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Abstract

Subjective NLP tasks such as sentiment anal-
ysis and hate speech classification often in-
volve inherent annotator disagreement, re-
flecting diverse perspectives shaped by an-
notators’ lived experiences. Although con-
ventional approaches resolve disagreement
through majority voting or aggregation, these
methods risk erasing valuable nuances and
minority viewpoints. Recent embedding-
based/multitask models have advanced the
modeling of annotator-specific judgments, yet
their robustness to annotation noise remains un-
derexplored. In this work, we systematically
investigate how state-of-the-art disagreement
learning models perform in the presence of
noisy labels and observe a significant perfor-
mance degradation under such conditions. To
address this, we propose Noise Robust Anno-
tator Embedding (NRA-Embed), which inte-
grates Robust InfoNCE (RINCE) contrastive
loss to enhance models’ robustness under noisy
annotation conditions. Moreover, we bench-
mark existing approaches across three axes:
label noise type (symmetric vs. rogue anno-
tators), task structure (binary vs. multiclass),
and annotator coverage (many vs. few labels
per example). Through extensive experiments,
we show that NRA-Embed effectively models
subjective variation while remaining resilient
to noise, achieving competitive or superior per-
formance compared to prior methods.

1 Introduction

Collecting multiple annotator judgments is stan-
dard in NLP to improve label reliability (Snow
et al., 2008; Nowak and Riiger, 2010). Disagree-
ment in ground truth annotations arise frequently
and are typically resolved through majority voting,
averaging (Sabou et al., 2014), or expert adjudi-
cation (Waseem and Hovy, 2016) to create a sin-
gle ground truth for supervised training. However,
for subjective tasks, where no “correct” label ex-
ists (Alm, 2011), forcing a single annotation can
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Figure 1: Comparison of Mean Annotator F1 scores for
different multi-annotator modeling approaches on the
MDA (Leonardelli et al., 2021) Dataset under increasing
noise levels. We highlight that our embedding-based
method demonstrates greater robustness, maintaining
higher performance compared to other approaches as
noise level increases.

obscure valuable nuances in annotators’ diverse
perspectives (Cheplygina and Pluim, 2018).
Annotators’ backgrounds and experiences shape
subjective annotations in tasks like political stance
detection (Luo et al., 2020), sentiment analysis
(Diaz et al., 2018), and hate speech identification
(Patton et al., 2019). Feminist and anti-racist ac-
tivists differ from crowd workers on hate speech
(Waseem and Hovy, 2016), and political affilia-
tions affect neutrality (Luo et al., 2020). Majority
voting risks suppressing minority views, causing
disparities (Prabhakaran et al., 2021). These differ-
ences in opinions, or disagreements, are important
to capture in datasets to build safe and fair models.
Many datasets have been built to understand an-
notation disagreement, such as the Multi-Domain
Agreement (MDA) dataset (Leonardelli et al.,
2021). Many techniques have also been pro-
posed to better capture this annotator disagreement,
which can arise from errors, ambiguous items, or
subjective opinions, often tied to lived experiences
(Uma et al., 2021; Reidsma and Carletta, 2008;



Uma et al., 2022). For example, Davani et al.
(2022a) proposed a multitask approach for doing
so. Jinadu and Ding (2024) extended this to toler-
ate errors while accounting for subjective proper-
ties. Embedding-based approaches such as AART
(Mokhberian et al., 2023), and work by Deng et al.
(2023) have pushed the state of the art in terms
of accuracy on disagreement benchmark datasets.
However, few works have systematically examined
how models behave under the presence of both
annotator disagreements as well as inaccuracies.

To understand these properties, we systemati-
cally examined how state-of-the-art disagreement
learning methods behave in the presence of label
noise. We found that there is a sharp performance
drop in multi-annotator models under noise, as seen
in Figure 1. To address these shortcomings, we
propose the Noise Robust Annotator Embedding
method (NRA-Embed), which incorporates Ro-
bust InfoNCE (RINCE) (Chuang et al., 2022) to op-
timize disagreement learning models. In addition,
we conducted extensive experiments to evaluate
models across noise types, classification settings,
and annotator conditions. We found that our NRA-
Embed approach is effective for learning under dis-
agreement and noise, demonstrating performance
that is at least on par with, and often surpasses,
existing state-of-the-art methods.

