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Abstract

Data-driven discovery of differential equations typically treats numerical differenti-
ation as a fixed preprocessing step. Existing algorithms improve robustness through
data and library subsampling but rarely account for variability in the differentiation
method itself. We show that this choice introduces a systematic and reproducible
source of uncertainty that alters both the structure of the equation and the coeffi-
cients. High-resolution schemes amplify noise, while heavily smoothed derivatives
suppress meaningful fluctuations, yielding method-dependent results. We evaluate
six differentiation techniques across multiple PDEs and noise levels using SINDy
and EPDE, finding consistent shifts in the models discovered. These results estab-
lish differentiation method selection as a fundamental modeling decision and a new
axis to improve ensemble-based equation discovery.

1 Introduction

Four critical components define the framework of any machine learning model: architecture, param-
eters, features, and the objective function. Similarly, modern approaches to differential equation
discovery treat differential equations as machine learning models. This perspective raises key ques-
tions about how to assess the quality of the discovered DE and the associated uncertainties, leveraging
established evaluation techniques from machine learning and sensitivity analysis (SA). Although
uncertainty assessment is important in classical ML, it is particularly vital in differential equation
discovery to form ensembles.

Uncertainty can be assessed for each component of either a classical ML model or a differential
equation as an ML model:

Architectural uncertainty is typically assessed through techniques such as pruning [1]] or
ensemble methods [2]], which quantify the robustness to structural variations.

Parameter uncertainty is often analyzed via sensitivity analysis. Local SA methods, such as the
one-at-a-time (OAT) approach [3]], assess the effect of small perturbations in individual inputs and
keep others constant. However, these methods capture non-linearities and interactions poorly. In
contrast, global SA methods, such as Sobol indices [4]], evaluate the impact of variations across the
parameter space and account for input interactions.

Feature uncertainty is managed through preprocessing, data augmentation, sampling, feature
engineering, and strategies to handle noisy inputs, such as robust normalization techniques [3].

The objective function, although often defined by design, can introduce uncertainties when
there is misalignment between the target and the model’s capacity [6].
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Recent differential equation discovery methods allow us to treat differential equations as machine
learning methods. Therefore, we could also find analogs to machine learning components. Every
equation discovery method aims to identify the equation structure and terms likely to appear in the
governing equation for the data; this structure is closely related to a neural network architecture, as it
describes how features and layers are interconnected.

The second step is to identify the parameters. The parameters are the coefficients within the differential
equation that frequently correspond to physical properties. They can be referred to as neural network
weights (and are essentially coefficients of a specialized type of linear regression).

Advancements in differential equation discovery techniques have refined the assessment of uncertainty
for these components. For example, parameter uncertainty has been addressed using ensemble-based
approaches, such as E-SINDy [7]], which employs term library ensembling to handle parameter
robustness . Structural uncertainty has been explored using methods like multi-objective evolutionary
optimization combined with Bayesian networks, as demonstrated by [8]]. These approaches enable
researchers to more accurately quantify structural robustness and align the DE identified with physical
phenomena.

Unlike traditional machine learning, the objective function in DE discovery is more constrained. It is
often defined as the discrepancy of the equation, evaluated either in a strong form (e.g., term-by-term
residuals) or in a weak form (e.g., weak formulations such as wSINDy [9]). Solver-based methods
are also employed to minimize discrepancies between observed data and solutions generated by the
identified DE, such as physics-informed criterion (PIC) and others.

The critical distinction between differential equation discovery and machine learning lies in the
treatment of features. The sole feature in differential equation discovery is based on observational
data; it could be a time series or a field (a multidimensional tensor that contains time as one axis).
However, to build an equation, we require differentials with respect to every axis up to the given
order. Differentials of the input data are not provided in most cases and must therefore be computed
numerically. Thus, from a machine learning perspective, the features are engineered within the
algorithm.

Noisy measurements pose a challenge to numerical differentiation, leading to errors in derivative
estimates. Stable numerical differentiation techniques (for example, finite differences, polynomial
interpolation, or methods based on machine learning [[10]) have been proposed to address these
problems. However, the choice of differentiation method can significantly impact the quality of
the discovered DE model. Variations in derivative computation propagate uncertainty into both the
estimated parameters and the structure of the resulting differential equation.

Despite progress in addressing parameter and structural uncertainties in DE discovery, the impact
of differentiation methods on feature uncertainty remains underexplored. This paper aims to sys-
tematically assess how differentiation techniques influence the quality of discovered models, with a
particular focus on parameter and structural accuracy under varying levels of data uncertainty.

Contribution: - We describe differentiation as a “feature engineering” source of uncertainty in
differential equation discovery.

- Experimentally prove the obvious fact that better differentiation quality leads to better discovery, but
also the non-obvious fact that different methods should be used for noisy and clean data to achieve
better performance.

- We compare several frameworks (SINDy and EPDE) to make the results more reliable.

Limitations Not every differential discovery method allows for easy modification of the differentia-
tion method; for example, this is rarely done in RL-based equation discovery, such as DISCOVER
(1]

Data and code will be available on GitHub in case of acceptance on paper.

2 Differential equation discovery background

As noted above, in the context of a differential equation as a machine learning model, we can
distinguish the components of such a model: structure/architecture, parameters, features, and objective
function.



For differential equations discovery, as input, we have the data placed on a discrete grid X =

{x(i) = (Ltgi), e xé’lzm) }z_:iv, where N is the number of observations and dim is the dimensionality
of the problem. We mentioln_ a particular case of time series, for which dim = 1 and X = {¢; }Ziv
It is also assumed that for each point on the grid, there is an associated set of observations U =
{u(i) = (ugi), e ,u?)}jil to define a grid map u : X C RY™ — U ¢ RE. This grid and
observations can be used as input data or features in the machine learning model.

From differential equation theory, we expect u to represent not only a function but also a jet, which is
essentially differential up to a given order r in form:

J" = (21, ..., Taim; w; D1u; Dau; ...; Dyu) @)
,where D, = (J {Bm o ar} is the set of all partial differentials of order » and a@ =
lee]=r
i=dim
{a1,...aqim}, || = > «; is just a differential multi-index. Since we usually have a single
i=1

observation set « we omit it from the notation J" (u)

Any differential equation of an order r is just a surface in a jet space J”. Let 7 be a set of basis
functions (monomials, compositions) acting on J”. Then S C T represents selected terms, and P is
the set of admissible coefficients. It could be a function of independent coordinates or just constants.
Then the surface has the following form:

)= pe-s(J) =0 @)

ses

Having an analytical jet is the best possible case for the discovery of differential equations. We look
for the surface within the jet space, nothing more. The real-case scenario significantly differs from
the ideal "continuous" case, namely: (a) in most cases the jets are restored just from observation
data U with numerical differentiation,(b) we cannot look for any surface, we restrict the surface
search space, and (c) if we want to find a "governing" law, we need to go beyond simple symbolic
regression: the equation may not have unique solution, we may overlook some terms, terms presented
in theoretical equation could have small magnitude and appear as numerical noise. In general, we
require one to assess the uncertainty in both the structure and the coefficients. In most cases, it is
done using ensembles.

(a) On jets and numerical differentiation Returning to the discrete setup, we have an approximate jet
Jr = {9 u® Dpu@ ... (D) u®)}i=N with Dy, denoting an arbitrary numerical differentiation
operator. Here is much uncertainty. Generally, we do not know how the discrete observation set
U = {u}:=V is connected with a true function . For the selected numerical differentiation method
Dy, we usually only know the order of approximation for a first-order differential, and we apply it
several times to have higher-order differentials without any guarantee of higher-order differential
approximation.

We expect that if the differentiation method is correct, then in a point-wise manner .J” —>N n J".

—+o00

There is an ambiguity. In a real-world scenario, we cannot obtain more observational data. From the
other side, for a finite computation starting from a certain number of points, the process becomes
ill-posed. We discuss how to approach assessing it below.

(b) Equation discovery problem statement Let us assume that the discrete jet J” is already computed
for the observation data U. Therefore, we can treat items in J” as symbols and formulate a symbolic
regression problem.

As stated above, we have to find an explicit surface (2)). Any machine learning requires restricting the
search space to a finite one. As the first step, we define the loss function L(M (S, P)) and formulate
the optimization problem.



S*, P* = argmin L(M (S, P)) 3)
Sex, Pell

The methods of equation discovery differ in the way they determine L(-), the parameterization of
the model M (S, P), and the set of restrictions of the structure 3, as well as the set of parameters
II. The structure and parameters are analogous to those of a machine learning algorithm’s model
architecture. Unlike machine learning 3 and IT in differential equation discovery, the optimization
algorithm determines the results. Below, we briefly outline the main groups of methods.

In equation discovery, in the first place, we care about how X is built. As a classical algorithm in the
area, we consider another algorithm, Sparse Identification of Nonlinear Dynamics (SINDy) [12].

For the SINDy case, we manually determine the longest sentence Yo, possible and fix it. The
optimization is performed only by P, which is essentially a vector of the numerical coefficients near
each word of Yj,ng. We need to make P as sparse as possible, which is done with classical LASSO
regression. In SINDy, we compute the loss function by using the discrepancy over the discrete grid.

