTS [1], MSD [20], KiTS [7,8], au-
toPET [6,5], TotalSegmentator [21], and AbdomenCT-1K [15]. The training set
includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [22], nnU-Net [9], and
MedSAM [12].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
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metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 2.

Table 2. Development environments and requirements.

System vision Ubuntu 18.04.5 LTS
CPU Intel(R) Xeon(R) Gold 6248 CPU@2.50GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) One NVIDIA V100 32G
CUDA version 11.0
Programming language Python 3.10.8
Deep learning framework torch 2.0.0, torchvision 0.15.1
Specific dependencies nnU-Net 2.1.1
Code https://github.com/lihe-CV/HiLab_FLARE23

Training protocols The training protocols of Stum and S are shown in Ta-
ble 3 and 4 respectively. During the training process, we dynamically adopt
elastic deformation, rotation, random cropping, Gaussian noise transformation,
Gamma transformation, contrast transformation, morphological transformation
and other data enhancement strategies. In addition, we applied mirror test time
data augmentation during inference.

4 Results and discussion

4.1 Quantitative results on validation set

Quantitative result is illustrated in Table 5, it can be observed that the two-stage
framework can achieve very promising segmentation results for large regional
organs, such as liver, spleen, kidney, stomach, etc. However, the segmentation
of small and structurally complex organs such as the duodenum, esophagus,
and adrenal glands remains challenging in comparison. Moreover, the strong
uncertainty in tumor shapes, sizes, and locations in the pan-cancer segmentation
task added to the FLARE23 challenge makes the segmentation task extremely
challenging. Indeed, there is a problem of missing in the segmentation results,
particularly for small tumors, where the segmentation model fails to predict their
presence.

https://github.com/lihe-CV/HiLab_FLARE23
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Table 3. Training protocols for tumor segmentation model Stum.

Network initialization "He" normal initialization
Batch size 2
Patch size 112×160×160
Total epochs 2000
Step size 1
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy: (1− epoch/2000)0.9

Training time 132.5 hours
Loss function Dice loss and cross entropy loss
Number of model parameters 88.21M
Number of flops 913.4G
CO2eq 41.05 Kg

Table 4. Training protocols for organ and pan-cancer segmentation model S.

Network initialization "He" normal initialization
Batch size 2
Patch size 56×160×192
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy: (1− epoch/1000)0.9

Training time 41.5 hours
Loss function Dice loss and cross entropy loss
Number of model parameters 71.02M
Number of flops 727.76G
CO2eq 35.02 Kg
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Table 5. Quantitative results of validation set in terms of DSC and NSD. (Public
Validation: the performance on the 50 validation cases with ground truth. Online Val-
idation: the leaderboard results. Testing: the performance on the testing cases.)

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 98.43 ± 0.0102 98.91 ± 0.0231 98.30 98.77 96.50 96.79
Right Kidney 93.25 ± 12.12 94.13 ± 11.83 93.47 93.47 93.55 93.14
Spleen 96.52 ± 11.39 96.74 ± 13.23 95.82 96.53 96.42 96.65
Pancreas 85.43 ± 10.89 95.35 ± 10.06 86.84 96.54 91.36 97.30
Aorta 97.45 ± 1.82 99.41 ± 2.55 97.68 99.29 97.58 98.91
Inferior vena cava 93.02 ± 7.29 92.66 ± 6.91 93.21 93.87 93.60 95.05
Right adrenal gland 88.94 ± 9.21 97.88 ± 10.23 89.09 97.89 87.95 95.99
Left adrenal gland 87.89 ± 9.63 96.17 ± 8.31 87.58 95.61 89.58 96.68
Gallbladder 88.95 ± 20.48 90.79 ± 21.38 89.79 90.54 85.40 87.20
Esophagus 84.22 ± 10.06 93.76 ± 10.18 84.19 93.30 89.24 96.28
Stomach 95.01 ± 3.71 97.90 ± 6.65 94.66 97.18 94.84 96.65
Duodenum 83.74 ± 10.01 94.98 ± 8.24 84.53 95.21 88.82 96.32
Left kidney 94.81 ± 12.69 93.31 ± 12.80 94.44 93.60 92.89 92.48
Tumor 43.86 ± 25.98 33.27 ± 23.56 43.47 33.81 54.99 42.45
Average(Organ) 91.62 ± 9.73 95.38 ± 14.70 91.51 95.52 92.17 95.44

Then, Table 6 and Table 7 showed the Dice and NSD metrics calculated
on the validation set. Evidently, compared with models trained using labeled
data with only partial organ segmentation annotations, training the model using
the Label Fusion strategy can significantly improve segmentation performance.
Moreover, the introduction of self-supervised pretraining strategy has signifi-
cantly improved the performance of the two-stage framework on tumor classes,
as evidenced by the achieved Dice Similarity Coefficient (DSC) of 43.47%.

Table 6. Ablation study of Dice(%) metrics on validation set. (BaseLine: Training
nnU-Net with labeled images only. LF: Label Fusion. SP: Self-supervised Pre-training.)