2 Background

2.1 Inherent Annotator Disagreement

Annotator disagreement constitutes a recognized
challenge in Natural Language Processing. Con-
ventional methodologies for addressing this issue
include label aggregation through averaging tech-
niques (Pavlick and Callison-Burch, 2016), im-
plementing majority voting systems (Sabou et al.,
2014), or selectively utilizing data subsets charac-
terized by high inter-annotator agreement levels
(Jiang and de Marneffe, 2019). However, assuming
a single “correct” label ignores genuine subjec-
tivity, multiple valid interpretations exist (Plank,
2022; Passonneau et al., 2012; Nie et al., 2020;
Jiang and Marneffe, 2022).

Evidence from several studies demonstrates that
genuine variability in human annotations can stem
from subjective interpretations or the existence of
multiple acceptable responses (Passonneau et al.,
2012; Nie et al., 2020; Jiang and Marneffe, 2022).
For example, in tasks such as toxic language de-
tection, perceptions of toxicity vary significantly

among individuals (Waseem, 2016; Al Kuwatly
et al., 2020). Annotators’ identities and per-
sonal beliefs substantially shape their judgments
about the toxicity of content (Sap et al., 2021).
Thus, differences among annotators should not
merely be treated as annotation "noise" (Pavlick
and Kwiatkowski, 2019). Recent work has begun
utilizing these diverse annotations to personalize
models more effectively for different users (Plepi
et al., 2022).

2.2 Modeling Annotator Disagreement

Multiple methods address annotator disagreement.
The classical Dawid-Skene model (Dawid and
Skene, 1979) uses an expectation-maximization
algorithm to estimate annotator reliability and the
underlying true labels jointly from noisy labels.
More recently, Zhang and de Marneffe (2021) in-
troduced Artificial Annotators to simulate uncer-
tainty, and Zhou et al. (2021) applied MC Dropout,
Deep Ensembles, Re-Calibration, and Distribution
Distillation to capture judgment variability. Meiss-
ner et al. (2021) modeled full label distributions for
the Natural Language Inference (NLI) task. Zhang
et al. (2021) handle mixed single-label, multi-label,
and unlabeled data. Gordon et al. (2022) propose
“jury learning” via a DCN (Wang et al., 2021) that
integrates text and annotator IDs, while Davani
et al. (2022a) add annotator-specific layers on top
of a shared representation, and Kocon et al. (2021)
learn per-annotator embeddings.

Zhang et al. (2021) explores annotator disagree-
ment within a broader context involving a combi-
nation of single-label, multi-label, and unlabeled
examples. Meanwhile, (Gordon et al., 2022) pro-
pose "jury learning," a method that individually
models annotators using a Deep and Cross Net-
work (DCN) (Wang et al., 2021). Their approach
integrates the textual input and annotator identi-
fiers along with predicted annotator responses from
DCN for improved classification outcomes.

2.3 Annotator Noise

Noise correction seeks to identify and resolve er-
rors or inconsistencies (“noise”) in datasets, such
as random label flips, artifacts, and annotation mis-
takes, to improve data quality and model robustness
(Zhan et al., 2019). Standard cross-entropy losses
tend to fit noise rather than the true underlying
distribution (Zhang et al., 2016), whereas “hard”
bootstrapping augments the loss with a prediction-
based term to resist label noise (Reed et al., 2014).
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Figure 2: Architectural approaches for modeling multi-annotator learning. Two main methods exist: First, the task-
based approach (left) adds specific prediction layers to capture individual annotators’ perspectives in a subjective
dataset. The embedding-based approach (right) incorporates annotator information by embedding their annotations

directly into a latent representation early in the network.

Empirically, deep nets first learn broad, generaliz-
able patterns before eventually memorizing noisy
labels (Arazo et al., 2019; Liu et al., 2020; Li et al.,
2020; Nishi et al., 2021), a phenomenon that many
methods exploit to cleanse noisy data. Effective
noise correction thus balances removal of mislead-
ing errors against preservation of genuine signal,
avoiding new biases in downstream models (Arazo
et al., 2019; Jinadu and Ding, 2024).