P* = argmin|| M (Ziong, P)l[2 + [ Pl[1 Q)
Pen

In @) we denote by || - ||2 the mean discrepancy in the computation grid X and by || - || is the I3
norm. Since SINDy usually works with constant coefficients, we could use the /; norm to determine
the sparsity of the set of parameters P. In some sense, it is a measure of the complexity of the surface
in terms of the number of symbols needed to describe it.

Evolutionary approaches and reinforcement learning have their own rules to construct S for a model.
Every equation S; appearing within the optimization process is evaluated using the SINDy approach
(@) with discrepancy or, as is done in EPDE, by constructing the Pareto frontier over the discrepancy
and complexity criteria. Both discrepancy computation and Patero frontier forming are done as part
of the fitness function computation or to form a reward for the reinforcement learning agent.

There are also more robust measures. For a given surface M (S, P), we try to restore the continuous
function u that exactly generates the surface and then compare it with observations U. It, of course,
requires the solution of the equation. We note that in this case, we do not need to consider jets J";
instead, we begin working with the fibers v and no longer need to consider the differentials D,.. In
that case, all surfaces are single-connected, i.e., the solution of the equation is unique, which is, of
course, a limitation, but it is more robust than a discrepancy measure.

There are also some intermediate cases, such as PIC. Here we spatially handle jets, but temporally
restore continuous paths. It could be considered as jet factorization and partial fiber projection.

Ultimately, after optimization of equation (3)), we obtain a single symbolic expression that represents
a relation found in the discrete jet J”. We need to assess sensitivity to the data subsampling method,
noise, and differentiation.

(c) Ensemble sensitivity analysis To assess sensitivity and pick stable appearing equations, we need
to form ensembles. To briefly mention, E-SINDy is the first algorithm for the equation discovery
method [7]] that addresses this problem. We also have different ensembling methods [8]].

Unlike what is usually stated in the literature, we do not need to have a single stable equation, but an
ensemble that has a common part "in mean". Additionally, we typically consider the sensitivity and
optimization stability of data subsampling. However, the sensitivity of the differentiation method,
although it is an important part as shown above, is usually omitted.

3 Data differentiation problem statement and proposed methods

As seen above, the problem of using derivatives as features and overall differentiation methods is
rarely mentioned in equation discovery. The differentials are used as symbols to form a discrete jet.
Strictly speaking, discrete jets differ greatly based on the differentiation method used.

In particular, differentials here are considered handcrafted features within symbolic regression from
a machine learning perspective. We are interested in the contribution the differentiation algorithm



makes to equation discovery and the importance of the differentiation error. The ad hoc solution is
that the error should not be too large for most problem statements.

To illustrate the problem, let us consider a straightforward numerical differentiation problem statement.
The input to any equation discovery algorithm typically consists of noisy measurements. Denoting
the true (noise-free) state by u(¢, x) and the observed data by
u(t,x) = u(t, x) + €(t, x) )
Typically, one assumes that (¢, x) arises from additive white Gaussian noise (AWGN). In particular,
each measurement is modeled as
u(t,x) ~ N (a(t,x), o*(t,x)), o(t,x) = r|u(t,x)| (6)

for some proportionality constant «. Let us consider the simplest case of the central difference
differentiation of a single-variable function:

ooy uw(@+h)—u(x—h)
u'(z) &~ 57 (N

Substituting into the central difference noised data (3) yields

o [u(x + h) + e(x + h)] — [u(z — h) + e(z — h)] B
(o) = 27 N
B u(z + h) —u(x — h) e(x+h)—e(x—h)
B 2h * 2h ®

(deterministic, truncation part) n(x)

Because €(z+h) and e(x— h) are independent Gaussian random variables with variance x2 |u(t, x) |2,
it follows that

e(x —€e(r— 2 2lu t7 2 2 |u t? 2
Var[n(z)] = Var{ ( +h)2h( h)} S ’:f(ﬂ all == ‘Z(h;(” ; ©

hence, the noise-induced standard deviation in the derivative estimate scales like # [u(x)|/(v/2 h).

On the other hand, a standard Taylor remainder analysis shows that the deterministic error (truncation)
of the central difference approximation is O(h?). Denoting by k the constant that bounds the second
derivative term in the remainder, one may write:

K Ju()|
E runc h) =~k h27 Enoise h) ~ . 10
o (1) ()~ " (10)
Therefore, the total error in the central-difference derivative for noisy data can be viewed as
Etotal(h> ~ kh2 + K/"U/(.r)| (]])

V2h

Minimizing FE}ota1 (h) with respect to h yields an optimal grid spacing and the corresponding minimal
error scales as

* c 1/3 K |u(z)] 2/3 1.1/3 (0—2/3 1/3
Bt = (ﬂ) L= Enmin ~ /3 kY3 (272/3 4 21/3)., (12)

Thus, although reducing h decreases the truncation error, it amplifies the noise. It implies that an
intermediate (non-zero) hA* balances both contributions. In symbolic regression, where derivatives are



treated as features, choosing h too small will cause the noise amplification term to dominate, leading
to spurious high-frequency artifacts. Choosing h too large will smear genuine gradients and obscure
critical dynamics. The differentiation algorithm should be correct to draw a general conclusion for
noisy data, but increasing differentiation precision may lead to worse results.

For a general differential equation discovery algorithm, we have only a fixed differentiation method
as a hyperparameter and a fixed grid, but the equation is not fixed. So, in some sense, we could
only manipulate £ from the above equations. We could only assess the variance of the discrepancy
distribution for a known equation-" answer ". However, we do not have any guarantees that none of
the other equations could eventually achieve a lower discrepancy.

The discrepancy measure is used as the optimization criterion in most equation discovery methods.
Since the discrepancy is averaged over the whole grid, we already use the weak form. However, as
shown in the paper, the differentiation algorithm and error play a significant role in this process.

4 Experiments

We will conduct complex numerical experiments to investigate the influence of the above differentia-
tion methods in DE discovery. DE discovery will be carried out using sparse regression [[12] and an
evolutionary approach [13]].

All experiments were carried out using six differentiation methods in total, which are referred to as
Gradient, Adaptive, Polynomial, Spectral, and Total_var. The detailed description of the
methods used is in Appendix [A] For the particular algorithms’ parameters and realization, please
refer to the code.

4.1 Experimental setup

Second-order ODE and several types of partial differential equations were chosen, each with different
solutions: analytical (KdV), numerical (Burgers, wave, Laplace). Additionally, we use a data-driven
model of ocean behavior [[14]] where the exact equation is not known a priori (referred to as pyqg
below).

The workflow includes selecting and generating data; as noted earlier, it is either obtaining an
analytical solution in the form of a matrix of values or finding a solution matrix using numerical
methods, setting boundary and initial conditions, where necessary, and choosing constants. After
that, all the data obtained are differentiated by the described methods, while the derivatives sought
are those that, as is known in advance, occur in the equation. These may be derivatives of the form
Au(t,x) Ou(t,x) 9%u(t,x)
oz > Ot ° 022

Then, an evolutionary algorithm is applied using the EPDE framework. Data were loaded with the
grid and all derivatives, and then we chose a multi-objective mode. The population size is 7 for all
equations, and the number of training epochs ranges from 30 to 80, depending on the equation’s
complexity; the maximum number of terms in each equation is 8. This is done to obtain greater
variability in the equations. Then, the algorithm is run; one run yields approximately 5-7 equations
per the Pareto frontier. We perform only 50 runs for each equation to minimize variation in the data
and more accurately estimate the average approximation for all coefficients.

, etc.

For each data set, a series of experiments was conducted, resulting in box plots (refer to the appendices)
that show the distribution of coefficients preceding the correct terms. The difference between the
obtained equations and the true ones was also analyzed using the Structural Hamming Distance
(SHD) metric.

For each experiment, noise was added to the data as (6), with x = {0, 0.5, 1}%, which is referred to
as noise. However, we provide results for noise = 1 for the particular equations. Other cases are
discussed in the corresponding section.

5 Results

Ordinary differential equation As a simple example, we consider a second-order ODE in the
form mu” + qu’ + ku = 0 with parameters m = 1, ¢ = 0.25, & = 3, and initial conditions



u(0) = 1,4/(0) = 0. The detailed experimental results are placed in Appendix [B| with a further
discussion in Section [6l

Korteweg — de Vries equation The Korteweg-de Vries equation is a partial differential equation
wp + U7 or + 6uul, = 0, which is one of the few that has analytical one-soliton and two-soliton
solutions.

We will study its single-soliton solution, presented in the following form u(z,t) = m
,where k = 0.7 is the constant that determines the velocity of the soliton 4k? and the amplitude 242,
The detailed experimental results are placed in Appendix [C] with a further discussion in Section [6]

Burger’s equation ) + uu, = vu//, ,where v = 0.05 is the diffusion coefficient.

