
Beyond data subsampling: differentiation as an uncertainty source in equation discovery

Maria Khilchuk

AI Institute

ITMO University

Saint-Petersburg, Russia

mdkhilchuk@itmo.ru

Ilya Markov

AI Institute

ITMO University

St. Petersburg, Russia, 197101

iomarkov@itmo.ru

Alexander Hvato

AI Institute

ITMO University

Saint-Petersburg, Russia

alex_hvato@itmo.ru

Abstract

Data-driven discovery of differential equations typically treats numerical differentiation as a fixed preprocessing step. Existing algorithms improve robustness through data and library subsampling but rarely account for variability in the differentiation method itself. We show that this choice introduces a systematic and reproducible source of uncertainty that alters both the structure of the equation and the coefficients. High-resolution schemes amplify noise, while heavily smoothed derivatives suppress meaningful fluctuations, yielding method-dependent results. We evaluate six differentiation techniques across multiple PDEs and noise levels using SINDy and EPDE, finding consistent shifts in the models discovered. These results establish differentiation method selection as a fundamental modeling decision and a new axis to improve ensemble-based equation discovery.

1 Introduction

Four critical components define the framework of any machine learning model: architecture, parameters, features, and the objective function. Similarly, modern approaches to differential equation discovery treat differential equations as machine learning models. This perspective raises key questions about how to assess the quality of the discovered DE and the associated uncertainties, leveraging established evaluation techniques from machine learning and sensitivity analysis (SA). Although uncertainty assessment is important in classical ML, it is particularly vital in differential equation discovery to form ensembles.

Uncertainty can be assessed for each component of either a classical ML model or a differential equation as an ML model:

Architectural uncertainty is typically assessed through techniques such as pruning [1] or ensemble methods [2], which quantify the robustness to structural variations.

Parameter uncertainty is often analyzed via sensitivity analysis. Local SA methods, such as the one-at-a-time (OAT) approach [3], assess the effect of small perturbations in individual inputs and keep others constant. However, these methods capture non-linearities and interactions poorly. In contrast, global SA methods, such as Sobol indices [4], evaluate the impact of variations across the parameter space and account for input interactions.

Feature uncertainty is managed through preprocessing, data augmentation, sampling, feature engineering, and strategies to handle noisy inputs, such as robust normalization techniques [5].

The objective function, although often defined by design, can introduce uncertainties when there is misalignment between the target and the model's capacity [6].

Recent differential equation discovery methods allow us to treat differential equations as machine learning methods. Therefore, we could also find analogs to machine learning components. Every equation discovery method aims to identify the equation structure and terms likely to appear in the governing equation for the data; this structure is closely related to a neural network architecture, as it describes how features and layers are interconnected.

The second step is to identify the parameters. The parameters are the coefficients within the differential equation that frequently correspond to physical properties. They can be referred to as neural network weights (and are essentially coefficients of a specialized type of linear regression).

Advancements in differential equation discovery techniques have refined the assessment of uncertainty for these components. For example, parameter uncertainty has been addressed using ensemble-based approaches, such as E-SINDy [7], which employs term library ensembling to handle parameter robustness. Structural uncertainty has been explored using methods like multi-objective evolutionary optimization combined with Bayesian networks, as demonstrated by [8]. These approaches enable researchers to more accurately quantify structural robustness and align the DE identified with physical phenomena.

Unlike traditional machine learning, the objective function in DE discovery is more constrained. It is often defined as the discrepancy of the equation, evaluated either in a strong form (e.g., term-by-term residuals) or in a weak form (e.g., weak formulations such as wSINDy [9]). Solver-based methods are also employed to minimize discrepancies between observed data and solutions generated by the identified DE, such as physics-informed criterion (PIC) and others.

The critical distinction between differential equation discovery and machine learning lies in the treatment of features. The sole feature in differential equation discovery is based on observational data; it could be a time series or a field (a multidimensional tensor that contains time as one axis). However, to build an equation, we require differentials with respect to every axis up to the given order. Differentials of the input data are not provided in most cases and must therefore be computed numerically. Thus, from a machine learning perspective, the features are engineered within the algorithm.

Noisy measurements pose a challenge to numerical differentiation, leading to errors in derivative estimates. Stable numerical differentiation techniques (for example, finite differences, polynomial interpolation, or methods based on machine learning [10]) have been proposed to address these problems. However, the choice of differentiation method can significantly impact the quality of the discovered DE model. Variations in derivative computation propagate uncertainty into both the estimated parameters and the structure of the resulting differential equation.

Despite progress in addressing parameter and structural uncertainties in DE discovery, the impact of differentiation methods on feature uncertainty remains underexplored. This paper **aims** to systematically assess how differentiation techniques influence the quality of discovered models, with a particular focus on parameter and structural accuracy under varying levels of data uncertainty.

Contribution: - We describe differentiation as a “feature engineering” source of uncertainty in differential equation discovery.
- Experimentally prove the obvious fact that better differentiation quality leads to better discovery, but also the non-obvious fact that different methods should be used for noisy and clean data to achieve better performance.
- We compare several frameworks (SINDy and EPDE) to make the results more reliable.

Limitations Not every differential discovery method allows for easy modification of the differentiation method; for example, this is rarely done in RL-based equation discovery, such as DISCOVER [11].

Data and code will be available on GitHub in case of acceptance on paper.

2 Differential equation discovery background

As noted above, in the context of a differential equation as a machine learning model, we can distinguish the components of such a model: structure/architecture, parameters, features, and objective function.

For differential equations discovery, as input, we have the data placed on a discrete grid $X = \left\{ x^{(i)} = \left(x_1^{(i)}, \dots, x_{\dim}^{(i)} \right) \right\}_{i=1}^{i=N}$, where N is the number of observations and \dim is the dimensionality of the problem. We mention a particular case of time series, for which $\dim = 1$ and $X = \{t_j\}_{j=1}^{j=N}$.

It is also assumed that for each point on the grid, there is an associated set of observations $U = \left\{ u^{(i)} = \left(u_1^{(i)}, \dots, u_L^{(i)} \right) \right\}_{i=1}^{i=N}$ to define a grid map $u : X \subset \mathbb{R}^{\dim} \rightarrow U \subset \mathbb{R}^L$. This grid and observations can be used as input data or features in the machine learning model.

From differential equation theory, we expect u to represent not only a function but also a jet, which is essentially differential up to a given order r in form:

$$J^r = (x_1, \dots, x_{\dim}; u; D_1 u; D_2 u; \dots; D_r u) \quad (1)$$

,where $D_r = \bigcup_{|\alpha|=r} \left\{ \frac{\partial^r u}{\partial x_1^{\alpha_1} \dots \partial x_r^{\alpha_r}} \right\}$ is the set of all partial differentials of order r and $\alpha = \{\alpha_1, \dots, \alpha_{\dim}\}$, $|\alpha| = \sum_{i=1}^{i=\dim} \alpha_i$ is just a differential multi-index. Since we usually have a single observation set u we omit it from the notation $J^r(u)$

Any differential equation of an order r is just a surface in a jet space J^r . Let \mathcal{T} be a set of basis functions (monomials, compositions) acting on J^r . Then $S \subset \mathcal{T}$ represents selected terms, and P is the set of admissible coefficients. It could be a function of independent coordinates or just constants. Then the surface has the following form:

$$M(S, P) = \sum_{s \in S} p_s \cdot s(\bar{J}^r) = 0 \quad (2)$$

Having an analytical jet is the best possible case for the discovery of *differential equations*. We look for the surface within the jet space, nothing more. The real-case scenario significantly differs from the ideal "continuous" case, namely: (a) in most cases the jets are restored just from observation data U with numerical differentiation, (b) we cannot look for any surface, we restrict the surface search space, and (c) if we want to find a "governing" law, we need to go beyond simple symbolic regression: the equation may not have unique solution, we may overlook some terms, terms presented in theoretical equation could have small magnitude and appear as numerical noise. In general, we require one to assess the uncertainty in both the structure and the coefficients. In most cases, it is done using ensembles.

(a) On jets and numerical differentiation Returning to the discrete setup, we have an approximate jet $\bar{J}^r = \{(x^{(i)}, u^{(i)}, D_h u^{(i)}, \dots, (D_h)^r u^{(i)})\}_{i=1}^{i=N}$ with D_h denoting an arbitrary numerical differentiation operator. Here is much uncertainty. Generally, we do not know how the discrete observation set $U = \{u^{(i)}\}_{i=1}^{i=N}$ is connected with a true function u . For the selected numerical differentiation method D_h , we usually only know the order of approximation for a first-order differential, and we apply it several times to have higher-order differentials without any guarantee of higher-order differential approximation.

We expect that if the differentiation method is correct, then in a point-wise manner $\bar{J}^r \xrightarrow{N \rightarrow +\infty} J^r$. There is an ambiguity. In a real-world scenario, we cannot obtain more observational data. From the other side, for a finite computation starting from a certain number of points, the process becomes ill-posed. We discuss how to approach assessing it below.

(b) Equation discovery problem statement Let us assume that the discrete jet \bar{J}^r is already computed for the observation data U . Therefore, we can treat items in \bar{J}^r as symbols and formulate a symbolic regression problem.

As stated above, we have to find an explicit surface (2). Any machine learning requires restricting the search space to a finite one. As the first step, we define the loss function $L(M(S, P))$ and formulate the optimization problem.

$$S^*, P^* = \underset{S \in \Sigma, P \in \Pi}{\operatorname{argmin}} L(M(S, P)) \quad (3)$$

The methods of equation discovery differ in the way they determine $L(\cdot)$, the parameterization of the model $M(S, P)$, and the set of restrictions of the structure Σ , as well as the set of parameters Π . The structure and parameters are analogous to those of a machine learning algorithm's model architecture. Unlike machine learning Σ and Π in differential equation discovery, the optimization algorithm determines the results. Below, we briefly outline the main groups of methods.

In equation discovery, in the first place, we care about how Σ is built. As a classical algorithm in the area, we consider another algorithm, Sparse Identification of Nonlinear Dynamics (SINDy) [12].

For the SINDy case, we manually determine the longest sentence Σ_{long} possible and fix it. The optimization is performed only by P , which is essentially a vector of the numerical coefficients near each word of Σ_{long} . We need to make P as sparse as possible, which is done with classical LASSO regression. In SINDy, we compute the loss function by using the discrepancy over the discrete grid.

$$P^* = \underset{P \in \Pi}{\operatorname{argmin}} \|M(\Sigma_{\text{long}}, P)\|_2 + \alpha \|P\|_1 \quad (4)$$

In (4) we denote by $\|\cdot\|_2$ the mean discrepancy in the computation grid X and by $\|\cdot\|_1$ is the l_1 norm. Since SINDy usually works with constant coefficients, we could use the l_1 norm to determine the sparsity of the set of parameters P . In some sense, it is a measure of the complexity of the surface in terms of the number of symbols needed to describe it.

Evolutionary approaches and reinforcement learning have their own rules to construct S for a model. Every equation S_i appearing within the optimization process is evaluated using the SINDy approach (4) with discrepancy or, as is done in EPDE, by constructing the Pareto frontier over the discrepancy and complexity criteria. Both discrepancy computation and Pareto frontier forming are done as part of the fitness function computation or to form a reward for the reinforcement learning agent.

There are also more robust measures. For a given surface $M(S, P)$, we try to restore the continuous function u that exactly generates the surface and then compare it with observations U . It, of course, requires the solution of the equation. We note that in this case, we do not need to consider jets J^r ; instead, we begin working with the fibers u and no longer need to consider the differentials D_r . In that case, all surfaces are single-connected, i.e., the solution of the equation is unique, which is, of course, a limitation, but it is more robust than a discrepancy measure.

There are also some intermediate cases, such as PIC. Here we spatially handle jets, but temporally restore continuous paths. It could be considered as jet factorization and partial fiber projection.

Ultimately, after optimization of equation (3), we obtain a single symbolic expression that represents a relation found in the discrete jet J^r . We need to assess sensitivity to the data subsampling method, noise, and differentiation.

(c) Ensemble sensitivity analysis To assess sensitivity and pick stable appearing equations, we need to form ensembles. To briefly mention, E-SINDy is the first algorithm for the equation discovery method [7] that addresses this problem. We also have different ensembling methods [8].

Unlike what is usually stated in the literature, we do not need to have a single stable equation, but an ensemble that has a common part "in mean". Additionally, we typically consider the sensitivity and optimization stability of data subsampling. However, the sensitivity of the differentiation method, although it is an important part as shown above, is usually omitted.

3 Data differentiation problem statement and proposed methods

As seen above, the problem of using derivatives as features and overall differentiation methods is rarely mentioned in equation discovery. The differentials are used as symbols to form a discrete jet. Strictly speaking, discrete jets differ greatly based on the differentiation method used.

In particular, differentials here are considered handcrafted features within symbolic regression from a machine learning perspective. We are interested in the contribution the differentiation algorithm

makes to equation discovery and the importance of the differentiation error. The ad hoc solution is that the error should not be too large for most problem statements.

To illustrate the problem, let us consider a straightforward numerical differentiation problem statement. The input to any equation discovery algorithm typically consists of noisy measurements. Denoting the true (noise-free) state by $\bar{u}(t, \mathbf{x})$ and the observed data by

$$u(t, \mathbf{x}) = \bar{u}(t, \mathbf{x}) + \epsilon(t, \mathbf{x}) \quad (5)$$

Typically, one assumes that $\epsilon(t, \mathbf{x})$ arises from additive white Gaussian noise (AWGN). In particular, each measurement is modeled as

$$u(t, \mathbf{x}) \sim \mathcal{N}(\bar{u}(t, \mathbf{x}), \sigma^2(t, \mathbf{x})), \quad \sigma(t, \mathbf{x}) = \kappa |\bar{u}(t, \mathbf{x})| \quad (6)$$

for some proportionality constant κ . Let us consider the simplest case of the central difference differentiation of a single-variable function:

$$u'(x) \approx \frac{u(x+h) - u(x-h)}{2h} \quad (7)$$

Substituting into the central difference noised data (5) yields

$$\begin{aligned} \tilde{u}'(x) &= \frac{[u(x+h) + \epsilon(x+h)] - [u(x-h) + \epsilon(x-h)]}{2h} = \\ &= \underbrace{\frac{u(x+h) - u(x-h)}{2h}}_{\text{(deterministic, truncation part)}} + \underbrace{\frac{\epsilon(x+h) - \epsilon(x-h)}{2h}}_{\eta(x)} \end{aligned} \quad (8)$$

Because $\epsilon(x+h)$ and $\epsilon(x-h)$ are independent Gaussian random variables with variance $\kappa^2 |\bar{u}(t, \mathbf{x})|^2$, it follows that

$$\text{Var}[\eta(x)] = \text{Var}\left[\frac{\epsilon(x+h) - \epsilon(x-h)}{2h}\right] = \frac{2\kappa^2 |\bar{u}(t, \mathbf{x})|^2}{4h^2} = \frac{\kappa^2 |\bar{u}(t, \mathbf{x})|^2}{2h^2}, \quad (9)$$

hence, the noise-induced standard deviation in the derivative estimate scales like $\kappa |u(x)| / (\sqrt{2}h)$.