3 Methods

We first set up the general multi-annotator learn-
ing problem. We then discuss two high-level net-
work architecture approaches for modeling multi-
annotator datasets. At 3.2, we discuss the task-
based approach, as depicted in the left section of
figure 2, where a separate shallow sub-network
predicts individual annotator responses. We then
discuss the embedding-based approach at 3.3, as
depicted in the right section of the figure 2, where
an embedding is learned for each annotator to repre-
sent their annotating preference. We then propose
a framework for optimizing the embedding-based
approaches under conditions of label noise.

3.1 Problem Definition

We consider an annotated dataset D =
{(xi,a;,yij)}, which consists of triplets formed

from input text items X = {z;}Y,, annotators
A = {a;}71,, and annotations Y = {1,...,Q}. A
pair of (7, j) can appear at most once in the dataset
D, which means label y;; is assigned to text item
x; by the annotator a;. Y contains numerous miss-
ing values in most annotated datasets since each
annotator labels only a subset of the instances. The
problem is modeled as a classification task where
a classifier is trained to predict the label to be as-
signed to the text item z;. All methods explored in
this study utilize pre-trained transformer-based lan-
guage models for text encoding, specifically using
RoBERTa (Liu et al., 2019). For a given input text
x;, we obtain its text representation by extracting
the [CLS] token embedding from the final layer of
the language model, denoted as e(x;).

3.2 Task-based Multi-Annotator Learning

The most frequent approach, called single-task,
aims to predict the aggregate label to be assigned
to the text item x; through majority voting or aver-
aging over annotators’ labels {y;; };‘il It is typi-
cally implemented by passing the text representa-
tion of a pre-trained BERT-base language model
e(z;) through a fully connected layer. This layer
performs a linear transformation followed by a Soft-
max activation to produce the probability distribu-
tion over the majority of labels.



Multi-task approaches are seen in several previous
works (Fornaciari et al., 2021; Davani et al., 2022a;
Jinadu and Ding, 2024), and basically are a gen-
eralization of single-task approach. They train a
separate, fully connected layer for each annotator
to learn the annotator-specific labeling behavior.
They leverage shared pre-trained BERT-base lan-
guage model (Liu et al., 2019) (encoding layers)
to produce a unified text representation e(x;) for
all annotators. However, these shared encoding
layers are updated jointly using the outputs from
all annotator-specific tasks. The training objective
for each annotator is defined independently using a
cross-entropy loss, applied only to the labels that
the annotator has provided for each instance z;.

3.3 Embedding-based Multi-Annotator
Learning

Another method is to embed annotators in a latent
space and integrate this information early in the
model architecture. In these approaches, a learn-
able matrix encodes the representations of the anno-
tators. During training, annotators which provided
the rating can be retrieved from the embedding ma-
trix and inserted into the network. For example,
given a text instance z; and an annotator embed-
ding, we compute the annotator-aware embedding
as:

9(wi, a;) = e(x;) ® f(aj),

where e(x;) is the text embedding, f(a;) is the
corresponding annotator embedding, and & is the
fusion operation that can arise from a linear layer,
attention or something more complex. A model
then processes this fused representation to deter-
mine the optimum prediction. In our paper we treat
the fusion as a simple addition.

A few methods make use of this. For example,
the approach proposed by Mokhberian et al. (2023)
adds the annotator embeddings directly into the text
representations without any weighting. We refer to
this method as Annotator Aware Representations
for Texts(AART) in this paper. Another method is
Deng et al. (2023), which additionally incorporates
annotation embeddings along with weighting. We
refer to this method as MichEmbed in this paper.

3.4 Noise Robust Annotator Embedding
(NRA-Embed)

We found that embedding-based approaches per-
formed better than task-based approaches. How-
ever, it is unclear how to make these methods

more noise-robust while capturing subjective opin-
ions. These challenges are illustrated in Fig-
ure 1; in noisy environments, conventional con-
trastive losses such as InfoNCE (Oord et al.,
2018; Chen et al., 2020) often fail to learn em-
beddings that accurately reflect annotators’ true
opinions. Because inconsistent or noisy annota-
tions can distort the learning signals and hinder
the model’s ability to form coherent representa-
tions. Therefore, we need a contrastive loss robust
to annotation noise—tunable to emphasize confi-
dent, informative annotation signals while down-
weighting uncertain or potentially noisy ones. Mo-
tivated by this, we propose to use Robust InfoNCE
(RINCE) (Chuang et al., 2022).

