
When Disagreement Meets Noise: Noise Robust Annotator Embeddings for
Subjective NLP

Anonymous ACL submission

Abstract

Subjective NLP tasks such as sentiment anal-001
ysis and hate speech classification often in-002
volve inherent annotator disagreement, re-003
flecting diverse perspectives shaped by an-004
notators’ lived experiences. Although con-005
ventional approaches resolve disagreement006
through majority voting or aggregation, these007
methods risk erasing valuable nuances and008
minority viewpoints. Recent embedding-009
based/multitask models have advanced the010
modeling of annotator-specific judgments, yet011
their robustness to annotation noise remains un-012
derexplored. In this work, we systematically013
investigate how state-of-the-art disagreement014
learning models perform in the presence of015
noisy labels and observe a significant perfor-016
mance degradation under such conditions. To017
address this, we propose Noise Robust Anno-018
tator Embedding (NRA-Embed), which inte-019
grates Robust InfoNCE (RINCE) contrastive020
loss to enhance models’ robustness under noisy021
annotation conditions. Moreover, we bench-022
mark existing approaches across three axes:023
label noise type (symmetric vs. rogue anno-024
tators), task structure (binary vs. multiclass),025
and annotator coverage (many vs. few labels026
per example). Through extensive experiments,027
we show that NRA-Embed effectively models028
subjective variation while remaining resilient029
to noise, achieving competitive or superior per-030
formance compared to prior methods.031

1 Introduction032

Collecting multiple annotator judgments is stan-033

dard in NLP to improve label reliability (Snow034

et al., 2008; Nowak and Rüger, 2010). Disagree-035

ment in ground truth annotations arise frequently036

and are typically resolved through majority voting,037

averaging (Sabou et al., 2014), or expert adjudi-038

cation (Waseem and Hovy, 2016) to create a sin-039

gle ground truth for supervised training. However,040

for subjective tasks, where no “correct” label ex-041

ists (Alm, 2011), forcing a single annotation can042

Figure 1: Comparison of Mean Annotator F1 scores for
different multi-annotator modeling approaches on the
MDA(Leonardelli et al., 2021) Dataset under increasing
noise levels. We highlight that our embedding-based
method demonstrates greater robustness, maintaining
higher performance compared to other approaches as
noise level increases.

obscure valuable nuances in annotators’ diverse 043

perspectives (Cheplygina and Pluim, 2018). 044

Annotators’ backgrounds and experiences shape 045

subjective annotations in tasks like political stance 046

detection (Luo et al., 2020), sentiment analysis 047

(Díaz et al., 2018), and hate speech identification 048

(Patton et al., 2019). Feminist and anti-racist ac- 049

tivists differ from crowd workers on hate speech 050

(Waseem and Hovy, 2016), and political affilia- 051

tions affect neutrality (Luo et al., 2020). Majority 052

voting risks suppressing minority views, causing 053

disparities (Prabhakaran et al., 2021). These differ- 054

ences in opinions, or disagreements, are important 055

to capture in datasets to build safe and fair models. 056

Many datasets have been built to understand an- 057

notation disagreement, such as the Multi-Domain 058

Agreement (MDA) dataset (Leonardelli et al., 059

2021). Many techniques have also been pro- 060

posed to better capture this annotator disagreement, 061

which can arise from errors, ambiguous items, or 062

subjective opinions, often tied to lived experiences 063

(Uma et al., 2021; Reidsma and Carletta, 2008; 064
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Uma et al., 2022). For example, Davani et al.065

