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ABSTRACT

Reproducibility remains a significant challenge in machine learning (ML) for
healthcare. Datasets, model pipelines, and even task or cohort definitions are of-
ten private in this field, leading to a significant barrier in sharing, iterating, and
understanding ML results on electronic health record (EHR) datasets. We address
a significant part of this problem by introducing the Automatic Cohort Extrac-
tion System (ACES) for event-stream data. This library is designed to simulta-
neously simplify the development of tasks and cohorts for ML in healthcare and
also enable their reproduction, both at an exact level for single datasets and at a
conceptual level across datasets. To accomplish this, ACES provides: (1) a highly
intuitive and expressive domain-specific configuration language for defining both
dataset-specific concepts and dataset-agnostic inclusion or exclusion criteria, and
(2) a pipeline to automatically extract patient records that meet these defined cri-
teria from real-world data. ACES can be automatically applied to any dataset
in either the Medical Event Data Standard (MEDS) or Event Stream GPT (ES-
GPT) formats, or to any dataset in which the necessary task-specific predicates
can be extracted in an event-stream form. ACES has the potential to significantly
lower the barrier to entry for defining ML tasks in representation learning, rede-
fine the way researchers interact with EHR datasets, and significantly improve the
state of reproducibility for ML studies using this modality. ACES is available at:
https://github.com/justin13601/aces.

1 INTRODUCTION

Machine learning (ML) for healthcare suffers from a severe and systemic reproducibility crisis (Mc-
Dermott et al., 2021b). This challenge is further exacerbated by the need to maintain private and
secure datasets, but even with public datasets, ML pipelines are not reliably reproducible from pub-
lished papers alone. For instance, in numerous attempts to reproduce ML for healthcare studies
using the MIMIC-III dataset (Johnson et al., 2016), Johnson et al. found that more than half the
time, the cohorts described in the studies could not be reliably reconstructed. Specifically, experi-
ments led to many discrepancies of up to 25% in cohort sizes, with one study reaching as high as
11,767 patients (Johnson et al., 2017). This is primarily due to sparse descriptions of cohorts in
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study methods with essential reproducibility details often omitted, along with the absence of openly
available code.

This burden in reproducing even the basic task and problem definitions in ML for healthcare studies
is profoundly detrimental (McDermott, 2025). Beyond the obvious concerns it raises around the
robustness of reported results and their readiness for deployment, our inability to reliably define
shared, canonical, and reproducible task definitions limits our capacity to perform meaningful model
comparisons during methodological development. This is particularly notable in settings where not
all researchers have mutual access to all datasets, as is common in healthcare. Given the critical role
that open benchmarks play in the advancement of ML methods (Zhang & Hardt, 2024; Salaudeen &
Hardt, 2024; Shirali et al., 2023), this deficit directly translates to a significant barrier in our ability,
as a research community, to effectively experiment, iterate, and develop new ML methodologies in
the healthcare space.

Given the clear import of this problem, the research community has naturally explored a number of
prospective solutions. These can largely be categorized into two areas: (1) leveraging existing com-
mon data models (CDMs) to define reproducible task cohorts only for datasets within these schemas,
and (2) defining static benchmarking tasks on individual public datasets. Both of these areas have
generated numerous high-impact works. For example, in the area of CDM-driven tools, systems
such as the ATLAS tool (Gold et al., 2024) for OHDSI’s OMOP CDM (Reich et al., 2024) and
i2b2’s PIC-SURE (Stedman et al., 2024) for the i2b2 CDM (Murphy et al., 2010), as well as various
institution-specific tools, have all been used to drive numerous new lines of inquiry. Unfortunately,
these tools are also extremely limited in that they can only be applied to the specific CDM or insti-
tutional data warehouse for which they have been defined. Further, because many of these CDMs
have had limited penetrance into healthcare’s high-capacity, deep learning ecosystems, they are par-
ticularly ill-posed for task and cohort extraction within the healthcare deep learning communities.
Conversely, public static benchmarks (Harutyunyan et al., 2019; McDermott et al., 2021a; van de
Water et al., 2024) over datasets such as MIMIC-IV (Johnson et al., 2023) or eICU (Pollard et al.,
2018) have also been extremely impactful. However, they are all tied to only a single or small set
of datasets and tasks. Given the highly dynamic nature of clinical data and healthcare requirements,
this is insufficient for the benchmarking and reproducibility needs faced by the ML for healthcare
community.