RINCE builds on the insight that contrastive
learning with noisy representations can be inter-
preted as a binary classification with noisy labels
over pairwise views—assigning a label of 1 if the
views co-occur (joint distribution) and -1 if sam-
pled independently (product of marginals)(Chuang
et al., 2022). This interpretation aligns well with
our setting, where each view corresponds to an
annotator’s label on a given input; we treat annota-
tor pairs as positive (label 1) if they agree on the
label of a text instance and negative (label -1) if
they disagree. Ghosh et al. (2015) demonstrate
that symmetric loss functions offer robustness to
label noise in binary classification tasks. RINCE
introduces a symmetric adaptation of contrastive
learning that satisfies the symmetry condition in bi-
nary classification and, thus, guarantees robustness
against noisy representations. Specifically, a sym-
metric contrastive learning objective should have
the following form(Chuang et al., 2022):

K
L(s) = £(sT;1) +)\Z ls;;—1) (1)

Positive Pair i=1 K Negative Pairs

where the first term is the loss of the positive
pair, and the second term is the sum of losses of K
negative pairs. A > 0 is a density weighting term
controlling the ratio between positive (class 1) and
negative (class -1) pairs.

Based on the idea of robust symmetric classifi-
cation loss, the Robust InfoNCE (RINCE) loss is
defined as(Chuang et al., 2022):
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where s is the score for a positive (agreement)
pair and s; are scores for negative (disagreement)
pairs. A tunable parameter ¢ € (0, 1] is introduced
to interpolate between the robustness of RINCE
and the expressive power of InfoNCE. When g =
1, RINCE becomes a contrastive loss that fully
satisfies the symmetry property in Equation (1) and
offers strong resistance to annotation noise.

To jointly learn task performance and annota-
tor embeddings, we pass combined embeddings
g(x;, a;) through a classification layer to predict
the annotator’s label for each instance. we optimize
the following comminatory objective function:
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The first term, Lcg, is a standard cross-entropy
loss used to predict the label assigned by anno-
tator a; to input z; based on the combined em-
bedding g(x;, a;). The second term applies an /5
regularization penalty on the annotator embeddings
f(a;), encouraging smoother and more generaliz-
able representations. The third term incorporates
the RINCE contrastive loss between pairs of an-
notators a; and aj who have labeled the same
text instance. Annotator pairs who agree on a la-
bel are treated as positives and pulled together in
the embedding space, while those who disagree
are pushed apart—encouraging consistency while

maintaining robustness to noisy annotations.

4 Experimental Setup
4.1 Datasets

We use the following datasets in our evaluation.

¢ The Multi-Domain Agreement Dataset
(MDA) This dataset comprises 9,814 English
tweets drawn from three topical domains (the
Black Lives Matter movement, the 2020 U.S.
election, and the COVID-19 pandemic), each
independently annotated for offensiveness by
five crowdworkers via Amazon Mechanical
Turk (Leonardelli et al., 2021).

* Sentiment Analysis Dataset (SNT) The
dataset, introduced by Diaz et al. (2018), is a
sentiment classification resource aimed at ad-
dressing age-related biases in sentiment mod-
els, leveraging text from older adults’ blog
posts containing age-related terms such as
"0ld" and "young".

* HS-Brexit Dataset (HSB)

The HS-Brexit Dataset (HSB), introduced by
Akhtar et al. (2021) is a multi-perspective abu-
sive language detection dataset focused on
Brexit-related tweets in English. It captures
diverse viewpoints, especially from victim-
ized groups like immigrants, with annotations
for hate speech, aggressiveness, offensiveness,
and stereotypes. Annotations were performed
by varied demographic groups, including mi-
grants, and a polarization index (P-index) was
used to measure differing perspectives, creat-
ing separate gold standards per group. The
dataset enabled training of perspective-aware
models, including BERT-based classifiers, to
better detect abusive language by considering
annotator subjectivity. It serves as a bench-
mark for studying abusive language detection
and sociodemographic biases in polarizing
contexts like Brexit.

4.2 Baseline Models

We compare against the following baseline meth-
ods:

* Multitask: We follow the approach proposed
by (Davani et al., 2022b) which involves one
fully-connected layer for each annotator with
a shared RoOBERTA model.