(2022a) proposed a multitask approach for doing066

so. Jinadu and Ding (2024) extended this to toler-067

ate errors while accounting for subjective proper-068

ties. Embedding-based approaches such as AART069

(Mokhberian et al., 2023), and work by Deng et al.070

(2023) have pushed the state of the art in terms071

of accuracy on disagreement benchmark datasets.072

However, few works have systematically examined073

how models behave under the presence of both074

annotator disagreements as well as inaccuracies.075

To understand these properties, we systemati-076

cally examined how state-of-the-art disagreement077

learning methods behave in the presence of label078

noise. We found that there is a sharp performance079

drop in multi-annotator models under noise, as seen080

in Figure 1. To address these shortcomings, we081

propose the Noise Robust Annotator Embedding082

method (NRA-Embed), which incorporates Ro-083

bust InfoNCE (RINCE) (Chuang et al., 2022) to op-084

timize disagreement learning models. In addition,085

we conducted extensive experiments to evaluate086

models across noise types, classification settings,087

and annotator conditions. We found that our NRA-088

Embed approach is effective for learning under dis-089

agreement and noise, demonstrating performance090

that is at least on par with, and often surpasses,091

existing state-of-the-art methods.092

2 Background093

2.1 Inherent Annotator Disagreement094

Annotator disagreement constitutes a recognized095

challenge in Natural Language Processing. Con-096

ventional methodologies for addressing this issue097

include label aggregation through averaging tech-098

niques (Pavlick and Callison-Burch, 2016), im-099

plementing majority voting systems (Sabou et al.,100

2014), or selectively utilizing data subsets charac-101

terized by high inter-annotator agreement levels102

(Jiang and de Marneffe, 2019). However, assuming103

a single “correct” label ignores genuine subjec-104

tivity, multiple valid interpretations exist (Plank,105

2022; Passonneau et al., 2012; Nie et al., 2020;106

Jiang and Marneffe, 2022).107

Evidence from several studies demonstrates that108

genuine variability in human annotations can stem109

from subjective interpretations or the existence of110

multiple acceptable responses (Passonneau et al.,111

2012; Nie et al., 2020; Jiang and Marneffe, 2022).112

For example, in tasks such as toxic language de-113

tection, perceptions of toxicity vary significantly114

among individuals (Waseem, 2016; Al Kuwatly 115

et al., 2020). Annotators’ identities and per- 116

sonal beliefs substantially shape their judgments 117

about the toxicity of content (Sap et al., 2021). 118

Thus, differences among annotators should not 119

merely be treated as annotation "noise" (Pavlick 120

and Kwiatkowski, 2019). Recent work has begun 121

utilizing these diverse annotations to personalize 122

models more effectively for different users (Plepi 123

et al., 2022). 124

2.2 Modeling Annotator Disagreement 125

Multiple methods address annotator disagreement. 126

The classical Dawid-Skene model (Dawid and 127

Skene, 1979) uses an expectation-maximization 128

algorithm to estimate annotator reliability and the 129

underlying true labels jointly from noisy labels. 130

More recently, Zhang and de Marneffe (2021) in- 131

troduced Artificial Annotators to simulate uncer- 132

tainty, and Zhou et al. (2021) applied MC Dropout, 133

Deep Ensembles, Re-Calibration, and Distribution 134

Distillation to capture judgment variability. Meiss- 135

ner et al. (2021) modeled full label distributions for 136

the Natural Language Inference (NLI) task. Zhang 137

et al. (2021) handle mixed single-label, multi-label, 138

and unlabeled data. Gordon et al. (2022) propose 139

“jury learning” via a DCN (Wang et al., 2021) that 140

integrates text and annotator IDs, while Davani 141

et al. (2022a) add annotator-specific layers on top 142

of a shared representation, and Kocoń et al. (2021) 143

learn per-annotator embeddings. 144

Zhang et al. (2021) explores annotator disagree- 145

ment within a broader context involving a combi- 146

nation of single-label, multi-label, and unlabeled 147

examples. Meanwhile, (Gordon et al., 2022) pro- 148

pose "jury learning," a method that individually 149

models annotators using a Deep and Cross Net- 150

work (DCN) (Wang et al., 2021). Their approach 151

integrates the textual input and annotator identi- 152

fiers along with predicted annotator responses from 153

DCN for improved classification outcomes. 154

2.3 Annotator Noise 155

Noise correction seeks to identify and resolve er- 156

rors or inconsistencies (“noise”) in datasets, such 157

as random label flips, artifacts, and annotation mis- 158

takes, to improve data quality and model robustness 159

(Zhan et al., 2019). Standard cross-entropy losses 160

tend to fit noise rather than the true underlying 161

distribution (Zhang et al., 2016), whereas “hard” 162

bootstrapping augments the loss with a prediction- 163

based term to resist label noise (Reed et al., 2014). 164
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Figure 2: Architectural approaches for modeling multi-annotator learning. Two main methods exist: First, the task-
based approach (left) adds specific prediction layers to capture individual annotators’ perspectives in a subjective
dataset. The embedding-based approach (right) incorporates annotator information by embedding their annotations
directly into a latent representation early in the network.

