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ABSTRACT

Unsupervised contrastive learning has shown significant performance improve-
ments in recent years, often approaching or even rivaling supervised learning in
various tasks. However, its learning mechanism is fundamentally different from
that of supervised learning. Previous works have shown that difficult-to-learn
examples (well-recognized in supervised learning as examples around the decision
boundary), which are essential in supervised learning, contribute minimally in
unsupervised settings. In this paper, perhaps surprisingly, we find that the direct
removal of difficult-to-learn examples, although reduces the sample size, can boost
the downstream classification performance of contrastive learning. To uncover the
reasons behind this, we develop a theoretical framework modeling the similarity
between different pairs of samples. Guided by this theoretical framework, we con-
duct a thorough theoretical analysis revealing that the presence of difficult-to-learn
examples negatively affects the generalization of contrastive learning. Further-
more, we demonstrate that the removal of these examples, and techniques such
as margin tuning and temperature scaling can enhance its generalization bounds,
thereby improving performance. Empirically, we propose a simple and efficient
mechanism for selecting difficult-to-learn examples and validate the effectiveness
of the aforementioned methods, which substantiates the reliability of our proposed
theoretical framework.

1 INTRODUCTION

Contrastive learning has demonstrated exceptional empirical performance in the realm of unsupervised
representation learning, effectively learning high-quality representations of high-dimensional data
using substantial volumes of unlabeled data by aligning an anchor point with its augmented views
in the embedding space (Chen et al., 2020a;b; He et al., 2020; Chen et al., 2021; Caron et al.,
2020). Unsupervised contrastive learning may own quite different working mechanisms from
supervised learning, as discussed in (Joshi & Mirzasoleiman, 2023). For example, difficult-to-
learn examples (a well-recognized concept in supervised learning as examples around the decision
boundary), which contribute the most to supervised learning, contribute the least or even negatively to
contrastive learning performance. They show that on image datasets such as CIFAR-100 and STL-10,
excluding 20%-40% of the examples does not negatively impact downstream task performance. More
surprisingly, their results showed, but somehow failed to notice, that excluding these samples on
certain datasets like STL-10 can lead to performance improvements in downstream tasks.
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Figure 1: Excluding difficult-
to-learn examples improves
contrastive learning.

Taking a step further beyond their study, we find that this surpris-
ing result is not just a specialty of a certain dataset, but a universal
phenomenon across multiple datasets. Specifically, we run SimCLR
on the original CIFAR-10, CIFAR-100, STL-10, and TinyImagenet
datasets, the SAS core subsets (Joshi & Mirzasoleiman, 2023) se-
lected with a deliberately tuned size, and a subset selected by a
sample removal mechanism to be proposed in this paper. In Figure 1,
we report the gains of linear probing accuracy by using the subsets
compared with the original datasets. We see that on all these bench-
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mark datasets, excluding a certain fraction of examples results in
comparable and even better downstream performance. This result is somewhat anti-intuitive because
deep learning models trained with more samples, benefiting from lower sample error, usually perform
better. Yet our observation indicates that difficult-to-learn examples can actually hurt contrastive
learning performances. This observation naturally raises a question:

What is the mechanism behind difficult-to-learn examples impacting the learning
process of unsupervised contrastive learning?

To comprehensively characterize such impact, we first develop a theoretical framework, i.e., the
similarity graph, to describe the similarity between different sample pairs. Specifically, pairs con-
taining difficult-to-learn samples, termed as difficult-to-learn pairs, exhibit higher similarities than
other different-class pairs. Based on this similarity graph, we derive the linear probing error bounds
of contrastive learning models trained with and without difficult-to-learn samples, proving that the
presence of difficult-to-learn examples negatively affects performance. Next, we prove that the most
straightforward idea of directly removing difficult-to-learn examples improves the generalization
bounds. Further, we also theoretically demonstrate that commonly used techniques such as margin
tuning (Zhou et al., 2024) and temperature scaling (Khaertdinov et al., 2022; Zhang et al., 2021;
Kukleva et al., 2023) mitigate the negative effects of difficult-to-learn examples by modifying the
similarity between sample pairs from different perspectives, thereby improving the generalization
bounds. Experimentally, we propose a simple but effective mechanism for selecting difficult-to-learn
samples that does not rely on pre-trained models. The performance improvements achieved by
addressing difficult-to-learn samples through the aforementioned methods align with our theoretical
analysis of the generalization bounds.

The contributions of this paper are summarized as follows:

• We find that removing certain training examples boosts the performance of unsupervised
contrastive learning is a universal empirical phenomenon on multiple benchmark datasets.
Through a mixing-image experiment, we conjecture that the removal of difficult-to-learn
examples is the cause.

• We design a theoretical framework that models the similarity between different pairs of
samples to characterize how difficult-to-learn samples in contrastive learning affect the
generalization of downstream tasks. Based on this framework, we theoretically prove that
the existence of difficult-to-learn samples hurts contrastive learning performances.

• We theoretically analyze how possible solutions, i.e. directly removing difficult-to-learn
samples, margin tuning, and temperature scaling, can address the issue of difficult-to-learn
examples by improving the generalization bounds in different ways.

• In experiments, we propose a simple and efficient mechanism for selecting difficult-to-learn
examples and validate the effectiveness of the aforementioned methods, which substantiates
the reliability of our proposed theoretical framework.

2 DIFFICULT-TO-LEARN EXAMPLES HURT CONTRASTIVE LEARNING: A
MIXING IMAGE EXPERIMENT

We start this section by revealing that difficult-to-learn examples do hurt contrastive learning perfor-
mances through a proof-of-concept toy experiment.

The concept of difficult-to-learn examples is borrowed from supervised learning, denoting the
examples around the decision boundary. It is somewhat related to hard negative samples, a pure
unsupervised learning concept defined as highly similar negative samples to the anchor point, but is
different in nature. (See Appendix A.1 for more discussions.) However, in real image datasets, as
difficult-to-learn examples rely on the specific classifier trained in the supervised learning manner,
we can not preciously know the ground truth difficult-to-learn examples. Therefore, we in turn add
additional difficult-to-learn examples and observe the effects of these additional examples.

Specifically, we generate a new mixing-image dataset containing more difficult-to-learn samples
by mixing a γ fraction of images on the CIFAR-10 dataset at the pixel level (these samples lying
around the class boundary), termed as γ-Mixed CIFAR-10 datasets. Then, we train the representative
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contrastive learning algorithm SimCLR (Chen et al., 2020a) on the original, 10%-, and 20%-Mixed
CIFAR-10 datasets using ResNet18 model. We report the linear probing accuracy in Figure 2.
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Figure 2: Excluding (mixed)
difficult-to-learn examples im-
proves contrastive learning.

Compared with the model trained on the original dataset, we find that
with the mixed difficult-to-learn examples included in the training
dataset, the performance of contrastive learning drops. This result
indicates that the (mixed) difficult-to-learn samples significantly neg-
atively impact contrastive learning. As the mixing ratio γ increases,
the performance drops, indicating that more difficult-to-learn exam-
ples lead to worse contrastive learning performances.

Moreover, we show that removing the (mixed) difficult-to-learn sam-
ples can boost performance. Specifically, we compare performance
on the Mixed CIFAR-10 datasets with that on the datasets removing
the mixed examples. As shown in Figure 2, despite being trained
with a smaller sample size, models trained on datasets removing
the mixed examples perform better than the ones trained with the
mixed examples, which further verifies that difficult-to-learn examples hurt unsupervised contrastive
learning, and removal of these difficult-to-learn examples can boost learning performance.

3 THEORETICAL CHARACTERIZATION OF WHY DIFFICULT-TO-LEARN
EXAMPLES HURT CONTRASTIVE LEARNING

In this section, to explain why difficult-to-learn examples negatively impact the performance of
contrastive learning, we provide theoretical evidence on generalization bounds. In Section 3.1 we
present the necessary preliminaries that lay the foundation for our theoretical analysis. In Section
3.2, we introduce the similarity graph describing difficult-to-learn examples. In Section 3.3, we
respectively derive error bounds of contrastive learning with and without difficult-to-learn examples.

3.1 PRELIMINARIES

Notations. Given a natural data x̄ ∈ X̄ := Rd, we denote the distribution of its augmentations
by A(·|x̄) and the set of all augmented data by X , which is assumed to be finite but exponentially
large. For mathematical simplicity, we assume class-balanced data with n denoting the number of
augmented samples per class and r + 1 denoting the number of classes, hence |X | = n(r + 1). Let
nd represent the number of difficult-to-learn examples per class and Dd the set of difficult-to-learn
examples.

Similarity Graph (Augmentation Graph). As described in HaoChen et al. (2021), an augmentation
graph G represents the distribution of augmented samples, where the edge weight wxx′ signifies
the joint probability of generating augmented views x and x′ from the same natural data, i.e.,
wxx′ := Ex̄ ∼ P̄[A(x|x̄)A(x′|x̄)]. The total probability across all pairs of augmented data sums
up to 1, i.e.,

∑
x,x′∈X wxx′ = 1. The adjacency matrix of the augmentation graph is denoted as

A = (wxx′)x,x′∈X , and the normalized adjacency matrix is Ā = D−1/2AD−1/2, where D :=
diag(wx)x∈X , and wx :=

∑
x′∈X wxx′ . The concept of augmentation graph is further extended to

describe similarities beyond image augmentation, such as cross-domain images (Shen et al., 2022),
multi-modal data (Zhang et al., 2023), and labeled examples (Cui et al., 2023).

Contrastive losses. For theoretical analysis, we consider the spectral contrastive loss L(f) proposed
by HaoChen et al. (2021) as a good performance proxy for the widely used InfoNCE loss

LSpec(x; f) := −2 · Ex,x+ [f(x)⊤f(x+)] + Ex,x′

[(
f(x)⊤f(x′)

)2]
. (1)

As proved in Johnson et al. (2022), the spectral contrastive loss and the InfoNCE loss share the
same population minimum with variant kernel derivations. Further, the spectral contrastive loss is
theoretically shown to be equivalent to the matrix factorization loss. For F ∈ Rn×k = (ux)x ∈ X ,
where ux = w

1/2
x f(x), the matrix factorization loss is:

Lmf(F ) := ∥Ā− FF⊤∥2F = LSpec(f) + const. (2)
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3.2 MODELING OF DIFFICULT-TO-LEARN EXAMPLES

We start by introducing a similarity graph, to describe the relationships between various samples. In
contrastive learning, examples are used in a pairwise manner, so we define difficult-to-learn sample
pairs as sample pairs that include at least one difficult-to-learn sample. As difficult-to-learn examples
lie around the decision boundary, they should have higher augmentation similarity to examples from
different classes. Therefore, it is natural for us to define the difficulty-to-learn pairs as different-class
sample pairs with higher similarity. Correspondingly, easy-to-learn pairs are defined as different-class
sample pairs containing no difficult-to-learn samples, or different-class sample pairs with lower
similarity.

Specifically, we define the augmentation similarity between a sample and itself as 1. Then we
assume the similarity between same-class samples is α (Figure 3(a)), the similarity between a sample
(conceptually far away from the class boundary) and all samples from other classes is β (Figure 3(b)),
and the similarity between different-class difficult-to-learn samples (conceptually close to the class
boundary) is γ (Figure 3(c)). Naturally, we have 0 ≤ β < γ < α < 1.

(a) Similarity α. (b) Similarity β. (c) Similarity γ. (d) Adjacency matrix.