On the other hand, a standard Taylor remainder analysis shows that the deterministic error (truncation) of the central difference approximation is $\mathcal{O}(h^2)$. Denoting by k the constant that bounds the second derivative term in the remainder, one may write:

$$E_{\text{trunc}}(h) \approx k h^2, \quad E_{\text{noise}}(h) \approx \frac{\kappa |u(x)|}{\sqrt{2}h}. \quad (10)$$

Therefore, the total error in the central-difference derivative for noisy data can be viewed as

$$E_{\text{total}}(h) \sim k h^2 + \frac{\kappa |u(x)|}{\sqrt{2}h}. \quad (11)$$

Minimizing $E_{\text{total}}(h)$ with respect to h yields an optimal grid spacing and the corresponding minimal error scales as

$$h^* = \left(\frac{c}{2k}\right)^{1/3}, \quad c = \frac{\kappa |u(x)|}{\sqrt{2}}, \quad E_{\text{min}} \sim c^{2/3} k^{1/3} (2^{-2/3} + 2^{1/3}). \quad (12)$$

Thus, although reducing h decreases the truncation error, it amplifies the noise. It implies that an intermediate (non-zero) h^* balances both contributions. In symbolic regression, where derivatives are

treated as features, choosing h too small will cause the noise amplification term to dominate, leading to spurious high-frequency artifacts. Choosing h too large will smear genuine gradients and obscure critical dynamics. The differentiation algorithm should be correct to draw a general conclusion for noisy data, but increasing differentiation precision may lead to worse results.

For a general differential equation discovery algorithm, we have only a fixed differentiation method as a hyperparameter and a fixed grid, but the equation is not fixed. So, in some sense, we could only manipulate k from the above equations. We could only assess the variance of the discrepancy distribution for a known equation- " answer ". However, we do not have any guarantees that none of the other equations could eventually achieve a lower discrepancy.

The discrepancy measure is used as the optimization criterion in most equation discovery methods. Since the discrepancy is averaged over the whole grid, we already use the weak form. However, as shown in the paper, the differentiation algorithm and error play a significant role in this process.

4 Experiments

We will conduct complex numerical experiments to investigate the influence of the above differentiation methods in DE discovery. DE discovery will be carried out using sparse regression [12] and an evolutionary approach [13].

All experiments were carried out using six differentiation methods in total, which are referred to as **Gradient**, **Adaptive**, **Polynomial**, **Spectral**, and **Total_var**. The detailed description of the methods used is in Appendix A. For the particular algorithms' parameters and realization, please refer to the code.

4.1 Experimental setup

Second-order ODE and several types of partial differential equations were chosen, each with different solutions: analytical (KdV), numerical (Burgers, wave, Laplace). Additionally, we use a data-driven model of ocean behavior [14] where the exact equation is not known a priori (referred to as `pyqc` below).

The workflow includes selecting and generating data; as noted earlier, it is either obtaining an analytical solution in the form of a matrix of values or finding a solution matrix using numerical methods, setting boundary and initial conditions, where necessary, and choosing constants. After that, all the data obtained are differentiated by the described methods, while the derivatives sought are those that, as is known in advance, occur in the equation. These may be derivatives of the form $\frac{\partial u(t, \mathbf{x})}{\partial x}$, $\frac{\partial u(t, \mathbf{x})}{\partial t}$, $\frac{\partial^2 u(t, \mathbf{x})}{\partial x^2}$, etc.

Then, an evolutionary algorithm is applied using the EPDE framework. Data were loaded with the grid and all derivatives, and then we chose a multi-objective mode. The population size is 7 for all equations, and the number of training epochs ranges from 30 to 80, depending on the equation's complexity; the maximum number of terms in each equation is 8. This is done to obtain greater variability in the equations. Then, the algorithm is run; one run yields approximately 5-7 equations per the Pareto frontier. We perform only 50 runs for each equation to minimize variation in the data and more accurately estimate the average approximation for all coefficients.

For each data set, a series of experiments was conducted, resulting in box plots (refer to the appendices) that show the distribution of coefficients preceding the correct terms. The difference between the obtained equations and the true ones was also analyzed using the Structural Hamming Distance (SHD) metric.

For each experiment, noise was added to the data as (6), with $\kappa = \{0, 0.5, 1\}\%$, which is referred to as `noise`. However, we provide results for noise = 1 for the particular equations. Other cases are discussed in the corresponding section.

5 Results

Ordinary differential equation As a simple example, we consider a second-order ODE in the form $mu'' + qu' + ku = 0$ with parameters $m = 1$, $q = 0.25$, $k = 3$, and initial conditions

$u(0) = 1, u'(0) = 0$. The detailed experimental results are placed in Appendix B with a further discussion in Section 6.

Korteweg – de Vries equation The Korteweg-de Vries equation is a partial differential equation $u_t' + u''_{xxx} + 6uu_x' = 0$, which is one of the few that has analytical one-soliton and two-soliton solutions.

We will study its single-soliton solution, presented in the following form $u(x, t) = \frac{2(k^2)}{ch^2(-k(x-4(k^2)t))}$, where $k = 0.7$ is the constant that determines the velocity of the soliton $4k^2$ and the amplitude $2k^2$. The detailed experimental results are placed in Appendix C with a further discussion in Section 6.

Burger's equation $u_t' + uu_x' = vu_{xx}''$, where $v = 0.05$ is the diffusion coefficient.

The solution was obtained using an implicit numerical scheme for the diffusion term and an explicit numerical scheme for the convective term. An initial condition was set, and the right and left boundaries were fixed at zero. The detailed experimental results are placed in Appendix D with a further discussion in Section 6.

Wave equation $u_{xx}'' = c^2 u_{tt}''$, where $c = 0.25$ is the propagation speed of the wave. The initial conditions were set as a sinusoidal function, and the boundary conditions were fixed at zero. The finite difference method was then used to solve the problem. The detailed experimental results are placed in Appendix E with a further discussion in Section 6.

Laplace equation $u_{xx}'' + u_{yy}'' = 0$. The Dirichlet boundary conditions were set, and the problem was solved using the finite difference method. The detailed experimental results are placed in Appendix F with a further discussion in Section 6.

Quasigeostrophic potential vorticity Original data were obtained using the pyqg framework¹ for quasi-geostrophic modeling. The maximum number of terms was extended to 15 to capture complex dynamics. Since the exact governing equations are unknown, we evaluate the discovered equations by comparing the discrepancy between the original data and numerical solutions from a Physics-Informed Neural Networks (PINNs) solver. PINNs are necessary due to the high non-linearity that renders conventional FEM inadequate. The general form of the governing equation is $\mathbf{V}_g \cdot \nabla q = 0$, where \mathbf{V}_g represents geostrophic velocity and q denotes potential vorticity.

The equations presented were derived using Savitzky-Golay (SG) filtering and spectral domain differentiation methods, respectively, as alternative approaches failed to capture the eddy-driven structure of the derivatives, resulting in suboptimal preprocessing. The solutions to these equations similarly exhibit a lack of regions with pronounced eddy behavior, which may indicate a tendency toward identifying broader-scale features in the data. Visual representations of the original data, numerical solutions, and error maps are provided in Appendix G.

These results demonstrate that, in real-world cases, we cannot consistently achieve results for unknown equations and that we require ensembles that include both data subsampling and differentiation uncertainty.

6 Discussion

Our experiments reveal a counterintuitive reality: numerically precise differentiation is not a remedy for equation discovery. As shown in Tab. 1, methods such as Spectral achieve a minimal differentiation error (e.g., $9.988 \cdot 10^{-6}$ at 0% noise), but produce poor structural precision (SHD = 4 ± 0.13). In contrast, despite the high differentiation error (1.963 for 1% noise level), Polynomial consistently delivers superior structural recovery (SHD = 3 ± 0.13). This paradox arises because noise amplification from high-precision methods introduces misleading high-frequency artifacts. As we illustrate in a concrete example (see (11)), optimal discovery requires strategic smoothing rather than maximal precision within a single algorithm run.

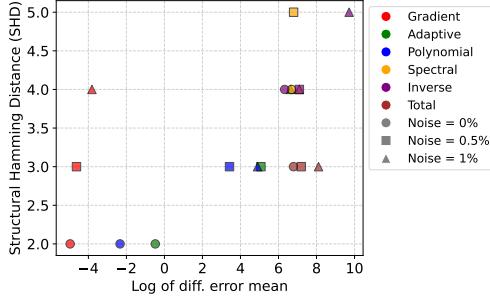
To illustrate the general dependencies, we plot the SHD and error values for different methods on a scatter plot, as shown in Fig. 1.

¹<http://github.com/pyqg/pyqg>

Table 1: Differentiation Method Performance Analysis

	Noise Level	D1/D2/D3 error	Coeff. Error (Mean \pm SD)	SHD (Mean \pm SD)	Key Insight
Gradient	0%	0.0002/0.00027/0.00050	0.7309 ± 0.0515	2 ± 0.0782	Precise but noisy; good for clean data
	0.5%	0.0017/0.0024/0.0170	0.9179 ± 0.0683	3 ± 0.1153	Noise amplifies rapidly
	1%	0.0065/0.0036/0.0502	1.0068 ± 0.2449	4 ± 0.1482	Avoid for noisy PDEs
	0%	0.0016/0.2023/0.0121	0.7309 ± 0.0515	2 ± 0.0823	Precise but noisy; good for clean data
	0.5%	0.0025/0.2079/0.0221	0.9179 ± 0.0683	3 ± 0.0723	Noise amplifies rapidly
	1%	0.0341/0.6116/0.0432	1.0068 ± 0.2449	4 ± 0.0971	Avoid for noisy PDEs
	0%	0.0193/0.3344/0.0350	0.8971 ± 0.0517	2 ± 0.1300	Low SHD despite high diff. error
	0.5%	0.0236/0.6421/0.0366	0.9611 ± 0.0390	3 ± 0.1260	Robust structure recovery
	1%	0.0302/1.9630/0.0390	0.9148 ± 0.1551	3 ± 0.1323	Best SHD-noise tradeoff
	0%	0.0683/11.7856/14.1910	1.1074 ± 0.0461	4 ± 0.1309	High precision, poor SHD
Polynomial	0.5%	0.0716/13.0997/14.1966	1.1737 ± 0.0462	5 ± 0.1558	Boundary artifacts dominate
	1%	0.0800/17.8008/14.2271	1.1924 ± 0.0466	4 ± 0.1498	Unreliable under noise
	0%	1.5583/52.5442/0.4601	1.0482 ± 0.0518	4 ± 0.1929	Moderate SHD, high coeff. variance
	0.5%	1.5655/71.5591/0.4617	1.2806 ± 0.0656	4 ± 0.1763	Worst coeff. error at low noise
	1%	1.5676/76.2041/0.4931	1.3120 ± 0.0816	5 ± 0.1537	Avoid for high-order terms
	0%	1.6218/52.9117/0.3273	1.0482 ± 0.0518	3 ± 0.1055	Smoothing improves structural recovery
	0.5%	1.6292/54.4074/0.3275	1.2806 ± 0.0656	3 ± 0.1049	Consistent performance across noise levels
	1%	1.6296/58.7889/0.3275	1.3120 ± 0.0816	3 ± 0.1065	Good structure despite high error
	0%				
	0.5%				
	1%				
	Total				
	Sur				

Comparison of differentiation methods by mean error and SHD for different noise levels on boundaries



Comparison of differentiation methods by mean error and SHD for different noise levels without boundaries

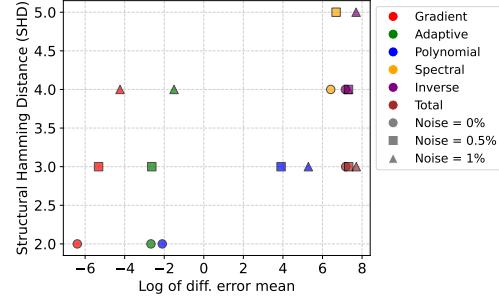


Figure 1: Comparison of differentiation methods by mean differentiation error and SHD for different noise levels on boundaries (left) and without boundaries (right)

7 Conclusion

The paper considers another aspect of differential equation discovery as a machine learning method. The error of the differentiation algorithm, as the "feature engineering" method plays a role in the general uncertainty, is often left out of the scope.

The main results are as follows.

- The differentiation is an important part of every differential equation discovery method
- The differentiation is a reliable uncertainty source and may be used in ensembles to get the models on a different process scale
- Absolute value of differentiation error is less important – very precise methods give poor discovery results in some cases
- Significant differentiation error is allowed in the derivative, and in some cases, it is necessary to accept it to work with noisy data

We also note that the conclusion remains the same regardless of the method used, whether it is LASSO regression-based SINDy or evolutionary EPDE.

Acknowledgments and Disclosure of Funding

This work supported by the Ministry of Economic Development of the Russian Federation (IGK 000000C313925P4C0002), agreement No139-15-2025-010.

References

- [1] Blalock, D., J. J. Gonzalez Ortiz, J. Frankle, et al. What is the state of neural network pruning? *Proceedings of machine learning and systems*, 2:129–146, 2020.
- [2] Lakshminarayanan, B., A. Pritzel, C. Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. *Advances in neural information processing systems*, 30, 2017.
- [3] Hamby, D. M. A review of techniques for parameter sensitivity analysis of environmental models. *Environmental monitoring and assessment*, 32:135–154, 1994.
- [4] Sobol, I. Sensitivity estimates for nonlinear mathematical models. *Math. Model. Comput. Exp.*, 1:407, 1993.
- [5] Werner de Vargas, V., J. A. Schneider Aranda, R. dos Santos Costa, et al. Imbalanced data preprocessing techniques for machine learning: a systematic mapping study. *Knowledge and Information Systems*, 65(1):31–57, 2023.
- [6] Gonzalez, S., R. Miikkulainen. Improved training speed, accuracy, and data utilization through loss function optimization. In *2020 IEEE congress on evolutionary computation (CEC)*, pages 1–8. IEEE, 2020.
- [7] Fasel, U., J. N. Kutz, B. W. Brunton, et al. Ensemble-sindy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control. *Proceedings of the Royal Society A*, 478(2260):20210904, 2022.
- [8] Hvatov, A., R. Titov. Towards true discovery of the differential equations. *arXiv preprint arXiv:2308.04901*, 2023.
- [9] Messenger, D. A., D. M. Bortz. Weak sindy: Galerkin-based data-driven model selection. *Multiscale Modeling & Simulation*, 19(3):1474–1497, 2021.
- [10] Chartrand, R. Numerical differentiation of noisy, nonsmooth data. *International Scholarly Research Notices*, 2011, 2011.
- [11] Du, M., Y. Chen, D. Zhang. Discover: Deep identification of symbolically concise open-form partial differential equations via enhanced reinforcement learning. *Physical Review Research*, 6(1):013182, 2024.
- [12] Brunton, S. L., J. L. Proctor, J. N. Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. *Proceedings of the national academy of sciences*, 113(15):3932–3937, 2016.
- [13] Maslyaev, M., A. Hvatov, A. V. Kalyuzhnaya. Partial differential equations discovery with epde framework: Application for real and synthetic data. *Journal of Computational Science*, 53:101345, 2021.
- [14] Ross, A., Z. Li, P. Perezhigin, et al. Benchmarking of machine learning ocean subgrid parameterizations in an idealized model. *Journal of Advances in Modeling Earth Systems*, 15(1), 2023.
- [15] Rahaman, N., A. Baratin, D. Arpit, et al. On the spectral bias of neural networks. In *International Conference on Machine Learning*, pages 5301–5310. PMLR, 2019.
- [16] Savitzky, A., M. J. Golay. Smoothing and differentiation of data by simplified least squares procedures. *Analytical chemistry*, 36(8):1627–1639, 1964.
- [17] Johnson, S. G. Notes on fft-based differentiation. *MIT Applied Mathematics, Tech. Rep.*, 2011.
- [18] Chartrand, R. Numerical differentiation of noisy, nonsmooth, multidimensional data. In *2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP)*, pages 244–248. IEEE, 2017.
- [19] Schmid, M., D. Rath, U. Diebold. Why and how savitzky–golay filters should be replaced. *ACS Measurement Science Au*, 2(2):185–196, 2022.
- [20] Rudin, L. I., S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms. *Physica D: nonlinear phenomena*, 60(1-4):259–268, 1992.