Empirically, deep nets first learn broad, generaliz-165

able patterns before eventually memorizing noisy166

labels (Arazo et al., 2019; Liu et al., 2020; Li et al.,167

2020; Nishi et al., 2021), a phenomenon that many168

methods exploit to cleanse noisy data. Effective169

noise correction thus balances removal of mislead-170

ing errors against preservation of genuine signal,171

avoiding new biases in downstream models (Arazo172

et al., 2019; Jinadu and Ding, 2024).173

3 Methods174

We first set up the general multi-annotator learn-175

ing problem. We then discuss two high-level net-176

work architecture approaches for modeling multi-177

annotator datasets. At 3.2, we discuss the task-178

based approach, as depicted in the left section of179

figure 2, where a separate shallow sub-network180

predicts individual annotator responses. We then181

discuss the embedding-based approach at 3.3, as182

depicted in the right section of the figure 2, where183

an embedding is learned for each annotator to repre-184

sent their annotating preference. We then propose185

a framework for optimizing the embedding-based186

approaches under conditions of label noise.187

3.1 Problem Definition188

We consider an annotated dataset D =189

{(xi, aj , yij)}, which consists of triplets formed190

from input text items X = {xi}Ni=1, annotators 191

A = {aj}mj=1, and annotations Y = {1, ..., Q}. A 192

pair of (i, j) can appear at most once in the dataset 193

D, which means label yij is assigned to text item 194

xi by the annotator aj . Y contains numerous miss- 195

ing values in most annotated datasets since each 196

annotator labels only a subset of the instances. The 197

problem is modeled as a classification task where 198

a classifier is trained to predict the label to be as- 199

signed to the text item xi. All methods explored in 200

this study utilize pre-trained transformer-based lan- 201

guage models for text encoding, specifically using 202

RoBERTa (Liu et al., 2019). For a given input text 203

xi, we obtain its text representation by extracting 204

the [CLS] token embedding from the final layer of 205

the language model, denoted as e(xi). 206

3.2 Task-based Multi-Annotator Learning 207

The most frequent approach, called single-task, 208

aims to predict the aggregate label to be assigned 209

to the text item xi through majority voting or aver- 210

aging over annotators’ labels {yij}Mj=1. It is typi- 211

cally implemented by passing the text representa- 212

tion of a pre-trained BERT-base language model 213

e(xi) through a fully connected layer. This layer 214

performs a linear transformation followed by a Soft- 215

max activation to produce the probability distribu- 216

tion over the majority of labels. 217
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Multi-task approaches are seen in several previous218