Figure 3: Modeling of difficult-to-learn examples. The similarity between same-class samples is
α (a), the similarity between different-class difficult-to-learn samples is γ (c), and the similarity
between other samples is β (b). The adjacency matrix of a 4-sample subset is shown in (d).

In Figure 3(d), we illustrate our modeling of adjacency matrix through a 4-sample subset D4 :=
x1, x2, x3, x4, where x1 and x2 belong to Class 0, and x3 and x4 belong to Class 1. We define x1 and
x3 as difficult-to-learn samples (assuming these two samples are distributed around the classification
boundary as depicted in Figure 3(c)), i.e. x1, x3 ∈ Dd. Conversely, we define x2 and x4 (assuming
these samples are distributed far from the classification boundary) as easy-to-learn samples, i.e.
x2, x4 ∈ D4 \ Dd. The relationship between each pair of samples in D4 can be mathematically
formulated as an adjacency matrix shown in Figure 3(d). In what follows, our theoretical analysis is
based on the generalized similarity graph containing |X | = n(r + 1) samples. The formal definition
of the generalized adjacency matrix is shown in Appendix B. In Section B.3, we also discuss that
relaxation on the ideal adjacency matrix with randomizing the elements does not affect the core
conclusions of this paper.

3.3 ERROR BOUNDS WITH AND WITHOUT DIFFICULT-TO-LEARN EXAMPLES

Based on the similarity graph in Section 3.2, we derive the linear probing error bounds for contrastive
learning models trained with and without difficult-to-learn examples in Theorems 3.1 and 3.2. We
mention that we adopt the label recoverability (with labeling error δ) and realizability assumptions
from HaoChen et al. (2021). The formal assumptions and proofs are shown in Appendix B.1.

Theorem 3.1 (Error Bound without difficult-to-learn Examples). Denote Ew.o. as the linear probing
error of a contrastive learning model trained on a dataset without difficult-to-learn examples. Then

Ew.o. ≤
4δ

1− 1−α
(1−α)+nα+nrβ

+ 8δ. (3)

Theorem 3.2 (Error Bound with difficult-to-learn Examples). Denote Ew.d. as the linear probing
error of a contrastive learning model trained on a dataset with nd difficult-to-learn examples per
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class. Then if nd ≤ k ≤ nd + r + 1, there holds

Ew.d. ≤
4δ

1− (1−α)+r(γ−β)
(1−α)+nα+nrβ+ndr(γ−β)

+ 8δ. (4)

Discussions. By comparing Theorems 3.1 and 3.2, also considering that (1−α)+r(γ−β)
(1−α)+nα+nrβ+ndr(γ−β) >

1−α
(1−α)+nα+nrβ , we see the presence of difficult-to-learn examples leads to a strictly worse linear
probing error bound for a contrastive learning model. Moreover, more challenging difficult-to-
learn examples (larger γ − β) result in worse error bounds. Specifically, when γ = β, i.e. no
difficult-to-learn examples exist, the bound in Theorem 3.2 reduces to that in Theorem 3.1.

4 THEORETICAL CHARACTERIZATION ON HOW TO ELIMINATE EFFECTS OF
DIFFICULT-TO-LEARN EXAMPLES

Building on the above unified theoretical framework, we theoretically analyze that directly removing
difficult-to-learn samples (Section 4.1), margin tuning (Section 4.2), and temperature scaling (Section
4.3) can handle difficult-to-learn examples by improving the generalization bounds in different ways.

4.1 REMOVING DIFFICULT-TO-LEARN SAMPLES

In Figures 1 and 2, empirical experiments demonstrated that removing difficult-to-learn samples
can improve learning performance. Corollary 4.1 provides a theoretical explanation for this counter-
intuitive phenomenon based on our established framework.
Corollary 4.1. Denote ER as the linear probing error of a contrastive learning model trained on a
selected subset removing all difficult-to-learn examples Dd. Then there holds

ER ≤ 4α

1− 1−α
(1−α)+(n−nd)α+(n−nd)rβ

+ 8δ. (5)

Corollary 4.1 shows that when the difficult-to-learn examples are removed, the linear probing error
bound has the same form as the case where no difficult-to-learn examples are present (Theorem
3.1), but with n replaced by n − nd. Compared with the case without removing difficult-to-learn
examples (Theorem 3.2), the bound in equation 5 is smaller than that in equation 4 when γ − β >

nd(1−α)(α+rγ)
r[(1−α)+(n−nd)(α+rβ)] . This indicates that removing difficult-to-learn examples enhances the error
bound when these samples are significantly harder than the easy ones (i.e., large γ − β) or when the
number of difficult-to-learn samples is small (i.e., small nd).

4.2 MARGIN TUNING

Margin tuning is useful in contrastive learning as highlighted in (Zhou et al., 2024). Here, we delve
into how margin tuning can enhance the generalization in the presence of difficult-to-learn examples.
Theorem 4.2. The margin tuning loss is equivalent to the matrix factorization loss

Lmf−M(F ) := ∥(Ā− M̄)− FF⊤∥2F , (6)

where Ā is the normalized adjacency matrix, and M̄ is the normalized margin matrix.

Theorem 4.2 indicates that adjusting margins alters the similarity graph by subtracting a normalized
margin matrix M̄ from the normalized similarity matrix Ā. Intuitively, by subtracting the additional
similarity values of difficult-to-learn examples with appropriately chosen margins, the remaining
values will match those of easy-to-learn examples. Specifically, in the following Theorem 4.3, we
show that properly chosen margins can eliminate the negative impact of difficult-to-learn examples.
Theorem 4.3. Denote EM as the linear probing error for the margin tuning loss equation 31 trained
on a dataset with difficult-to-learn samples Dd. If we let

mx,x′ = c0/(c
2
1c2) · (γ − β) (7)
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for y(x) ̸= y(x′), x, x′ ∈ Dd, where c0 := (1−α)+nα+(n−nd)rβ, c1 := (1−α)+nα+nrβ+
ndr(γ − β) and c2 := (1− α) + nα+ nrβ, and mx,x′ = 0 for x, x′ /∈ Dd, then we have

EM = Ew.o.. (8)

Note that when n is large enough, mx,x′ for x or x′ /∈ Dd are higher-order infinitesimals relative to
equation 7, and primarily affect normalization rather than the core problem. Thus, we focus on cases
where x, x′ ∈ Dd and defer specific forms of other mx,x′ values to the proofs for brevity.

Theorem 4.3 shows that with appropriately chosen margins, the linear probing error bound for the
margin tuning loss in the presence of difficult-to-learn examples becomes equivalent to the standard
contrastive loss without such examples, as indicated in Theorem 3.1. Since equation 7 > 0, this
suggests applying a positive margin to the difficult-to-learn example pairs. Additionally, the more
challenging the example pairs are (i.e., the larger γ − β), the greater the margin value should be.

4.3 TEMPERATURE SCALING

Temperature scaling is a well-validated technique in various contrastive learning tasks (Khaertdinov
et al., 2022; Zhang et al., 2021; Kukleva et al., 2023). Here, we investigate how temperature scaling
can enhance generalization, particularly in the presence of difficult-to-learn examples.
Theorem 4.4. The temperature scaling loss is equivalent to the matrix factorization loss

Lmf−T(F ) := ∥T ⊙ Ā− FF⊤∥2wF , (9)

where Ā is the normalized adjacency matrix of similarity graph, T ⊙ Ā is the element-wise product
of matrices T and Ā, and ∥ · ∥wF is the weighted Frobenius norm (specified in the proof).

Theorem 4.4 shows that adjusting temperatures modifies the similarity graph by multiplying the
temperature values with the normalized similarity matrix Ā. Intuitively, by scaling the similarity
values between difficult-to-learn examples, we can match these values to those of easy-to-learn
examples, thereby mitigating the negative effects of difficult-to-learn examples. Specifically, the
following Theorem 4.5 outlines the appropriate temperature values to be chosen.
Theorem 4.5. Denote ET as the linear probing error for the temperature scaling loss equation 40
trained on a dataset with difficult-to-learn samples Dd. If we let

τx,x′ = (c1/c2)(β/γ) (10)

for y(x) ̸= y(x′), x, x′ ∈ Dd, where c1 := (1 − α) + nα + nrβ + ndr(γ − β) and c2 :=
(1− α) + nα+ nrβ, and τx,x′ = 1 for x, x′ /∈ Dd, then we have

ET ≤ 4[1− (nd/n)
2 + (γ/β)2(nd/n)

2]δ

1− 1−α
(1−α)+nα+nrβ

+ 8δ. (11)

Likewise, here we only focus on the temperature values between difficult-to-learn examples, and
defer the specific forms of other τx,x′ values to the proofs for brevity.

Theorem 4.5 shows the linear probing error bound of the temperature scaling loss when trained
on data containing difficult-to-learn examples. Specifically, with large n and nd/n → 0, we
have ET/Ew.o. − 1 ≈ O((nd/n)

2) and Ew.d./Ew.o. − 1 ≈ O(1/n). This indicates that, when
O(nd) ≲ O(n1/2), ET/Ew.o. ≲ Ew.d./Ew.o., meaning ET converges faster to Ew.o.. Detailed
calculations show that when nd <

√
r

(α+rβ)(γ+β)β · n1/2, there holds ET < Ew.d., which means

that temperature scaling improves the error bound. Note that (c1/c2)(β/γ) ∈ (0, 1). This inspires us
to choose smaller temperature values for the difficult-to-learn example pairs. The more difficult the
example pairs (smaller β/γ), the smaller the temperature values that should be chosen.

5 VERIFICATION EXPERIMENTS

This paper primarily focuses on theoretical analysis, explaining how different samples in contrastive
learning impact generalization. The experiments in this part are mainly designed to validate the
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theoretical insights and demonstrate that the proposed directions for improving performance are
sound. The experiments are not intended to achieve state-of-the-art results but rather to confirm
the correctness of our theoretical findings. We hope that readers will appreciate the theoretical
contributions of this work and not focus excessively on the experimental results.

In Section 5.1, we present a straightforward and efficient mechanism for selecting difficult-to-learn
samples. We subsequently conduct a comprehensive evaluation of various methods, including the
removal of difficult-to-learn samples (Section 5.2), margin tuning (Section 5.3), and temperature
scaling (Section 5.4), all of which are theoretically established to mitigate the impact of these difficult-
to-learn examples. In Section 5.5, we propose an extended method that combines margin tuning
and temperature scaling, and discuss the scalability under different paradigms and the connection
between difficult-to-learn samples and long-tail distribution. The specific loss forms and algorithms
can be found in Appendix A.2.

5.1 DIFFICULT-TO-LEARN EXAMPLES SELECTION

Based on the preceding analysis, we have established that difficult-to-learn samples play a crucial
role in enhancing the generalization of contrastive learning. In this section, we aim to develop a
straightforward and efficient selection mechanism to validate our theoretical analysis, which avoids
additional pretrained models and extra costs (Joshi & Mirzasoleiman, 2023).

To identify difficult-to-learn sample pairs—those from different classes but with high similarity—we
compute the cosine similarity of each sample to other samples in the same batch using features
before projector mapping. We define posHigh and posLow as percentiles of the similarity sorted in
descending order, where SimposHigh and SimposLow are the corresponding similarities. Generally,
following the characterization in Section 3.2 and Appendix B, we can roughly assume posHigh
corresponds to 1/(r + 1), where r + 1 is the class number1. Sample pairs with cosine similarities
above SimposHigh are considered from the same class. Sample pairs with the similarity between
SimposHigh and SimposLow are considered as difficult-to-learn examples. Sample pairs with cosine
similarities below SimposLow are considered as easy-to-learn samples from different classes. Here
for posLow, we note that when optimizing γ of difficult-to-learn examples, if some easy-to-learn
samples are involved, the process will also optimize β, which is a good thing for the representation
learning to push samples from different classes further apart. Therefore, we can easily find a value
close to the bottom of the sorted similarity for posLow, even 100%. Experiments in Figure 4(a) and
Figure 4(b) show that our method is not sensitive to the exact values of posHigh and posLow.