A Differentiation approach formulation

All experiments were carried out using six differentiation methods in total: Gradient - forward finite difference method, second order; Adaptive - numerical derivatives of dense neural network outputs; Polynomial - Savitzky-Golay filtering with interpolating polynomial; Spectral - spectral domain differentiation; Total_var - total variation regularization; Inverse - dense neural network with loss containing the inverse operator to differentiation.

- **Filtering-based approaches:** One of the approaches considered in this work involves approximating the input data with the fully connected artificial neural network (ANN). One of the valuable properties of the artificial neural network is that the low-frequency signal in the data is learned first, while further training approximates the high-frequency components [15]. Thus, by training an ANN representation of the process, we can obtain its low-frequency approximation, which can be further differentiated with a decreased noise component. Moreover, training ANN to represent the process allow us to obtain derivatives via automatic differentiation method.
- Savitzky-Golay (SG) filtering, developed in [16], is a commonly used approach to signal or data filtering, coupled with an opportunity to compute derivatives, involves a least squares-based local fitting of the polynomials to represent the data. For each grid node, the data in its proximity is used to construct a polynomial that can be analytically differentiated.
- **Spectral domain differentiation:** Although the process of differentiation in the spatial domain can be complicated for the data described with an arbitrary function, in the Fourier domain, the derivatives can be estimated on a term-to-term basis [17]. The discrete Fourier transform (DFT) is the basis of our implementation of spectral domain differentiation. In the spectral domain, integration and differentiation can be maintained by multiplication of series terms with an appropriate exponential. This leads to low computational costs, especially if the data are located on a uniform grid, thus allowing the use of the Fast Fourier Transform instead of DFT. The Butterworth filter does the signal filtering, which can preserve the signals with frequencies lower than the cutoff frequency while dampening the high-frequency ones.
- **Total variation regularization:** Variational principles provide an alternative method that incorporates inverse problem solution with the regularization of the gradient variation or its higher-order analogs (e.g., Hessian). One of the main advances in this field was made in [10, 18].

A.1 Savitzky-Golay filtering

Savitzky-Golay (SG) filtering, developed in [16], is a commonly used approach to signal or data filtering, coupled with an opportunity to compute derivatives, involves a least squares-based local fitting of the polynomials to represent the data. To the set of data samples along an axis, we introduce the window of (commonly, odd) length $N = 2M + 1$, allowing the construction of series of polynomials $P_0(x), P_1(x), \dots$ up to (even) order $n, n < N$ to approximate the data in the interior of our domain. With the selection of appropriate window size, from which the function values are used for the approximation, and polynomial order, the overdetermined system is constructed. Its solution provides the polynomial coefficients that represent the smoothed signal, without oscillations, caused by the random error. Even though the boundaries of length M can be processed in a separate way, with the finite-difference schema or by a shifted approximation, the quality of results tend to decrease, thus for the equation discovery only the domain interior shall be used.

During the calculation of the partial derivative u'_j for the sample $u(x_i)$, matching the x_i grid node along the j -th axis, we select samples $\mathbf{u}_i = (u_{i-M}, u_{i-M+1}, \dots, u_i, \dots, u_{i+M})$ in the aforementioned window. Using the corresponding coordinates $\mathbf{y}_i = (x_{i-M}, \dots, x_i, \dots, x_{i+M})$, we introduce the least-square problem of detecting coefficient vector $\alpha = (\alpha_0, \dots, \alpha_{n-1})$ for the series P_0, \dots, P_{n-1} . The representation of data samples is as follows:

$$u_i = \sum_{k=0}^{n-1} \alpha_k P_k(x_i). \quad (13)$$

$$\alpha = \arg \min_{\alpha'} |\mathbf{u}_i - P\mathbf{y}_i|, \quad (14)$$

where matrix P contains values of the polynomials in the grid nodes.

In our case, we utilize orthogonal Chebyshev polynomials of the first kind, where by C_m^{2k} we denote the number of combination of $2k$ elements from the set of cardinality m :

$$T_m(x) = \sum_{k=0}^{\lfloor m/2 \rfloor} C_m^{2k} (x^2 - 1)^k x^{m-2k} \quad (15)$$

Having a series of Chebyshev polynomials with calculated coefficients, differentiation can be held analytically. Using the representation of data as series in 13, we get the derivative as $u'_i = \sum_{k=0}^{n-1} \alpha_k U_k(x_i)$, where U_k is a Chebyshev polynomial of the second kind.

$$U_m(x) = \sum_{k=0}^{\lfloor m/2 \rfloor} C_{m+1}^{2k+1} (x^2 - 1)^k x^{m-2k} \quad (16)$$

Although the provided approach is capable of filtering the data and stably calculating the derivatives, work [19] suggests that modification of Savitzky-Golay filtering by adding fitting weights or by implementing other filters, such as Whittaker-Henderson filter, can lead to better results in noise suppression.

A.2 Spectral domain differentiation

Although the process of differentiation in the spatial domain can be complicated for the data, described with an arbitrary function, in the Fourier domain the derivatives can be estimated in term-to-term basis [17]. In general, the series of the derivatives, taken on a term-to-term basis may not converge. However, if we assume that the data represents continuous piecewise smooth function that has piecewise differentiable derivatives, the data can be differentiated term-to-term.

A discrete Fourier transform (DFT) is the basis for our implementation of spectral domain differentiation. Let us examine a case of one-dimensional data, even though the algorithm can operate on multi-dimensional data, with the canonical discrete Fourier transform algorithm replaced by n-dimensional DFT. In data-driven equation discovery problems, one-dimensional data $u(t)$ is viewed from the point of view of samples $u_n = u(nT/N)$, $n = 0, 1, \dots, N - 1$, where T is the length of time interval and N - the number of samples, and the corresponding coordinates will be $t_n = nT/N$, $n = 0, 1, \dots, N - 1$. The Fourier coefficients are denoted as \hat{u}_k , and they are calculated as:

$$\hat{u}_k = \frac{1}{N} \sum_{n=0}^{N-1} u_n \exp(-2\pi i \frac{nk}{N}). \quad (17)$$

In many cases, the data are provided on the regular (even multi-dimensional) grid, thus to improve the algorithm performance a fast Fourier transform can be used. Due to the lower computational complexity, the increase in performance is substantial. The process of data reconstruction, using the obtained Fourier coefficients, is held with an inverse discrete Fourier transform:

$$u_n = \sum_{k=0}^{N-1} \hat{u}_k \exp(2\pi i \frac{nk}{N}). \quad (18)$$

Full term-by-term differentiation is performed in the Fourier domain, and the derivatives values are computed by the inverse DFT. For example, an expression for the first-order derivative has form, as in Eq. 19.

$$u'(t_k) = \sum_{0 < k < \frac{N-1}{2}} \frac{2\pi i}{T} k \left(\hat{u}_n \exp(2\pi i \frac{nk}{N}) - \hat{u}_{N-k} \exp(-2\pi i \frac{nk}{N}) \right). \quad (19)$$

Filtering with the desired properties can be done with low-pass filters that pass signals with lower frequencies, while dampen the high-frequency ones. Butterworth filter is a representative of such tools, and is flat for the passband (the frequencies that we do not want to penalize). The latter property prevents distortion of the modeled process by introducing factors, close to 1, to the low-frequency Fourier components. The penalizing factor is introduced with the expression eq. 20:

$$G(\omega) = \frac{1}{1 + (\omega/\omega_{cutoff})^{2s}}, \quad (20)$$

where ω is the frequency, ω_{cutoff} is the cutoff frequency, indicating the boundary frequency, from which the damping begins, and s is the filter steepness parameter. The resulting expression is obtained with the introduction of penalizing factors $G(\omega) = G(k/N)$ into the series, representing derivatives:

$$u'(t_k) = \sum_{0 < k < \frac{N-1}{2}} G(k/N) \frac{2\pi i}{T} k \left(\hat{u}_n \exp(2\pi i \frac{nk}{N}) - \hat{u}_{N-k} \exp(-2\pi i \frac{nk}{N}) \right) \quad (21)$$

The derivative of the higher orders can be calculated recursively from the lower order ones with the same filtering-based differentiation procedures, or, preferably, by the further multiplication with the integrating coefficient and IDFT.

A.3 Total variation regularization

Variational principles provide an alternative method that incorporates inverse problem solution with the regularization of the variation of the gradient or its higher order analogues (e.g. Hessian). Rudin-Osher-Fatemi model [20] in its discrete formulation can be represented by the optimization problem of minimizing functional 22.

$$|D(\nabla \cdot u)|_1 + \frac{\mu}{2} |K(\nabla \cdot u) - u|_2^2 \longrightarrow \min_u, \quad (22)$$

where $\nabla \cdot u = (\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x_1}, \dots)$ is the gradient of the data field and K and $D = (D_t, D_{x_1}, D_{x_2}, \dots)$ represent discrete integration operators on differentiation. Regularization of gradient variation is maintained with term $|D(\nabla \cdot u)|_1 = \sum_{\Omega} \sqrt{\sum_{i,j} \frac{\partial^2 u}{\partial x_i \partial x_j}}$.

[10, 18]

Although there are multiple approaches to the solution of the problem, we employ an approach, proposed in articles [10, 18], that is designed for a function of one variable. While this approach can be generalized to the problems of higher dimensionality, the computational costs associated with the optimization limit the method's applicability to large datasets. To perform the functional optimization required in Eq. 22, the corresponding Euler-Lagrange equation has to be formed and solved.