When considering these existing solutions alongside the realities of healthcare data access and
methodological development, it is clear that they are insufficient for three key reasons:

1. The Need for Interoperability The limited public datasets and only partially used CDMs can-
not capture the diverse clinical populations, needs, and model capacities necessary for tangible ML
progress in healthcare. To address this, systems for automated task extraction must be meaningfully
interoperable across both public and private datasets with diverse input schemas.

2. The Need for Flexibility A single, static benchmark cannot encompass the variety of clinical
tasks relevant to clinicians and informaticians. As existing tools (with limited interfaces for defining
queries using per-set vocabularies) may struggle to generalize to new clinical tasks, ideal solutions
must be sufficiently flexible to accommodate a myriad of new task definitions, criteria formats, and
disease or deployment areas.

3. The Need for Accessibility, Usability, and Applicability in Deep Learning Workflows While
many existing tools feature no-code interfaces (e.g., web platforms to build queries) that are essential
for less technically-literate audiences, integrating such tools with deep learning workflows can prove
challenging. Deep learning systems are often run in a semi-programmatic manner on siloed, private
computational clusters where researchers have minimal control. Hence, existing tools can cause
significant hindrance. Instead, successful software must be able to provide a Python and command-
line interface (CLI) that offer significant ease of use to deep learning researchers, alongside shareable
and readable configuration files that specify task definitions in a manner that can be readily ported
across datasets and environments.

Our Solution: Automatic Cohort Extraction System for Event-Stream Datasets In this work,
we solve these problems with the Automatic Cohort Extraction System for Event-Stream Datasets
(ACES). ACES offers a simple, expressive, and shareable configuration language for task and cohort
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definitions, as well as a reliable CLI and a straightforward Python library for extracting labeled task
dataframes (Figure 2).

Task definitions in ACES are naturally separated into simple dataset-specific event predicates and
dataset-agnostic inclusion or exclusion criteria, thereby permitting the same task to be used in a
conceptually identical manner across diverse datasets. By requiring users to specify predicates to
realize their ML tasks on their specific datasets, ACES allows users to produce precise, locally-
specific, verifiable cohorts that harmonize only the data elements needed for their task, regardless
of how their input dataset is aligned or misaligned with existing ontologies or CDMs. Further, for
datasets that are fully harmonized (e.g., through OHDSI vocabularies), ACES predicate definitions
can be re-used across datasets without any loss of utility. In this way, ACES accommodates diverse
datasets at various levels of data harmonization in a flexible, transparent manner. Overall, this
approach not only enhances reproducibility but also facilitates community collaboration on task
definitions, inclusion or exclusion criteria, and evaluation metrics for specific clinical use cases.

In contrast to prior task definition systems such as ATLAS, ACES makes minimal assumptions
about the input data structure or source vocabularies. In particular, ACES can be run on any dataset,
provided the necessary task-specific predicates can be pre-extracted in an “event-stream” format
(Figure 1). It can further be run from raw data directly for any dataset in the relatively low-level
and flexible Medical Event Data Standard (MEDS) (Arnrich et al., 2024) or Event Stream GPT
(ESGPT) (McDermott et al., 2023) formats in approximately five lines of template code, offering
high efficiency.
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Task 
Cohort

Input EHR Dataset as an Event-Stream

ML Models

ACES Cohort Extraction Output Task Cohort

   
   

   
   

subject_id time code numeric_value
68729 null EYE_COLOR//HAZEL null
68729 null HEIGHT 160.3953106
68729 03/09/1978, 0:00:00 DOB null
68729 05/26/2010, 2:30:56 ADMISSION//PULMONARY null
68729 05/26/2010, 2:30:56 HR 86
68729 05/26/2010, 2:30:56 TEMP 97.8
68729 05/26/2010, 4:51:52 DISCHARGE null
239684 null EYE_COLOR//BROWN null
239684 null HEIGHT 175.2711152
239684 12/28/1980, 0:00:00 DOB null

subject_id prediction_time label
68729 05/26/2010, 2:30:56 1
239684 05/11/2010, 17:41:51 0

Static 
Measurements

predicates:
admission:

code: ADMISSION
discharge:

code: DISCHARGE
death:

code: DEATH
discharge_or_death:

expr: or(discharge, death)

trigger: admission

target:
start: gap.end
end: start -> discharge_or_death
start_inclusive: False
end_inclusive: True
label: death

Figure 1: Workflow for extracting cohorts using ACES. The pipeline shows the expected format
for ACES-supported event-stream datasets and outcome cohorts. The transformation of raw data
into the event-stream format is intentionally designed to be straightforward — primarily merging
relational database tables — minimizing data loss risks associated with other CDMs like OMOP.