The solution was obtained using an implicit numerical scheme for the diffusion term and an explicit
numerical scheme for the convective term. An initial condition was set, and the right and left
boundaries were fixed at zero. The detailed experimental results are placed in Appendix [D]with a
further discussion in Section

Wave equation v/, = c?u},, where ¢ = 0.25 is the propagation speed of the wave. The initial
conditions were set as a sinusoidal function, and the boundary conditions were fixed at zero. The
finite difference method was then used to solve the problem. The detailed experimental results are
placed in Appendix [E] with a further discussion in Section 6]

Laplace equation v, + u;, = 0. The Dirichlet boundary conditions were set, and the problem
was solved using the finite difference method. The detailed experimental results are placed in
Appendix [F] with a further discussion in Section [6}

Quasigeostrophic potential vorticity Original data were obtained using the pyqg framework[ﬂfor
quasi-geostrophic modeling. The maximum number of terms was extended to 15 to capture complex
dynamics. Since the exact governing equations are unknown, we evaluate the discovered equations
by comparing the discrepancy between the original data and numerical solutions from a Physics-
Informed Neural Networks (PINNSs) solver. PINNs are necessary due to the high non-linearity that
renders conventional FEM inadequate. The general form of the governing equation is Vg - Vg = 0,
where V, represents geostrophic velocity and ¢ denotes potential vorticity.

The equations presented were derived using Savitzky-Golay (SG) filtering and spectral domain
differentiation methods, respectively, as alternative approaches failed to capture the eddy-driven
structure of the derivatives, resulting in suboptimal preprocessing. The solutions to these equations
similarly exhibit a lack of regions with pronounced eddy behavior, which may indicate a tendency
toward identifying broader-scale features in the data. Visual representations of the original data,
numerical solutions, and error maps are provided in Appendix [G|

These results demonstrate that, in real-world cases, we cannot consistently achieve results for unknown
equations and that we require ensembles that include both data subsampling and differentiation
uncertainty.

6 Discussion

Our experiments reveal a counterintuitive reality: numerically precise differentiation is not a remedy
for equation discovery. As shown in Tab. [I| methods such as Spectral achieve a minimal differentia-
tion error (e.g., 9.988 - 1079 at 0% noise), but produce poor structural precision (SHD = 4 =+ 0.13).
In contrast, despite the high differentiation error (1.963 for 1% noise level). Polynomial consistently
delivers superior structural recovery (SHD = 3 + 0.13). This paradox arises because noise amplifica-
tion from high-precision methods introduces misleading high-frequency artifacts. As we illustrate in
a concrete example (see (T1))), optimal discovery requires strategic smoothing rather than maximal
precision within a single algorithm run.

To illustrate the general dependencies, we plot the SHD and error values for different methods on a
scatter plot, as shown in Fig. [T}

"http://github.com/pyqe/pyqg
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Table 1: Differentiation Method Performance Analysis

Noise Level D1/D2/D3 error Coeff. Error (Mean + SD) SHD (Mean + SD)  Key Insight

= 0% 0.0002/0.00027/0.00050  0.7309 + 0.0515 2+0.0782 Precise but noisy; good for clean data

5 0.5% 0.0017/0.0024/0.0170 0.9179 + 0.0683 3+0.1153 Noise amplifies rapidly

S 1% 0.0065/0.0036/0.0502 1.0068 + 0.2449 4+0.1482 Avoid for noisy PDEs

. 0% 0.0016/0.2023/0.0121 0.7309 £ 0.0515 2+0.0823 Precise but noisy; good for clean data

2 05% 0.0025/0.2079/0.0221 0.9179 + 0.0683 3+0.0723 Noise amplifies rapidly

= 1% 0.0341/0.6116/0.0432 1.0068 + 0.2449 4+0.0971 Avoid for noisy PDEs

z 0% 0.0193/0.3344/0.0350 0.8971 £ 0.0517 2+0.1300 Low SHD despite high diff. error

s 05% 0.0236/0.6421/0.0366 0.9611 +0.0390 3+0.1260 Robust structure recovery

2 1% 0.0302/1.9630/0.0390 0.9148 £ 0.1551 3+0.1323 Best SHD-noise tradeoff

- 0% 0.0683/11.7856/14.1910  1.1074 + 0.0461 4+0.1309 High precision, poor SHD

:’EA 0.5% 0.0716/13.0997/14.1966  1.1737 + 0.0462 5+0.1558 Boundary artifacts dominate

2 1% 0.0800/17.8008/14.2271  1.1924 + 0.0466 4+0.1498 Unreliable under noise

. 0% 1.5583/52.5442/0.4601 1.0482 +0.0518 4+0.1929 Moderate SHD, high coeff. variance

5 0.5% 1.5655/71.5591/0.4617 1.2806 + 0.0656 4+0.1763 Worst coeff. error at low noise

1% 1.5676/76.2041/0.4931 1.3120 £ 0.0816 5+0.1537 Avoid for high-order terms

s 0% 1.6218/52.9117/0.3273  1.0482 £ 0.0518 3+0.1055 Smoothing improves structural recovery
2 05% 1.6292/54.4074/0.3275  1.2806 * 0.0656 3+0.1049 Consistent performance across noise levels
£ 1% 1.6296/58.7889/0.3275 1.3120 £ 0.0816 3+0.1065 Good structure despite high error

Comparison of differentiation methods by mean Comparison of differentiation methods by mean
error and SHD for different noise levels on boundaries error and SHD for different noise levels without boundaries
g 5.0 o A ® Gradient g 5.0 0a ® Gradient
2 ® Adaptive 2 ® Adaptive
v 45 @ Polynomial v 45 @ Polynomial
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Figure 1: Comparison of differentiation methods by mean differentiation error and SHD for different
noise levels on boundaries (left) and without boundaries (right)

7 Conclusion

The paper considers another aspect of differential equation discovery as a machine learning method.

The error of the differentiation algorithm, as the "feature engineering" method plays a role in the
general uncertainty, is often left out of the scope.

The main results are as follows.

* The differentiation is an important part of every differential equation discovery method

* The differentiation is a reliable uncertainty source and may be used in ensembles to get the
models on a different process scale

* Absolute value of differentiation error is less important — very precise methods give poor
discovery results in some cases

* Significant differentiation error is allowed in the derivative, and in some cases, it is necessary
to accept it to work with noisy data

We also note that the conclusion remains the same regardless of the method used, whether it is
LASSO regression-based SINDy or evolutionary EPDE.
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A Differentiation approach formulation

All experiments were carried out using six differentiation methods in total: Gradient - forward finite
difference method, second order; Adaptive - numerical derivatives of dense neural network outputs;
Polynomial - Savitzky-Golay filtering with interpolating polynomial; Spectral - spectral domain
differentiation; Total_var - total variation regularization; Inverse - dense neural network with loss
containing the inverse operator to differentiation.

* Filtering-based approaches: One of the approaches considered in this work involves
approximating the input data with the fully connected artificial neural network (ANN).
One of the valuable properties of the artificial neural network is that the low-frequency
signal in the data is learned first, while further training approximates the high-frequency
components [[15]. Thus, by training an ANN representation of the process, we can obtain its
low-frequency approximation, which can be further differentiated with a decreased noise
component. Moreover, training ANN to represent the process allow us to obtain derivatives
via automatic differentiation method.

Savitzky-Golay (SG) filtering, developed in [16]], is a commonly used approach to signal or
data filtering, coupled with an opportunity to compute derivatives, involves a least squares-
based local fitting of the polynomials to represent the data. For each grid node, the data in
its proximity is used to construct a polynomial that can be analytically differentiated.

* Spectral domain differentiation: Although the process of differentiation in the spatial
domain can be complicated for the data described with an arbitrary function, in the Fourier
domain, the derivatives can be estimated on a term-to-term basis [[17]]. The discrete Fourier
transform (DFT) is the basis of our implementation of spectral domain differentiation. In
the spectral domain, integration and differentiation can be maintained by multiplication
of series terms with an appropriate exponential. This leads to low computational costs,
especially if the data are located on a uniform grid, thus allowing the use of the Fast
Fourier Transform instead of DFT. The Butterworth filter does the signal filtering, which
can preserve the signals with frequencies lower than the cutoff frequency while dampening
the high-frequency ones.

« Total variation regularization: Variational principles provide an alternative method that
incorporates inverse problem solution with the regularization of the gradient variation or its
higher-order analogs (e.g., Hessian). One of the main advances in this field was made in
[10L[18].

A.1 Savitzky-Golay filtering

Savitzky-Golay (SG) filtering, developed in [16]], is a commonly used approach to signal or data
filtering, coupled with an opportunity to compute derivatives, involves a least squares-based local
fitting of the polynomials to represent the data. To the set of data samples along an axis, we
introduce the window of (commonly, odd) length N = 2M + 1, allowing the construction of series
of polynomials Py(z), P (z), ... up to (even) order n, n < N to approximate the data in the interior
of our domain. With the selection of appropriate window size, from which the function values are
used for the approximation, and polynomial order, the overdetermined system is constructed. Its
solution provides the polynomial coefficients that represent the smoothed signal, without oscillations,
caused by the random error. Even though the boundaries of length M can be processed in a separate
way, with the finite-difference schema or by a shifted approximation, the quality of results tend to
decrease, thus for the equation discovery only the domain interior shall be used.