works (Fornaciari et al., 2021; Davani et al., 2022a;219

Jinadu and Ding, 2024), and basically are a gen-220

eralization of single-task approach. They train a221

separate, fully connected layer for each annotator222

to learn the annotator-specific labeling behavior.223

They leverage shared pre-trained BERT-base lan-224

guage model (Liu et al., 2019) (encoding layers)225

to produce a unified text representation e(xi) for226

all annotators. However, these shared encoding227

layers are updated jointly using the outputs from228

all annotator-specific tasks. The training objective229

for each annotator is defined independently using a230

cross-entropy loss, applied only to the labels that231

the annotator has provided for each instance xi.232

3.3 Embedding-based Multi-Annotator233

Learning234

Another method is to embed annotators in a latent235

space and integrate this information early in the236

model architecture. In these approaches, a learn-237

able matrix encodes the representations of the anno-238

tators. During training, annotators which provided239

the rating can be retrieved from the embedding ma-240

trix and inserted into the network. For example,241

given a text instance xi and an annotator embed-242

ding, we compute the annotator-aware embedding243

as:244

g(xi, aj) = e(xi)⊕ f(aj),245

where e(xi) is the text embedding, f(aj) is the246

corresponding annotator embedding, and ⊕ is the247

fusion operation that can arise from a linear layer,248

attention or something more complex. A model249

then processes this fused representation to deter-250

mine the optimum prediction. In our paper we treat251

the fusion as a simple addition.252

A few methods make use of this. For example,253

the approach proposed by Mokhberian et al. (2023)254

adds the annotator embeddings directly into the text255

representations without any weighting. We refer to256

this method as Annotator Aware Representations257

for Texts(AART) in this paper. Another method is258

Deng et al. (2023), which additionally incorporates259

annotation embeddings along with weighting. We260

refer to this method as MichEmbed in this paper.261

3.4 Noise Robust Annotator Embedding262

(NRA-Embed)263

We found that embedding-based approaches per-264

formed better than task-based approaches. How-265

ever, it is unclear how to make these methods266

more noise-robust while capturing subjective opin- 267

ions. These challenges are illustrated in Fig- 268

ure 1; in noisy environments, conventional con- 269

trastive losses such as InfoNCE (Oord et al., 270

2018; Chen et al., 2020) often fail to learn em- 271

beddings that accurately reflect annotators’ true 272

opinions. Because inconsistent or noisy annota- 273

tions can distort the learning signals and hinder 274

the model’s ability to form coherent representa- 275

tions. Therefore, we need a contrastive loss robust 276

to annotation noise—tunable to emphasize confi- 277

dent, informative annotation signals while down- 278

weighting uncertain or potentially noisy ones. Mo- 279

tivated by this, we propose to use Robust InfoNCE 280

(RINCE) (Chuang et al., 2022). 281

RINCE builds on the insight that contrastive 282

learning with noisy representations can be inter- 283

preted as a binary classification with noisy labels 284

over pairwise views—assigning a label of 1 if the 285

views co-occur (joint distribution) and -1 if sam- 286

pled independently (product of marginals)(Chuang 287

et al., 2022). This interpretation aligns well with 288

our setting, where each view corresponds to an 289

annotator’s label on a given input; we treat annota- 290

tor pairs as positive (label 1) if they agree on the 291

label of a text instance and negative (label -1) if 292

they disagree. Ghosh et al. (2015) demonstrate 293

that symmetric loss functions offer robustness to 294

label noise in binary classification tasks. RINCE 295

introduces a symmetric adaptation of contrastive 296

learning that satisfies the symmetry condition in bi- 297

nary classification and, thus, guarantees robustness 298

against noisy representations. Specifically, a sym- 299

metric contrastive learning objective should have 300

the following form(Chuang et al., 2022): 301

L(s) = ℓ(s+; 1)︸ ︷︷ ︸
Positive Pair

+λ
K∑
i=1

ℓ(s−i ;−1)︸ ︷︷ ︸
K Negative Pairs

(1) 302

where the first term is the loss of the positive 303

pair, and the second term is the sum of losses of K 304

negative pairs. λ > 0 is a density weighting term 305

controlling the ratio between positive (class 1) and 306

negative (class -1) pairs. 307

Based on the idea of robust symmetric classifi- 308

cation loss, the Robust InfoNCE (RINCE) loss is 309

defined as(Chuang et al., 2022): 310

Lλ,q
RINCE(s) =

eq·s
+

q
+

(
λ ·

(
es

+
+
∑K

i=1 e
s−i

))q

q
(2) 311
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where s+ is the score for a positive (agreement)312

pair and s−i are scores for negative (disagreement)313

pairs. A tunable parameter q ∈ (0, 1] is introduced314

to interpolate between the robustness of RINCE315

and the expressive power of InfoNCE. When q =316

1, RINCE becomes a contrastive loss that fully317

satisfies the symmetry property in Equation (1) and318

offers strong resistance to annotation noise.319

To jointly learn task performance and annota-320

tor embeddings, we pass combined embeddings321

g(xi, aj) through a classification layer to predict322

the annotator’s label for each instance. we optimize323

the following comminatory objective function:324

L = LCE+λ1

∑
j

∥f(aj)∥22+λ2

∑
j,j′

LRINCE(j, j
′)