Further, we align ACES with the concept of frictionless reproducibility for shared tasks proposed
by David Donoho (Donoho, 2024), especially for the clinical domain. This addresses the “Bring-
Your-Own-Data Challenge”, where much research relies on private patient outcomes data, often
accessible only to a few credentialed researchers under strict usage agreements. Even when bench-
marking platforms and shared code exist, the inability to share data directly remains a significant
barrier and often stifles progress. ACES seeks to overcome these challenges by offering a domain-
specific language (DSL) and novel infrastructure to ensure reproducibility without necessitating data
sharing. Instead of relying on public datasets or reconfiguring code for diverse environments, ACES
enables researchers to distribute task definitions through configuration files. These files provide a
standardized way to conceptually reproduce cohorts on private datasets or exactly reproduce them
on public datasets.

In sum, ACES represents 3 key contributions:

1. ACES defines a shareable, simple, and flexible task configuration language that can define
diverse sets of prediction tasks for ML in healthcare on any event-stream dataset.

2. ACES provides an easy-to-use library to automatically extract these tasks from diverse
sources of real-world, structured, and longitudinal electronic health record (EHR) data.
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3. ACES introduces a novel DSL that leverages event-bounded query aggregations, enabling
more expressive and efficient task definitions that better capture clinical timelines.

In the rest of this work, we first explore ACES in depth in Section 2, beginning with an illustration of
its key concepts before briefly overviewing its core recursive algorithm. We then present a running
example to illustrate how configuration files capture task logic. Next, in Section 3, we demonstrate
the use of ACES across diverse problem areas using real-world data, releasing a collection of task
definitions based on prior ML for healthcare works — both at the dataset-agnostic criteria level
and with dataset-specific predicates for the widely-used MIMIC-IV dataset (Johnson et al., 2023).
Finally, we discuss the limitations and future roadmap of ACES in Section 4, and offer concluding
thoughts in Section 5.

Predict in-hospital mortality for 
patients diagnosed with 
COVID-19 prior to admission 
and who have 2 years of 
historic data with 30+ records

mortality:

  code: DEATH

admission:

   code: ADMISSION

discharge:

  code: DISCHARGE

covid:

   code: DX/COVID

trigger: admission

input:

  start: trigger - 2y

  end: trigger

  has:

    ANY: (30, null)

    covid: (1, null)

target:

  start: trigger

  end: start -> discharge

  label: mortality

Generalizable

Shareable

Institution

Specific

 Manua
 Institution Specifi
 Expensiv
 Irreproducibl
 Hard to share & 

collaborate on

Predict in-hospital mortality 
for patients diagnosed with 
COVID-19 prior to admission 
and who have 2 years of 
historic data with 30+ records

A. With ACES

B. Without ACES

Predicates: 
dataset specific 
concepts used to 
define cohorts

Windows: dataset 
agnostic inclusion-
exclusion criteria 
relative to predicates

Figure 2: ML task cohort extraction process (A) with and (B) without ACES. Predicates are dataset-
specific concepts that are needed to conceptually capture a ML task. Windows are temporal seg-
ments on a patient’s health record and are dataset-agnostic, as they are defined relative to the pred-
icates. This distinction allows researchers to easily share the more complex task logic which is
independent of datasets, facilitating conceptual reproducibility for ML tasks in healthcare.

2 AUTOMATIC COHORT EXTRACTION SYSTEM FOR EVENT-STREAM
DATASETS (ACES)

In this section, we introduce ACES, a novel automatic task and cohort extraction system that fills
the key gaps in interoperability, flexibility, and accessibility left by the existing tools outlined in
Section 1. To use ACES and extract a cohort for downstream ML tasks, a user only needs to do the
following simple steps:

1. Install ACES: A fully functional version of ACES is pushed to PyPI, and any user can easily
install it by simply running pip install es-aces. All dependencies are automatically set up
with no further actions needed.

2. Define Dataset: A dataset in a permitted format, such as MEDS, ESGPT, or as direct predicates,
is required. More information on the data formats is available in Section 2.2.