During the calculation of the partial derivative u; for the sample u(zx;), matching the z; grid

node along the j-th axis, we select samples w; = (U;—pr, Uim Ar+1, - 5 Uiy - , Uit ) iD the
aforementioned window. Using the corresponding coordinates y; = (Z;—pz, ... , Tiy v s Tigar)s WE
introduce the least-square problem of detecting coefficient vector & = (v, ... , 1) for the series
Py, ..., P,_1. The representation of data samples is as follows:
n—1
ui =Y apPy(w;). (13)
k=0

10



a = argmin [u; — Py, (14)

where matrix P contains values of the polynomials in the grid nodes.

In our case, we utilize orthogonal Chebyshev polynomials of the first kind, where by C'2* we denote
the number of combination of 2k elements from the set of cardinality m:

lm/2]
Tp(x) = Z C2k (g2 — 1)kgm—2F (15)
k=0

Having a series of Chebyshev polynomials with calculated coefficients, differentiation can be
held analytically. Using the representation of data as series in [I3] we get the derivative as

ul = ZZ;S Uk (z;), where Uy, is a Chebyshev polynomial of the second kind.

m/2)
Un(z) = > CoE (a® — 1)kam =2 (16)
k=0

Although the provided approach is capable of filtering the data and stably calculating the derivatives,
work [19] suggests that modification of Savitzky-Golay filtering by adding fitting weights or by
implementing other filters, such as Whittaker-Henderson filter, can lead to better results in noise
suppression.

A.2 Spectral domain differentiation

Although the process of differentiation in the spatial domain can be complicated for the data, described
with an arbitrary function, in the Fourier domain the derivatives can be estimated in term-to-term
basis [[17]. In general, the series of the derivatives, taken on a term-to-term basis may not converge.
However, if we assume that the data represents continuous piecewise smooth function that has
piecewise differentiable derivatives, the data can be differentiated term-to-term.

A discrete Fourier transform (DFT) is the basis for our implementation of spectral domain differ-
entiation. Let us examine a case of one-dimensional data, even though the algorithm can operate
on multi-dimensional data, with the canonical discrete Fourier transform algorithm replaced by
n-dimensional DFT. In data-driven equation discovery problems, one-dimensional data w(¢) is
viewed from the point of view of samples u,, = u(nT/N),n = 0,1, ... ,N — 1, where T is the
length of time interval and IV - the number of samples, and the corresponding coordinates will be
t, =nT/N,n=0,1, ..., N — 1. The Fourier coefficients are denoted as 4y, and they are calculated
as:

nk

1 N-—1
g = o Z une:rp(fQMW). (17)

n=0

In many cases, the data are provided on the regular (even multi-dimensional) grid, thus to improve
the algorithm performance a fast Fourier transform can be used. Due to the lower computational
complexity, the increase in performance is substantial. The process of data reconstruction, using the
obtained Fourier coefficients, is held with an inverse discrete Fourier transform:

N-—1 nk
Up = kz_‘a ﬂkexp(27riﬁ). (18)

Full term-by-term differentiation is performed in the Fourier domain, and the derivatives values are
computed by the inverse DFT. For example, an expression for the first-order derivative has form, as

in Eq.

11



omi k k
d) = Y %Zk <ﬂnexp(2m'7v)f&N_kea:p(ZwiCLV)>. (19)

0<k< N1

Filtering with the desired properties can be done with low-pass filters that pass signals with lower
frequencies, while dampen the high-frequency ones. Butterworth filter is a representative of such
tools, and is flat for the passband (the frequencies that we do not want to penalize). The latter property
prevents distortion of the modeled process by introducing factors, close to 1, to the low-frequency
Fourier components. The penalizing factor is introduced with the expression eq. 20

1
1+ (W/wcutOff)Qs ’

G(w) (20)

where w is the frequency, weutof s 15 the cutoff frequency, indicating the boundary frequency, from
which the damping begins, and s is the filter steepness parameter. The resulting expression is obtained
with the introduction of penalizing factors G(w) = G(k/N) into the series, representing derivatives:

2w, (. nk . nk
u'(ty) = kz;\, 1 G(k;/N)?k (uneacp(QmN) — uN_kexp(—QmN)> (1)
0<k< ¥z

The derivative of the higher orders can be calculated recursively from the lower order ones with the
same filtering-based differentiation procedures, or, preferably, by the further multiplication with the
integrating coefficient and IDFT.

A.3 Total variation regularization

Variational principles provide an alternative method that incorporates inverse problem solution with
the regularization of the variation of the gradient or its higher order analogues (e.g. Hessian). Rudin-
Osher-Fatemi model [20] in its discrete formulation can be represented by the optimization problem
of minimizing functional 22]

ID(V - w)ly + SIK(V - u) = ulf — min, (22)

where V - u = (%, (%‘1, ...) is the gradient of the data field and K and D = (D¢, Dy, Dy,, ...)
represent discrete integration operators onf differentiation. Regularization of gradient variation is

maintained with term [D(V - u)|1 = 376 1/>2; ag%g;,-'
(1O, [18]

Although there are multiple approaches to the solution of the problem, we employ an approach,
proposed in articles [[10} [18], that is designed for a function of one variable. While this approach can
be generalized to the problems of higher dimensionality, the computational costs associated with the
optimization limit the method’s applicability to large datasets. To perform the functional optimization
required in Eq. 22] the corresponding Euler-Lagrange equation has to be formed and solved.
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Table 2: Coefficients values calculated with EPDE, noise = 0%

s

ER)

Methods/Terms u u u
Gradient 0.0219 £ 0.0082 | -0.2156 +0.0048 -1
Adaptive 0.0197 +0.0077 | -0.2086 = 0.0053 -1

Polynomial 0.0541 £ 0.0452 | -0.2348 = 0.0002 -1
Spectral -0.0312 £ 0.0412 | -0.3008 +£0.0392 | -0.8997 + 0.0460
Inverse -0.0142 +£0.0282 | -0.5213 £0.0632 | -0.5069 + 0.1026

Total_var -0.3901 £ 0.0032 | -0.9952 +0.0068 | -0.9353 + 0.0003
Ground truth 3 0.25 1
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Table 3: Coefficients values calculated with EPDE, noise = 0.5%

Methods/Terms u u’ u”
Gradient 0.0205 £ 0.0000 | -0.2222 +0.0043 -1
Adaptive 0.0152 £0.0112 | -0.2173 £ 0.0055 -1

Polynomial 0.0363 £ 0.0331 | -0.2412 +0.0058 -1
Spectral -0.0288 £ 0.0241 | -0.2694 +0.0375 | -0.9048 + 0.0480
Inverse -0.0255 £ 0.0177 | -0.2840 +0.0533 | -0.1348 + 0.0804

Total_var -0.3937 £ 0.0027 -1 -0.9387
Ground truth 3 0.25 1

Table 4: Coefficients values calculated with EPDE, noise = 1%

Methods/Terms u u’ u”
Gradient 0.0098 + 0.0251 | -0.2248 +0.0053 -1
Adaptive 0.0444 +0.0523 | -0.2149 + 0.0040 -1

Polynomial 0.0983 = 0.0748 | -0.2455 + 0.0082 -1
Spectral -0.0651 +£0.0643 | -0.3254 +0.0391 | -0.9172 + 0.0400
Inverse 0.0639 £ 0.0191 | -0.1889 +£0.0410 | 0.0789 + 0.0746

Total_var -0.3949 +0.0027 | -1.0002 +0.0003 | -0.9371 + 0.0003
Ground truth 3 0.25 1

Table 5: Coefficients values calculated with SINDy, noise =0%

Methods/Terms u u’ u”
Gradient 2.845 | 0.208 | 1
Adaptive 2385 1 0.249 | 1

Polynomial 2.874 1 0.193 | 1
Spectral 3.199 - 1
Inverse 2732 1 0264 | 1
Total_var 0413 | 1.070 | 1

Ground truth 3 0.25 1

Table 6: Coefficients values calculated with SINDy, noise =0.5%

Methods/Terms u u’ u”
Gradient 2.824 1 0212 | 1
Adaptive 2.368 | 0.253 | 1

Polynomial 2.854 1 0.206 | 1
Spectral 3.180 - 1
Inverse 3.697 | 0.376 | 1
Total_var 0.409 | 1.066 | 1
Ground truth 3 0.25 1

Table 7: Coefficients values calculated with SINDy, noise =1%

5 55

Methods/Terms u u u
Gradient 2754 1 0.212 | 1
Adaptive 2353 1 0256 | 1

Polynomial 27785 1 0.176 | 1
Spectral 3.197 - 1
Inverse 3.240 | 0.268 | 1

Total_var 0414 | 1.072 | 1
Ground truth 3 0.25 1
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Table 8: Coefficients values calculated with EPDE, noise =0%