B ODE equation coefficients and Structural Hamming Distances

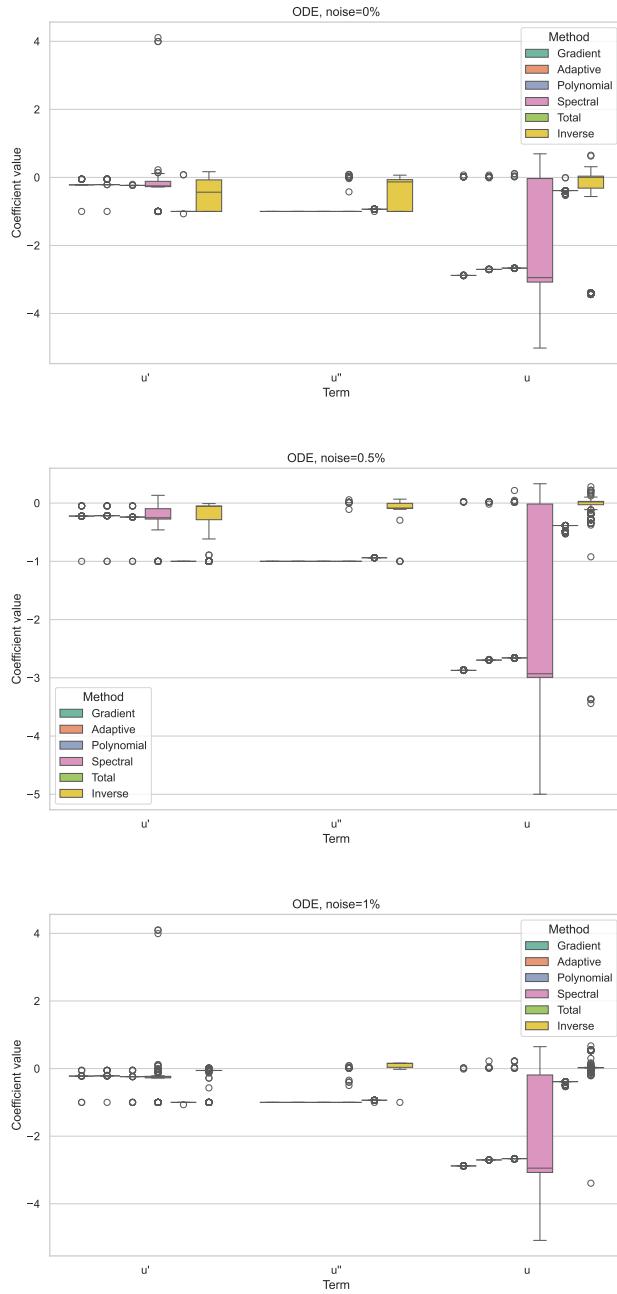


Figure 2: Distribution of coefficients values for different noise level

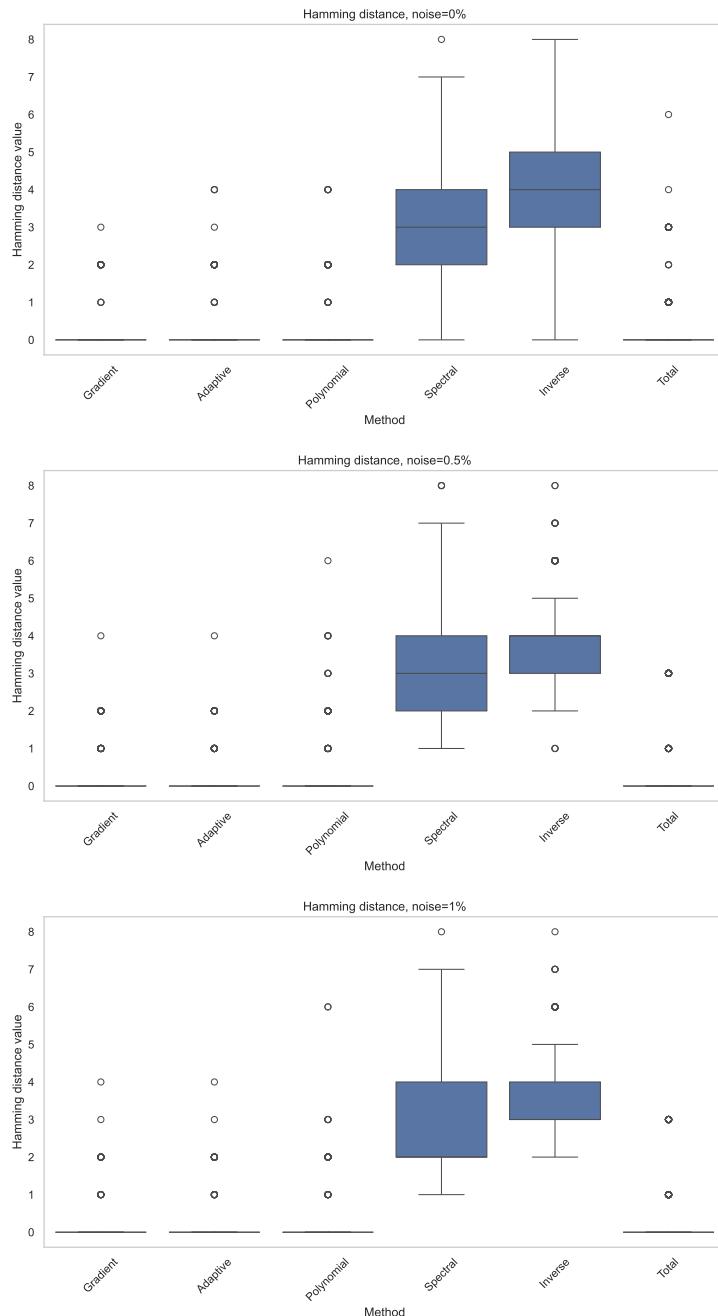


Figure 3: Distribution of coefficients values for different noise level

Table 2: Coefficients values calculated with EPDE, noise = 0%

Methods/Terms	u	u'	u''
Gradient	0.0219 ± 0.0082	-0.2156 ± 0.0048	-1
Adaptive	0.0197 ± 0.0077	-0.2086 ± 0.0053	-1
Polynomial	0.0541 ± 0.0452	-0.2348 ± 0.0002	-1
Spectral	-0.0312 ± 0.0412	-0.3008 ± 0.0392	-0.8997 ± 0.0460
Inverse	-0.0142 ± 0.0282	-0.5213 ± 0.0632	-0.5069 ± 0.1026
Total_var	-0.3901 ± 0.0032	-0.9952 ± 0.0068	-0.9353 ± 0.0003
Ground truth	3	0.25	1

Table 3: Coefficients values calculated with EPDE, noise = 0.5%

Methods/Terms	u	u'	u''
Gradient	0.0205 ± 0.0000	-0.2222 ± 0.0043	-1
Adaptive	0.0152 ± 0.0112	-0.2173 ± 0.0055	-1
Polynomial	0.0363 ± 0.0331	-0.2412 ± 0.0058	-1
Spectral	-0.0288 ± 0.0241	-0.2694 ± 0.0375	-0.9048 ± 0.0480
Inverse	-0.0255 ± 0.0177	-0.2840 ± 0.0533	-0.1348 ± 0.0804
Total_var	-0.3937 ± 0.0027	-1	-0.9387
Ground truth	3	0.25	1

Table 4: Coefficients values calculated with EPDE, noise = 1%

Methods/Terms	u	u'	u''
Gradient	0.0098 ± 0.0251	-0.2248 ± 0.0053	-1
Adaptive	0.0444 ± 0.0523	-0.2149 ± 0.0040	-1
Polynomial	0.0983 ± 0.0748	-0.2455 ± 0.0082	-1
Spectral	-0.0651 ± 0.0643	-0.3254 ± 0.0391	-0.9172 ± 0.0400
Inverse	0.0639 ± 0.0191	-0.1889 ± 0.0410	0.0789 ± 0.0746
Total_var	-0.3949 ± 0.0027	-1.0002 ± 0.0003	-0.9371 ± 0.0003
Ground truth	3	0.25	1

Table 5: Coefficients values calculated with SINDy, noise =0%

Methods/Terms	u	u'	u''
Gradient	2.845	0.208	1
Adaptive	2.385	0.249	1
Polynomial	2.874	0.193	1
Spectral	3.199	-	1
Inverse	2.732	0.264	1
Total_var	0.413	1.070	1
Ground truth	3	0.25	1

Table 6: Coefficients values calculated with SINDy, noise =0.5%

Methods/Terms	u	u'	u''
Gradient	2.824	0.212	1
Adaptive	2.368	0.253	1
Polynomial	2.854	0.206	1
Spectral	3.180	-	1
Inverse	3.697	0.376	1
Total_var	0.409	1.066	1
Ground truth	3	0.25	1

Table 7: Coefficients values calculated with SINDy, noise =1%

Methods/Terms	u	u'	u''
Gradient	2.754	0.212	1
Adaptive	2.353	0.256	1
Polynomial	2.785	0.176	1
Spectral	3.197	-	1
Inverse	3.240	0.268	1
Total_var	0.414	1.072	1
Ground truth	3	0.25	1

C KdV equation coefficients and Structural Hamming Distances

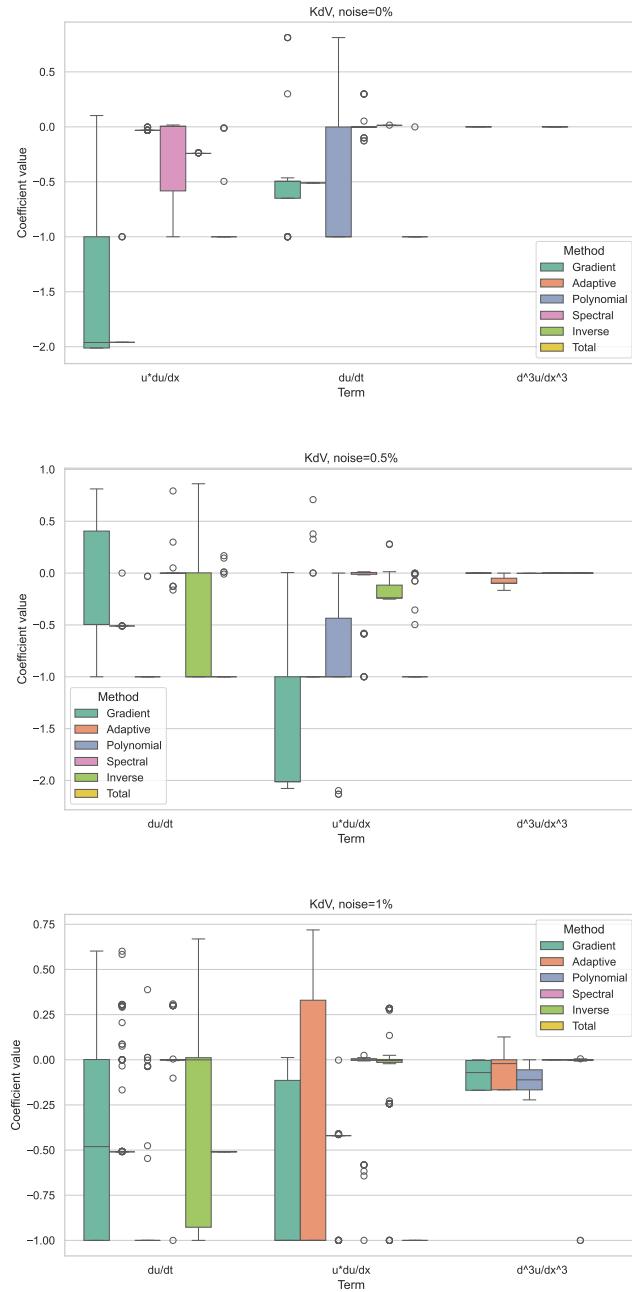


Figure 4: Distribution of coefficients values for different noise level

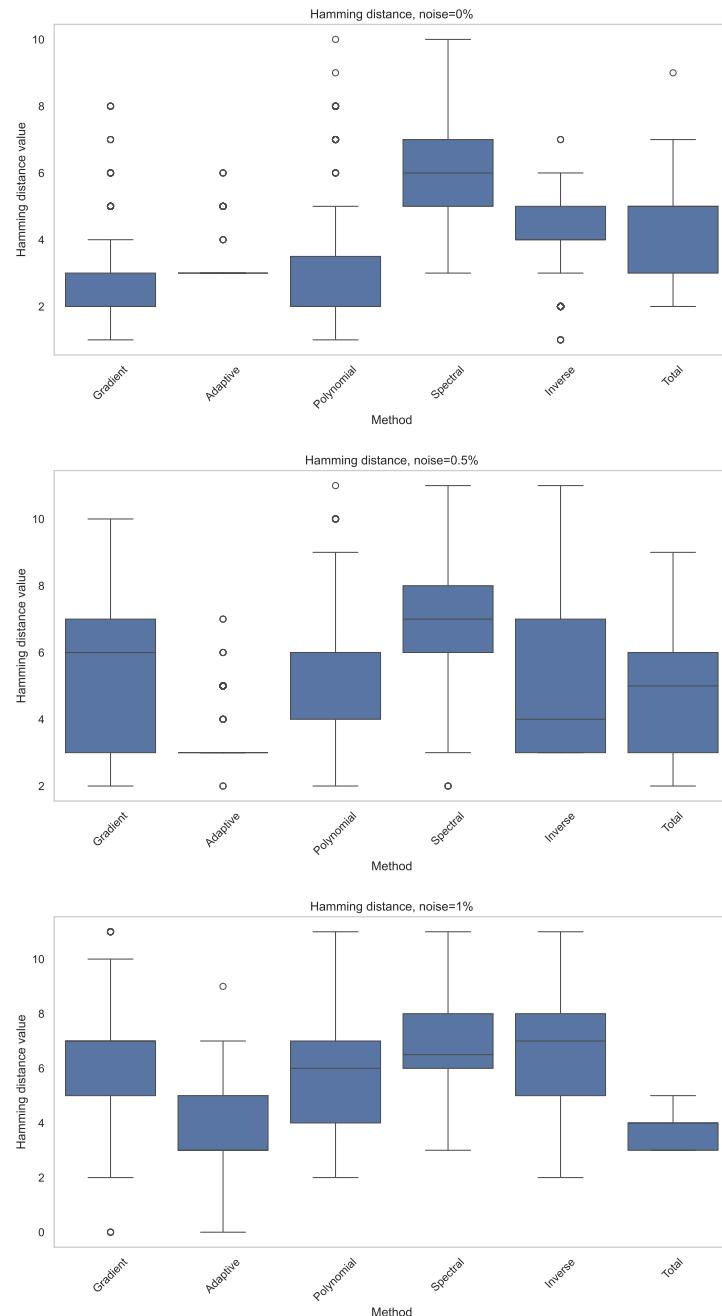


Figure 5: Distribution of coefficients values for different noise level

Table 8: Coefficients values calculated with EPDE, noise =0%

Methods/Terms	du/dt	d^3u/dx^3	$u*du/dx$
Gradient	-0.4565 ± 0.2045	0.0008 ± 0.0038	-1.3444 ± 0.1839
Adaptive	-0.5102	-	-1.9143 ± 0.0645
Polynomial	-0.5045 ± 0.4228	-	-0.0303 ± 0.0011
Spectral	0.0202 ± 0.0401	0.0002 ± 0.0000	-0.2297 ± 0.1165
Inverse	0.0142 ± 0.0007	-	-0.2412 ± 0.0004
Total_var	-0.8334 ± 0.4282	1.1503	-0.9770 ± 0.0231
Ground truth	1	1	6

Table 9: Coefficients values calculated with EPDE, noise =0.5%

Methods/Terms	du/dt	d^3u/dx^3	$u*du/dx$
Gradient	-0.1973 ± 0.2523	-0.0001	-1.5692 ± 0.1447
Adaptive	-0.5081 ± 0.0035	-0.0801 ± 0.0554	-0.7084 ± 0.2506
Polynomial	-0.9822 ± 0.0248	-0.0022	-0.8874 ± 0.2106
Spectral	0.0191 ± 0.0614	-0.0000 ± 0.0003	-0.1706 ± 0.1092
Inverse	-0.4698 ± 0.1770	0.0001 ± 0.0003	0.0419 ± 0.0954
Total_var	-0.8164 ± 0.1561	1.1569 ± 0.1997	-0.9282 ± 0.0466
Ground truth	1	1	6

Table 10: Coefficients values calculated with EPDE, noise =1%

Methods/Terms	du/dt	d^3u/dx^3	$u*du/dx$
Gradient	-0.3711 ± 0.1267	-0.0819 ± 0.0647	-0.7199 ± 0.3075
Adaptive	-0.4008 ± 0.0431	-0.0553 ± 0.0512	-0.3934 ± 0.1230
Polynomial	-0.6898 ± 0.1512	-0.1111 ± 1.4098	-0.9766 ± 0.1917
Spectral	0.0320 ± 0.0667	-0.0001 ± 0.0006	-0.1036 ± 0.0779
Inverse	-0.1240 ± 0.0939	0.1313 ± 0.1499	0.0565 ± 0.0776
Total_var	-0.8394 ± 0.1006	-	-0.6780 ± 0.1103
Ground truth	1	1	6

Table 11: Coefficients values calculated with SINDy, noise =0%

Methods/Terms	du/dt	d^3u/dx^3	$u*du/dx$
Gradient	1	-0.009	0.077
Adaptive	1	-	0.195
Polynomial	1	-	0.595
Spectral	1	-0.067	2.530
Inverse	1	0.072	0.025
Total_var	1	-4.011	-0.599
Ground truth	1	1	6

Table 12: Coefficients values calculated with SINDy, noise =0.5%

Methods/Terms	du/dt	d^3u/dx^3	$u*du/dx$
Gradient	1	0.158	1.295
Adaptive	1	0.146	1.320
Polynomial	1	-	0.472
Spectral	1	-0.066	2.530
Inverse	1	-	-
Total_var	1	-4.010	-0.639
Ground truth	1	1	6

Table 13: Coefficients values calculated with SINDy, noise =1%

Methods/Terms	du/dt	d^3u/dx^3	$u*du/dx$
Gradient	1	0.052	0.443
Adaptive	1	0.056	0.681
Polynomial	1	-	0.841
Spectral	1	-0.067	2.523
Inverse	1	-	-
Total_var	1	-4.015	-0.731
Ground truth	1	1	6