3. Define Task: A task configuration file is required to define the task that the user wishes to extract.
This configuration language is simple, clear, yet flexible, permitting users to rapidly share and iterate
over task definitions for their clinical settings. Configuration specification is given in Section 2.3.
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4. Run the ACES CLI: ACES can be directly run from the command line. Details about the
possible command-line arguments are detailed in Section 2.4. ACES can also be used as a direct
Python import, as mentioned in Section 2.5.

Sample command for basic cohort extraction using ACES CLI:

1 $ aces-cli cohort_name='$TASK' data.path='$DATA_PATH'

5. Get Outputs: ACES outputs a single unified dataframe with all valid patient instances extracted
according to task specifications. Users can subsequently leverage the returned columns with original
patient identifiers and health record timestamps for downstream ML tasks. Further information is
available in Section 2.6.

Critically, after only these five simple steps, a user can immediately, reproducibly extract a full cohort
from their source dataset that matches their task definition, and begin using this task for downstream
representation learning.

2.1 ALGORITHM DESIGN

ACES addresses the challenge of extracting meaningful windows of data from patient records by
using a recursive approach grounded in a tree-structured configuration file. Each task is represented
as a hierarchy of constraints, with nodes defining boundaries of windows of interest and edges spec-
ifying temporal or event-based relationships between these windows. The algorithm begins by iden-
tifying root anchor events in the dataset that correspond to the triggering criteria of the task. It then
recursively evaluates subtrees of constraints, aggregating predicate counts over defined windows
either through temporal aggregations (e.g., over fixed time intervals) or event-bound aggregations
(e.g., over windows bounded by specific clinical events, such as admissions, diagnoses, etc.). Each
step ensures that the criteria of the subtree are met, filtering out invalid realizations before proceed-
ing to child nodes. This recursive process guarantees that the specified configuration can always be
resolved into valid windows that meet the task’s constraints. The final output is a dataframe contain-
ing all valid patients, task-specific labels, and prediction timestamps, and optionally, window start
and end times as well as aggregated predicate counts. This ensures systematic and deterministic ex-
traction of datasets for ML tasks. It also maintains flexibility and leverages the simple, transparent,
and highly expressive DSL of ACES (Figure 3).

2.2 DATASET CONFIGURATIONS

ACES is extremely flexible and can handle different input data formats, including MEDS (data
.standard=meds), ESGPT (data.standard=esgpt), or direct predicates (data.standard=
direct), where event-stream features are pre-extracted by the user from any given dataset schema.
Other CDMs are interchangeable with these formats, such as OHDSI OMOP through the MEDS
OMOP ETL1, which transforms OMOP-compliant datasets into MEDS without data loss or scala-
bility issues.

Using direct predicates to extract cohorts from formats that ACES does not natively support still
significantly reduces the burden on users. Simply creating predicate features is much less cumber-
some than either fully converting the dataset to a CDM in order to use existing tools like ATLAS or
i2b2’s platform, or performing the entire task extraction from scratch by writing in-house dataframe
querying code. Additionally, as ACES configuration files are shareable and easily portable to other
datasets (by simply swapping out predicate definitions), we believe ACES will offer long-term ef-
ficiency benefits. This demonstrates the significant improvement in utility that ACES brings across
diverse data schemas compared to existing tools.

2.3 TASK CONFIGURATIONS

In ACES, tasks are specified through configuration files that define a collection of dataset-specific
event predicates, which are simple functions evaluated on individual events within a structured
event-stream dataset. Predicate definitions can be stored in a central “database” file specific to each

1https://github.com/Medical-Event-Data-Standard/meds_etl/tree/main
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subject_id time predA predB predC … predD

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Time/Event-based Aggregations

Identify Subtree Root Anchors

subject_id time predA predB predC … predD

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

subject_id time predA predB predC … predD

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Filter by Subtree Criteria

…which prunes invalid 
realizations that violate 

subtree constraints

…to mark where predicate 
aggregations begin in 

recursion

…summarizes predicate 
counts for each subtree

predA predB predC … predD
1 8 0 … 2

…

Aggregations

Window 
Boundaries

Window 
Relationships

Figure 3: Overview of the ACES recursive algorithm. Given a task tree generated from a configura-
tion file, ACES first identifies possible roots of the tree (task triggers) based on the associated pred-
icate. It then computes aggregations of predicate counts over time-based (i.e., windows with a time
interval) or event-based (i.e., windows between specified events) periods to summarize predicates
over the edges between the tree nodes. Finally, invalid branches are filtered out if their predicate
counts do not meet the specified criteria. This process is recursed for all child nodes of the task tree.