Methods/Terms du/dt d"A3u/dx”3 u*du/dx
Gradient -0.4565 +0.2045 | 0.0008 +0.0038 | -1.3444 +0.1839
Adaptive -0.5102 - -1.9143 + 0.0645

Polynomial -0.5045 +£0.4228 - -0.0303 £ 0.0011
Spectral 0.0202 £ 0.0401 | 0.0002 + 0.0000 | -0.2297 £ 0.1165
Inverse 0.0142 + 0.0007 - -0.2412 + 0.0004

Total_var -0.8334 +0.4282 1.1503 -0.9770 £ 0.0231
Ground truth 1 1 6
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Table 9: Coefficients values calculated with EPDE, noise =0.5%

Methods/Terms du/dt d”3u/dx”3 u*du/dx
Gradient -0.1973 £ 0.2523 -0.0001 -1.5692 + 0.1447
Adaptive -0.5081 £ 0.0035 | -0.0801 +0.0554 | -0.7084 + 0.2506

Polynomial -0.9822 +0.0248 -0.0022 -0.8874 +0.2106
Spectral 0.0191 £ 0.0614 | -0.0000 +0.0003 | -0.1706 + 0.1092
Inverse -0.4698 £0.1770 | 0.0001 +£0.0003 | 0.0419 +0.0954

Total_var -0.8164 £ 0.1561 | 1.1569 +£0.1997 | -0.9282 + 0.0466
Ground truth 1 1 6

Table 10: Coefficients values calculated with EPDE, noise =1%

Methods/Terms du/dt d”3u/dx”"3 u*du/dx
Gradient -0.3711 £0.1267 | -0.0819 +£0.0647 | -0.7199 + 0.3075
Adaptive -0.4008 £ 0.0431 | -0.0553 £0.0512 | -0.3934 +0.1230

Polynomial -0.6898 £ 0.1512 | -0.1111 +£1.4098 | -0.9766 + 0.1917
Spectral 0.0320 = 0.0667 | -0.0001 +0.0006 | -0.1036 + 0.0779
Inverse -0.1240 £ 0.0939 | 0.1313 +£0.1499 | 0.0565 +0.0776

Total_var -0.8394 + 0.1006 - -0.6780 +0.1103
Ground truth 1 1 6

Table 11: Coefficients values calculated with SINDy, noise =0%

Methods/Terms | du/dt | d*3u/dx”3 | u*du/dx
Gradient 1 -0.009 0.077
Adaptive 1 - 0.195

Polynomial 1 - 0.595
Spectral 1 -0.067 2.530
Inverse 1 0.072 0.025

Total_var 1 -4.011 -0.599
Ground truth 1 1 6

Table 12: Coefficients values calculated with SINDy, noise =0.5%

Methods/Terms | du/dt | d"3u/dx”3 | u*du/dx
Gradient 1 0.158 1.295
Adaptive 1 0.146 1.320

Polynomial 1 - 0.472
Spectral 1 -0.066 2.530
Inverse 1 - -
Total_var 1 -4.010 -0.639

Ground truth 1 1 6

Table 13: Coefficients values calculated with SINDy, noise =1%

Methods/Terms | du/dt | d*3u/dx”3 | u*du/dx
Gradient 1 0.052 0.443
Adaptive 1 0.056 0.681

Polynomial 1 - 0.841

Spectral 1 -0.067 2.523
Inverse 1 - -

Total_var 1 -4.015 -0.731
Ground truth 1 1 6
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D Burgers equation coefficients and Structural Hamming Distances
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Figure 6: Distribution of coefficients values for different noise level
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Table 14: Coefficients values calculated with EPDE, noise =0%

Methods/Terms du/dt dA2u/dx”2 u*du/dx
Gradient -0.9454 +0.0301 | 0.0346 +0.0133 | -0.8945 +0.0327
Adaptive -0.4548 +£ 0.6341 0.0402 £ 0.026 | -0.7677 £ 0.4413

Polynomial -0.9283 +0.0332 | 0.0439 +0.0188 | -0.8931 + 0.0556
Spectral -0.4025 +£0.0549 | 0.0032+0.0171 | -0.3732 +0.0849
Inverse -0.2118 £0.1229 | -0.0239 +0.1173 | 0.0773 £0.1174

Total_var -0.4373 £0.2731 | -1.2180 £0.2525 | -0.1324 + 0.1249
Ground truth 1 -0.05 1
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Table 15: Coefficients values calculated with EPDE, noise =0.5%

Methods/Terms du/dt dN2u/dx”2 u*du/dx
Gradient -0.8727 £0.0398 | 0.0428 +0.0035 | -0.8520 + 0.0479
Adaptive -0.5185+0.0164 | 0.0069 +0.0031 | -0.0718 +0.0337

Polynomial -0.9428 £ 0.0150 | 0.0378 £0.0202 | -0.9510 + 0.0382
Spectral -0.3064 £ 0.0521 | 0.0138 £0.0033 | -0.3226 + 0.0810
Inverse -0.3064 £ 0.0521 | 0.0138 £0.0033 | -0.3226 + 0.0810

Total_var 0.0008 £ 0.0011 | -0.0041 +£0.0115 | -0.5039 + 0.0086
Ground truth 1 -0.05 1

Table 16: Coefficients values calculated with EPDE, noise =1%

Methods/Terms du/dt dN2u/dx”2 u*du/dx
Gradient -0.4088 +£0.0448 | 0.0051 +£0.0269 | -0.5262 + 0.0840
Adaptive 0.5498 £ 0.0191 | 0.0033 +£0.0026 | 0.0577 +£0.0274

Polynomial -0.8245 +0.0360 | 0.0384 +£0.0208 | -0.9395 +0.0375
Spectral -0.3414 £ 0.0472 | 0.0049 +0.0207 | -0.3910 +0.0798
Inverse -0.1569 £ 0.0575 | 0.0238 £0.0420 | -0.0533 +0.0453

Total_var -0.4989 +0.1903 | -0.3595 +£0.2082 | -0.0269 + 0.0465
Ground truth 1 -0.05 1

Table 17: Coefficients values calculated with SINDy, noise =0%

Methods/Terms | du/dt | d*2u/dx”2 | u*du/dx
Gradient 1 -0.044 0.952
Adaptive 1 -0.045 0.951

Polynomial 1 -0.058 1.057
Spectral 1 - 0.273
Inverse 1 -0.134 0.205

Total var 1 1.765 -
Ground truth 1 -0.05 1

Table 18: Coefficients values calculated with SINDy, noise =0.5%

Methods/Terms | du/dt | d"2u/dx”2 | u*du/dx
Gradient 1 -0.044 0.955
Adaptive 1 -0.045 0.951

Polynomial 1 -0.055 1.039
Spectral 1 - 0.277
Inverse 1 - 0.188

Total var 1 1.763 -
Ground truth 1 -0.05 1

Table 19: Coefficients values calculated with SINDy, noise =1%

Methods/Terms | du/dt | d*2u/dx”2 | u*du/dx
Gradient 1 - 0.661
Adaptive 1 - 0.661

Polynomial 1 -0.050 1.004
Spectral 1 - 0.271
Inverse 1 -0.129 0.202

Total_var 1 1.736 -0.014
Ground truth 1 -0.05 1
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E Wave equation coefficients and Structural Hamming Distances

Wave, noise=0%

Method 9 9

——————
0.0 I Gradient 8 o O ——
[ Adaptive
[ Polynomial
3 Total
3 Inverse
-0.5
o
S
©
s
5
3 -10 o ° o
=3
©
Q
o
-1.5
-20 °
d"2u/dx"2 dr2u/dtr2
Term
Wave, noise=0.5%
o
0.75 ©
0.50
0.25 3
g o
E 8
o o o
> 000 Qj -2
3 ° ° °
E o o
2 -025 o
o
Method
~050 " mmm Gradient )
[ Adaptive
~075 I Polynomial
3 Spectral
0 Total
-1.00 =3 Inverse
d*2u/dtr2 d*2u/dx"2
Term
Wave, noise=1%
8 o
= "I P —
0.0 °
o
)
-0.5
o
]
© o
s
€
2
£ -1.0 o
©
3
o
Method
0 Gradient
15 " mmm Adaptive
I Polynomial
[ Spectral
3 Total
“20 3 Inverse ° o
dr2u/dtr2 d*2u/dx"2

Term

Figure 8: Distribution of coefficients values for different noise level
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Table 20: Coefficients values calculated with EPDE, noise =0%
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Methods/Terms dA2u/dx”2 dA2u/dth2
Gradient -1 -0.0005 + 0.0338
Adaptive -1 -0.0579 = 0.0408

Polynomial -1 -0.0827 + 0.0430
Spectral - -
Inverse -0.9486 = 0.0502 | 0.0038 +£0.0162
Total_var -1.0049 £ 0.0097 | -0.9904 +0.0191
Ground truth 1 -0.0625

23




Table 21: Coefficients values calculated with EPDE, noise =0.5%

Methods/Terms dA2u/dx”2 dA2u/dth2
Gradient 0.0037 = 0.0075 | 0.0688 +0.0199
Adaptive 0.0008 = 0.0061 | 0.0972 +0.0131