* AART: We evaluate the approach introduced
by (Mokhberian et al., 2023) which utilizes
an embedding for each annotator as well
as a contrastive loss objective and a single
fully-connected classification layer built off
of a ROBERTA backbone in our evaluations.
Embedding-based approach.

* MichEmbed: We follow the approach by
(Deng et al., 2023) which utilizes annotator
embeddings as well as weighted annotation
embeddings and a single fully-connected clas-
sification layer built off of ROBERTA in our
experiments. Embedding-based approach.

4.3 Noise Injection

For our evaluations on binary-label datasets we
evaluate noise by introducing label flips (“noise”

into a random subset of examples. Specifically, we
injected noise rates of 20% and 40%. For each se-
lected instance, regardless of how many annotators
originally voted for “true” versus “false” (e.g., 4
votes true, 1 vote false), we simply swapped its



label. This approach mirrors the standard random-
flip procedures commonly used in the noisy labels
literature. Any annotators who did not contribute
to a given sample were excluded from the noise in-
jection process and thus did not affect the training
loss.

For the multi-class dataset SNT, we add sym-
metric noise for each annotator of a label. Each
instance labeled by an annotator had a 20% or 40%
chance of being flipped. In this case a "flipped"
label would result in one of the other 4 classes with
equal likelihood.

4.4 Implementation Details

We implemented the classification models using
HuggingFace transformers library(version 4.39)
(Wolf et al., 2020). Our experimental setup for
the annotation embedding approach for subjective
classification closely resembled that of Mokhbe-
rian et al. (2023). For all the datasets experiments,
we trained the models for ten (10) epochs. We used
this to train our baseline and the other models, and
then introduced our noise correction method. We
used the pretrained Roberta-base (Liu et al., 2019)
model as the underlying architecture. Optimization
was conducted using the AdamW optimizer with
a learning rate of le-5 and a weight decay of 0.01.
A linear decay scheduler with zero warm-up steps
was then applied.

4.5 Evaluation Metrics
Mean-Annotator F1 Score

This study is driven by the need to preserve minor-
ity annotator perspectives that are often lost when
labels are naively aggregated. To that end, we eval-
uate the model’s performance for each annotator
a; on each test item x;, comparing the true labels
y;; against the model’s predictions. We then sum-
marize these per-annotator results via the Mean-
Annotator F1, defined as the average macro-F1
score across all J annotators:

J
1
Mean-Annotator F1 = i ; F1 (aj),

where F1 (aj) is the macro-F1 score computed for
annotator a; over all test items ;.

Accuracy Score

The accuracy metric for our annotator-aware
representation model quantifies the overall frac-
tion of correct label predictions across every

item—annotator pair (x;,a;) in the test set. Con-
cretely, if §j;; denotes the model’s predicted label
for (x;,a;) and y;; is the true label provided by
annotator a;, then accuracy is given by

(i, 5) | 95 = vis}|
Gy

where the numerator counts all correctly predicted
pairs and the denominator is the total number
of evaluated pairs. This global correctness mea-
sure complements our annotator-wise F1 scores
by showing, at a glance, how often the model’s
annotator-specific representations produce the right
label across both prolific and sparse contributors.

Accuracy =

5 Results
5.1 Main Results

We present the main results in Table 1 as mean-
annotator f1 scores. We we see that our method
performs the best on several metrics. Most notably
it outperforms existing techniques in no presence
of noise as well. Embedding approaches consis-
tently outperform the multitask model, demonstrat-
ing their superior ability to capture individual an-
notator behaviors. We observe a large variation on
performance in SNT.

5.2 Annotation Embedding Approach + Noise
Robustness Enhancements

We compare our NRA-Embed Approach against
the annotation embedding approach baseline to
measure gains in embedding stability under syn-
thetic annotation noise. Table 1 presents mean
Annotator-Aware F1 scores on three benchmarks,
MDA, SNT, and HSB, at no noise, 20% noise, and
40% noise. Our Noise-Robust Annotation Embed-
ding Approach consistently improves over the base-
line, demonstrating enhanced robustness to annota-
tion errors.