dataset, such that previously defined features could be easily reused for a variety of downstream
tasks without further effort. Community predicate contributions for public datasets also streamline
collaborative efforts for reproducibility. Additionally, task criteria are defined in a dataset-agnostic
manner through a collection of interrelated windows, which specify segments of a patient’s record
and are constrained by certain relationships. Please see Figure 4 for an example of a task configura-
tion.

2.4 COMMAND-LINE INTERFACE

Hydra Arguments The Hydra framework (Yadan, 2019) enhances the CLI by enabling flexible
run configurations and argument parsing for cohort extractions. For instance, specific arguments
are required to define the external source dataset for data loading. Depending on the chosen format
(the data.standard argument), either the path to the data file (for meds or direct) or the path
to the dataset directory (for esgpt) must be specified to indicate the external source data from
which ACES will extract the cohort. Additionally, cohort_dir and cohort_name are essential
for locating and loading the task configuration file, as well as for results and operational logging.

Scaling to Large Datasets An overview of the computational profile of ACES is available in Sec-
tion 3.1. Additionally, for users dealing with large datasets, ACES can also be run over a collection
of sharded files, extracting and storing the matching cohort for each shard individually in corre-
sponding file paths. This can greatly increase computational efficiency by facilitating the processing
of different shards in parallel via Hydra’s multi-run launchers2.

2https://hydra.cc/docs/1.0/plugins/joblib_launcher/

6

https://hydra.cc/docs/1.0/plugins/joblib_launcher/


Published as a conference paper at ICLR 2025

Sample command for cohort extraction over multiple MEDS shards using ACES CLI and Hydra:

1 $ aces-cli \
2 --multirun \
3 cohort_name="<task_config_name>" \
4 cohort_dir="/directory/to/task/config/" \
5 data=sharded \
6 data.standard=meds \
7 data.root="/directory/to/dataset/shards/" \
8 data.shard="$(expand_shards <folder>/<num>)" # Sweeps over shards

In-hospital Mortality Prediction

24h

48h

Admission Discharge OR Death

>= 5 Events
No Discharge OR Death

Task Configuration

A

B D EC

A B

C D

E

predicates:
       admission:
  code: ADMISSION
       discharge:
            code: DISCHARGE
       death:
            code: DEATH
       discharge_or_death:
            expr: or(discharge, death)

trigger: admission

target:
       start: gap.end
       end: start -> discharge_or_death
       start_inclusive: False
       end_inclusive: True
       label: death

input:
       start: NULL
       end: trigger  + 24 hours
       start_inclusive: True
       end_inclusive: True
       has:
              _ANY_EVENT: (5, None)

gap:
       start: trigger
       end: start + 48 hours
       start_inclusive: False
       end_inclusive: True
       has:
              admission: (None, 0)
              discharge: (None, 0)
              death: (None, 0)

Figure 4: Example configuration file for the binary prediction of in-hospital mortality 48 hours
after admission. References to predicates and windows are italicized and bolded, respectively. (A)
Dataset-specific task predicates. These concepts are needed to conceptually capture this task and are
used as constraints and boundaries for windows of the patient record. For instance, in this example,
the value of “ADMISSION” denotes a hospital admission event in the source dataset. (B) A
window of the task specifying the task inputs for downstream models. Suppose we’d like to use
all historic patient data up to and including 24 hours past the admission. We could also place an
arbitrary criterion requiring more than 5 records in this window to ensure that the extracted cohort
contains sufficient input data. (C) Trigger events for the task, which are hospital admissions as we’d
like to make a mortality prediction for each admission. (D) A window of the task specifying a gap
in the patient timeline. Suppose we’d like to set a minimum length of admission for our cohort
(e.g., 48 hours). A temporal constraint (minimum window duration) of 48 hours could then be set
to represent this requirement. (E) A window of the task specifying the task target, which is set from
the end of (D) to the immediately subsequent discharge or death predicate. This creates our binary
label classes for the task (i.e., discharge = 0; death = 1). All windows are interrelated on the
patient timeline, as shown by how each window references another in the configuration file.
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2.5 PYTHON API

In addition to the command-line tool, we also provide a Python interface to allow researchers to
easily leverage ACES for cohort extraction in their deep learning code pipelines. A full tutorial is
available on the ACES online documentation.