D Burgers equation coefficients and Structural Hamming Distances

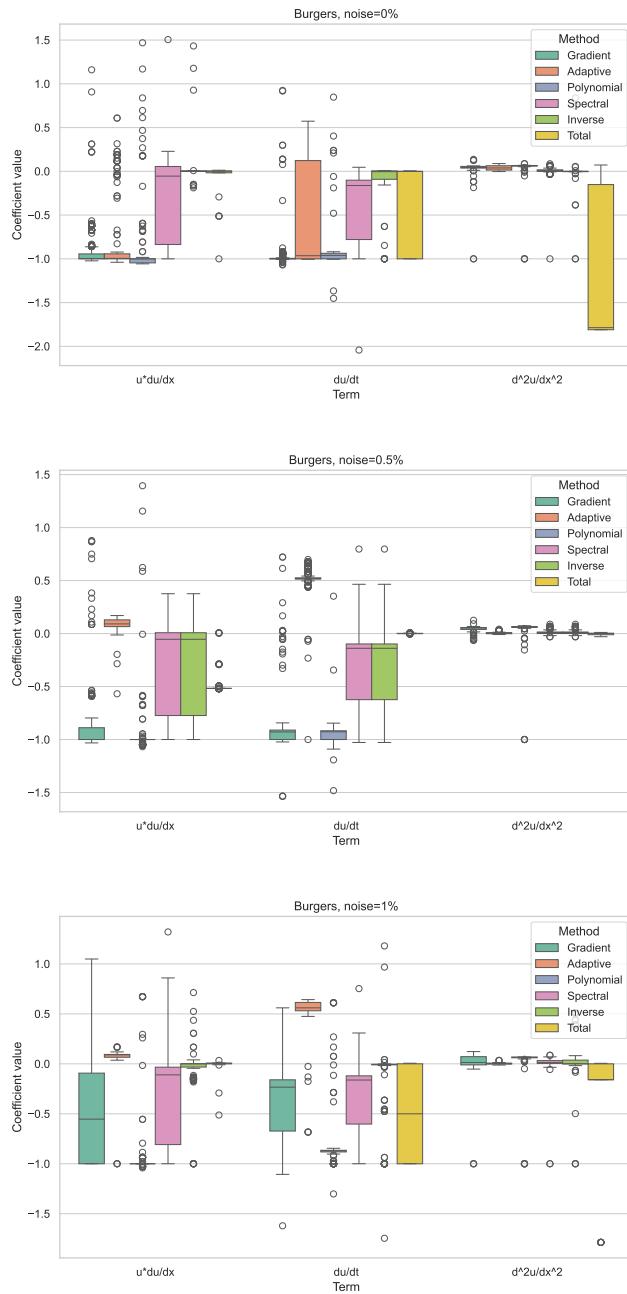


Figure 6: Distribution of coefficients values for different noise level

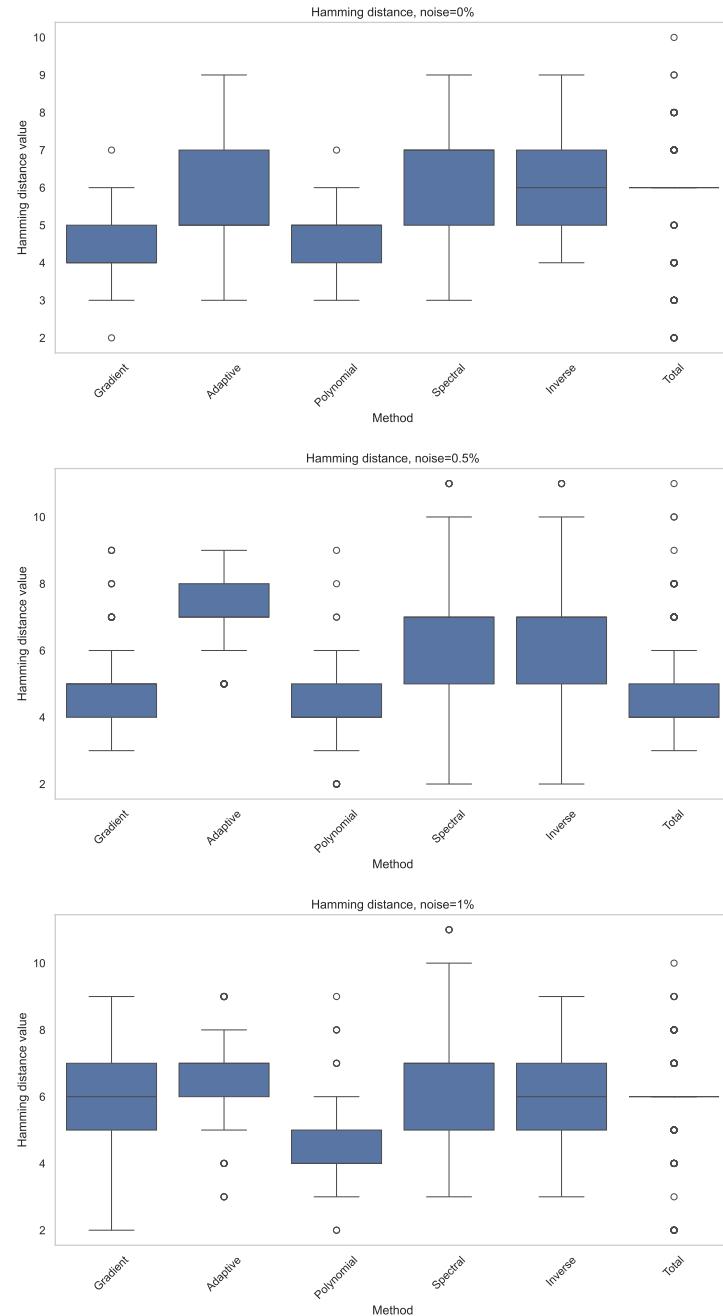


Figure 7: Distribution of coefficients values for different noise level

Table 14: Coefficients values calculated with EPDE, noise =0%

Methods/Terms	du/dt	d^2u/dx^2	$u*du/dx$
Gradient	-0.9454 ± 0.0301	0.0346 ± 0.0133	-0.8945 ± 0.0327
Adaptive	-0.4548 ± 0.6341	0.0402 ± 0.026	-0.7677 ± 0.4413
Polynomial	-0.9283 ± 0.0332	0.0439 ± 0.0188	-0.8931 ± 0.0556
Spectral	-0.4025 ± 0.0549	0.0032 ± 0.0171	-0.3732 ± 0.0849
Inverse	-0.2118 ± 0.1229	-0.0239 ± 0.1173	0.0773 ± 0.1174
Total_var	-0.4373 ± 0.2731	-1.2180 ± 0.2525	-0.1324 ± 0.1249
Ground truth	1	-0.05	1

Table 15: Coefficients values calculated with EPDE, noise =0.5%

Methods/Terms	du/dt	d^2u/dx^2	u*du/dx
Gradient	-0.8727 ± 0.0398	0.0428 ± 0.0035	-0.8520 ± 0.0479
Adaptive	-0.5185 ± 0.0164	0.0069 ± 0.0031	-0.0718 ± 0.0337
Polynomial	-0.9428 ± 0.0150	0.0378 ± 0.0202	-0.9510 ± 0.0382
Spectral	-0.3064 ± 0.0521	0.0138 ± 0.0033	-0.3226 ± 0.0810
Inverse	-0.3064 ± 0.0521	0.0138 ± 0.0033	-0.3226 ± 0.0810
Total_var	0.0008 ± 0.0011	-0.0041 ± 0.0115	-0.5039 ± 0.0086
Ground truth	1	-0.05	1

Table 16: Coefficients values calculated with EPDE, noise =1%

Methods/Terms	du/dt	d^2u/dx^2	u*du/dx
Gradient	-0.4088 ± 0.0448	0.0051 ± 0.0269	-0.5262 ± 0.0840
Adaptive	0.5498 ± 0.0191	0.0033 ± 0.0026	0.0577 ± 0.0274
Polynomial	-0.8245 ± 0.0360	0.0384 ± 0.0208	-0.9395 ± 0.0375
Spectral	-0.3414 ± 0.0472	0.0049 ± 0.0207	-0.3910 ± 0.0798
Inverse	-0.1569 ± 0.0575	0.0238 ± 0.0420	-0.0533 ± 0.0453
Total_var	-0.4989 ± 0.1903	-0.3595 ± 0.2082	-0.0269 ± 0.0465
Ground truth	1	-0.05	1

Table 17: Coefficients values calculated with SINDy, noise =0%

Methods/Terms	du/dt	d^2u/dx^2	u*du/dx
Gradient	1	-0.044	0.952
Adaptive	1	-0.045	0.951
Polynomial	1	-0.058	1.057
Spectral	1	-	0.273
Inverse	1	-0.134	0.205
Total_var	1	1.765	-
Ground truth	1	-0.05	1

Table 18: Coefficients values calculated with SINDy, noise =0.5%

Methods/Terms	du/dt	d^2u/dx^2	u*du/dx
Gradient	1	-0.044	0.955
Adaptive	1	-0.045	0.951
Polynomial	1	-0.055	1.039
Spectral	1	-	0.277
Inverse	1	-	0.188
Total_var	1	1.763	-
Ground truth	1	-0.05	1

Table 19: Coefficients values calculated with SINDy, noise =1%

Methods/Terms	du/dt	d^2u/dx^2	u*du/dx
Gradient	1	-	0.661
Adaptive	1	-	0.661
Polynomial	1	-0.050	1.004
Spectral	1	-	0.271
Inverse	1	-0.129	0.202
Total_var	1	1.736	-0.014
Ground truth	1	-0.05	1

E Wave equation coefficients and Structural Hamming Distances

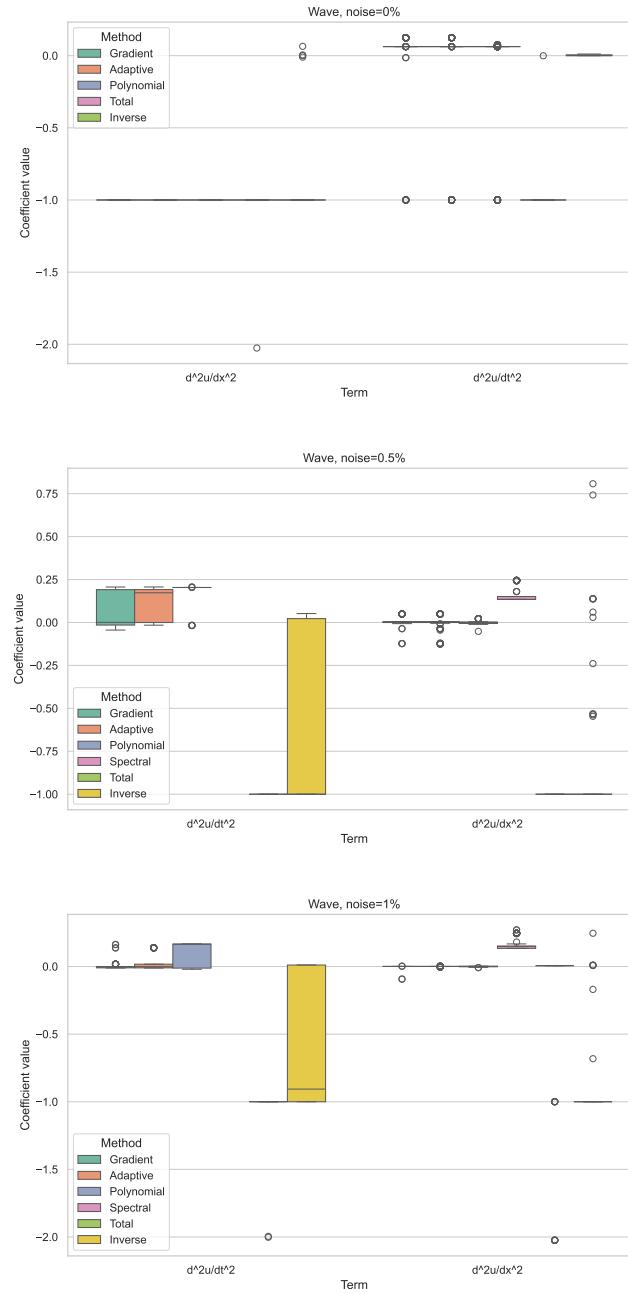


Figure 8: Distribution of coefficients values for different noise level

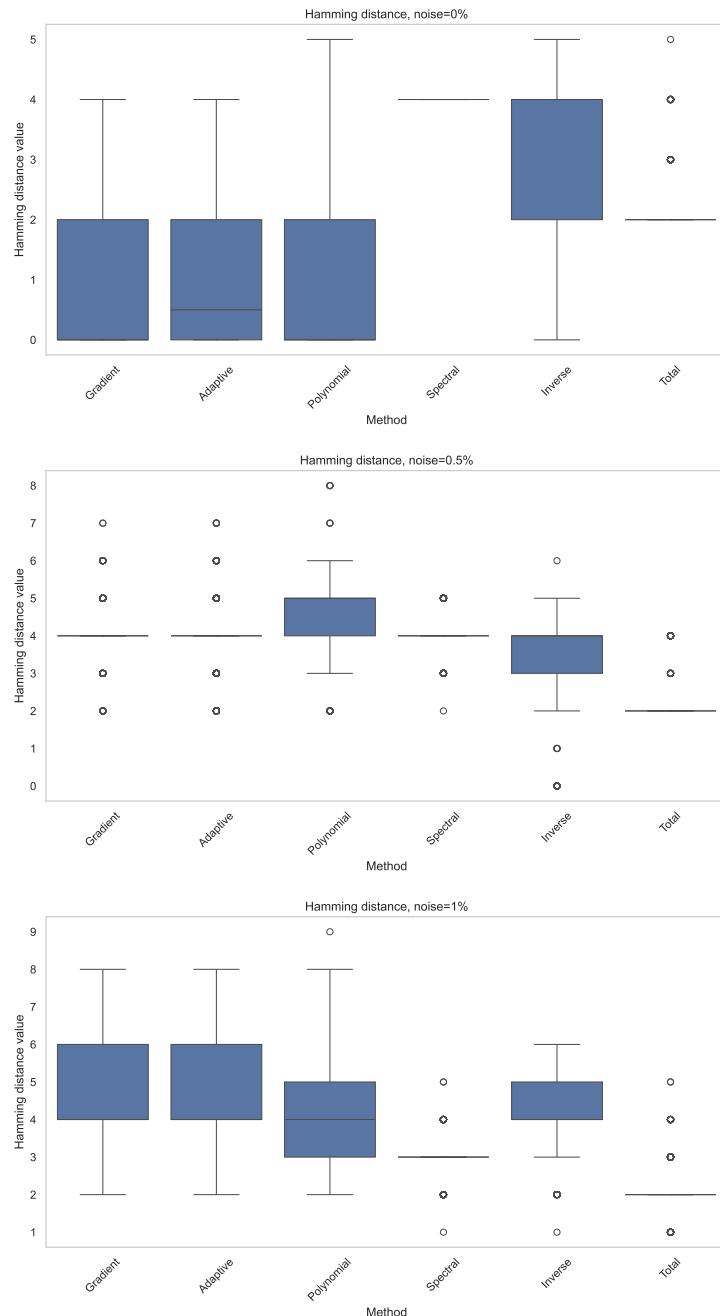


Figure 9: Distribution of coefficients values for different noise level

Table 20: Coefficients values calculated with EPDE, noise =0%

Methods/Terms	d^2u/dx^2	d^2u/dt^2
Gradient	-1	-0.0005 ± 0.0338
Adaptive	-1	-0.0579 ± 0.0408
Polynomial	-1	-0.0827 ± 0.0430
Spectral	-	-
Inverse	-0.9486 ± 0.0502	0.0038 ± 0.0162
Total_var	-1.0049 ± 0.0097	-0.9904 ± 0.0191
Ground truth	1	-0.0625