(3)325

The first term, LCE, is a standard cross-entropy326

loss used to predict the label assigned by anno-327

tator aj to input xi based on the combined em-328

bedding g(xi, aj). The second term applies an ℓ2329

regularization penalty on the annotator embeddings330

f(aj), encouraging smoother and more generaliz-331

able representations. The third term incorporates332

the RINCE contrastive loss between pairs of an-333

notators aj and aj′ who have labeled the same334

text instance. Annotator pairs who agree on a la-335

bel are treated as positives and pulled together in336

the embedding space, while those who disagree337

are pushed apart—encouraging consistency while338

maintaining robustness to noisy annotations.339

4 Experimental Setup340

4.1 Datasets341

We use the following datasets in our evaluation.342

• The Multi-Domain Agreement Dataset343

(MDA) This dataset comprises 9,814 English344

tweets drawn from three topical domains (the345

Black Lives Matter movement, the 2020 U.S.346

election, and the COVID-19 pandemic), each347

independently annotated for offensiveness by348

five crowdworkers via Amazon Mechanical349

Turk (Leonardelli et al., 2021).350

• Sentiment Analysis Dataset (SNT) The351

dataset, introduced by Díaz et al. (2018), is a352

sentiment classification resource aimed at ad-353

dressing age-related biases in sentiment mod-354

els, leveraging text from older adults’ blog355

posts containing age-related terms such as356

"old" and "young".357

• HS-Brexit Dataset (HSB) 358

The HS-Brexit Dataset (HSB), introduced by 359

Akhtar et al. (2021) is a multi-perspective abu- 360

sive language detection dataset focused on 361

Brexit-related tweets in English. It captures 362

diverse viewpoints, especially from victim- 363

ized groups like immigrants, with annotations 364

for hate speech, aggressiveness, offensiveness, 365

and stereotypes. Annotations were performed 366

by varied demographic groups, including mi- 367

grants, and a polarization index (P-index) was 368

used to measure differing perspectives, creat- 369

ing separate gold standards per group. The 370

dataset enabled training of perspective-aware 371

models, including BERT-based classifiers, to 372

better detect abusive language by considering 373

annotator subjectivity. It serves as a bench- 374

mark for studying abusive language detection 375

and sociodemographic biases in polarizing 376

contexts like Brexit. 377

4.2 Baseline Models 378

We compare against the following baseline meth- 379

ods: 380

• Multitask: We follow the approach proposed 381

by (Davani et al., 2022b) which involves one 382

fully-connected layer for each annotator with 383

a shared RoBERTA model. 384

• AART: We evaluate the approach introduced 385

by (Mokhberian et al., 2023) which utilizes 386

an embedding for each annotator as well 387

as a contrastive loss objective and a single 388

fully-connected classification layer built off 389

of a RoBERTA backbone in our evaluations. 390

Embedding-based approach. 391

• MichEmbed: We follow the approach by 392

(Deng et al., 2023) which utilizes annotator 393

embeddings as well as weighted annotation 394

embeddings and a single fully-connected clas- 395

sification layer built off of RoBERTA in our 396

experiments. Embedding-based approach. 397

4.3 Noise Injection 398

For our evaluations on binary-label datasets we 399

evaluate noise by introducing label flips (“noise”) 400

into a random subset of examples. Specifically, we 401

injected noise rates of 20% and 40%. For each se- 402

lected instance, regardless of how many annotators 403

originally voted for “true” versus “false” (e.g., 4 404

votes true, 1 vote false), we simply swapped its 405
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label. This approach mirrors the standard random-406