Using this selection mechanism, for an augmented sample pair (xi, xj) in the current batch, we define
the selecting indicator of difficult-to-learn pairs as

pi,j := 1[SimposLow≤sij<SimposHigh], (12)

where si,j denotes the cosine similarity between the representations of xi and xj , and 1[condition]
denotes the indicator function returning 1 if the condition holds and 0 otherwise. For each sample xi,
we get a vector Pi = (pi,j)

2N
j=1 representing the indicator of difficult-to-learn pairs. After calculating

these indicators for all samples in the current batch, we stack the vectors Pi row-wise to create
the selection matrix P . In practice, Pi can be computed in parallel, making the computation of P
efficient. The elements of P are either 0 or 1, indicating whether pairs are difficult-to-learn or not.

We can use the class information to verify the proportions of sample pairs from different classes in
(SimposLow, SimposHigh) on CIFAR-10, which can demonstrate the effectiveness of our selection
mechanism. As shown in Figure 4(c), along with the progress of training, the ratio of sample pairs
from different classes approaches close to 100% within the range (SimposLow, SimposHigh).

5.2 REMOVING DIFFICULT-TO-LEARN SAMPLES

We here introduce a simple and practical method for removing difficult-to-learn samples based on our
proposed selection mechanism. Eliminating the impact of difficult-to-learn samples means preventing
sample pairs that include difficult-to-learn samples from interfering with the training process. To
achieve this, we use the selection matrix P to identify and remove difficult-to-learn samples.

1We do not need to know the exact label of each class. A rough class number is enough, which can be easily
known by clustering.
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Figure 4: Parameter sensitivity of difficult-to-learn example interval ends posHigh (4(a)) and
posLow (4(b)). Parameter analysis on CIFAR-100: the trend of the ratio of sample pairs from
different classes in (SimposLow, SimposHigh) during the training process (4(c)).

Table 1: Classification accuracy with or without removing difficult-to-learn examples on CIFAR-10,
CIFAR-100, STL-10 and TinyImagenet dataset using SimCLR. Results are averaged over three runs.

Method CIFAR-10 CIFAR-100 STL-10 TinyImagenet

SimCLR (Baseline) 88.26 59.95 75.98 69.58
SimCLR (Removing) 89.03 60.31 76.10 71.06

The results are in Table 1, in the first line we report the results of SimCLR as a baseline method. The
second line is the result of removing difficult-to-learn examples. It can be observed that removing
difficult-to-learn examples yields a 0.8% performance boost on CIFAR-10, a 0.6% performance
boost on CIFAR-100, and a 3.7% performance boost on TinyImagenet compared to the baseline
method which does not address difficult-to-learn samples. We reach the same conclusion as in (Joshi
& Mirzasoleiman, 2023): By removing difficult-to-learn samples, we can achieve comparable results
or even slight improvements over the baseline. However, removing difficult-to-learn samples may not
be the most effective method for handling difficult-to-learn samples, because it shrinks sample size.
Next, we investigate two techniques that handle difficult-to-learn samples better, margin tuning in
Section 5.3 and temperature scaling in Section 5.4.

5.3 MARGIN TUNING ON DIFFICLUT-TO-LEARN SAMPLES

To effectively apply margin tuning in line with our theoretical analysis, we adopt a margin tuning
factor σ > 0. For the selected difficult-to-learn sample pairs identified by the selection matrix P , we
add a margin σ to the similarity values, and for the unselected pairs, we use the original InfoNCE.

Table 2: Classification accuracy with or without margin tuning on CIFAR-10, CIFAR-100, STL-10
and TinyImagenet dataset. Results are averaged over three runs.

Method CIFAR-10 CIFAR-100 STL-10 TinyImagenet

Baseline 88.26 59.95 75.98 69.58
MT (All Samples) 88.52 60.09 76.02 70.06

MT (Selected Samples) 89.16 61.28 76.83 79.14

As shown in Table 2, in the first line we report the result of SimCLR as baseline. The second
line is the result of using margin tuning (we here use MT as an abbreviation) to all samples, while
the third line is the result of using margin tuning to selected difficult-to-learn samples. We can
observe that applying margin tuning to all samples directly only achieves comparable results as the
baseline, highlighting the importance of the selection mechanism for difficult-to-learn examples.
While applying margin tuning to selected samples yields a 1.0% performance boost on CIFAR-10, a
2.2% performance boost on CIFAR-100, and a 13.7% performance boost on TinyImagenet compared
to the baseline method which has no operation to difficult-to-learn samples. These results validate
both the effectiveness of our selection mechanism and the reliability of our analysis on margin tuning.
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5.4 TEMPERATURE SCALING ON DIFFICLUT-TO-LEARN SAMPLES

We define the temperature scaling factor ρ > 0. Given the base temperature τ > 0, we attach
temperature ρτ to the selected difficult-to-learn sample pairs identified by the selection matrix P ,
whereas attach base temperature τ to the unselected pairs.

Table 3: Classification accuracy with or without temperature scaling on CIFAR-10, CIFAR-100,
STL-10 and TinyImagenet dataset. Results are averaged over three runs.

Method CIFAR-10 CIFAR-100 STL-10 TinyImagenet

Baseline 88.26 59.95 75.98 69.58
TS (All Samples) 88.38 59.20 75.76 69.36

TS (Selected Samples) 89.24 61.67 76.62 78.52

As shown in Table 3, in the first line we report the result of SimCLR as baseline. The second line
is the result of using temperature scaling (we here use TS as an abbreviation) to all samples, while
the third line is the result of using temperature scaling to selected difficult-to-learn samples. We
observe that applying temperature scaling to all samples directly can even hurt the performance of
contrastive learning, highlighting the importance of selecting difficult-to-learn examples. In contrast,
applying temperature scaling to selected samples yields a 1.1% performance improvement on CIFAR-
10, a 2.9% performance improvement on CIFAR-100, and a 12.8% performance improvement on
TinyImagenet compared to the baseline method which has no operation to difficult-to-learn samples.
These experimental results validate both the effectiveness of our selection mechanism and the
reliability of our analysis on temperature scaling.

5.5 EXTENSIONS

Combined method. From Sections 4.2 and 4.3, we observe that margin tuning and temperature
scaling eliminate the effects of difficult-to-learn examples in different ways. Therefore, it is natural to
combine the two methods, and see if the combined method could reach better performances.

Table 4: Classification accuracy with or without combined method on CIFAR-10, CIFAR-100,
STL-10 and TinyImagenet dataset. Results are averaged over three runs.

Method CIFAR-10 CIFAR-100 STL-10 TinyImagenet

Baseline 88.26 59.95 75.98 69.58
Margin Tuning 89.16 61.28 76.83 79.14

Temperature Scaling 89.24 61.67 76.62 78.52
Combined Method 89.68 62.86 77.35 80.00

As shown in Table 4, the first line reports the result of SimCLR. The second line shows the result of
using margin tuning . The third line shows the result of using temperature scaling. The fourth line
shows the result of using the combined method which yields a 1.6% performance improvement on
CIFAR-10, a 4.9% performance improvement on CIFAR-100 and a 15.0% performance improvement
on TinyImagenet compared to the baseline method. The improvement surpasses that achieved by
using only margin tuning or temperature scaling. The combined method on the Mixed CIFAR-10
datasets also achieves performance improvements consistently as shown in Section A.5.

Alternative contrastive learning paradigm. We delve deeper into the scalability of our meth-
ods across various self-supervised learning paradigms. Results in Table 5 demonstrate consistent
performance enhancements comparable to those achieved by SimCLR on the MoCo on CIFAR-10.

Complex classification scenarios. We explore our method by targeting difficult-to-learn samples
under the long-tail classification scenario, where boundary samples are even more difficult to learn
according to the imbalanced distributions. The findings in Table 6 illustrate that our approach outper-
forms the benchmark method SimCLR in scenarios involving distributional imbalance, indicating the
adaptivity of our approach to complex classification scenarios.

9
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Table 5: The results of incorporating the Com-
bined method with different architectures on
CIFAR-10.

Method MoCo SimCLR

Baseline 85.84 88.26
Combined Method 86.82 89.68

Table 6: Classification accuracy by using Com-
bined method on TinyImagenet-LT. We also use
SimCLR as the baseline method.

Method TinyImagenet-LT

Baseline 43.34
Combined Method 47.62

Further discussions. To further illustrate our experimental results, we provide a sensitivity analysis
of parameters in section A.4. We also conduct a more detailed analysis of results in Table 5 and
Table 6 in Section A.5. Furthermore, discussions about which features are advantageous for selecting
difficult-to-learn examples are also presented in Section A.5. In Section A.5, we have also included
the experimental results on ImageNet-1K, the trending of the derived bounds with Mixed CIFAR-10
dataset and the significance analysis of γ and β.

6 CONCLUSION

In this paper, we construct a theoretical framework to specifically analyze the impact of difficult-to-
learn examples on contrastive learning. We prove that difficult-to-learn examples hurt the performance
of contrastive learning from the perspective of linear probing error bounds. We further demonstrate
how techniques such as margin tuning, temperature scaling, and the removal of these examples from
the dataset can improve performance from the perspective of enhancing the generalization bounds.
The detailed experimental results demonstrate the reliability of our theoretical analysis.

7 ETHICS STATEMENT

This study does not raise any ethical issues. We devise computational algorithms on benchmark
datasets and provide theoretical explanations.

8 REPRODUCIBILITY STATEMENT

All the datasets used in this paper are open-source and publicly available for download. The proposed
method can be found in Algorithm 1. All experimental settings and implementation details can be
referred to in Appendix A.3. Detailed mathematical formations, assumptions, and all proofs of the
theoretical parts mentioned in this paper are provided in Appendix B.
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A APPENDIX

A.1 RELATED WORKS

Self-supervised contrastive learning. Self-supervised contrastive learning (Chen et al., 2020a;b;
He et al., 2020; Chen et al., 2021) aims to learn an encoder that maps augmentations (e.g. flips,
random crops, etc.) of the same input to proximate features, while ensuring that augmentations of
distinct inputs yield divergent features. The encoder, once pre-trained, is later fined-tuned on a specific
downstream dataset. The effectiveness of contrastive learning methods are typically evaluated through
the performances of the downstream tasks such as linear classification. Depending on the reliance
of negative samples, contrastive learning methods can be broadly categorized into two kinds. The
first kind (Chen et al., 2020a;b; He et al., 2020) learns the encoder by aligning an anchor point with
its augmented versions (positive samples) while at the same time explicitly pushing away the others
(negative samples). On the other hand, the second kind do not depend on negative samples. They
often necessitate additional components like projectors (Grill et al., 2020), stop-gradient techniques
(Chen & He, 2021), or high-dimensional embeddings (Zbontar et al., 2021). Nevertheless, the first
kind of methods continue to be the mainstream in self-supervised contrastive learning and have been
expanded into numerous other domains (Khaertdinov et al., 2021; Aberdam et al., 2021; Lee et al.,
2022). The analysis and discussions of this paper focus mainly on the first kind of contrastive learning
methods that relies on both positive and negative samples.