5.3 Impact of Parameter ¢ on
Noise-Robustness in Annotation
Embedding

Higher values of ¢ in our Noise-Robust Annotation
Embedding approach improve performance under
noisy conditions. As ¢ increases, the approach
places greater emphasis on confident (easy) pos-
itive pairs while reducing the influence of noisy,
ambiguous positives. This aligns with the intuition
that contrastive learning objectives should be more
selective in identifying trustworthy signals under



Dataset Noise Level Majority Vote Multitask MichEmbed AART Ours
NoNoise  0.582(accuracy)  0.728 0.784 0.788  0.790
MDA 509 Noise - 0.669 0.727 0728 0.751
40% Noise - 0.490 0.456 0451  0.572
No Noise 0.303(accuracy) 0.287 0.524 0.452 0.493
SNT 509 Noise - 0.253 0.440 0421 0410
40% Noise - 0.217 0.355 0335 0.300
No Noise 0.772(accuracy) 0.929 0.933 0931 0.936
HSB 5% Noise - 0.875 0.872 0.833 0.877
40% Noise - 0.674 0.594 0.580  0.663

Table 1: Annotator-level F1 scores across three datasets (MDA, SNT, HSB) under varying levels of synthetic label
noise. Best results are in bold and second best are underlined. Our method performs best or second best in most
conditions, especially under high-noise conditions (The q-value chosen varies depending on what provided the best

results).

higher noise levels. However, excessively high ¢
values may overlook legitimate harder cases, indi-
cating a trade-off between robustness and represen-
tational richness, particularly in low-noise scenar-
ios. In practical settings with inconsistent crowd-
worker annotations, higher ¢ values (e.g., ¢ = 0.75
and ¢ = 1.0) have proven reliably effective. This
trend is illustrated in Table 2, where increasing ¢
enhances the model’s confidence and robustness.

5.4 Impact of Renegade Annotators on Model
Performance

We analyze model robustness in realistic scenar-
ios involving renegade annotators, individuals who
intentionally provide malicious or random anno-
tations. To do this, we randomly choose 10% of
annotators to have very high noise, that is 70% of
their annotations are perturbed. Experiments com-
pare our proposed Noise-Robust Annotation Em-
bedding method against the Task-Based approach.
Results demonstrate that our method falls short in
this being noise robust with few instances of high
noise. Future work should explore how to handle
these sorts of annotators. Detailed performance
metrics are provided in Table 3.

6 Discussion

Our results demonstrate several key trends that hold
consistently across datasets and noise configura-
tions, offering both theoretical and practical insight
into designing models for subjective classification
under noisy annotation.

RINCE consistently improves model robust-
ness across noise scenarios. Across most tested
noise levels, our approach led to a notable increase
in mean annotator F1 and reduced degradation un-
der high-noise conditions. This supports our hy-
pothesis that subjective NLP tasks require not only
modeling of annotator identity but also a mecha-
nism to counteract annotation noise.

Annotator embedding models outperform
multitask learning. Our results show that mod-
els such as MichEmbed, AART and, our approach
NRA-Embed, which learn annotator embeddings to
modulate shared representations, outperform mul-
titask approaches with separate prediction heads
per annotator. We hypothesize that this advantage
arises from parameter sharing and regularization
effects—embedding-based models can exploit com-
monalities across annotators while still personaliz-
ing behavior, whereas multitask heads may over-
fit when annotation coverage is sparse or imbal-
anced. Additionally, embedding approaches inher-
ently support more efficient transfer across anno-
tators and can generalize better when annotators
have limited individual data.

Likert Scale based datasets degrade con-
trastive loss performance An interesting finding
is the results of SNT which is based on a Likert
Scale classification. We find that previously strong
approaches like AART and our approach, degrade
in performance. We hypothesize that this is due
to their objective being dependent on contrastive
loss. For example, a contrastive loss would treat



No Noise 20% Noise 40% Noise
Rince_.q q=05 q=0.75 q=10|9g=05 g=075 q=10|g=05 q=0.75 q=1.0
MDA 0.7900 0.7850  0.7825 | 0.725 0.7417  0.7512 | 0.6405 0.6495  0.6572
SNT 0.4872 0.4907  0.4934 | 0.3991 0.4034 04103 | 0.2944 0.2947  0.2969
HSB 0.9337 09321  0.9359 | 0.8516 0.8588  0.8566 | 0.5998 0.6517  0.5882

Table 2: Effect of the parameter ¢ on the robustness of the Noise-Robust Annotation Embedding method across
different noise levels. We can see a trend that higher g-values tend to improve performance in higher noise scenarios.