2.6 EXTRACTION OUTPUT

Finally, with a dataset configured for predicates and a task configuration file, ACES will execute
the extraction for the cohort and return a table where each row is a valid instance as per the criteria
defined in the configuration file. Hence, each instance can be included in our cohort used for the
downstream ML task. At the most basic level, the table contains the patient identifiers of our cohort,
a user-defined timestamp that indexes prediction time, and a task label derived from a user-specified
predicate. In addition, for each of the interrelated windows, a start and end timestamp is provided
to segment the patient record, along with a summary of the number of predicates evaluated in that
window.

3 USING ACES: A REPOSITORY OF EXAMPLE TASK CONFIGURATION FILES

To demonstrate the flexibility and utility of ACES, we define and publicly release the task con-
figuration files described in Table 1, both with dataset-agnostic criteria and with dataset-specific
predicate realizations based on the MEDS version of the public MIMIC-IV dataset. These vari-
ous tasks have been previously studied, and ACES will facilitate their conceptual reproducibility to
encourage benchmarking efforts and ensure robustness in ML for healthcare.

Table 1: A collection of sample configuration files for various common predictive tasks on MIMIC-
IV. These tasks can be easily generalized to other datasets, such as e-ICU or other private intensive
care unit (ICU) and inpatient datasets by simply swapping out appropriate predicate definitions.

Task Name Description

First 24h in-hospital mortality Predict mortality within a hospital admission using the first
24 hours of data from that admission.

First 48h in-hospital mortality Predict mortality within a hospital admission using the first
48 hours of data from that admission.

First 24h in-ICU mortality Predict mortality within an ICU admission using the first 24
hours of data from that admission.

First 48h in-ICU mortality Predict mortality within a ICU admission using the first 48
hours of data from that admission.

30d post-hospital-discharge mortality Predict mortality within 30 days of discharge.
30d re-admission Predict hospital readmission within 30 days of discharge.
Myocardial infarction 1-5Y phenotyping Predict myocardial infarction (MI) incidence 1-5 years af-

ter hospital admission.
Reduced echo-derived LVEF 9m post-ECG Predict reduced echo-derived left ventricular ejection

fraction (LVEF) within 9 months of any ECG.
CKD onset in diabetics 5Y from kidney panel Predict chronic kidney disease (CKD) onset in diabetic pa-

tients within 5 years of any kidney panel laboratory test.

3.1 COMPUTATIONAL PROFILE

To establish an overview of the computational profile of ACES, the collection of tasks from Table 1
was extracted on MIMIC-IV. The MIMIC-IV MEDS schema has approximately 50,000 patients per
shard with an average of approximately 80,500,000 total event rows per shard over seven shards.
However, only a single shard was used to provide the bounded computational overview of ACES in
Table 2, as the results are applicable even when scaled to larger datasets using Hydra2. For instance,
if one shard costs M memory and T time, then N shards may be executed in parallel with about
N ∗M memory and T time, or in series with about M memory and T ∗N time.
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Table 2: Performance statistics for various common predictive tasks on a single MEDS shard of
MIMIC-IV. This particular shard was 5,494.39 MiBs on disk as a parquet file and 9,661.41 MiBs
when loaded in memory as a dataframe. It consisted of 80,301,208 rows corresponding to 47,954
unique patients. All experiments were executed on a Linux server with 36 cores and 340 GBs of
RAM available.

Task # Patients # Samples Total Time (s) Max Memory (MiBs)

First 24h in-hospital mortality 20,971 58,823 363.09 106,367.14
First 48h in-hospital mortality 18,847 60,471 364.62 108,913.95
First 24h in-ICU mortality 4,768 7,156 216.81 39,594.37
First 48h in-ICU mortality 4,093 7,112 217.98 39,451.86
30d post-hospital-discharge mortality 28,416 68,547 182.91 30,434.68
30d re-admission 18,908 464,821 367.41 106,064.04
Myocardial Infarction 1-5Y phenotyping 3,329 8,319 198.04 33,427.70
Reduced echo-derived LVEF 9m post-ECG 14 17 210.02 35,385.79
CKD onset in diabetics 5Y from kidney panel 736 3,503 238.65 44,221.81