Contrastive Learning Theory. The early studies of theoretical aspects of contrastive learning
manage to link contrastive learning to the supervised downstream classification. Arora et al. (2019)
proves that representations learned by contrastive learning algorithms can achieve small errors in
the downstream linear classification task. Nozawa & Sato (2021); Ash et al. (2022); Bao et al.
(2022) incorporate the effect of negative samples and further extend surrogate bounds. Later on,
HaoChen et al. (2021) focuses on the unsupervised nature of contrastive learning by modeling the
feature similarities between augmented samples and provides generalization guarantee for linear
evaluation through borrowing mathematical tools from spectral clustering. The idea of modeling
similarities is later extended to analyzing contrastive learning for unsupervised domain adaption
(Shen et al., 2022) and weakly supervised learning (Cui et al., 2023). In a similar vein, Wang et al.
(2021) put forward the idea of augmentation overlap to explain the alignment of positive samples.
Besides, contrastive learning is also interpreted through various other theoretical frameworks in
unsupervised learning, such as nonlinear independent component analysis (Zimmermann et al., 2021),
neighborhood component analysis (Ko et al., 2022), stochastic neighbor embedding (Hu et al., 2023),
geometric analysis of embedding spaces (Huang et al., 2023), and message passing techniques (Wang
et al., 2023). In this paper, our basic assumptions are based on HaoChen et al. (2021) and focus on
modeling the similarities between difficult-to-learn example pairs.

Difference between difficult-to-learn examples and hard negative samples. Difficult-to-learn
examples and hard negative samples both significantly affect the performance of self-supervised
learning. However, while difficult-to-learn examples are associated with the classification boundary,
hard negative samples (Robinson et al., 2020; Kalantidis et al., 2020) are defined in relation to the
anchor point. Previous research on hard negative sampling typically modifies contrastive learning
models to emphasize these challenging samples so as to achieve better performance. In contrast, our
findings indicate that unmodified contrastive learning models experience performance degradation
due to the existence of difficult-to-learn samples. Aside from ad hoc modifications, a straightforward
removal of these difficult-to-learn samples can also boost performance. As a systematic explanation
of this finding is lacking, we establish a unified theoretical framework that addresses this challenge.

A.2 LOSS FUNCTIONS OF SAMPLE REMOVAL, MARGIN TUNING, AND TEMPERATURE
SCALING

Based on the sample selection matrix P defined in equation 12, we adapt the InfoNCE loss into
versions of sample removal, margin tuning, and temperature scaling, respectively.

Sample Removal. We define the removal loss as follows:

ℓR(i, j) := − log
exp

(
(si,j(1− pi,j))/τ

)∑2N
k=1 1[k ̸=i] exp

(
(si,k(1− pi,k))/τ

) , (13)
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where si,j denotes the similarity between augmented instances xi and xj . If pi,j = 0, the sample
pair xi and xj does not include difficult-to-learn samples, so (si,j(1− pi,j))/τ = si,j/τ , retaining
the original form of the InfoNCE loss. If pi,j = 1, the sample pair xi and xj are difficult-to-learn
pairs, so (si,j(1− pi,j))/τ = 0, effectively removing them.

Margin Tuning. We start with the basic form of the widely used InfoNCE loss and define the margin
tuning loss for each positive pair. Specifically, within each minibatch of size N , we generate 2N
samples through data augmentation. Given the margin tuning factor σ > 0, for an anchor sample xi

and its corresponding positive sample xj , we define the margin tuning loss as follows:

ℓM(i, j) := − log
exp

(
(si,j + pi,jσ)/τ

)∑2N
k=1 1[k ̸=i] exp

(
(si,k + pi,kσ)/τ

) , (14)

where si,j denotes the similarity between augmented instances xi and xj , and τ > 0 denotes the
temperature parameter. After the above operation, we assign the same margin value to all selected
difficult-to-learn sample pairs, achieving the goal of margin tuning for specific sample pairs.

Temperature Scaling. To apply temperature scaling consistent with our theoretical analysis, we start
with the basic form of the InfoNCE loss and define the temperature scaling loss for each positive pair.
Specifically, within each minibatch, given the temperature scaling factor ρ, for an anchor sample xi

and its corresponding positive sample xj , we define the temperature scaling loss as follows:

ℓT(i, j) := − log
exp

( si,j
[pi,jρ+(1−pi,j)]τ

)∑2N
k=1 1[k ̸=i] exp

( si,k
[pi,kρ+(1−pi,k)]τ

) , (15)

where si,j denotes the similarity between augmented instances xi and xj .

Combined Method. The combined loss function as

ℓ(i, j) := − log
exp

( si,j+pi,jσ
[pi,jρ+(1−pi,j)]τ

)∑2N
k=1 1[k ̸=i] exp

( si,k+pi,kσ
[pi,kρ+(1−pi,k)]τ

) , (16)

where si,j denotes the similarity between augmented instances xi and xj . The whole training
procedure of the combined method is shown in Algorithm 1.

Algorithm 1 Training procedure of Combined method
Input: batch size N , base temperature τ , posHigh and posLow for determining the size of the interval, margin

tuning factor σ, temperature scaling factor ρ, encoder f(·), projector g(·) and data augmentation T .
Output: encoder network f(·), and throw away g(·).
1: for sampled minibatch {x̄k}Nk=1 do
2: for all k ∈{1,...,N} do
3: Draw two augmentation functions t, t′ ∼ T ;
4: x2k−1 = t(x̄k) and x2k = t′(x̄k);
5: h2k−1 = f(x2k−1) and h2k = f(x2k);
6: z2k−1 = g(h2k−1) and z2k = g(h2k).
7: end for
8: for all k ∈{1,...,2N} do
9: Calculate Pi = (pi,j)

2N
j=1 by using hj , j ∈{1,...,2N} according to Eq. equation 12;

10: end for
11: The matrix P is obtained by splicing Pi, i ∈{1,...,2N} by rows.
12: for all i ∈{1,...,2N} and all j ∈{1,...,2N} do
13: si,j = z⊤

i zj/ (∥zi∥ ∥zj∥).
14: end for
15: Calculate ℓ(i, j) according to Eq. equation 16;
16: Calculate L = 1

2N

∑N
k=1[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)]; Update networks f and g to minimize L.

17: end for

A.3 TRAINING DETAILS

We run all experiments on an NVIDIA GeForce RTX 3090 24G GPU and we run experiments with
ResNet-18 on the CIFAR-10, CIFAR-100 and STL-10 dataset and ResNet-50 on the TinyImagenet
dataset.
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For CIFAR-10 we set batch size as 512, learning rate as 0.25 and base temperature as 0.5. We choose
0.15 as the posHigh and 0.22 as the posLow. We set σ as 0.03 and ρ as 0.6 for CIFAR-10. For both
our method and SimCLR, we evaluate the models using linear probing, when evaluating we set batch
size as 512 and learning rate as 1. This experimental setup is also applicable to the Mixed CIFAR-10
dataset.

For CIFAR-100 we set batch size as 512, learning rate as 0.5 and base temperature as 0.1. We choose
0.013 as the posHigh and 0.5 as the posLow. We set σ as 0.1 and ρ as 0.7 for CIFAR-100. For both
our method and SimCLR, we evaluate the models using linear probing, when evaluating we set batch
size as 512 and learning rate as 0.1.

For STL-10 we set batch size as 256, learning rate as 0.5 and base temperature as 0.1. We choose
0.15 as the posHigh and 0.22 as the posLow. We set σ as 0.1 and ρ as 0.7 for STL-10. For both our
method and SimCLR, we evaluate the models using linear probing, when evaluating we set batch
size as 256 and learning rate as 0.1.

For TinyImagenet we set batch size as 512, learning rate as 0.5 and base temperature as 0.5. We
choose 0.013 as the posHigh and 0.5 as the posLow. We set σ as 0.1 and ρ as 0.7 for TinyImagenet.
For both our method and SimCLR, we evaluate the models using linear probing, when evaluating we
set batch size as 512 and learning rate as 0.1.

For the experimental results presented in Figure 1, we selected 20% SAS coreset for CIFAR-10, 95%
SAS coreset for CIFAR-100, 80% SAS coreset for STL-10, and 60% SAS coreset for TinyImagenet,
following the filtering method mentioned in (Joshi & Mirzasoleiman, 2023).

A.4 PARAMETER SENSITIVITY ANALYSIS

Evaluating different σ used in margin tuning part. The intention of σ is to add margins to the
similarity terms between difficult-to-learn example pairs. We show the performance with different σ
in Figure 5(a), and the results show that when σ = 0.1 the proposal achieves the best performance on
CIFAR-100, and the performance does not degrade significantly with σ changes. This demonstrates
that our proposal is quite robust with the selection of σ.

Evaluating different ρ used in temperature scaling part. ρ is used for scaling downwards the
temperatures on the difficult-to-learn example pairs so that we can eliminate the negative effects
of difficult-to-learn examples. We show the performance with different ρ in Figure 5(b), and the
results show that when ρ = 0.7 the proposal achieves the best performance on CIFAR-100, and the
performance does not degrade significantly with ρ changes. We figure out that different values of ρ
can all result in performance improvements.
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Figure 5: (a) Parameter analysis of margin tuning factor σ,(b) temperature scaling factor ρ, all of the
above results are implemented on CIFAR-100.

A.5 FURTHER DISCUSSION

Which feature is better for difficult-to-learn examples selection? In SimCLR, the authors found
that the proposal of projector g(·) allows the model to learn the auxiliary task better thus having
better downstream generalization. However, as mentioned in (Cosentino et al., 2022) they suggest
the problem of representation dimensional collapse after using projector, therefore, we here explore
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whether it is better to use features before projector f(x) for difficult-to-learn examples selection or
g(f(x)) after projector.

Table 7: Classification accuracy by using Combined method on CIFAR-10 and CIFAR-100. Features
before projector means that we use f(x) for difficult-to-learn examples selection and features after
projector means that we use g(f(x)) for difficult-to-learn examples selection.

Features Baseline After projector Before projector

CIFAR-10 88.26 87.86 89.68
CIFAR-100 59.95 60.63 62.86

As shown in Table 7, We find that when using f(x) rather than g(f(x)) for difficult-to-learn examples
selection we can gain a 2.1% performance improvement on CIFAR-10 and a 3.7% performance
improvement on CIFAR-100. These results suggest that utilizing features before projector is more
beneficial for difficult-to-learn examples selection.
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Figure 6: Detailed experimental results
on the Mixed CIFAR datasets.

The combined method is also effective for the Mixed
CIFAR-10 datasets. As we discussed earlier, the Mixed
CIFAR-10 datasets contain a large number of mixed
difficult-to-learn samples, making the learning difficulty
of this dataset significantly greater than that of the original
dataset. Based on this fact, this section explores whether
our proposed method can achieve performance improve-
ments on the Mixed CIFAR-10 datasets that are consis-
tent with those on CIFAR-100, Tiny ImageNet, and other
datasets. We use the 10%- and 20%-Mixed CIFAR-10
datasets as our baselines, while the 0%-Mixed CIFAR-10
datasets serve as our standard CIFAR-10 baseline. The
experimental results are shown in Figure 6. We found that
using either margin tuning or temperature scaling alone can improve performance over the original
baseline, while the combined method yields better results than using either approach individually.
This finding is consistent with the experimental results on other datasets and further validates the
effectiveness of our method.