flip procedures commonly used in the noisy labels407

literature. Any annotators who did not contribute408

to a given sample were excluded from the noise in-409

jection process and thus did not affect the training410

loss.411

For the multi-class dataset SNT, we add sym-412

metric noise for each annotator of a label. Each413

instance labeled by an annotator had a 20% or 40%414

chance of being flipped. In this case a "flipped"415

label would result in one of the other 4 classes with416

equal likelihood.417

4.4 Implementation Details418

We implemented the classification models using419

HuggingFace transformers library(version 4.39)420

(Wolf et al., 2020). Our experimental setup for421

the annotation embedding approach for subjective422

classification closely resembled that of Mokhbe-423

rian et al. (2023). For all the datasets experiments,424

we trained the models for ten (10) epochs. We used425

this to train our baseline and the other models, and426

then introduced our noise correction method. We427

used the pretrained Roberta-base (Liu et al., 2019)428

model as the underlying architecture. Optimization429

was conducted using the AdamW optimizer with430

a learning rate of 1e-5 and a weight decay of 0.01.431

A linear decay scheduler with zero warm-up steps432

was then applied.433

4.5 Evaluation Metrics434

Mean-Annotator F1 Score435

This study is driven by the need to preserve minor-436

ity annotator perspectives that are often lost when437

labels are naively aggregated. To that end, we eval-438

uate the model’s performance for each annotator439

aj on each test item xi, comparing the true labels440

yij against the model’s predictions. We then sum-441

marize these per-annotator results via the Mean-442

Annotator F1, defined as the average macro-F1443

score across all J annotators:444

Mean-Annotator F1 =
1

J

J∑
j=1

F1
(
aj
)
,445

where F1
(
aj
)

is the macro-F1 score computed for446

annotator aj over all test items xi.447

Accuracy Score448

The accuracy metric for our annotator-aware449

representation model quantifies the overall frac-450

tion of correct label predictions across every451

item–annotator pair (xi, aj) in the test set. Con- 452

cretely, if ŷij denotes the model’s predicted label 453

for (xi, aj) and yij is the true label provided by 454

annotator aj , then accuracy is given by 455

Accuracy =

∣∣{(i, j) ∣∣ ŷij = yij}
∣∣∣∣{(i, j)}∣∣ , 456

where the numerator counts all correctly predicted 457

pairs and the denominator is the total number 458

of evaluated pairs. This global correctness mea- 459

sure complements our annotator-wise F1 scores 460

by showing, at a glance, how often the model’s 461

annotator-specific representations produce the right 462

label across both prolific and sparse contributors. 463

5 Results 464

5.1 Main Results 465

We present the main results in Table 1 as mean- 466

annotator f1 scores. We we see that our method 467

performs the best on several metrics. Most notably 468

it outperforms existing techniques in no presence 469

of noise as well. Embedding approaches consis- 470

tently outperform the multitask model, demonstrat- 471

ing their superior ability to capture individual an- 472

notator behaviors. We observe a large variation on 473

performance in SNT. 474

5.2 Annotation Embedding Approach + Noise 475

Robustness Enhancements 476

We compare our NRA-Embed Approach against 477

the annotation embedding approach baseline to 478

measure gains in embedding stability under syn- 479

thetic annotation noise. Table 1 presents mean 480

Annotator-Aware F1 scores on three benchmarks, 481

MDA, SNT, and HSB, at no noise, 20% noise, and 482

40% noise. Our Noise-Robust Annotation Embed- 483

ding Approach consistently improves over the base- 484

line, demonstrating enhanced robustness to annota- 485

tion errors. 486

5.3 Impact of Parameter q on 487

Noise-Robustness in Annotation 488

Embedding 489

Higher values of q in our Noise-Robust Annotation 490

Embedding approach improve performance under 491

noisy conditions. As q increases, the approach 492

places greater emphasis on confident (easy) pos- 493

itive pairs while reducing the influence of noisy, 494

ambiguous positives. This aligns with the intuition 495

that contrastive learning objectives should be more 496

selective in identifying trustworthy signals under 497
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Dataset Noise Level Majority Vote Multitask MichEmbed AART Ours

MDA
No Noise 0.582(accuracy) 0.728 0.784 0.788 0.790

20% Noise – 0.669 0.727 0.728 0.751

40% Noise – 0.490 0.456 0.451 0.572

SNT
No Noise 0.303(accuracy) 0.287 0.524 0.452 0.493

20% Noise – 0.253 0.440 0.421 0.410

40% Noise – 0.217 0.355 0.335 0.300

HSB
No Noise 0.772(accuracy) 0.929 0.933 0.931 0.936

20% Noise – 0.875 0.872 0.833 0.877

40% Noise – 0.674 0.594 0.580 0.663

Table 1: Annotator-level F1 scores across three datasets (MDA, SNT, HSB) under varying levels of synthetic label
noise. Best results are in bold and second best are underlined. Our method performs best or second best in most
conditions, especially under high-noise conditions (The q-value chosen varies depending on what provided the best
results).