Table 21: Coefficients values calculated with EPDE, noise =0.5%

Methods/Terms	d^2u/dx^2	d^2u/dt^2
Gradient	0.0037 ± 0.0075	0.0688 ± 0.0199
Adaptive	0.0008 ± 0.0061	0.0972 ± 0.0131
Polynomial	0.0018 ± 0.0030	0.1539 ± 0.0345
Spectral	0.1549 ± 0.0041	-
Inverse	-0.8171 ± 0.1025	-0.5975 ± 0.1638
Total_var	-1	-1
Ground truth	1	-0.0625

Table 22: Coefficients values calculated with EPDE, noise =1%

Methods/Terms	d^2u/dx^2	d^2u/dt^2
Gradient	-0.0041 ± 0.0068	0.0064 ± 0.0070
Adaptive	0.0004 ± 0.0003	0.0108 ± 0.0056
Polynomial	-0.0001 ± 0.0005	0.1041 ± 0.0191
Spectral	0.1533 ± 0.0039	-
Inverse	-0.8946 ± 0.0792	-0.6434 ± 0.1901
Total_var	-0.3441 ± 0.1927	-1.0066 ± 0.0092
Ground truth	1	-0.0625

Table 23: Coefficients values calculated with SINDy, noise =0%

Methods/Terms	d^2u/dx^2	d^2u/dt^2
Adaptive	1	-0.055
Polynomial	1	-0.063
Spectral	1	-
Inverse	1	-0.008
Total_var	1	-0.007
Ground truth	1	-0.0625

Table 24: Coefficients values calculated with SINDy, noise =0.5%

Methods/Terms	d^2u/dx^2	d^2u/dt^2
Gradient	1	-0.193
Adaptive	1	-0.163
Polynomial	1	-0.049
Spectral	1	-
Inverse	1	-0.221
Total_var	1	-0.027
Ground truth	1	-0.0625

Table 25: Coefficients values calculated with SINDy, noise =1%

Methods/Terms	d^2u/dx^2	d^2u/dt^2
Gradient	1	-0.395
Adaptive	1	-0.332
Polynomial	1	-0.1
Spectral	1	-
Inverse	1	-4.586
Total_var	1	-0.079
Ground truth	1	-0.0625

F Laplace equation coefficients and Structural Hamming Distances

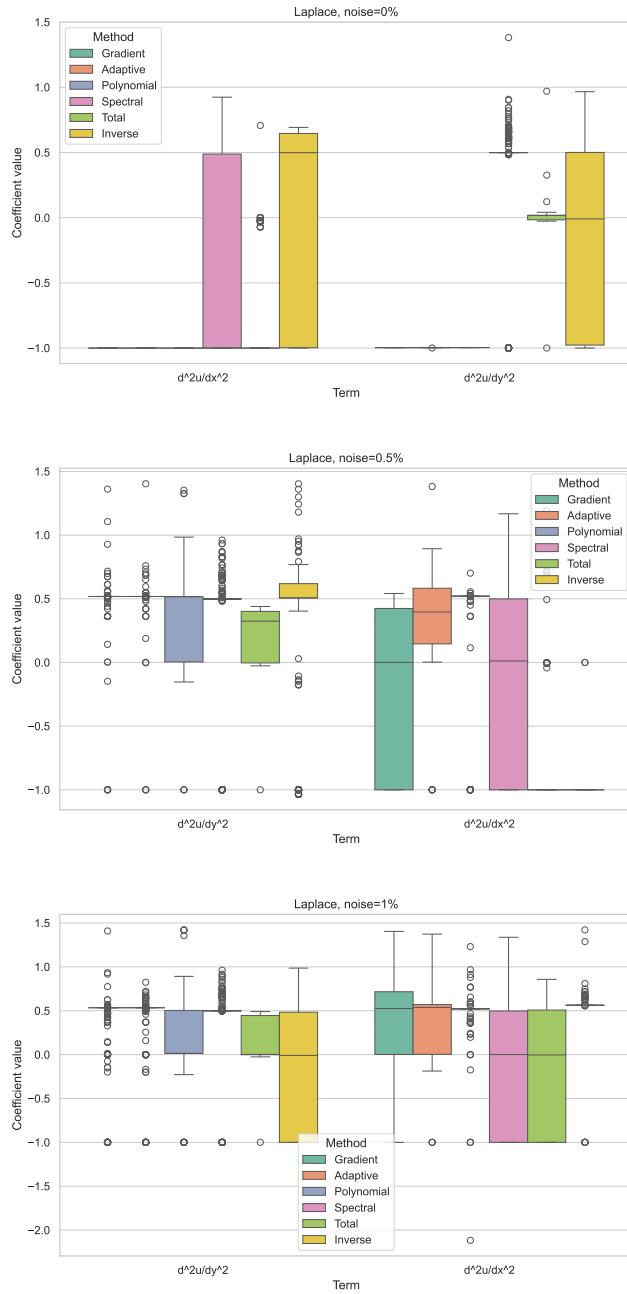


Figure 10: Distribution of coefficients values for different noise level

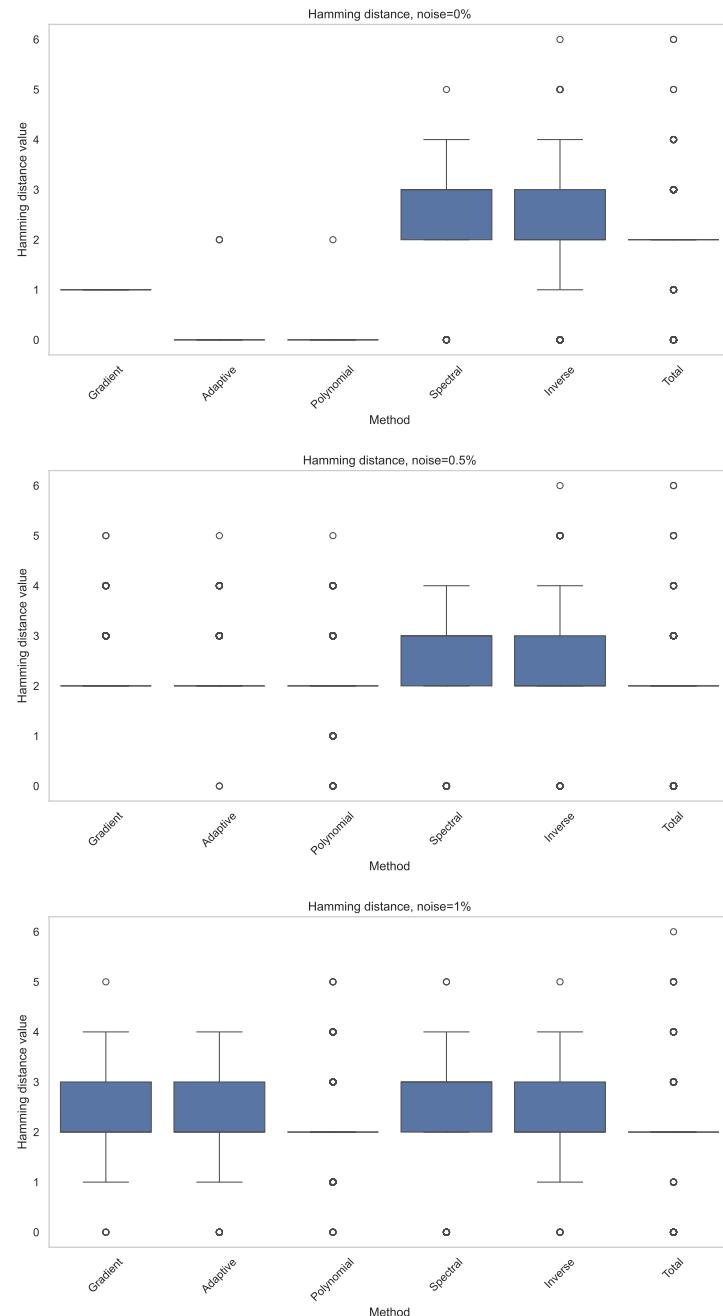


Figure 11: Distribution of coefficients values for different noise level

Table 26: Coefficients values calculated with EPDE, noise =0%

Methods/Terms	d^2u/dx^2	d^2u/dy^2
Gradient	-1	-0.997
Adaptive	-1	-0.997
Polynomial	-1	-0.9964
Spectral	-1	-1
Inverse	-0.9985 ± 0.0007	-0.9955 ± 0.0013
Total_var	-1	-1
Ground truth	1	1

Table 27: Coefficients values calculated with EPDE, noise =0.5%

Methods/Terms	d^2u/dx^2	d^2u/dy^2
Gradient	0.2072 ± 0.1540	0.5129 ± 0.0095
Adaptive	0.4755 ± 0.1158	0.5150 ± 0.0065
Polynomial	0.5139 ± 0.0077	0.3348 ± 0.0365
Spectral	0.4728 ± 0.0783	0.5393 ± 0.0137
Inverse	-0.0000 ± 0.0025	0.5579 ± 0.0239
Total_var	0.3411 ± 0.1787	0.1874 ± 0.0382
Ground truth	1	1

Table 28: Coefficients values calculated with EPDE, noise =1%

Methods/Terms	d^2u/dx^2	d^2u/dy^2
Gradient	0.4476 ± 0.1022	0.4962 ± 0.0192
Adaptive	0.4047 ± 0.0796	0.5056 ± 0.0164
Polynomial	0.5100 ± 0.0140	0.2119 ± 0.0521
Spectral	0.3388 ± 0.1160	0.5333 ± 0.0117
Inverse	0.5868 ± 0.0061	0.3661 ± 0.0714
Total_var	0.3295 ± 0.0528	0.2150 ± 0.0566
Ground truth	1	1

Table 29: Coefficients values calculated with SINDy, noise =0%

Methods/Terms	d^2u/dx^2	d^2u/dy^2
Gradient	1	1.028
Adaptive	1	1.129
Polynomial	1	1.009
Spectral	1	-
Inverse	1	0.62
Total_var	1	-
Ground truth	1	1

Table 30: Coefficients values calculated with SINDy, noise =0.5%

Methods/Terms	d^2u/dx^2	d^2u/dy^2
Gradient	1	-
Adaptive	1	-
Polynomial	1	-
Spectral	1	-
Inverse	1	-
Total_var	1	-
Ground truth	1	1

Table 31: Coefficients values calculated with SINDy, noise =1%

Methods/Terms	d^2u/dx^2	d^2u/dy^2
Gradient	1	-
Adaptive	1	-0.457
Polynomial	1	-
Spectral	1	-
Inverse	1	-
Total_var	1	-
Ground truth	1	1

G Quasigeostrophic potential vorticity equation

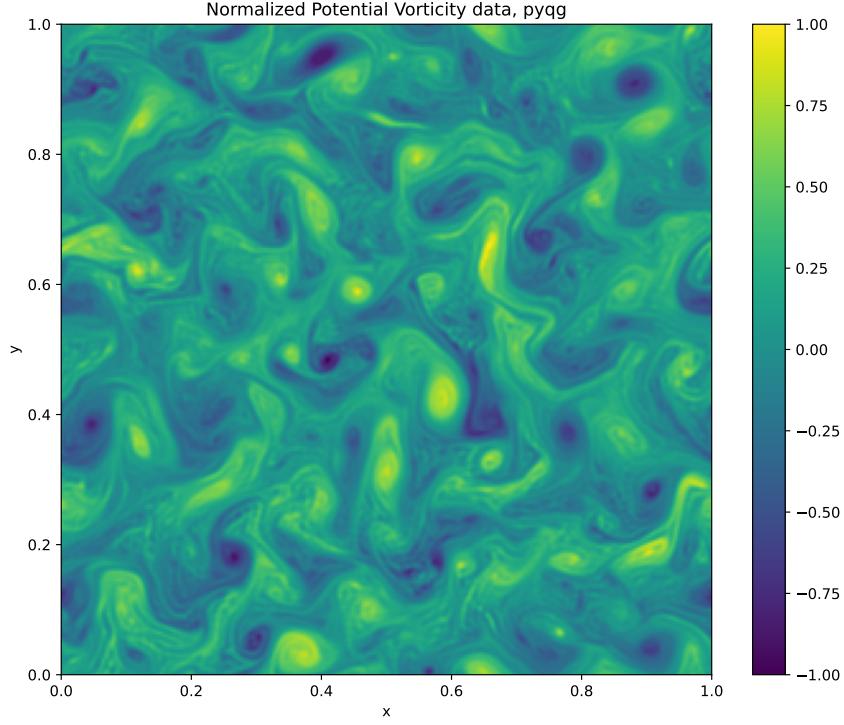


Figure 12: Normalized potential vorticity data, pyqg

Equations discovered:

Via spectral domain differentiation

$$\begin{aligned}
 & 3.2602 \times 10^{-6} u_{xx} + 0.0067028 u + 0.7095 u_y \\
 & - 0.6485 u_y \cos(1.7965y) + 2.5201 \times 10^{-5} u u_{yy} \\
 & - 0.01010 u_x u - 1.2018 \times 10^{-6} u_{xx} u_{yy} \\
 & + 3.2084 \times 10^{-5} y u_{yy} + 2.4292 \times 10^{-5} u_{xx} u_y \\
 & + 0.1998 u_y \sin(2.7363y) - 0.000223 - y u_y = 0 \quad (23)
 \end{aligned}$$

Via SG filtering

$$\begin{aligned}
 & 0.044994162 u_x - 5.34527 \times 10^{-5} u_{xx} \\
 & - 0.000760196 u_x u_{yy} + 0.001192827 - u_x u = 0
 \end{aligned} \quad (24)$$

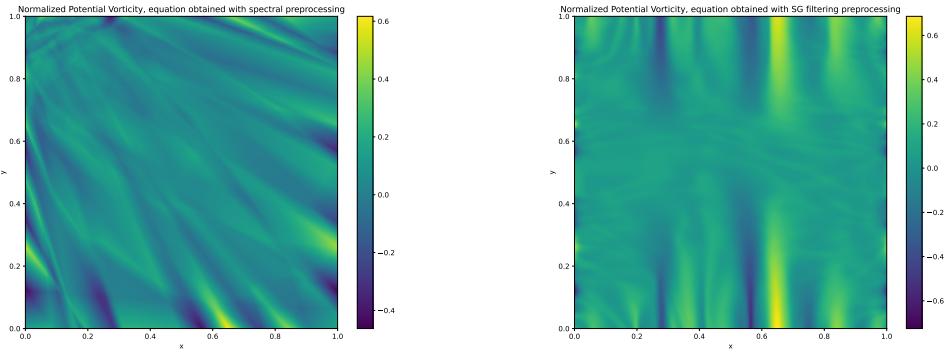


Figure 13: Normalized Potential Vorticity, equation obtained with spectral preprocessing ((23), left) and SG filtering preprocessing ((24), right)