The proposal is effective for real-world datasets. We evaluated our method on the Imagenet-1k
dataset, which contains 1,000 categories and 1,281,167 training samples. We used ResNet18 as our
backbone, set the batch size to 256, and resized each image to 96x96. We set the learning rate to 0.5
and the base temperature to 0.1. We chose 0.01 as the posHigh and 0.5 as the posLow. We set σ to
0.1 and ρ to 0.7. We also evaluated the models using linear probing. When evaluating, we set the
batch size to 256 and the learning rate to 1. The specific results are shown in Table 8.

Table 8: Classification accuracy on Imagenet-1k.
Methods Baseline Removing Temperature Scaling Margin Tuning Combined

Accuracy 34.21 34.33 35.02 35.17 35.68

From the results on the real-world dataset, Imagenet-1k, which contains more categories, We can see
that even after running for only 100 epochs, our method achieves a performance improvement trend
consistent with the results mentioned in the paper, compared to the baseline method. These results
strengthen the findings and demonstrate broader applicability of this paper.

Focusing on difficult-to-learn examples and removing them are both effective methods. We use
temperature scaling as an example to illustrate how we should handle difficult-to-learn examples. We
note that placing greater emphasis on difficult-to-learn examples (by selecting a smaller temperature)
and discarding this sample (which is effectively equivalent to setting the temperature to infinity (we
use a large value of 1,000,000,000 to approximate infinity here)) may seem contradictory. However, as
shown in Table 9, both approaches are indeed valid. This means that effectively handling difficult-to-
learn samples is possible under sufficiently good conditions, while in the absence of such mechanisms,
simply discarding them can also be effective.
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Table 9: Classification accuracy with various temperature scaling factors on CIFAR-100 datasets.
Setting the Temperature Scaling Factor to 0.7 represents using our proposed theoretical framework to
specifically address difficult-to-learn samples, while setting the Temperature Scaling Factor to 1e9
means discarding these difficult-to-learn samples. Results are averaged over three runs.

Temperature Scaling Factor 0.7 1 10 100 1000 1e9

Accuracy 61.67 59.95 59.63 59.82 60.05 60.31

The scalability of our proposal under other contrastive learning paradigms. As mentioned in
(Johnson et al., 2022), InfoNCE and Spectral contrastive loss share the same population minimum
with variant kernel derivations. By using similar techniques of positive-pair kernel, our conclusions
can also be further generalized to other self-supervised learning frameworks. To demonstrate the
scalability of the combined method, we supplement the comparative experiments based on the MoCo
(Chen et al., 2020b) algorithm. The experimental results demonstrate consistent improvements of
our method over both MoCo and SimCLR and show the scalability of our proposal under different
contrastive learning paradigms.

Connection between difficult-to-learn examples and long-tailed distribution. Under the definition
that difficult-to-learn examples contribute least to contrastive learning and that are consequently
difficult to distinguish by contrastive learning models, we can easily draw the following conclusion:
difficult-to-learn examples can lead to unclear classification boundaries for the classes they belong to.

Due to the significant difference in the number of samples in the head and tail classes, the boundary
of tail classes is difficult to be accurately estimated due to the tail classes are prone to collapse when
the data is distributed with long-tailed distribution, as mentioned in (Samuel & Chechik, 2021). In
other words, tail classes can lead to unclear classification boundaries for the classes they belong to as
mentioned in (Fang et al., 2021).

So in this view, tail classes samples can also be seen as difficult-to-learn samples. To better illustrate
this point, we will further validate the connection between them through the following experiments.
We validate our proposed Combined method on the classical long-tailed distribution dataset tiny-
Imagenet-LT to explore whether our proposed algorithm can achieve a performance improvement
over the comparison method SimCLR when distributional imbalance as another form of difficult-to-
learn samples also exists.The results in Table 6 show that we can achieve better performance when
distributional imbalance also exists.

Analysis of the trending of the derived bounds. We analyze the trending of the derived bounds
on the Mixed CIFAR-10 dataset. Specifically, we vary the mixing ratios from 0% to 30%, where
0% represents the standard CIFAR-10 without mixing. The experimental parameter settings can
be referenced to A.3. For each class of samples, we sort them based on the difference between the
maximum and second-largest values after applying softmax to the outputs, and select the 8% (the
ratio is consistent with what is reported in the paper) smallest differences as the difficult-to-learn
examples, as described in the paper. For the calculation of α, we take the mean of the similarity
between all samples of the same class. For the calculation of β, we take the mean of the similarity for
the sample pairs from different classes that do not contain the difficult-to-learn examples. For the
calculation of γ, we take the mean of the similarity for the sample pairs from different classes that
contain the difficult-to-learn examples.

Table 10: The trends of α, β, γ, and other metrics as the Mixing Ratio changes.
Mixing Ratio 0% 10% 20% 30%
acc (%) 88.3 88.0 87.7 86.2
α 47.2 44.0 41.2 38.7
β 19.1 19.5 20.1 20.8
γ 20.9 22.1 23.1 24.1
γ − β 1.80 2.60 3.00 3.30
Eigenvalue (×10−5) 2.93 3.36 3.58 3.72
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In Table 10, we show that as the mixing ratio increases, the linear probing accuracy drops, and the
(K + 1)-th eigenvalue increases. Note that the classification error (left hand side of Eq.4) is 1-acc,
and the error bound (right hand side of Eq.4) increases with the eigenvalue increasing. This result
indicates that as the difficult-to-lean examples increases, the classification error and the bound share
the same variation trend, thus validating theorem 3.2 that larger γ − β results in worse error bound.

Significance analysis of γ and β. To verify the significance of γ and β., we tested γ and β, as
well as γ − β, on more real datasets. From the first three rows of Table 11, we found that on the
CIFAR-100 dataset (which has 10 times more classes than CIFAR-10), the difference between γ and
β remained consistent with that on the CIFAR-10 dataset. On the ImageNet-1k dataset (which has 100
times more classes than CIFAR-10,for specific experimental details and results on ImageNet-1k), the
difference between γ and β was even larger than on CIFAR-10. As a possible intuitive explanation,
we conjecture that the higher γ − β might results from the higher complexity of imagenet images,
e.g. different-class images with similar backgrounds can share higher similarity (higher γ), whereas
CIFAR images have relatively simple and consistent backgrounds. These results demonstrate that
even on real-world datasets, the difference between γ and β is significant.

Table 11: Comparison of β, γ γ − β , t-statistic and P value across different datasets.
Datasets CIFAR-10 CIFAR-100 Imagenet-1k

β 19.1 35.6 39.8
γ 20.9 37.4 42.9
γ − β 1.8 1.8 3.1
t-statistic -502.63 -539.36 -3844.21
P value 0.0 0.0 0.0

To better illustrate the significant difference between γ and β, we conducted an independent samples
t-test to support our conclusion. Specifically, we first collected all the β and γ values, and due to the
large sample size, we chose to use Welch’s t-test, which does not assume equal variances between the
two groups and is suitable for cases where the variances may differ. In the experiment, we focus on
two key statistics:

t-statistic: This measures the difference between the means of the two groups relative to the variance
within the samples. The t-statistic is a standardized measure used to determine whether the mean
difference between the two groups is significant or could be attributed to random fluctuations. The
larger the t-statistic, the more significant the difference between the two groups.

P value: The p-value indicates the probability of observing the current difference or more extreme
results under the assumption that the null hypothesis (i.e., no significant difference between the two
groups) is true. If the p-value is less than 0.05, it suggests that the observed difference is highly
unlikely under the null hypothesis, and we can reject the null hypothesis, concluding that there is a
significant difference between the two groups.

As shown in the last two rows of Table 11, on all datasets (CIFAR-10, CIFAR-100, Imagenet-1k), the
absolute value of the T-statistic is very large, and the P-value is close to zero. This indicates that the
mean difference between γ and β is highly statistically significant.

B PROOFS

Recall that in Section 3.2, we introduce the adjacency matrix of the similarity graph based on a
4-sample subset. Here we give the formal definition of the adjacency matrix of a generalized similarity
graph containing |X | = n(r + 1) samples, with n denoting the number of augmented samples per
class, and r + 1 denoting the number of classes.

Denote D = x1, . . . , xn(r+1) as the dataset, where xn(i−1)+1, . . . , xni belong to Class i for i ∈
1, . . . , r + 1. Denote nd as the number of difficult-to-learn examples per class and Dd as the set
of difficult-to-learn examples. Naturally, we denote ne := n − nd as the number of easy-to-learn
examples per class. Without loss of generality, we assume that the last nd examples in each class are
difficult-to-learn examples. Let 0 ≤ β < γ < α < 1. Then we define the elements of the adjacency
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matrix A = (wx,x′)x,x′∈X as wx,x′ := 1 for x = x′; wx,x′ := α for x ̸= x′, y(x) = y(x′);
wx,x′ := γ for x, x′ ∈ Dd, y(x) ̸= y(x′), and wx,x′ := β otherwise.

Specifically, we have the adjacency matrix of a similarity graph without difficult-to-learn examples as

Aw.o. =


Asame−class Adifferent−class · · · Adifferent−class

Adifferent−class Asame−class · · · Adifferent−class

...
...

...
Adifferent−class Adifferent−class · · · Asame−class


(r+1)×(r+1)

(17)

and the adjacency matrix of a similarity graph with difficult-to-learn examples as

Aw.d. =


Asame−class A′

different−class · · · A′
different−class

A′
different−class Asame−class · · · A′

different−class
...

...
...

A′
different−class A′

different−class · · · Asame−class


(r+1)×(r+1)

(18)

where

Asame−class =

 1 α · · · α
α 1 · · · α
· · ·
α α · · · 1


n×n

, (19)

Adifferent−class =

β · · · β
...

...
β · · · β


n×n

, (20)

and

A′
different−class =



β · · · β β · · · β
...

...
...

...
β · · · β β · · · β
β · · · β γ · · · γ
...

...
...

...
β · · · β γ · · · γ


(ne+nd)×(ne+nd)

. (21)

B.1 PROOFS RELATED TO SECTION 3.3

Before proceeding, we introduce some basic assumptions adapted from HaoChen et al. (2021) to
derive the error bounds.
Assumption B.1 (Labels are recoverable from augmentations). Let x̄ ∼ PX̄ and y(x̄) be its label.
Let the augmentation x ∼ A(·|x̄). We assume that there exists a classifier g that can predict y(x̄)
given x with error at most δ, i.e. g(x) = y(x̄) with probability at least 1− δ.
Assumption B.2 (Realizability). Let F be a hypothesis class containing functions from X to Rk.
We assume that at least one of the global minima of LSpec belongs to F .

Assumption B.1 indicates that labels are recoverable from the augmentations, and Assumption B.2
indicates that the universal minimizer of the population spectral contrastive loss can be realized by
the hypothesis class.

Proof of Theorem 3.1. For a dataset without difficult-to-learn examples, the similarity between a
sample and itself is 1, the similarity between same-class samples is α, and the similarity between
different-class samples is β. Then the adjacent matrix of the similarity graph can be decomposed into
the sum of several matrix Kronecker products:

A = (1− α)Ir+1 ⊗ In + (α− β)Ir+1 ⊗ (1n · 1⊤
n ) + β(1r+1 · 1⊤

r+1)⊗ (1n · 1⊤
n ), (22)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where Ir+1 and In denote the (r + 1) × (r + 1) and n × n identity matrices respectively, and
1r+1 := (1, . . . , 1)⊤ ∈ Rr+1 and 1n := (1, . . . , 1)⊤ ∈ Rn denote the all-one vectors.