Polynomial 0.0018 = 0.0030 | 0.1539 +0.0345
Spectral 0.1549 + 0.0041 -
Inverse -0.8171 £0.1025 | -0.5975 +0.1638
Total_var -1 -1
Ground truth 1 -0.0625

Table 22: Coefficients values calculated with EPDE, noise =1%

Methods/Terms dA2u/dx”2 dA2u/dtA2
Gradient -0.0041 £ 0.0068 | 0.0064 +0.0070
Adaptive 0.0004 = 0.0003 | 0.0108 + 0.0056

Polynomial -0.0001 £ 0.0005 | 0.1041 +0.0191
Spectral 0.1533 £ 0.0039 -
Inverse -0.8946 £ 0.0792 | -0.6434 +0.1901
Total_var -0.3441 £ 0.1927 | -1.0066 + 0.0092
Ground truth 1 -0.0625

Table 23: Coefficients values calculated with SINDy, noise =0%

Methods/Terms | d*2u/dx”2 | d"2u/dt"2
Adaptive 1 -0.055
Polynomial 1 -0.063
Spectral 1 -
Inverse 1 -0.008
Total_var 1 -0.007
Ground truth 1 -0.0625

Table 24: Coefficients values calculated with SINDy, noise =0.5%

Methods/Terms | d 2u/dx”2 | d*2u/dt*2
Gradient 1 -0.193
Adaptive 1 -0.163

Polynomial 1 -0.049
Spectral 1 -
Inverse 1 -0.221
Total var 1 -0.027
Ground truth 1 -0.0625

Table 25: Coefficients values calculated with SINDy, noise =1%

Methods/Terms | d"2u/dx"2 | d 2u/dt"2
Gradient 1 -0.395
Adaptive 1 -0.332

Polynomial 1 -0.1
Spectral 1 -
Inverse 1 -4.586
Total_var 1 -0.079
Ground truth 1 -0.0625
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F Laplace equation coefficients and Structural Hamming Distances

Laplace, noise=0%
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Figure 10: Distribution of coefficients values for different noise level
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Hamming distance, noise=0%
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Figure 11: Distribution of coefficients values for different noise level

Table 26: Coefficients values calculated with EPDE, noise =0%

Methods/Terms d*2u/dx"2 d*2u/dy”2
Gradient -1 -0.997
Adaptive -1 -0.997

Polynomial -1 -0.9964

Spectral -1 -1
Inverse -0.9985 + 0.0007 | -0.9955 +0.0013

Total_var -1 -1

Ground truth 1 1
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Table 27: Coefficients values calculated with EPDE, noise =0.5%

Methods/Terms d™2u/dx"2 d"2u/dy”2
Gradient 0.2072 £ 0.1540 | 0.5129 £ 0.0095
Adaptive 0.4755 £0.1158 | 0.5150 £ 0.0065

Polynomial 0.5139 + 0.0077 | 0.3348 + 0.0365
Spectral 0.4728 +0.0783 | 0.5393 +0.0137
Inverse -0.0000 £ 0.0025 | 0.5579 +0.0239

Total_var 0.3411 +0.1787 | 0.1874 £ 0.0382
Ground truth 1 1

Table 28: Coefficients values calculated with EPDE, noise =1%

Methods/Terms d*2u/dx"2 d"2u/dy”2
Gradient 0.4476 £ 0.1022 | 0.4962 +0.0192
Adaptive 0.4047 £0.0796 | 0.5056 £0.0164

Polynomial 0.5100 £ 0.0140 | 0.2119 £ 0.0521
Spectral 0.3388 +£0.1160 | 0.5333 +0.0117
Inverse 0.5868 £ 0.0061 | 0.3661 +0.0714

Total_var 0.3295 £ 0.0528 | 0.2150 + 0.0566
Ground truth 1 1

Table 29: Coefficients values calculated with SINDy, noise =0%

Methods/Terms | d"2u/dx"2 | d"2u/dy”2
Gradient 1 1.028
Adaptive 1 1.129

Polynomial 1 1.009
Spectral 1 -

Inverse 1 0.62
Total var 1 -
Ground truth 1 1

Table 30: Coefficients values calculated with SINDy, noise =0.5%

Methods/Terms

d"2u/dx"2

I 2u/dy2

Gradient

1

Adaptive

Polynomial

Spectral

Inverse

Total var

Ground truth

U NI VN VN N (N

Table 31: Coefficients values calculated with SINDy, noise =1%

Methods/Terms

d N 2u/dx”2

d"2u/dy”2

Gradient

Adaptive

-0.457

Polynomial

Spectral

Inverse

Total_var

Ground truth

[ R N e Y ey sy
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G Quasigeostrophic potential vorticity equation

Normalized Potential Vorticity data, pyag
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Figure 12: Normalized potential vorticity data, pyqg

Equations discovered:

Via spectral domain differentiation

3.2602 x 10~ 5u,, + 0.0067028u + 0.7095u,,
— 0.6485u, cos(1.7965y) + 2.5201 x 10~ uw,,
— 0.01010u,u — 1.2018 x 10" Suzpuy,

+3.2084 x 10 yuy, + 2.4292 x 10 Puy,u,
+ 0.1998u, sin(2.7363y) — 0.000223 — yu, =0 (23)

Via SG filtering

0.044994162 u,, — 5.34527 x 1072wy,
— 0.000760196 w1y, + 0.001192827 — u,u = 0
(24)
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, Jlormalized Potential Vorticity. equation obtained with spectral preprocessing Normalized Potential Vorticity, equation obtained with SG filtering preprocessing
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Figure 13: Normalized Potential Vorticity, equation obtained with spectral preprocessing ((23)), left)
and SG filtering preprocessing ((24), right)

SE map, equation obtained with spectral preprocessing
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Figure 14: SE map, equation obtained with spectral preprocessing ((23), left, MSE = 0.057) and SG
filtering preprocessing((24), right, MSE = 0.065)
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Structural Hamming Distances

Table 32: SHD for equations calculated with EPDE, noise = 0%

Methods/Equations Burgers Kdv Laplace ode Wave
Gradient 4+0.091 | 3+£0.1302 1 0+0.0491 | 1+0.1206
Adaptive 6+0.1607 | 3+£0.0525 | 0+0.0159 | 0+0.0636 | 1 +0.1189

Polynomial 4+0.272 | 3+£0.1824 | 0+0.0112 | 0+0.0654 | 1+0.119
Spectral 6+0.1993 | 6 £0.1698 | 3£0.0999 | 3 +0.1855 4
Inverse 6+0.3554 | 4+£0.1267 | 2+£0.1432 | 4+£0.2077 | 3+£0.1314

Total_var 6+0.1299 | 4+0.1332 | 2+£0.1169 | 0+£0.0749 | 2+ 0.0726
Table 33: SHD for equations calculated with EPDE, noise = 0.5%

Methods/Equations Burgers KdVv Laplace ode Wave
Gradient 5+0.1412 | 5+£0.2209 | 2+0.0629 | 0+ 0.0535 | 4 £0.0979
Adaptive 7+0.107 | 3£0.078 | 2+0.0637 | 0+0.0458 | 4 +0.0671

Polynomial 4+0.1334 | 5£0.1935 | 2+0.1062 | 0+ 0.0734 | 4 £0.1237
Spectral 6+0.2107 | 7+£0.2087 | 3+£0.0992 | 3+0.1971 | 4 £0.0631
Inverse 6+0.2107 | 5+£0.2632 | 3+0.124 | 4+0.1531 | 3+0.1305

Total_var 5+0.1413 | 5+0.1394 | 2+£0.1084 | 0+ 0.0783 | 2+0.0571
Table 34: SHD for equations calculated with EPDE, noise = 1%

Methods/Equations | Burgers Kdv Laplace ode Wave
Gradient 6+0.2134 | 6+£0.2824 | 2+£0.0843 | 0+0.0424 | 5+0.1186
Adaptive 7+0.1292 | 4+£0.1484 | 2£0.0815 | 0+ 0.0433 | 5+0.0833

Polynomial 4+£0.1248 | 60247 | 2+£0.102 | 0+0.0627 | 4 £0.1252
Spectral 6+0.2096 | 7+0.1827 | 3£0.0974 | 3+£0.1904 | 3 +0.0687
Inverse 6+0.2057 | 7+£0.2509 | 2+£0.0883 | 4+£0.1231 | 4 +£0.1004

Total_var 6+0.1283 | 5+0.133 | 2+0.1064 | 0+ 0.0792 | 2 +£0.0847

Table 35: SHD for equations calculated with SINDy, noise = 0%

Methods/Equations

Burgers

KdVv

Laplace

ode | Wave

Gradient

0
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Polynomial

Spectral

Inverse

Total_var

N =] == Ol O
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OO = OO O

1
1
1
1
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Table 36: SHD for equations calculated with SINDy, noise = 0.5%

Methods/Equations | Burgers | KdV | Laplace | ode | Wave
Gradient 0 2 2 0 2
Adaptive 0 2 2 0 2