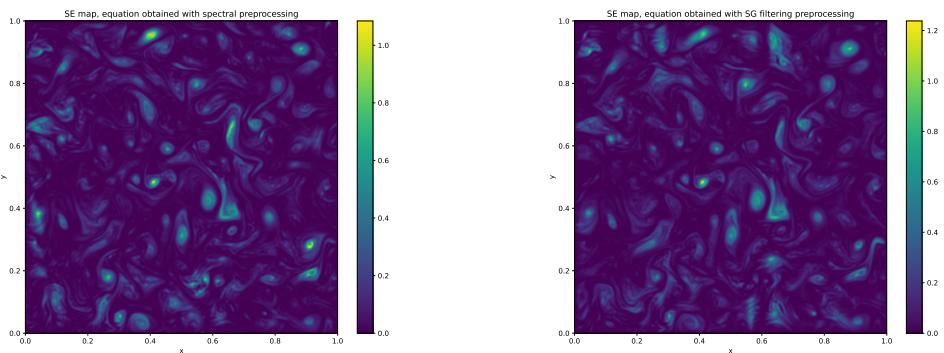


Figure 14: SE map, equation obtained with spectral preprocessing ((23), left, MSE = 0.057) and SG filtering preprocessing((24), right, MSE = 0.065)

H Structural Hamming Distances

Table 32: SHD for equations calculated with EPDE, noise = 0%

Methods/Equations	Burgers	KdV	Laplace	ode	Wave
Gradient	4 ± 0.091	3 ± 0.1302	1	$0 + 0.0491$	1 ± 0.1206
Adaptive	6 ± 0.1607	3 ± 0.0525	$0 + 0.0159$	$0 + 0.0636$	1 ± 0.1189
Polynomial	4 ± 0.272	3 ± 0.1824	$0 + 0.0112$	$0 + 0.0654$	1 ± 0.119
Spectral	6 ± 0.1993	6 ± 0.1698	3 ± 0.0999	3 ± 0.1855	4
Inverse	6 ± 0.3554	4 ± 0.1267	2 ± 0.1432	4 ± 0.2077	3 ± 0.1314
Total_var	6 ± 0.1299	4 ± 0.1332	2 ± 0.1169	0 ± 0.0749	2 ± 0.0726

Table 33: SHD for equations calculated with EPDE, noise = 0.5%

Methods/Equations	Burgers	KdV	Laplace	ode	Wave
Gradient	5 ± 0.1412	5 ± 0.2209	2 ± 0.0629	$0 + 0.0535$	4 ± 0.0979
Adaptive	7 ± 0.107	3 ± 0.078	2 ± 0.0637	$0 + 0.0458$	4 ± 0.0671
Polynomial	4 ± 0.1334	5 ± 0.1935	2 ± 0.1062	$0 + 0.0734$	4 ± 0.1237
Spectral	6 ± 0.2107	7 ± 0.2087	3 ± 0.0992	3 ± 0.1971	4 ± 0.0631
Inverse	6 ± 0.2107	5 ± 0.2632	3 ± 0.124	4 ± 0.1531	3 ± 0.1305
Total_var	5 ± 0.1413	5 ± 0.1394	2 ± 0.1084	$0 + 0.0783$	2 ± 0.0571

Table 34: SHD for equations calculated with EPDE, noise = 1%

Methods/Equations	Burgers	KdV	Laplace	ode	Wave
Gradient	6 ± 0.2134	6 ± 0.2824	2 ± 0.0843	$0 + 0.0424$	5 ± 0.1186
Adaptive	7 ± 0.1292	4 ± 0.1484	2 ± 0.0815	$0 + 0.0433$	5 ± 0.0833
Polynomial	4 ± 0.1248	6 ± 0.247	2 ± 0.102	$0 + 0.0627$	4 ± 0.1252
Spectral	6 ± 0.2096	7 ± 0.1827	3 ± 0.0974	3 ± 0.1904	3 ± 0.0687
Inverse	6 ± 0.2057	7 ± 0.2509	2 ± 0.0883	4 ± 0.1231	4 ± 0.1004
Total_var	6 ± 0.1283	5 ± 0.133	2 ± 0.1064	0 ± 0.0792	2 ± 0.0847

Table 35: SHD for equations calculated with SINDy, noise = 0%

Methods/Equations	Burgers	KdV	Laplace	ode	Wave
Gradient	0	1	0	0	0
Adaptive	0	3	0	0	1
Polynomial	1	3	0	0	1
Spectral	1	2	1	1	1
Inverse	1	1	1	0	1
Total_var	5	4	2	0	2

Table 36: SHD for equations calculated with SINDy, noise = 0.5%

Methods/Equations	Burgers	KdV	Laplace	ode	Wave
Gradient	0	2	2	0	2
Adaptive	0	2	2	0	2
Polynomial	1	2	2	0	2
Spectral	1	2	2	1	1
Inverse	3	3	4	0	1
Total_var	5	4	2	0	2

Table 37: SHD for equations calculated with SINDy, noise = 1%

Methods/Equations	Burgers	KdV	Laplace	ode	Wave
Gradient	2	2	3	0	2
Adaptive	2	2	1	0	2
Polynomial	0	5	4	0	2
Spectral	1	2	2	1	1
Inverse	1	4	4	0	2
Total_var	3	4	2	0	2

I Differentiation errors

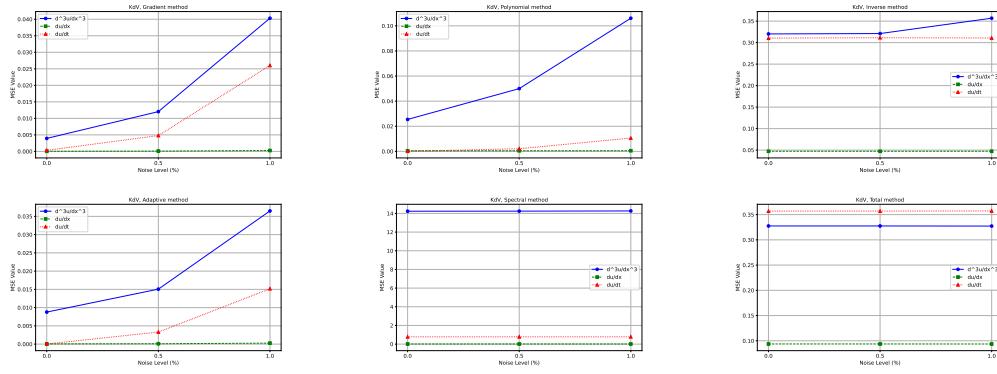


Figure 15: Differentiation errors (MSE) for KdV equation with different noise level

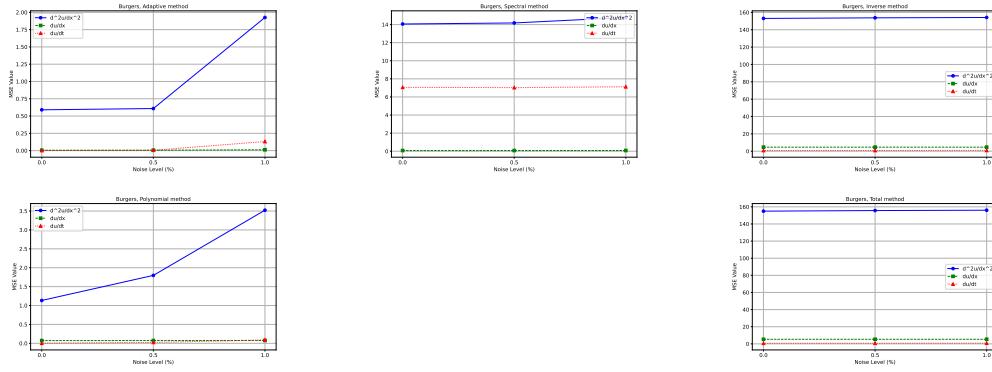


Figure 16: Differentiation errors (MSE) for Burgers equation with different noise level

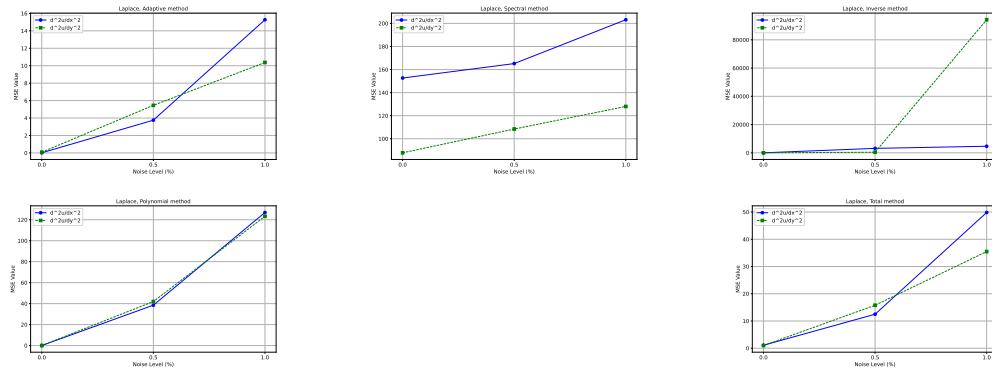


Figure 17: Differentiation errors (MSE) for Laplace equation with different noise level

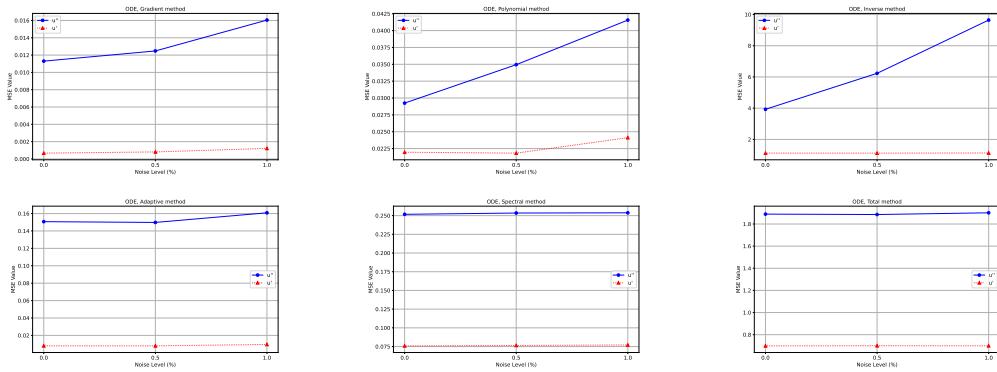


Figure 18: Differentiation errors (MSE) for ODE equation with different noise level

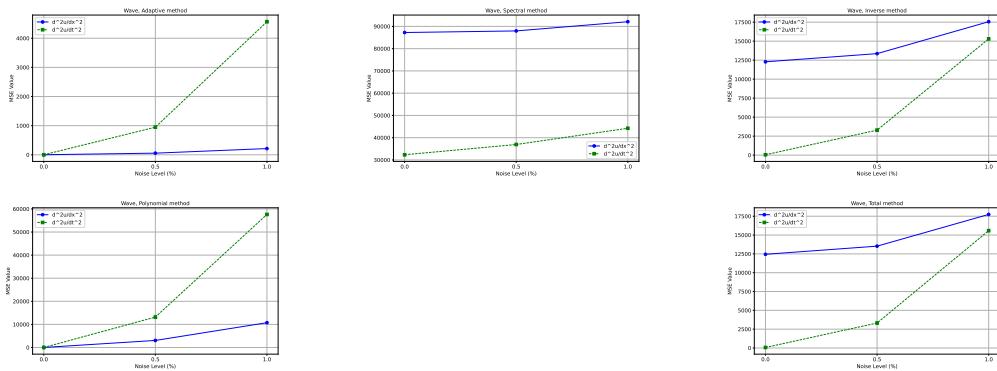


Figure 19: Differentiation errors (MSE) for Wave equation with different noise level

Table 38: Differentiation errors, noise = 0%

Burgers equation			
Methods/Terms	du/dt	d^2u/dx^2	du/dx
Adaptive	0.0009	0.05902	0.0053
Polynomial	0.0012	1.1339	0.0724
Spectral	7.0597	14.0607	0.0757
Inverse	0.7638	153.0405	4.6508
Total_var	0.6760	154.9538	5.3229
KdV equation			
Methods/Terms	du/dt	d^3u/dx^3	du/dx
Gradient	0.000329	0.0039	0.00004184
Adaptive	0.00001	0.0088	0.00005
Polynomial	0.00007761	0.0254	0.0004532
Spectral	0.7798	14.2334	0.0129
Inverse	0.3105	0.3202	0.0473
Total_var	0.357	0.3275	0.0937
Laplace equation			
Methods/Terms	d^2u/dx^2	d^2u/dy^2	
Adaptive	0.0124	0.0814	
Polynomial	0.0058	0.0036	
Spectral	152.6378	87.813	
Inverse	0.0098	0.178	
Total_var	1.0941	0.9853	
ODE equation			
Methods/Terms	u'	u''	
Gradient	0.00067	0.0113	
Adaptive	0.00801	0.1507	
Polynomial	0.022	0.0292	
Spectral	0.0759	0.2517	
Inverse	1.1231	3.9290	
Total_var	0.6988	1.8895	
Wave equation			
Methods/Terms	d^2u/dx^2	d^2u/dt^2	
Adaptive	2.0602	1.2876	
Polynomial	9.8417	0.0057	
Spectral	87251.4516	32328.7991	
Inverse	12282.1612	47.9087	
Total_var	12444.1383	65.6059	

Table 39: Differentiation errors, noise = 0.5%

Burgers equation			
Methods/Terms	du/dt	d^2u/dx^2	du/dx
Adaptive	0.0048	0.6084	0.0053
Polynomial	0.0234	1.7973	0.0737
Spectral	7.0293	14.1771	0.0761
Inverse	0.8013	153.7448	4.6542
Total_var	0.7139	155.6498	5.3271
KdV equation			
Methods/Terms	du/dt	d^3u/dx^3	du/dx
Gradient	0.00478	0.0120	0.0000947
Adaptive	0.0033	0.0151	0.0001
Polynomial	0.0021	0.05	0.0004592
Spectral	0.7804	14.2418	0.0128
Inverse	0.3114	0.3211	0.0473
Total_var	0.3571	0.3275	0.0937
Laplace equation			
Methods/Terms	d^2u/dx^2	d^2u/dy^2	
Adaptive	3.7555	5.4563	
Polynomial	38.4966	41.9891	
Spectral	165.1737	108.4259	
Inverse	3138.8939	426.1978	
Total_var	12.4789	15.7744	
ODE equation			
Methods/Terms	u'	u''	
Gradient	0.00081	0.0124	
Adaptive	0.008	0.1498	
Polynomial	0.0218	0.0349	
Spectral	0.0764	0.2534	
Inverse	1.1220	6.2318	
Total_var	0.6998	1.8857	
Wave equation			
Methods/Terms	d^2u/dx^2	d^2u/dt^2	
Adaptive	56.2421	947.3597	
Polynomial	3047.6637	13167.1760	
Spectral	87963.7107	36937.9071	
Inverse	13359.6413	3287.3561	
Total_var	13524.8049	3315.1318	