First, we calculate the eigenvalues and eigenvectors of A. Note that Ir+1 and In have eigenvalues 1
with arbitrary eigenvectors, 1n · 1⊤

n has eigenvalue n with eigenvector 1̄n := 1√
n
1n and eigenvalues

0 with eigenvectors {µ : µ⊤1n = 0}, and 1r+1 · 1⊤
r+1 has eigenvalue r + 1 with eigenvector

1̄r+1 := 1√
r+1

1r+1 and eigenvalues 0 with eigenvectors {ν : ν⊤1r+1 = 0}. Therefore, A has the
following sets of eigenvalues and eigenvectors:

λ1 = (1− α) + n(α− β) + n(r + 1)β, with eigenvector 1̄r+1 ⊗ 1̄n;

λ2 = . . . = λr+1 = (1− α) + n(α− β), with eigenvectors ν ⊗ 1̄n;

λr+2 = . . . = λn+r = 1− α, with eigenvectors 1̄r+1 ⊗ u;

λn+r+1 = . . . = λn(r+1) = 1− α, with eigenvectors u⊗ v.

Next, we calculate the eigenvalues of Ā := D−1/2AD−1/2. By definition, we have D =
diag(w1, . . . , wn(r+1)) = [(1 − α) + nα + nrβ]In(r+1). Therefore, we have the eigenvalues
of A as

λ1 = 1,

λ2 = . . . = λr+1 =
(1− α) + n(α− β)

(1− α) + nα+ nrβ
,

λr+2 = . . . = λn(r+1) =
1− α

(1− α) + nα+ nrβ
.

Then according to Theorem B.3 in HaoChen et al. (2021), when k > r, there holds

Ew.o. ≤
4δ

1− λk+1
+ 8δ =

4δ

1− 1−α
(1−α)+nα+nrβ

+ 8δ. (23)

Proof of Theorem 3.2. For a dataset with nd difficult-to-learn examples per class, the similarity
between a sample and itself is 1, the similarity between same-class samples is α, the similarity
between different-class easy-to-learn samples is β, and the similarity between different-class hard-
to-learn samples is γ. Without loss of generality, we assume that n is an integral multiple of nd, i.e.
there exist a κ ∈ Z+ such that n = κnd. Then the adjacent matrix of the similarity graph can be
decomposed into the sum of several matrix Kronecker products:

A = (1− α)Ir+1 ⊗ In + (α− β)Ir+1 ⊗ (1n · 1⊤
n ) + β(1r+1 · 1⊤

r+1)⊗ (1n · 1⊤
n )

+ (γ − β)(1r+1 · 1⊤
r+1)⊗ (eκ · e⊤κ )⊗ Ind

− (γ − β)Ir+1 ⊗ (eκ · e⊤κ )⊗ Ind
, (24)

where Ir+1, In, and Ind
denote the (r + 1) × (r + 1), n × n, and nd × nd identity matrices

respectively, 1r+1 := (1, . . . , 1)⊤ ∈ Rr+1 and 1n := (1, . . . , 1)⊤ ∈ Rn denote the all-one vectors,
and eκ := (0, . . . , 0, 1)⊤ ∈ Rκ.

Similarly, we can decompose D into

D = Ir+1 ⊗
[
[(1− α) + nα+ nrβ]In + ndr(γ − β)(eκ · e⊤κ )⊗ Ind

]
, (25)

and therefore we have

D−1 = Ir+1 ⊗
[ 1

c2
[Iκ − (eκ · e⊤κ )] +

1

c1
(eκ · e⊤κ )

]
⊗ Ind

, (26)

where we denote c1 := (1− α) + nα+ nrβ + ndr(γ − β) and c2 := (1− α) + nα+ nrβ.
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Then we have the decomposition of the normalized similarity matrix as

Ā = D−1/2AD−1/2

= (1− α)Ir+1 ⊗
[ 1

c2
[Iκ − (eκ · e⊤κ )] +

1

c1
(eκ · e⊤κ )

]
⊗ Ind

+ (γ − β)(1r+1 · 1⊤
r+1)⊗

1

c1
(eκ · e⊤κ )⊗ Ind

− (γ − β)Ir+1 ⊗
1

c1
(eκ · e⊤κ )⊗ Ind

.

+ (α− β)Ir+1 ⊗
[
[

1
√
c2

(1κ − eκ) +
1

√
c1

eκ] · [
1

√
c2

(1κ − eκ) +
1

√
c1

eκ]
⊤
]
⊗ (1nd

· 1⊤
nd
)

+ β(1r+1 · 1⊤
r+1)⊗

[
[

1
√
c2

(1κ − eκ) +
1

√
c1

eκ] · [
1

√
c2

(1κ − eκ) +
1

√
c1

eκ]
⊤
]
⊗ (1nd

· 1⊤
nd
)

=
1

c2
(1− α)Ir+1 ⊗ Iκ ⊗ Ind

+
1

c1
(γ − β)(1r+1 · 1⊤

r+1)⊗ (eκ · e⊤κ )⊗ Ind

−
[ 1

c1
(γ − β) + (

1

c2
− 1

c1
)(1− α)

]
Ir+1 ⊗ (eκ · e⊤κ )⊗ Ind

.

+ (α− β)Ir+1 ⊗
[
[

1
√
c2

(1κ − eκ) +
1

√
c1

eκ] · [
1

√
c2

(1κ − eκ) +
1

√
c1

eκ]
⊤
]
⊗ (1nd

· 1⊤
nd
)

+ β(1r+1 · 1⊤
r+1)⊗

[
[

1
√
c2

(1κ − eκ) +
1

√
c1

eκ] · [
1

√
c2

(1κ − eκ) +
1

√
c1

eκ]
⊤
]
⊗ (1nd

· 1⊤
nd
).

(27)

Now we calculate the eigenvalues and eigenvectors of A. For notational simplicity, we denote the
first three terms of equation 27 as Ā1 and the last two terms as Ā2. Note that Ir+1, Iκ, and Ind

have eigenvalues 1 with arbitrary eigenvectors, 1r+1 · 1⊤
r+1 has eigenvalue r + 1 with eigenvector

1̄r+1 := 1√
r+1

1r+1 and eigenvalues 0 with eigenvectors {ν : ν⊤1r+1 = 0}, and eκ · e⊤κ has
eigenvalue 1 with eigenvector e1 = (1, 0, . . . , 0)⊤ ∈ Rκ and eigenvalues 0 with eigenvectors
{e2, . . . , eκ}. Let ξ ∈ Rnd denote an arbitrary vector. Then Ā1 has the following sets of eigenvalues
and eigenvectors:

λ1,1 = . . . = λ1,nd
=

1

c2
(1− α) +

1

c1
(γ − β)(r + 1)−

[ 1

c1
(γ − β) + (

1

c2
− 1

c1
)(1− α)

]
,

=
1

c1
(1− α) +

r

c1
(γ − β), with eigenvectors 1̄r+1 ⊗ e1 ⊗ ξ;

λ1,nd+1 = . . . = λ1,n =
1

c2
(1− α), with eigenvectors 1̄r+1 ⊗ ei ⊗ ξ, i = 2, . . . , κ;

λ1,n+1 = . . . = λ1,(r+1)n−rnd
=

1

c2
(1− α), with eigenvectors ν ⊗ ei ⊗ ξ, i = 2, . . . , κ;

λ1,(r+1)n−rnd+1 = . . . = λ1,(r+1)n =
1

c2
(1− α)−

[ 1

c1
(γ − β) + (

1

c2
− 1

c1
)(1− α)

]
,

=
1

c1
(1− α)− 1

c1
(γ − β), with eigenvectors ν ⊗ e1 ⊗ ξ.

On the other hand, note that 1nd
· 1⊤

nd
has eigenvalue nd with eigenvector 1̄nd

:= 1√
nd

1nd
and

eigenvalues 0 with eigenvectors {η : η⊤1nd
= 0}, and that by calculations, [ 1√

c2
(1κ−eκ)+

1√
c1
eκ] ·

[ 1√
c2
(1κ − eκ) +

1√
c1
eκ]

⊤ has eigenvalue κ−1
c2

+ 1
c1

with eigenvector {η :
∑κ−1

i=1 ηi = 0, ηκ =

(κ− 1)
√

c1/c2} and eigenvalues 0 with eigenvectors {θ :
∑κ−1

i=1 θi = 0, ηκ = 0}. Then Ā2 has the
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following sets of eigenvalues and eigenvectors:

λ2,1 = (α− β)
[κ− 1

c2
+

1

c1

]
nd + β(r + 1)

[κ− 1

c2
+

1

c1

]
nd,

= (α+ rβ)
[κ− 1

c2
+

1

c1

]
nd, with eigenvectors 1̄r+1 ⊗ η ⊗ 1̄nd

;

λ2,2 = . . . = λ2,r+1 = (α− β)
[κ− 1

c2
+

1

c1

]
nd, with eigenvectors ν ⊗ η ⊗ 1̄nd

;

λ2,r+2 = . . . = λ2,(r+1)n = 0, with other combinations of eigenvectors.

By Equation 13 in Fulton (2000), for two real symmetric n(r + 1)× n(r + 1) matrices Ā1 and Ā2,
we have the k + 1-th largest eigenvalue of Ā := Ā1 + Ā2 satisfies

λk+1 ≤ min
i+j=k+2

λ1,i + λ2,j

=



1

c1
(1− α) +

r

c1
(γ − β) + (α− β)

[κ− 1

c2
+

1

c1

]
nd, for k < r + 1,

min
{ 1

c1
(1− α) +

r

c1
(γ − β),

1

c2
(1− α) + (α− β)

[κ− 1

c2
+

1

c1

]
nd

}
=

1

c1
(1− α) +

r

c1
(γ − β), for r + 1 ≤ k < nd + r + 1.

Then according to Theorem B.3 in HaoChen et al. (2021), when r+1 ≤ k < nd + r+1, there holds

Ew.d. ≤
4δ

1− λk+1
+ 8δ =

4δ

1− 1
c1
(1− α)− r

c1
(γ − β)

+ 8δ =
4δ

1− (1−α)+r(γ−β)
(1−α)+nα+nrβ+ndr(γ−β)

+ 8δ.

(28)

B.2 PROOFS RELATED TO SECTION 4

Proof of Corollary 4.1. By removing the difficult-to-learn examples, we have the adjacency matrix
as

A =


Asame−class Adifferent−class · · · Adifferent−class

Adifferent−class Asame−class · · · Adifferent−class

...
...

...
Adifferent−class Adifferent−class · · · Asame−class


(r+1)×(r+1)

, (29)

where

Adifferent−class =

β · · · β
...

...
β · · · β


ne×ne

. (30)

Then the matrix A reduces to Aw.o. and the error bound reduces to that in Theorem 3.1 with n
replaced with ne = n− nd.

The spectral contrastive loss with a margin M = (mx,x′) is defined as

LM(x; f) = −2Ex,x+f(x)⊤f(x+) + Ex,x′

[
f(x)⊤f(x′) +mx,x′

]2
. (31)
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Proof of Theorem 4.2.