Model MDA SNT HSB
Task-Based  0.666 0.229 0.862
NRA-Embed 0.710 0.425 0.854
AART 0.730 0.434 0.853
MichEmbed 0.711 0.438 0.858

Table 3: Comparison of model robustness to rene-
gade annotators (malicious/random annotation behav-
ior). Bolded values highlight the best-performing ap-
proach across datasets.

DS #A  #EMA #S #L
MDA 819 60 44k 2
SNT 1481 41 604k 5
HSB 6 952 57k 2

Table 4: Dataset Statistics. #A is the number of an-
ntators, #E/M#A is the average number of examples per
annotator, #L is the number of possible labels, and #S is
the total number of samples in the dataset. We obtain
values from (Deng et al., 2023).

labels "Strongly Agree" and "Moderately Agree"
as a negative pair in the same way it would con-
sider "Strongly Agree" and "Strongly Disagree" as
negative pairs. This is likely what led to a drop
in the contrastive loss performance. On the other
hand, an approach like MichEmbed which relies
on a combination of Annotator + Annotation Em-
beddings performs strongly. Future works should
look into modifying contrastive loss to be more
class-sensitive such as in the case of Likert-based
classification.

Multitask models degrade in performance
with sparse annotators. The multitask model per-
formed the worst with the SNT dataset. This is
likely due to how many annotators there are com-
pared to how many samples they annotated on aver-
age, which is very few, creating sparse annotators
(see Table 4). On the other hand, the multitask
model performed very well on HSB which had a

much smaller amount of annotators who each la-
beled many samples.

These findings reinforce the need to view sub-
jective learning as a two-fold challenge: embrac-
ing disagreement while resisting noise. Annotator-
aware models alone are not sufficient if they as-
sume all disagreement is meaningful; conversely,
noise-robust objectives without subjectivity mod-
eling may conflate diverse opinions with error.
Our work shows that integrating both perspectives
yields the most reliable performance, and that sim-
ple but principled interventions—Ilike swapping
InfoNCE for RINCE—can offer significant gains
in real-world annotation environments.

7 Conclusion

In this work, explored the distinction of label noise
and subjective disagreement in subjective learn-
ing tasks. Most prior works only consider one or
the other; however, these factors are intertwined.
Disagreement is core to many human-centered ac-
tivities and should be accounted for when building
datasets. We address this issue by separating label
disagreement and label noise through our NRA-
Embed approach. Our benchmarking of existing
multi-annotator models provides a strong baseline
for developing advanced models that can tolerate
unique noise patterns. Our results suggests that em-
bedding based approaches are the superior method-
ology for training in multi-annotator cases. Fur-
thermore, we recommend that raw labels should be
released, however noisy, so that issues with label
noise can be directly addressed by model.

8 Limitations

One primary limitation of our approach is that
synthetic noise cannot be a true replacement for
real-world noise in our evaluations. In future
works, it may be worthwhile to explore various
types of noise-injection that more accurately re-
flect real-world noise. Another limitation is that



per-annotator modeling may be a computationally
expensive task, especially in datasets with large
amounts of annotators, further research should be
explored on grouping annotators or on other mech-
anisms to reduce this.

9 Ethics Statement

In data annotation, capturing the full spectrum of
annotator perspectives is crucial for producing fair
and representative models. However, factors like
annotator fatigue and shifting judgments over time
can conceal the true range of opinions present in
large datasets.

To address this, we propose drawing on insights
from the entire annotator pool—including those
who contribute less frequently—rather than focus-
ing solely on the most active contributors. Incor-
porating these “sparser” judgments broadens the
diversity of viewpoints the model sees, yielding
predictions that are both more robust and more
nuanced.

That said, this inclusive approach carries its own
risks. A small, coordinated subgroup of annota-
tors might exert undue influence, and any biases
embedded within our large language model infras-
tructure could further distort individual annotations.
Even so, we argue that the benefits of embracing a
wider array of voices—enhancing both inclusivity
and resilience in Al systems—far outweigh these
potential drawbacks.
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