Polynomial 1 2 2 0 2
Spectral 1 2 2 1 1
Inverse 3 3 4 0 1

Total_var 5 4 2 0 2
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Table 37: SHD for equations calculated with SINDy, noise = 1%

Methods/Equations | Burgers | KdV | Laplace | ode | Wave
Gradient 2 2 3 0 2
Adaptive 2 2 1 0 2

Polynomial 0 5 4 0 2
Spectral 1 2 2 1 1
Inverse 1 4 4 0 2

Total_var 3 4 2 0 2
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I Differentiation errors

Figure 15: Differentiation errors (MSE) for KdV equation with different noise level
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Figure 16: Differentiation errors (MSE) for Burgers equation with different noise level

Figure 17: Differentiation errors (MSE) for Laplace equation with different noise level
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Figure 18: Differentiation errors (MSE) for ODE equation with different noise level
e seoof
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Figure 19: Differentiation errors (MSE) for Wave equation with different noise level
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Table 38: Differentiation errors, noise = 0%

Burgers equation

Methods/Terms du/dt dA2u/dx”2 du/dx
Adaptive 0.0009 0.05902 0.0053
Polynomial 0.0012 1.1339 0.0724
Spectral 7.0597 14.0607 0.0757
Inverse 0.7638 153.0405 4.6508
Total_var 0.6760 154.9538 5.3229
KdV equation
Methods/Terms du/dt d"3u/dxN3 du/dx
Gradient 0.000329 0.0039 0.00004184
Adaptive 0.00001 0.0088 0.00005
Polynomial 0.00007761 0.0254 0.0004532
Spectral 0.7798 14.2334 0.0129
Inverse 0.3105 0.3202 0.0473
Total_var 0.357 0.3275 0.0937
Laplace equation
Methods/Terms d"2u/dx"2 d™2u/dy”2
Adaptive 0.0124 0.0814
Polynomial 0.0058 0.0036
Spectral 152.6378 87.813
Inverse 0.0098 0.178
Total_var 1.0941 0.9853
ODE equation
Methods/Terms u’ u”’
Gradient 0.00067 0.0113
Adaptive 0.00801 0.1507
Polynomial 0.022 0.0292
Spectral 0.0759 0.2517
Inverse 1.1231 3.9290
Total_var 0.6988 1.8895
Wave equation
Methods/Terms d™N2u/dx 2 d™N2u/dth2
Adaptive 2.0602 1.2876
Polynomial 9.8417 0.0057
Spectral 87251.4516 32328.7991
Inverse 12282.1612 47.9087
Total_var 12444.1383 65.6059
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Table 39: Differentiation errors, noise = 0.5%

Burgers equation

Methods/Terms du/dt dN2u/dx 2 du/dx
Adaptive 0.0048 0.6084 0.0053
Polynomial 0.0234 1.7973 0.0737
Spectral 7.0293 14.1771 0.0761
Inverse 0.8013 153.7448 4.6542
Total_var 0.7139 155.6498 5.3271
KdV equation
Methods/Terms du/dt d*3u/dx”3 du/dx
Gradient 0.00478 0.0120 0.0000947
Adaptive 0.0033 0.0151 0.0001
Polynomial 0.0021 0.05 0.0004592
Spectral 0.7804 14.2418 0.0128
Inverse 0.3114 0.3211 0.0473
Total_var 0.3571 0.3275 0.0937
Laplace equation
Methods/Terms d"2u/dx"2 d"2u/dy”2
Adaptive 3.7555 5.4563
Polynomial 38.4966 41.9891
Spectral 165.1737 108.4259
Inverse 3138.8939 426.1978
Total_var 12.4789 15.7744
ODE equation
Methods/Terms u u”’
Gradient 0.00081 0.0124
Adaptive 0.008 0.1498
Polynomial 0.0218 0.0349
Spectral 0.0764 0.2534
Inverse 1.1220 6.2318
Total_var 0.6998 1.8857
Wave equation
Methods/Terms d"2u/dx"2 d"2u/dt"2
Adaptive 56.2421 947.3597
Polynomial 3047.6637 13167.1760
Spectral 87963.7107 36937.9071
Inverse 13359.6413 3287.3561
Total_var 13524.8049 3315.1318
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Table 40: Differentiation errors, noise = 1%

Burgers equation

Methods/Terms du/dt dN2u/dx 2 du/dx
Adaptive 0.1311 1.9259 0.0121
Polynomial 0.088 3.5219 0.0761
Spectral 7.1244 14.7814 0.0783
Inverse 0.8933 154.1399 4.6562
Total_var 0.8085 156.0558 5.3286
KdV equation
Methods/Terms du/dt d*3u/dx”3 du/dx
Gradient 0.0260 0.0403 0.0002695
Adaptive 0.01521 0.0365 0.0003
Polynomial 0.0106 0.1061 0.000499
Spectral 0.7811 14.2637 0.0129
Inverse 0.3108 0.3568 0.0473
Total_var 0.3573 0.3273 0.0936
Laplace equation
Methods/Terms d"2u/dx"2 d"2u/dy”2
Adaptive 15.2715 10.3725
Polynomial 126.9283 123.2955
Spectral 203.1654 128.0034
Inverse 4647.4401 94205.9511
Total_var 49.8341 35.4761
ODE equation
Methods/Terms u’ u”’
Gradient 0.00122 0.0160
Adaptive 0.0096 0.1609
Polynomial 0.0241 0.0416
Spectral 0.0771 0.2538
Inverse 1.132 9.6419
Total_var 0.6993 1.9013
Wave equation
Methods/Terms d*2u/dx”2 d™2u/dtr2
Adaptive 213.6322 4567.2138
Polynomial 10740.0809 57619.2452
Spectral 92107.8232 44231.8631
Inverse 17561.9236 15300.6987
Total_var 17738.1271 15580.1558
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Table 41: Differentiation errors without boundaries, noise = 0%

Burgers equation

Methods/Terms du/dt d”2u/dx”2 du/dx
Adaptive 0.0008 0.7898 0.0061
Polynomial 0.001 1.3151 0.082
Spectral 0.2112 6.3855 0.0156
Inverse 0.8751 206.6064 5.4783
Total_var 0.7988 208.9618 6.2428
KdV equation
Methods/Terms du/dt d*3u/dx”3 du/dx
Gradient 0.0004 0.0050 0.00005
Adaptive 0.0000008 0.0121 0.00005
Polynomial 0.000009 0.0350 0.0006
Spectral 0.0934 14.1910 0.0155
Inverse 0.4196 0.4601 0.0638
Total_var 0.357 0.3273 0.0936
Laplace equation
Methods/Terms d™2u/dx"2 d*2u/dy”2
Adaptive 0.0018 0.0019
Polynomial 0.0019 0.0018
Spectral 26.536 14.1521
Inverse 0.0017 0.0079
Total_var 0.4919 0.4864
ODE equation
Methods/Terms u’ u”
Gradient 0.0002 0.0027
Adaptive 0.0012 0.0155
Polynomial 0.0128 0.019
Spectral 0.0056 0.0687
Inverse 0.9548 3.5607
Total_var 0.617 1.7065
Wave equation
Methods/Terms d*2u/dx”2 d™2u/dtr2
Adaptive 4.6496e-25 3.9716e-25
Polynomial 0.0020 3.1118e-08
Spectral 3975.5779 3283.7298
Inverse 15075.2208 59.1723
Total_var 15318.4098 68.1121

37




Table 42: Differentiation errors without boundaries, noise = 0.5%

Burgers equation
Methods/Terms du/dt dM2u/dx”2 | du/dx
Adaptive 0.0009 0.7936 0.0061
Polynomial 0.0206 1.3864 0.0832
Spectral 0.2275 6.4897 0.0162
Inverse 0.9018 207.6153 | 5.4904
Total_var 0.8239 209.9772 | 6.2568
KdV equation
Methods/Terms du/dt d*3u/dx”3 | du/dx
Gradient 0.0048 0.017 0.0001
Adaptive 0.0041 0.0221 0.0001
Polynomial 0.0009 0.0366 0.0006
Spectral 0.0934 14.1966 0.0155
Inverse 0.4195 0.4617 0.0638
Total_var 0.3571 0.3275 0.0937
Laplace equation
Methods/Terms d"2u/dx"2 d"2u/dy”2
Adaptive 0.0111 0.0115
Polynomial 0.5938 0.5695
Spectral 28.7692 17.0705
Inverse 72.7557 2.4132
Total_var 2.932 3.0227
ODE equation
Methods/Terms u’ u”’
Gradient 0.0002 0.0024
Adaptive 0.0013 0.0154
Polynomial 0.0129 0.0188
Spectral 0.0055 0.0694
Inverse 0.952 3.4523
Total_var 0.6166 1.6975
Wave equation
Methods/Terms d"2u/dx"2 d™2u/dt"2
Adaptive 4.4623e-25 4.4207e-25
Polynomial 296.3631 297.0768
Spectral 5250.7934 4299.9723
Inverse 16376.1646 1341.7407
Total_var 16622.2915 1353.3664
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Table 43: Differentiation errors without boundaries, noise = 1%