LM = −2Ex,x+f(x)⊤f(x+) + Ex,x′

[
f(x)⊤f(x′) +mx,x′

]2
= −2

∑
x,x+

wx,x′f(x)⊤f(x+) +
∑
x,x′

wxwx′

[
f(x)⊤f(x′) +mx,x′

]2
=

∑
x,x′

{
− 2wx,x′f(x)⊤f(x′) + wxwx′

[
f(x)⊤f(x′)

]2
+ 2wxwx′mx,x′f(x)⊤f(x′) + wxwx′m2

x,x′

}
=

∑
x,x′

{
wxwx′

[
f(x)⊤f(x′)

]2
− 2[wx,x′ − wxwx′mx,x′ ]f(x)⊤f(x′) + wxwx′m2

x,x′

}
=

∑
x,x′

{[
[
√
wxf(x)]

⊤[
√
wx′f(x′)]

]2
− 2

[ wx,x′
√
wx

√
wx′

−
√
wx

√
wx′mx,x′

]
[
√
wxf(x)]

⊤[
√
wx′f(x′)]

+
[ wx,x′
√
wx

√
wx′

−
√
wx

√
wx′mx,x′

]2
+ 2wx,x′mx,x′ −

w2
x,x′

wxwx′

}
=

∑
x,x′

[ wx,x′
√
wx

√
wx′

−
√
wx

√
wx′mx,x′ − [

√
wxf(x)]

⊤[
√
wx′f(x′)]

]2
+

∑
x,x′

(
2wx,x′mx,x′ −

w2
x,x′

wxwx′

)
:= ∥(Ā− M̄)− FF⊤∥2F +

∑
x,x′

(
2wx,x′mx,x′ −

w2
x,x′

wxwx′

)
, (32)

where we denote Ā := D−1/2AD−1/2, M̄ := D1/2MD1/2, A := (wx,x′)
x,x′∈{xi}n(r+1)

i=1
, M :=

(mx,x′)
x,x′∈{xi}n(r+1)

i=1
, D := diag(w1, . . . , wn(r+1)), and F = (

√
wxf(x))x∈{xi}n(r+1)

i=1
.

Note that given the adjacency matrix of the similarity graph A and the margin matrix M , the second
term in equation 32 is a constant. Therefore, minimizing the margin tuning loss LM over f(x) is
equivalent to minimizing the matrix factorization loss Lmf−M := ∥(Ā−M̄)−FF⊤∥2F over F .

Proof of Theorem 4.3. Recall that when difficult-to-learn examples exist, we assume that

wx,x′ :=


1 for x = x′,

α for x ̸= x′, y(x) = y(x′),

γ for x, x′ ∈ Dd, y(x) ̸= y(x′),

β otherwise.

(33)

Then by definition we have

wx =
∑
x′

wx,x′ =

{
(1− α) + nα+ nrβ + ndr(γ − β), for x ∈ Dd,

(1− α) + nα+ nrβ, for x /∈ Dd,
(34)
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and correspondingly

wx,x′

wxwx′
=



1

(1− α) + nα+ nrβ + ndr(γ − β)
, for x = x′, x ∈ Dd,

1

(1− α) + nα+ nrβ
, for x = x′, x /∈ Dd,

α

(1− α) + nα+ nrβ + ndr(γ − β)
, for x ̸= x′, y(x) = y(x′), x, x′ ∈ Dd,

α√
(1− α) + nα+ nrβ + ndr(γ − β)

√
(1− α) + nα+ nrβ

, for x ̸= x′, y(x) = y(x′), x ∈ Dd or x′ ∈ Dd,

α

(1− α) + nα+ nrβ
, for x ̸= x′, y(x) = y(x′), x, x′ /∈ Dd,

γ

(1− α) + nα+ nrβ + ndr(γ − β)
, for y(x) ̸= y(x′), x, x′ ∈ Dd,

β√
(1− α) + nα+ nrβ + ndr(γ − β)

√
(1− α) + nα+ nrβ

, for y(x) ̸= y(x′), x ∈ Dd or x′ ∈ Dd,

β

(1− α) + nα+ nrβ
, for y(x) ̸= y(x′), x, x′ /∈ Dd,

(35)

If we let

mx,x′ =



− ndr(γ − β)

[(1− α) + nα+ nrβ + ndr(γ − β)]2[(1− α) + nα+ nrβ]
, for x = x′, x ∈ Dd,

− ndr(γ − β)

[(1− α) + nα+ nrβ + ndr(γ − β)]2[(1− α) + nα+ nrβ]
α, for x ̸= x′, y(x) = y(x′), x, x′ ∈ Dd,

−

√
(1−α)+nα+nrβ+ndr(γ−β)√

(1−α)+nα+nrβ
− 1

[(1− α) + nα+ nrβ + ndr(γ − β)][(1− α) + nα+ nrβ]
α, for x ̸= x′, y(x) = y(x′), x ∈ Dd or x′ ∈ Dd,

[(1− α) + nα+ (n− nd)rβ](γ − β)

[(1− α) + nα+ nrβ + nd(γ − β)]2[(1− α) + nα+ nrβ]
, for y(x) ̸= y(x′), x, x′ ∈ Dd,

−

√
(1−α)+nα+nrβ+ndr(γ−β)√

(1−α)+nα+nrβ
− 1

[(1− α) + nα+ nrβ + ndr(γ − β)][(1− α) + nα+ nrβ]
β, for y(x) ̸= y(x′), x ∈ Dd or x′ ∈ Dd,

0 otherwise,
(36)

then we have

√
wx

√
wx′mx,x′

=



− ndr(γ − β)

[(1− α) + nα+ nrβ + ndr(γ − β)][(1− α) + nα+ nrβ]
, for x = x′, x ∈ Dd,

− ndr(γ − β)

[(1− α) + nα+ nrβ + ndr(γ − β)][(1− α) + nα+ nrβ]
α, for x ̸= x′, y(x) = y(x′), x, x′ ∈ Dd,

−
√
(1− α) + nα+ nrβ + ndr(γ − β)−

√
(1− α) + nα+ nrβ√

(1− α) + nα+ nrβ + ndr(γ − β)[(1− α) + nα+ nrβ]
α, for x ̸= x′, y(x) = y(x′), x ∈ Dd or x′ ∈ Dd,

[(1− α) + nα+ (n− nd)rβ](γ − β)

[(1− α) + nα+ nrβ + nd(γ − β)][(1− α) + nα+ nrβ]
, for y(x) ̸= y(x′), x, x′ ∈ Dd,

−
√
(1− α) + nα+ nrβ + ndr(γ − β)−

√
(1− α) + nα+ nrβ√

(1− α) + nα+ nrβ + ndr(γ − β)[(1− α) + nα+ nrβ]
β, for y(x) ̸= y(x′), x ∈ Dd or x′ ∈ Dd,

0 otherwise,
(37)
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and accordingly

wx,x′

wxwx′
−
√
wx

√
wx′mx,x′ =



1

(1− α) + nα+ nrβ
for x = x′,

α

(1− α) + nα+ nrβ
for x ̸= x′, y(x) = y(x′),

β

(1− α) + nα+ nrβ
otherwise.

(38)

In this case, Ā−M̄ is equivalent to the normalized similarity matrix of data without difficult-to-learn
examples. That is, we have

EM = Ew.o.. (39)

The spectral contrastive loss with temperature T = (τx,x′) is defined as

LT(x; f) = −2Ex,x+

f(x)⊤f(x+)

τx,x+

+ Ex,x′

[f(x)⊤f(x′)

τx,x′

]2
. (40)

Proof of Theorem 4.4.

LT = Ex,x+f(x)⊤f(x+)/τx,x+ + Ex,x′

[
f(x)⊤f(x′)/τx,x′

]2
= −2

∑
x,x+

wx,x′f(x)⊤f(x+)/τx,x+ +
∑
x,x′

wxwx′

[
f(x)⊤f(x′)/τx,x′

]2
=

∑
x,x′

{
− 2wx,x′/τx,x′f(x)⊤f(x+) + wxwx′/τ2x,x′

[
f(x)⊤f(x′)/τx,x′

]2}
=

∑
x,x′

{
− 2

1

τx,x′

wx,x′
√
wx

√
wx′

[
√
wxf(x)]

⊤[
√
wx′f(x′)] +

1

τ2x,x′

[
[
√
wxf(x)]

⊤[
√
wx′f(x′)]

]2}
=

∑
x,x′

1

τ2x,x′

{[
[
√
wxf(x)]

⊤[
√
wx′f(x′)]

]2
− 2

τx,x′wx,x′
√
wx

√
wx′

[
√
wxf(x)]

⊤[
√
wx′f(x′)] +

τ2x,x′w2
x,x′

wxwx′
−

τ2x,x′w2
x,x′

wxwx′

}
=

∑
x,x′

1

τ2x,x′

[
τx,x′

wx,x′
√
wx

√
wx′

− [
√
wxf(x)]

⊤[
√
wx′f(x′)]

]2
− 1

τ2x,x′

∑
x,x′

τ2x,x′w2
x,x′

wxwx′

:= ∥T ⊙ Ā− FF⊤∥2wF − 1

τ2x,x′

∑
x,x′

τ2x,x′w2
x,x′

wxwx′
, (41)

where we denote T := (τx,x′)
x,x′∈{xi}n(r+1)

i=1
, Ā := D−1/2AD−1/2, A := (wx,x′)

x,x′∈{xi}n(r+1)
i=1

,

D := diag(w1, . . . , wn(r+1)), F = (
√
wxf(x))x∈{xi}n(r+1)

i=1
, T ⊙ Ā as the element-wise product of

matrices T and Ā, and ∥ · ∥wF as the weighted Frobenius norm where ∥B∥2wF :=
∑

x,x′
1

τ2
x,x′

b2x,x′

for arbitrary matrix B = (bx,x′) ∈ Rn(r+1)×n(r+1).

Note that given the adjacency matrix of the similarity graph A and the temperature matrix T , the
second term in equation 41 is a constant. Therefore, minimizing the temperature scaling loss LT over
f(x) is equivalent to minimizing the matrix factorization loss Lmf−T := ∥T ⊙ Ā− FF⊤∥2wF over
F .

Before we proceed to the proof of Theorem 4.5, we first extend Theorem B.3 in HaoChen et al. (2021)
to the temperature scaling loss by deriving the matrix factorization error bound under the weighted
Frobenius norm.
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Lemma B.3. Let f∗
pop ∈ argminf :X→Rk LT(f) be a minimizer of the population temperature-

scaling loss LT(f). Then for any labeling function ŷ : X → [r], there exists a linear probe
B∗ ∈ Rr×k with norm ∥B∗∥F ≤ 1/(1− λk) such that

Ex̄∼PX̄ ,x∼A(·|x̄)

[
∥y⃗ −B∗f∗

pop(x)∥22
]
≤ ϕ̃ŷ

1− λk+1
+ 4∆(y, ŷ), (42)

where y⃗(x̄) is the one-hot embedding of y(x̄), and

ϕ̃ŷ =
∑

x,x′∼X

wx,x′

τ2x,x′
1[ŷ(x) ̸= ŷ(x′)]. (43)

Furthermore, the error can be bounded by

ET = Prx̄∼PX̄ ,x∼A(·|x̄)

(
gfpop∗,B∗ (x) ̸= y(x̄)

)
≤ 2ϕ̃ŷ

1− λk+1
+ 8∆(y, ŷ). (44)

We also need the following two supporting lemmas to prove Lemma B.3.
Lemma B.4. Let L be the normalized Laplacian matrix of some graph G, vi be the i-th smallest
unit-norm eigenvector of L with eigenvalue 1− λi, and R̃(u) := ũ⊤Lũ

u⊤u
for a vector u ∈ RN , where

ũ = (ui/τi)
N
i=1. Then for any k ∈ Z+ such that k < N and 1 − λk+1 > 0, there exists a vector

b ∈ Rk with norm ∥b∥2 ≤ ∥u∥2 such that∥∥∥u−
k∑

i=1

bivi

∥∥∥2
w
≤ R̃(u)

1− λk+1
∥u∥22, (45)

where ∥ · ∥ denotes the weighted l2-norm with weights τ−2 = (1/τ2i )
N
i=1.