Methods Liver RK Spleen Pancreas Aorta IVC RAG LAG
Baseline 97.58 92.71 94.96 85.94 97.01 91.29 82.32 83.69
Baseline+LF 98.46 95.98 97.10 86.72 97.51 93.34 88.46 88.77
Baseline+LF+SP 98.30 93.47 95.82 86.84 97.68 93.21 89.09 87.58
Methods GBD EPG Stomach Duodenum LK Average Tumor
Baseline 85.11 85.69 91.24 80.65 93.29 89.38 33.06
Baseline+LF 88.34 84.35 94.35 84.64 95.22 91.68 37.52
Baseline+LF+SP 89.79 84.19 94.66 84.53 94.44 91.51 43.47

Finally, we quantitatively evaluated the segmentation efficiency of the model,
as shown in Table 8. It can be found that the three evaluation metrics show an
increasing trend as the input instances grow larger. Although the inference time
is mostly within 60 seconds, the proportion of inference times below 15 seconds
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Table 7. Ablation study of NSD(%) metrics on validation set. (BaseLine: Training
nnU-Net with labeled images only. LF: Label Fusion. SP: Self-supervised Pre-training.)

Methods Liver RK Spleen Pancreas Aorta IVC RAG LAG
Baseline 97.83 92.12 96.12 95.24 98.35 91.67 92.29 92.41
Baseline+LF 99.05 96.16 98.25 96.46 99.25 94.01 97.69 96.85
Baseline+LF+SP 98.77 93.47 96.53 96.54 99.29 93.87 97.89 95.61
Methods GBD EPG Stomach Duodenum LK Average Tumor
Baseline 85.74 92.98 94.62 91.33 92.01 93.91 22.07
Baseline+LF 89.84 93.55 96.92 95.33 95.08 96.07 28.52
Baseline+LF+SP 90.54 93.30 97.18 95.21 93.60 95.52 33.81

is relatively low. Therefore, further optimization is needed in terms of model
inference efficiency to strive for achieving clinical usability standards.

Table 8. Quantitative evaluation of segmentation efficiency in terms of the running
them and GPU memory consumption.(Total GPU: the area under GPU Memory-Time
curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).)

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 8.47 4266 17433
0051 (512, 512, 100) 11.12 5290 34759
0017 (512, 512, 150) 20.29 5526 70528
0019 (512, 512, 215) 23.62 4722 64923
0099 (512, 512, 334) 30.20 5282 96292
0063 (512, 512, 448) 42.10 5506 144037
0048 (512, 512, 499) 49.15 5420 150701
0029 (512, 512, 554) 97.21 6142 247289

4.2 Qualitative results on validation set

Figure 3 displays the qualitative results on the validation set. The first and
second rows depict relatively easy segmentation cases, while the third and fourth
rows showcase challenging segmentation cases. It can be observed that in the first
and second rows, the organ boundaries are clear, there is good contrast, and there
are no complex tumor lesions within the organs. Compared with well-segmented
instances, challenging instances often have complex tumor lesions (row 3) and
noise (row 4), which bring difficulties to accurate segmentation of organs and
pan-cancer.

4.3 Segmentation efficiency results on validation set

We combine efficient inference schemes to build nnU-Net [9] as the final submit-
ted Docker image. The average running time per instance during the inference
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Fig. 3. Qualitative evaluation of model performance on validation set. Row 1 and 2:
Well-segmented examples. Row 3 and 4: challenging examples.

phase is 85.4 seconds, and average used GPU memory is 2352 MB. The area
under the GPU memory-time curve is 246157.2 MB, and the area under CPU
utilization-time curve is 2973.

4.4 Results on final testing set

Table 5 show the detailed evaluation metrics of our method in the final test-
ing set. It can be observed that the two-stage framework achieved average DSC
scores of 92.17% for organs and 54.99% for lesions, along with NSD scores averag-
ing 95.44% for organs and 42.45% for lesions. Additionally, the average running
time was 95.83 seconds, and the area under the GPU memory-time curve was
227770 MB.

4.5 Limitation and future work

While ensuring accuracy, we can explore the use of the following advanced pro-
cessing strategies to speed up inference and reduce resource consumption:

– Model Pruning. Identify and remove redundant or less important model pa-
rameters, reducing the model size and improving inference speed without
significant loss in accuracy.

– Model Quantization. Convert the model from floating-point precision to
lower-precision fixed-point representation, reducing memory usage and im-
proving inference speed.

– Filter Data Augmentation. Select specific data enhancement strategies based
on organ and tumor characteristics to prevent redundancy.



12 H. Li et al.

5 Conclusion

In this work, we propose a two-stage training framework that combines self-
supervised and semi-supervised learning to efficiently perform training and in-
ference on organ and pan-cancer segmentation tasks. Experiments show that
our method achieves good segmentation performance. In the future, we hope to
optimize the model framework to further improve the segmentation accuracy of
difficult tumor samples, improve inference speed and reduce resource consump-
tion.
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Table 9. Checklist Table. Please fill out this checklist table in the answer column.
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A meaningful title Yes
The number of authors (≤6) 3
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Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided 1
Pre-processing 3
Strategies to use the partial label 5
Strategies to use the unlabeled images. 4
Strategies to improve model inference 5
Post-processing 6
Dataset and evaluation metric section is presented 6
Environment setting table is provided 7
Training protocol table is provided 7
Ablation study 9
Efficiency evaluation results are provided 10
Visualized segmentation example is provided 11
Limitation and future work are presented Yes
Reference format is consistent. Yes