higher noise levels. However, excessively high q498

values may overlook legitimate harder cases, indi-499

cating a trade-off between robustness and represen-500

tational richness, particularly in low-noise scenar-501

ios. In practical settings with inconsistent crowd-502

worker annotations, higher q values (e.g., q = 0.75503

and q = 1.0) have proven reliably effective. This504

trend is illustrated in Table 2, where increasing q505

enhances the model’s confidence and robustness.506

5.4 Impact of Renegade Annotators on Model507

Performance508

We analyze model robustness in realistic scenar-509

ios involving renegade annotators, individuals who510

intentionally provide malicious or random anno-511

tations. To do this, we randomly choose 10% of512

annotators to have very high noise, that is 70% of513

their annotations are perturbed. Experiments com-514

pare our proposed Noise-Robust Annotation Em-515

bedding method against the Task-Based approach.516

Results demonstrate that our method falls short in517

this being noise robust with few instances of high518

noise. Future work should explore how to handle519

these sorts of annotators. Detailed performance520

metrics are provided in Table 3.521

6 Discussion522

Our results demonstrate several key trends that hold523

consistently across datasets and noise configura-524

tions, offering both theoretical and practical insight525

into designing models for subjective classification526

under noisy annotation.527

RINCE consistently improves model robust- 528

ness across noise scenarios. Across most tested 529

noise levels, our approach led to a notable increase 530

in mean annotator F1 and reduced degradation un- 531

der high-noise conditions. This supports our hy- 532

pothesis that subjective NLP tasks require not only 533

modeling of annotator identity but also a mecha- 534

nism to counteract annotation noise. 535

Annotator embedding models outperform 536

multitask learning. Our results show that mod- 537

els such as MichEmbed, AART and, our approach 538

NRA-Embed, which learn annotator embeddings to 539

modulate shared representations, outperform mul- 540

titask approaches with separate prediction heads 541

per annotator. We hypothesize that this advantage 542

arises from parameter sharing and regularization 543

effects—embedding-based models can exploit com- 544

monalities across annotators while still personaliz- 545

ing behavior, whereas multitask heads may over- 546

fit when annotation coverage is sparse or imbal- 547

anced. Additionally, embedding approaches inher- 548

ently support more efficient transfer across anno- 549

tators and can generalize better when annotators 550

have limited individual data. 551

Likert Scale based datasets degrade con- 552

trastive loss performance An interesting finding 553

is the results of SNT which is based on a Likert 554

Scale classification. We find that previously strong 555

approaches like AART and our approach, degrade 556

in performance. We hypothesize that this is due 557

to their objective being dependent on contrastive 558

loss. For example, a contrastive loss would treat 559

7



No Noise 20% Noise 40% Noise

Rince_q q = 0.5 q = 0.75 q = 1.0 q= 0.5 q = 0.75 q = 1.0 q= 0.5 q = 0.75 q = 1.0

MDA 0.7900 0.7850 0.7825 0.725 0.7417 0.7512 0.6405 0.6495 0.6572
SNT 0.4872 0.4907 0.4934 0.3991 0.4034 0.4103 0.2944 0.2947 0.2969
HSB 0.9337 0.9321 0.9359 0.8516 0.8588 0.8566 0.5998 0.6517 0.5882

Table 2: Effect of the parameter q on the robustness of the Noise-Robust Annotation Embedding method across
different noise levels. We can see a trend that higher q-values tend to improve performance in higher noise scenarios.

Model MDA SNT HSB

Task-Based 0.666 0.229 0.862
NRA-Embed 0.710 0.425 0.854
AART 0.730 0.434 0.853
MichEmbed 0.711 0.438 0.858

Table 3: Comparison of model robustness to rene-
gade annotators (malicious/random annotation behav-
ior). Bolded values highlight the best-performing ap-
proach across datasets.