Burgers equation

Methods/Terms du/dt d*2u/dx”2 du/dx
Adaptive 0.1373 2.3416 0.0146
Polynomial 0.0474 2.5502 0.0868
Spectral 0.2652 7.2152 0.02
Inverse 0.9020 207.6163 5.4917
Total_var 0.8236 209.9705 6.2560
KdV equation
Methods/Terms du/dt d"3u/dx"3 du/dx
Gradient 0.0187 0.0502 0.0003657
Adaptive 0.0171 0.0495 0.0003
Polynomial 0.0034 0.039 0.00068
Spectral 0.0941 14.2271 0.0154
Inverse 0.4198 0.4931 0.0638
Total_var 0.3573 0.3275 0.0937
Laplace equation
Methods/Terms d"2u/dx"2 d"2u/dy”2
Adaptive 0.0458 0.0432
Polynomial 2.6708 2.6109
Spectral 38.1629 25.7555
Inverse 46.8684 47.1770
Total_var 12.0801 11.3885
ODE equation
Methods/Terms u’ u”’
Gradient 0.0003 0.0036
Adaptive 0.0013 0.0158
Polynomial 0.0128 0.0202
Spectral 0.0057 0.0694
Inverse 0.9607 3.1547
Total_var 0.6155 1.7163
Wave equation
Methods/Terms d"2u/dx"2 d~2u/dt"2
Adaptive 4.4999e-25 4.9763e-25
Polynomial 1098.5015 1260.9454
Spectral 8281.9373 9248.8831
Inverse 19982.6044 6108.153
Total_var 20238.9430 6130.2836

Table 44: Means of diff errors without boundaries, noise=0%

Methods D1. error | D2. error | D3. error
Gradient 0.0002 0.0027 0.0050
Adaptive 0.0016 0.2023 0.0121
Polynomial | 0.0193 0.3344 0.0350
Spectral 0.0683 11.7856 14.1910
Inverse 1.5583 52.5442 0.4601
Total_var 1.6218 52.9117 0.3273

Table 45: Means of diff errors without boundaries, noise=0.5%

Methods D1. error | D2. error | D3.error
Gradient 0.0017 0.0024 0.017
Adaptive 0.0025 0.2079 0.0221
Polynomial | 0.0236 0.6421 0.0366
Spectral 0.0716 13.0997 14.1966
Inverse 1.5655 71.5591 0.4617
Total_var 1.6292 54.4074 0.3275
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Table 46: Means of diff errors without boundaries, noise=1%

Methods D1. error | D2. errors | D3. errors
Gradient 0.0065 0.0036 0.0502
Adaptive 0.0341 0.6116 0.0432
Polynomial | 0.0302 1.9630 0.039
Spectral 0.0800 17.8008 14.2271
Inverse 1.5676 76.2041 0.4931
Total_var 1.6296 58.7889 0.3275

Table 47: Differentiation errors on boundaries, noise = 0%

Burgers equation

Methods/Terms du/dt d"2u/dx”2 du/dx
Adaptive 0.0010 0.4113 0.0047
Polynomial 0.0014 0.9714 0.0639
Spectral 13.1979 20.9399 0.1296
Inverse 0.6641 105.0296 3.9091
Total_var 0.5659 106.5467 4.4983
KdV equation
Methods/Terms du/dt d”3u/dx”3 du/dx
Gradient 0.0002 0.0030 0.00004
Adaptive 0.00005 0.0058 0.00005
Polynomial 0.0001 0.0168 0.0003
Spectral 1.3950 14.2714 0.0105
Inverse 0.2128 0.1948 0.0325
Total_var 0.2416 0.2002 0.0687
Laplace equation
Methods/Terms d*2u/dx"2 d*2u/dy”2
Adaptive 0.0219 0.1528
Polynomial 0.0093 0.0052
Spectral 265.6624 153.8350
Inverse 0.0170 0.3305
Total_var 1.6339 1.4325
ODE equation
Methods/Terms u’ u’
Gradient 0.0017 0.0302
Adaptive 0.0230 0.4480
Polynomial 0.0422 0.0518
Spectral 0.2305 0.6544
Inverse 1.1393 4.7208
Total_var 0.8787 2.2920
Wave equation
Methods/Terms dA2u/dx”2 d”2u/dt"2
Adaptive 3.9068 2.4417
Polynomial 0.0009 1.3527e-08
Spectral 4330.2841 4791.3391
Inverse 6552.9687 25.7213
Total_var 9867.9392 663.3597
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Table 48: Differentiation errors on boundaries, noise = 0.5%

Burgers equation

Methods/Terms du/dt d”2u/dx”2 du/dx
Adaptive 0.0082 0.4425 0.0046
Polynomial 0.0259 2.1655 0.0651
Spectral 13.1257 21.0673 0.1299
Inverse 0.7112 105.4608 | 3.9048
Total_var 0.6153 106.9564 | 4.4938
KdV equation
Methods/Terms du/dt d*3u/dx”3 du/dx
Gradient 0.0047 0.0076 0.00006
Adaptive 0.0026 0.0088 0.00007
Polynomial 0.0031 0.0620 0.0003
Spectral 1.3961 14.2823 0.0105
Inverse 0.2145 0.1951 0.0324
Total_var 0.2418 0.2001 0.0688
Laplace equation
Methods/Terms d"2u/dx"2 d*2u/dy”2
Adaptive 7.1115 10.3365
Polynomial 72.4688 79.1133
Spectral 287.4326 190.3073
Inverse 5887.0620 806.0344
Total_var 21.0357 27.2037
ODE equation
Methods/Terms u’ u”
Gradient 0.0021 0.0345
Adaptive 0.0227 0.4455
Polynomial 0.0415 0.0704
Spectral 0.2324 0.6584
Inverse 1.1366 12.4026
Total_var 0.8829 2.2998
Wave equation
Methods/Terms d*2u/dx”2 d™2u/dtr2
Adaptive 106.6517 1796.4747
Polynomial 83.3851 130.6980
Spectral 5164.4719 5031.0763
Inverse 7255.2930 433.5565
Total_var 10748.5392 5073.4548
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Table 49: Differentiation errors on boundaries, noise = 1%

Burgers equation
Methods/Terms du/dt d*2u/dx”2 du/dx
Adaptive 0.0241 0.5434 0.0048
Polynomial 0.0740 5.2326 0.0660
Spectral 13.2611 21.4309 0.1311
Inverse 0.8143 106.2819 3.9179
Total_var 0.7134 107.7962 4.5084
KdV equation
Methods/Terms du/dt d"\3u/dx"3 du/dx
Gradient 0.0326 0.0315 0.0002
Adaptive 0.0134 0.0248 0.0002
Polynomial 0.0170 0.1662 0.0003
Spectral 1.3969 14.2965 0.0105
Inverse 0.2131 0.2346 0.0326
Total_var 0.2419 0.2002 0.0687
Laplace equation
Methods/Terms d"2u/dx"2 d"2u/dy”2
Adaptive 28.9184 19.6306
Polynomial 238.2998 231.4645
Spectral 351.0565 219.6478
Inverse 8770.9156 178600.1116
Total_var 83.6729 57.0657
ODE equation
Methods/Terms u u”’
Gradient 0.0033 0.0429
Adaptive 0.0278 0.4711
Polynomial 0.0498 0.0922
Spectral 0.2334 0.6601
Inverse 1.1606 23.7757
Total_var 0.8796 2.2926
Wave equation
Methods/Terms d"2u/dx"2 d™2u/dt"2
Adaptive 405.1010 8660.7907
Polynomial 665.12100 472.6915
Spectral 6266.4304 7554.8468
Inverse 8576.6807 2610.7530
Total_var 15496.6550 24050.0412

Table 50: Means of diff errors on boundaries, noise=0%

Methods D1. error | D2. error | D3. error
Gradient 0.0017 0.0024 0.0030
Adaptive 0.0058 0.2585 0.0058
Polynomial | 0.0216 0.2594 0.0168
Spectral 2.9927 110.2729 | 14.2714
Inverse 1.1916 27.5245 0.1948
Total_var 1.2506 27.9763 0.2002

Table 51: Means of diff errors on boundaries, noise=0.5%

Methods D1. error | D2. error D3.error
Gradient 0.0023 0.0345 0.0076
Adaptive 0.0076 4.584 0.0088
Polynomial | 0.0272 30.7636 0.0620
Spectral 2.9789 124.8664 14.2823
Inverse 1.1999 1702.7400 | 0.1951
Total_var 1.2605 39.3739 0.2001
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Table 52: Means of diff errors on boundaries, noise=1%

Methods D1. error | D2. errors D3. errors
Gradient 0.0120 0.0429 0.0315
Adaptive 0.0141 12.3909 0.0248
Polynomial | 0.0414 118.7723 0.1662
Spectral 3.7583 148.1988 14.2965
Inverse 1.2277 44900.2712 | 0.2346
Total_var 1.2824 62.7069 0.2002
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