Table 40: Differentiation errors, noise = 1%

Burgers equation			
Methods/Terms	du/dt	d^2u/dx^2	du/dx
Adaptive	0.1311	1.9259	0.0121
Polynomial	0.088	3.5219	0.0761
Spectral	7.1244	14.7814	0.0783
Inverse	0.8933	154.1399	4.6562
Total_var	0.8085	156.0558	5.3286
KdV equation			
Methods/Terms	du/dt	d^3u/dx^3	du/dx
Gradient	0.0260	0.0403	0.0002695
Adaptive	0.01521	0.0365	0.0003
Polynomial	0.0106	0.1061	0.000499
Spectral	0.7811	14.2637	0.0129
Inverse	0.3108	0.3568	0.0473
Total_var	0.3573	0.3273	0.0936
Laplace equation			
Methods/Terms	d^2u/dx^2	d^2u/dy^2	
Adaptive	15.2715	10.3725	
Polynomial	126.9283	123.2955	
Spectral	203.1654	128.0034	
Inverse	4647.4401	94205.9511	
Total_var	49.8341	35.4761	
ODE equation			
Methods/Terms	u'	u''	
Gradient	0.00122	0.0160	
Adaptive	0.0096	0.1609	
Polynomial	0.0241	0.0416	
Spectral	0.0771	0.2538	
Inverse	1.132	9.6419	
Total_var	0.6993	1.9013	
Wave equation			
Methods/Terms	d^2u/dx^2	d^2u/dt^2	
Adaptive	213.6322	4567.2138	
Polynomial	10740.0809	57619.2452	
Spectral	92107.8232	44231.8631	
Inverse	17561.9236	15300.6987	
Total_var	17738.1271	15580.1558	

Table 41: Differentiation errors without boundaries, noise = 0%

Burgers equation			
Methods/Terms	du/dt	d^2u/dx^2	du/dx
Adaptive	0.0008	0.7898	0.0061
Polynomial	0.001	1.3151	0.082
Spectral	0.2112	6.3855	0.0156
Inverse	0.8751	206.6064	5.4783
Total_var	0.7988	208.9618	6.2428
KdV equation			
Methods/Terms	du/dt	d^3u/dx^3	du/dx
Gradient	0.0004	0.0050	0.00005
Adaptive	0.0000008	0.0121	0.00005
Polynomial	0.000009	0.0350	0.0006
Spectral	0.0934	14.1910	0.0155
Inverse	0.4196	0.4601	0.0638
Total_var	0.357	0.3273	0.0936
Laplace equation			
Methods/Terms	d^2u/dx^2	d^2u/dy^2	
Adaptive	0.0018	0.0019	
Polynomial	0.0019	0.0018	
Spectral	26.536	14.1521	
Inverse	0.0017	0.0079	
Total_var	0.4919	0.4864	
ODE equation			
Methods/Terms	u'	u''	
Gradient	0.0002	0.0027	
Adaptive	0.0012	0.0155	
Polynomial	0.0128	0.019	
Spectral	0.0056	0.0687	
Inverse	0.9548	3.5607	
Total_var	0.617	1.7065	
Wave equation			
Methods/Terms	d^2u/dx^2	d^2u/dt^2	
Adaptive	4.6496e-25	3.9716e-25	
Polynomial	0.0020	3.1118e-08	
Spectral	3975.5779	3283.7298	
Inverse	15075.2208	59.1723	
Total_var	15318.4098	68.1121	

Table 42: Differentiation errors without boundaries, noise = 0.5%

		Burgers equation		
Methods/Terms		du/dt	d^2u/dx^2	du/dx
Adaptive		0.0009	0.7936	0.0061
Polynomial		0.0206	1.3864	0.0832
Spectral		0.2275	6.4897	0.0162
Inverse		0.9018	207.6153	5.4904
Total_var		0.8239	209.9772	6.2568
		KdV equation		
Methods/Terms		du/dt	d^3u/dx^3	du/dx
Gradient		0.0048	0.017	0.0001
Adaptive		0.0041	0.0221	0.0001
Polynomial		0.0009	0.0366	0.0006
Spectral		0.0934	14.1966	0.0155
Inverse		0.4195	0.4617	0.0638
Total_var		0.3571	0.3275	0.0937
		Laplace equation		
Methods/Terms		d^2u/dx^2	d^2u/dy^2	
Adaptive		0.0111	0.0115	
Polynomial		0.5938	0.5695	
Spectral		28.7692	17.0705	
Inverse		72.7557	2.4132	
Total_var		2.932	3.0227	
		ODE equation		
Methods/Terms		u'	u''	
Gradient		0.0002	0.0024	
Adaptive		0.0013	0.0154	
Polynomial		0.0129	0.0188	
Spectral		0.0055	0.0694	
Inverse		0.952	3.4523	
Total_var		0.6166	1.6975	
		Wave equation		
Methods/Terms		d^2u/dx^2	d^2u/dt^2	
Adaptive		4.4623e-25	4.4207e-25	
Polynomial		296.3631	297.0768	
Spectral		5250.7934	4299.9723	
Inverse		16376.1646	1341.7407	
Total_var		16622.2915	1353.3664	

Table 43: Differentiation errors without boundaries, noise = 1%

Burgers equation			
Methods/Terms	du/dt	d^2u/dx^2	du/dx
Adaptive	0.1373	2.3416	0.0146
Polynomial	0.0474	2.5502	0.0868
Spectral	0.2652	7.2152	0.02
Inverse	0.9020	207.6163	5.4917
Total_var	0.8236	209.9705	6.2560
KdV equation			
Methods/Terms	du/dt	d^3u/dx^3	du/dx
Gradient	0.0187	0.0502	0.0003657
Adaptive	0.0171	0.0495	0.0003
Polynomial	0.0034	0.039	0.00068
Spectral	0.0941	14.2271	0.0154
Inverse	0.4198	0.4931	0.0638
Total_var	0.3573	0.3275	0.0937
Laplace equation			
Methods/Terms	d^2u/dx^2	d^2u/dy^2	
Adaptive	0.0458	0.0432	
Polynomial	2.6708	2.6109	
Spectral	38.1629	25.7555	
Inverse	46.8684	47.1770	
Total_var	12.0801	11.3885	
ODE equation			
Methods/Terms	u'	u''	
Gradient	0.0003	0.0036	
Adaptive	0.0013	0.0158	
Polynomial	0.0128	0.0202	
Spectral	0.0057	0.0694	
Inverse	0.9607	3.1547	
Total_var	0.6155	1.7163	
Wave equation			
Methods/Terms	d^2u/dx^2	d^2u/dt^2	
Adaptive	4.4999e-25	4.9763e-25	
Polynomial	1098.5015	1260.9454	
Spectral	8281.9373	9248.8831	
Inverse	19982.6044	6108.153	
Total_var	20238.9430	6130.2836	

Table 44: Means of diff errors without boundaries, noise=0%

Methods	D1. error	D2. error	D3. error
Gradient	0.0002	0.0027	0.0050
Adaptive	0.0016	0.2023	0.0121
Polynomial	0.0193	0.3344	0.0350
Spectral	0.0683	11.7856	14.1910
Inverse	1.5583	52.5442	0.4601
Total_var	1.6218	52.9117	0.3273

Table 45: Means of diff errors without boundaries, noise=0.5%

Methods	D1. error	D2. error	D3.error
Gradient	0.0017	0.0024	0.017
Adaptive	0.0025	0.2079	0.0221
Polynomial	0.0236	0.6421	0.0366
Spectral	0.0716	13.0997	14.1966
Inverse	1.5655	71.5591	0.4617
Total_var	1.6292	54.4074	0.3275

Table 46: Means of diff errors without boundaries, noise=1%

Methods	D1. error	D2. errors	D3. errors
Gradient	0.0065	0.0036	0.0502
Adaptive	0.0341	0.6116	0.0432
Polynomial	0.0302	1.9630	0.039
Spectral	0.0800	17.8008	14.2271
Inverse	1.5676	76.2041	0.4931
Total_var	1.6296	58.7889	0.3275

Table 47: Differentiation errors on boundaries, noise = 0%

Burgers equation			
Methods/Terms	du/dt	d^2u/dx^2	du/dx
Adaptive	0.0010	0.4113	0.0047
Polynomial	0.0014	0.9714	0.0639
Spectral	13.1979	20.9399	0.1296
Inverse	0.6641	105.0296	3.9091
Total_var	0.5659	106.5467	4.4983
KdV equation			
Methods/Terms	du/dt	d^3u/dx^3	du/dx
Gradient	0.0002	0.0030	0.00004
Adaptive	0.00005	0.0058	0.00005
Polynomial	0.0001	0.0168	0.0003
Spectral	1.3950	14.2714	0.0105
Inverse	0.2128	0.1948	0.0325
Total_var	0.2416	0.2002	0.0687
Laplace equation			
Methods/Terms	d^2u/dx^2	d^2u/dy^2	
Adaptive	0.0219	0.1528	
Polynomial	0.0093	0.0052	
Spectral	265.6624	153.8350	
Inverse	0.0170	0.3305	
Total_var	1.6339	1.4325	
ODE equation			
Methods/Terms	u'	u''	
Gradient	0.0017	0.0302	
Adaptive	0.0230	0.4480	
Polynomial	0.0422	0.0518	
Spectral	0.2305	0.6544	
Inverse	1.1393	4.7208	
Total_var	0.8787	2.2920	
Wave equation			
Methods/Terms	d^2u/dx^2	d^2u/dt^2	
Adaptive	3.9068	2.4417	
Polynomial	0.0009	1.3527e-08	
Spectral	4330.2841	4791.3391	
Inverse	6552.9687	25.7213	
Total_var	9867.9392	663.3597	

Table 48: Differentiation errors on boundaries, noise = 0.5%

Burgers equation			
Methods/Terms	du/dt	d^2u/dx^2	du/dx
Adaptive	0.0082	0.4425	0.0046
Polynomial	0.0259	2.1655	0.0651
Spectral	13.1257	21.0673	0.1299
Inverse	0.7112	105.4608	3.9048
Total_var	0.6153	106.9564	4.4938
KdV equation			
Methods/Terms	du/dt	d^3u/dx^3	du/dx
Gradient	0.0047	0.0076	0.00006
Adaptive	0.0026	0.0088	0.00007
Polynomial	0.0031	0.0620	0.0003
Spectral	1.3961	14.2823	0.0105
Inverse	0.2145	0.1951	0.0324
Total_var	0.2418	0.2001	0.0688
Laplace equation			
Methods/Terms	d^2u/dx^2	d^2u/dy^2	
Adaptive	7.1115	10.3365	
Polynomial	72.4688	79.1133	
Spectral	287.4326	190.3073	
Inverse	5887.0620	806.0344	
Total_var	21.0357	27.2037	
ODE equation			
Methods/Terms	u'	u''	
Gradient	0.0021	0.0345	
Adaptive	0.0227	0.4455	
Polynomial	0.0415	0.0704	
Spectral	0.2324	0.6584	
Inverse	1.1366	12.4026	
Total_var	0.8829	2.2998	
Wave equation			
Methods/Terms	d^2u/dx^2	d^2u/dt^2	
Adaptive	106.6517	1796.4747	
Polynomial	83.3851	130.6980	
Spectral	5164.4719	5031.0763	
Inverse	7255.2930	433.5565	
Total_var	10748.5392	5073.4548	

Table 49: Differentiation errors on boundaries, noise = 1%

		Burgers equation		
Methods/Terms	du/dt	d^2u/dx^2	du/dx	
Adaptive	0.0241	0.5434	0.0048	
Polynomial	0.0740	5.2326	0.0660	
Spectral	13.2611	21.4309	0.1311	
Inverse	0.8143	106.2819	3.9179	
Total_var	0.7134	107.7962	4.5084	
		KdV equation		
Methods/Terms	du/dt	d^3u/dx^3	du/dx	
Gradient	0.0326	0.0315	0.0002	
Adaptive	0.0134	0.0248	0.0002	
Polynomial	0.0170	0.1662	0.0003	
Spectral	1.3969	14.2965	0.0105	
Inverse	0.2131	0.2346	0.0326	
Total_var	0.2419	0.2002	0.0687	
		Laplace equation		
Methods/Terms	d^2u/dx^2	d^2u/dy^2		
Adaptive	28.9184	19.6306		
Polynomial	238.2998	231.4645		
Spectral	351.0565	219.6478		
Inverse	8770.9156	178600.1116		
Total_var	83.6729	57.0657		
		ODE equation		
Methods/Terms	u'	u''		
Gradient	0.0033	0.0429		
Adaptive	0.0278	0.4711		
Polynomial	0.0498	0.0922		
Spectral	0.2334	0.6601		
Inverse	1.1606	23.7757		
Total_var	0.8796	2.2926		
		Wave equation		
Methods/Terms	d^2u/dx^2	d^2u/dt^2		
Adaptive	405.1010	8660.7907		
Polynomial	665.12100	472.6915		
Spectral	6266.4304	7554.8468		
Inverse	8576.6807	2610.7530		
Total_var	15496.6550	24050.0412		

Table 50: Means of diff errors on boundaries, noise=0%

Methods	D1. error	D2. error	D3. error
Gradient	0.0017	0.0024	0.0030
Adaptive	0.0058	0.2585	0.0058
Polynomial	0.0216	0.2594	0.0168
Spectral	2.9927	110.2729	14.2714
Inverse	1.1916	27.5245	0.1948
Total_var	1.2506	27.9763	0.2002

Table 51: Means of diff errors on boundaries, noise=0.5%

Methods	D1. error	D2. error	D3.error
Gradient	0.0023	0.0345	0.0076
Adaptive	0.0076	4.584	0.0088
Polynomial	0.0272	30.7636	0.0620
Spectral	2.9789	124.8664	14.2823
Inverse	1.1999	1702.7400	0.1951
Total_var	1.2605	39.3739	0.2001

Table 52: Means of diff errors on boundaries, noise=1%

Methods	D1. error	D2. errors	D3. errors
Gradient	0.0120	0.0429	0.0315
Adaptive	0.0141	12.3909	0.0248
Polynomial	0.0414	118.7723	0.1662
Spectral	3.7583	148.1988	14.2965
Inverse	1.2277	44900.2712	0.2346
Total_var	1.2824	62.7069	0.2002