DS #A #E/#A #S #L

MDA 819 60 44k 2
SNT 1481 41 60.4k 5
HSB 6 952 5.7k 2

Table 4: Dataset Statistics. #A is the number of an-
ntators, #E/#A is the average number of examples per
annotator, #L is the number of possible labels, and #S is
the total number of samples in the dataset. We obtain
values from (Deng et al., 2023).

labels "Strongly Agree" and "Moderately Agree"560

as a negative pair in the same way it would con-561

sider "Strongly Agree" and "Strongly Disagree" as562

negative pairs. This is likely what led to a drop563

in the contrastive loss performance. On the other564

hand, an approach like MichEmbed which relies565

on a combination of Annotator + Annotation Em-566

beddings performs strongly. Future works should567

look into modifying contrastive loss to be more568

class-sensitive such as in the case of Likert-based569

classification.570

Multitask models degrade in performance571

with sparse annotators. The multitask model per-572

formed the worst with the SNT dataset. This is573

likely due to how many annotators there are com-574

pared to how many samples they annotated on aver-575

age, which is very few, creating sparse annotators576

(see Table 4). On the other hand, the multitask577

model performed very well on HSB which had a578

much smaller amount of annotators who each la- 579

beled many samples. 580

These findings reinforce the need to view sub- 581

jective learning as a two-fold challenge: embrac- 582

ing disagreement while resisting noise. Annotator- 583

aware models alone are not sufficient if they as- 584

sume all disagreement is meaningful; conversely, 585

noise-robust objectives without subjectivity mod- 586

eling may conflate diverse opinions with error. 587

Our work shows that integrating both perspectives 588

yields the most reliable performance, and that sim- 589

ple but principled interventions—like swapping 590

InfoNCE for RINCE—can offer significant gains 591

in real-world annotation environments. 592

7 Conclusion 593

In this work, explored the distinction of label noise 594

and subjective disagreement in subjective learn- 595

ing tasks. Most prior works only consider one or 596

the other; however, these factors are intertwined. 597

Disagreement is core to many human-centered ac- 598

tivities and should be accounted for when building 599

datasets. We address this issue by separating label 600

disagreement and label noise through our NRA- 601

Embed approach. Our benchmarking of existing 602

multi-annotator models provides a strong baseline 603

for developing advanced models that can tolerate 604

unique noise patterns. Our results suggests that em- 605

bedding based approaches are the superior method- 606

ology for training in multi-annotator cases. Fur- 607

thermore, we recommend that raw labels should be 608

released, however noisy, so that issues with label 609

noise can be directly addressed by model. 610

8 Limitations 611

One primary limitation of our approach is that 612

synthetic noise cannot be a true replacement for 613

real-world noise in our evaluations. In future 614

works, it may be worthwhile to explore various 615

types of noise-injection that more accurately re- 616

flect real-world noise. Another limitation is that 617

8



per-annotator modeling may be a computationally618

expensive task, especially in datasets with large619

amounts of annotators, further research should be620

explored on grouping annotators or on other mech-621

anisms to reduce this.622

9 Ethics Statement623

In data annotation, capturing the full spectrum of624

annotator perspectives is crucial for producing fair625

and representative models. However, factors like626

annotator fatigue and shifting judgments over time627

can conceal the true range of opinions present in628

large datasets.629

To address this, we propose drawing on insights630

from the entire annotator pool—including those631

who contribute less frequently—rather than focus-632

ing solely on the most active contributors. Incor-633

porating these “sparser” judgments broadens the634

diversity of viewpoints the model sees, yielding635

predictions that are both more robust and more636

nuanced.637

That said, this inclusive approach carries its own638

risks. A small, coordinated subgroup of annota-639

tors might exert undue influence, and any biases640

embedded within our large language model infras-641

tructure could further distort individual annotations.642

Even so, we argue that the benefits of embracing a643

wider array of voices—enhancing both inclusivity644

and resilience in AI systems—far outweigh these645

potential drawbacks.646
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