Proof of Lemma B.4. We can decompose the vector u in the eigenvector basis as

u =

N∑
i=1

ζivi. (46)

Let b ∈ Rk be the vector such that bi = ζi. Then we have ∥b∥22 ≤ ∥u∥22 and∥∥∥u−
k∑

i=1

bivi

∥∥∥2
w
= ∥

N∑
i=k+1

ζivi∥2w

=

N∑
i=k+1

ζ2i /τ
2
i

≤ 1

1− λk+1

N∑
i=k+1

(1− λi)ζ
2
i /τ

2
i

=
1

1− λk+1

N∑
i=k+1

ζ2i /τ
2
i v

⊤
i (1− λi)vi

=
1

1− λk+1

N∑
i=k+1

ζ2i /τ
2
i v

⊤
i Lvi

=
1

1− λk+1

N∑
i=k+1

(ζi/τi · vi)⊤L(ζi/τi · vi). (47)

Denote ũ =
∑

i=1 ζi/τi · vi and R̃(u) := ũ⊤Lũ
u⊤u

. Then we have∥∥∥u−
k∑

i=1

bivi

∥∥∥2
w
≤ R̃(u)

1− λk+1
∥u∥22. (48)
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Lemma B.5. In the setting of Lemma B.4, let ŷ be an extended labeling function. Fix i ∈ [r]. Define
function uŷ

i (x) :=
√
wx · 1[ŷ(x) = i] and uŷ

i is the corresponding vector in RN . Also define the
following quantity

ϕ̃ŷ
i :=

∑
x,x′∈X wx,x′/τ2x,x′ · 1[(ŷ(x) = i ∧ ŷ(x′) ̸= i)or(ŷ(x) ̸= i ∧ ŷ(x′) = i)]∑

x∈X wx · 1[ŷ(x) = i]
. (49)

Then we have

R̃(uŷ
i ) =

1

2
ϕ̃ŷ
i . (50)

Proof of Lemma B.5. Let f be any function X → R, define function u(x) :=
√
wx · f(x). Let

u ∈ RN be the vector corresponding to u. Then by definition of Laplacian matrix, we have

ũ⊤Lũ = ∥ũ∥22 − ũD−1/2AD−1/2ũ

=
∑
x∈X

wx/τ
2
xf(x)

2 −
∑

x,x′∈X
wx,x′/τ2x,x′f(x)f(x′)

=
1

2

∑
x,x′∈X

wx,x′/τ2x,x′ [f(x)− f(x′)]2. (51)

Therefore we have

R̃(uŷ
i ) =

1

2

∑
x,x′∈X wx,x′/τ2x,x′ [f(x)− f(x′)]2∑

x∈X wxf(x)2
. (52)

Setting f(x) = 1[ŷ(x) = i] finishes the proof.

Proof of Lemma B.3. Let Fsc = [v1, v2, . . . , vk] be the matrix that contains the smallest k eigenvec-
tors of L = I − Ā as columns, and fsc is the corresponding feature extractor. By Lemma B.4, there
exists a vector bi ∈ Rk with norm bound ∥bi∥2 ≤ ∥uŷ

i ∥2 such that

∥uŷ
i − Fscbi∥2w ≤ R̃(uŷ

i )

1− λk+1
∥uŷ

i ∥
2
2. (53)

Combined with Lemma B.5, we have

∥uŷ
i − Fscbi∥2w ≤ ϕ̃ŷ

i

2(1− λk+1)
·

∑
x∈X·1[ŷ(x)=i]

=
1

2(1− λk+1)

∑
x,x′∈X

wx,x′/τ2x,x′ · 1[(ŷ(x) = i ∧ ŷ(x′) ̸= i)or(ŷ(x) ̸= i ∧ ŷ(x′) = i)].

(54)

Let matrix U := (uŷ
i )

k
i=1, and let u : X → Rk be the corresponding feature extractor. Define matrix

B ∈ RN×k such that B⊤ = (b1, . . . , bk). Summing equation 54 over all i ∈ [k] and by definition of
ϕ̃ŷ we have

∥U − FscB
⊤∥2wF ≤ 1

2(1− λk+1)

∑
x,x′∈X

wx,x′/τ2x,x′ · 1[ŷ(x) ̸= ŷ(x′)] =
ϕ̃ŷ

2(1− λk+1)
. (55)

By Theorem 4.4, for a feature extractor f∗
pop that minimizes the temperature scaling loss LT̊ , the

function f∗
mf(x) :=

√
wx · f∗

pop is a minimizer of the matrix factorization loss Lmf−T. Then we have

Ex̄∼PX̄ ,x∼A(·|x̄)∥y⃗(x)−B∗f∗
pop(x)∥22 ≤ 2Ex̄∼PX̄ ,x∼A(·|x̄)∥⃗̂y(x)−B∗f∗

pop(x)∥22 + 2Ex̄∼PX̄ ,x∼A(·|x̄)∥⃗̂y(x)− y⃗(x)∥22
= 2

∑
x∈X

wx · ∥⃗̂y(x)−B∗f∗
pop(x)∥22 + 4∆(y, ŷ)

= 2∥U − FscB
⊤∥2wF + 4∆(y, ŷ)

≤ ϕ̃ŷ

1− λk+1
+ 4∆(y, ŷ). (56)
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Then we move on to the formal proof of Theorem 4.5.

Proof of Theorem 4.5. According to equation 35 the proof of Theorem 4.3, if we let

τx,x′ =



(1− α) + nα+ nrβ + ndr(γ − β)

(1− α) + nα+ nrβ
, for y(x) = y(x′), x, x′ ∈ Dd,√

(1− α) + nα+ nrβ + ndr(γ − β)√
(1− α) + nα+ nrβ

, for x ∈ Dd or x′ ∈ Dd,

[(1− α) + nα+ nrβ + ndr(γ − β)]β

[(1− α) + nα+ nrβ]γ
for y(x) ̸= y(x′), x, x′ ∈ Dd,

1, otherwise,

(57)

then we have

τx,x′ · wx,x′

wxwx′
=



1

(1− α) + nα+ nrβ
for x = x′,

α

(1− α) + nα+ nrβ
for x ̸= x′, y(x) = y(x′),

β

(1− α) + nα+ nrβ
otherwise.

(58)

In this case, T ⊙ Ā is equivalent to the normalized similarity matrix of data without difficult-to-learn
examples.

By Lemma B.3, we have

ET ≤ 2ϕ̃ŷ

1− λk+1
+ 8∆(y, ŷ). (59)

By Assumption B.1, we have ∆(y, ŷ) ≤ δ. Besides, since τx,x′ ≤ 1 for y(x) ̸= y(x′), x, x′ ∈ Dc,
and otherwise τx,x′ ≥ 1, we have

ϕ̃ŷ =
∑

x,x′∈X
wx,x′/τ2x,x′1[ŷ(x) ̸= ŷ(x′)]

≤
∑

x,x′∈X\{x,x′:x,x′∈Dc}

wx,x′1[ŷ(x) ̸= ŷ(x′)] +
∑

y(x)̸=y(x′),x,x′∈Dc

(γ/β)2wx,x′1[ŷ(x) ̸= ŷ(x′)]

=
∑

x,x′∈X\{x,x′:x,x′∈Dc}

Ex̄∼PX̄ [A(x|x̄)A(x′|x̄) · 1[ŷ(x) ̸= ŷ(x′)]]

+ (γ/β)2
∑

x,x′∈Dc

Ex̄∼PX̄ [A(x|x̄)A(x′|x̄) · 1[ŷ(x) ̸= ŷ(x′)]]

≤
∑

x,x′∈X\{x,x′:x,x′∈Dc}

Ex̄∼PX̄ [A(x|x̄)A(x′|x̄) · (1[ŷ(x) ̸= ŷ(x̄)] + 1[ŷ(x′) ̸= ŷ(x̄)])]

+ (γ/β)2
∑

x,x′∈Dc

Ex̄∼PX̄ [A(x|x̄)A(x′|x̄) · (1[ŷ(x) ̸= ŷ(x̄)] + 1[ŷ(x′) ̸= ŷ(x̄)])]

= 2[1− (nd/n)
2]Ex̄∼PX̄ [A(x|x̄) · 1[ŷ(x) ̸= ŷ(x̄)]] + 2(γ/β)2(nd/n)

2Ex̄∼PX̄ [A(x|x̄) · 1[ŷ(x) ̸= ŷ(x̄)]]

= 2[1− (nd/n)
2 + (γ/β)2(nd/n)

2]δ. (60)

Therefore we have

ET ≤ 2ϕ̃ŷ

1− λk+1
+ 8∆(y, ŷ) ≤ [1− (nd/n)

2 + (γ/β)2(nd/n)
2] · 4δ

1− 1−α
(1−α)+nα+nrβ

+ 8δ. (61)
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B.3 RELAXATION ON THE IDEAL ADJACENCY MATRIX

To enhance the connection of the theoretical modeling of difficult-to-learn examples (Section 3.2) to
real-world scenarios, we hereby discuss a possible relaxation on the ideal adjacency matrix of the
similarity graph.

The adjacency matrix could be relaxed by adding random terms to the similarity values. Specifically,
we replace A with Ã = (ãij), where ãii = 1, and ãij = ãij + ϵ · εij for i ̸= j, aij takes values
in {α, β, γ}, εij = εji are i.i.d. Gaussian random variables with mean 0 and variance 1, ϵ > 0 is a
small constant. Then Ã can be decomposed into

Ã = A+ ϵ ·W − ϵ · diag(εii), (62)

where W turns out to be a real Wigner matrix or more specifically a Gaussian Orthogonal Ensemble
(GOE). Note that as εij ∼ N (0, 1), the normalization matrix D̃ → ED̃ = D, as n(r + 1) → ∞,
and therefore we have ¯̃A = D̃−1/2ÃD̃−1/2 ≈ D−1/2ÃD−1/2.

For mathematical convenience, in the following analysis, we instead perform the relaxation on the
normalized adjacency matrix Ā, and investigate

˜̄A = Ā+ ϵ′ ·W ′ − ϵ′ · diag(εii), (63)

where ϵ > 0 and W is a GOE.

By Equation 13 in Fulton (2000), we have the k + 1-th largest eigenvalue of ˜̄A satisfies

λ̃k+1 ≤ min
i+j=k+1

λi + ϵ′ · νj − ϵ′ · εii, (64)

where λi denotes the i-th largest eigenvalue of A, and νj denotes the j-th largest eigenvalue of W .
And in expectation we have

Eλ̃k+1 ≤ min
i+j=k+1

λi + ϵ′ · Eνj , (65)

where the values of Eνj could be deduced according to Wigner’s semicircle law. Specifically,
denoting ν1, . . . , νn(r+1) as the eigenvalues of W , we define the empirical spectral measure as
ν = 1

n(r+1)

∑n(r+1)
i=1 δνi . Then ν converges weakly almost surely to the quarter-circle distribution

on [0, 2], with density

f(ν) =
1

2π

√
4− x21[|x| ≤ 2]. (66)

Note that equation 65 indicates that the effect of the randomized similarity ϵ · εij is to add an
additional term to the upper bound of the eigenvalue, and the effect is the same regardless of A (e.g.
with and without the existence of difficult-to-learn examples). As the linear probing error bound is
determined by λ̃k+1 (given the labeling error δ), our theoretical results that difficult-to-learn examples
hurt unsupervised contrastive learning (equation 4 ≥ equation 3) still hold under this relaxation.
Moreover, Theorems 4.3 and 4.5 also hold because the relaxation has the same effect to EM, ET, and
Ew.o..
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