4 DISCUSSION

4.1 ADDITIONAL RELATED WORK

In addition to the existing tools discussed in Section 1, there are several other areas of related work
relevant to ACES. Firstly, ACES serves as a middle ground between solutions that focus on specific
CDMs, such as OHDSI’s ATLAS Gold et al. (2024) and i2b2’s PIC-SURE (Stedman et al., 2024).
Compared to these tools, ACES balances capability with greater ease of use and improved commu-
nicative value. ACES is also not tied to a particular CDM. Built on a flexible event-stream format,
ACES is a no-code solution with a descriptive input format, permitting easy and wide iteration over
task definitions. It can be applied to a variety of schemas, making it a versatile tool suitable for
diverse research needs. ACES could also be directly connected with existing health CDMs through
ETLs, such as OMOP (Reich et al., 2024), i2b2 (Murphy et al., 2010), FHIR (Bender & Sartipi,
2013), and PCORnet (Fleurence et al., 2014). These models provide already-accepted standardized
frameworks for organizing and analyzing healthcare data, and supporting them could greatly en-
hance the utility and interoperability of ACES. Similarly, frameworks such as DescEmb (Hur et al.,
2022) and GenHPF (Hur et al., 2024) hold great synergistic potential with ACES, and we believe
that they can be complementary in enabling new kinds of cross-dataset training, transfer learning,
and evaluation. Static benchmarks that provide standardized datasets, metrics, and baseline meth-
ods for a range of clinical problems, such as YAIB (van de Water et al., 2024), multitask learning
clinical prediction benchmarks (Harutyunyan et al., 2019), and EHR-PT (McDermott et al., 2021a),
can also be directly integrated with ACES to facilitate robust ML in healthcare. Lastly, ACES can
be used in conjunction with various health data management tools, such as TemporAI (Saveliev
& van der Schaar, 2023), PyHealth (Yang et al., 2023), OMOP-learn (Kodialam et al., 2021), and
DPM360 (Suryanarayanan et al., 2021). These tools offer functionalities for pre-processing, manag-
ing, and analyzing health data for downstream tasks, and integrating ACES with them directly can
streamline ML workflows.

Beyond healthcare, ACES is applicable to data from a variety of other domains, such as for finance,
climate, or social media data — essentially, ACES could be used for any structured, longitudinal
data that can be reformatted as an event-stream. This versatility makes ACES a powerful library for
extracting and analyzing complex event-based datasets across different fields.

4.2 LIMITATIONS & FUTURE ROADMAP

ACES has limitations that can be addressed in future work. Firstly, while already very expressive, the
ACES task configuration language can still be further expanded. Expressing more complex kinds of
predicates, window aggregations, labeling functions, and criteria would expand the scope of ACES
significantly. ACES also seeks to provide direct support for cohort extraction based on unstructured
data (notes and memos) in the future. Currently, such predicates need to be manually extracted by
the user, but with the help of community contributions, we hope to be able to incorporate automatic
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feature extraction from clinical notes, or even images, and integrate them into configuration files for
cohort extraction.

ACES is also very well poised to capture more complex patterns of task and cohort relationships,
including prescribed systems of case-control matching, automated bias analyses, or propensity re-
weighting over excluded populations. It is also possible to enable users to nest ACES configuration
files to leverage extracted task labels as new predicates in more complex tasks and querying pro-
cesses.

To enhance the scalability of ACES, we will seek to maintain support for the expanding MEDS
standard. Direct interoperability with other existing resources in this space, in particular ATLAS
and its OHDSI vocabulary-derived cohort definitions, is a high priority area for future work.

Finally, with the standardization that ACES offers, new opportunities for human interaction with
data are also made available, such as via a natural language interface to define ACES predicates or
configuration files and, thus, to extract downstream tasks, patient cohorts, or derived datasets in a
code-free manner on diverse input EHR formats. We aim to explore the viability of leveraging large
language models (LLMs) to directly format predicate and criteria definitions given a data dictionary,
and to automatically construct configuration files from natural language.

4.3 ACES AS A CATALYST FOR A NEW ERA OF BENCHMARKING

In addition to the clear impact of ACES on reproducibility, robustness, and accessibility of ML for
healthcare, we also feel that ACES is critical for a “new kind of benchmark” in the field — and, in so
being, is a portent of what needs to come should ML for healthcare progress to a more productive,
communal, and impactful stage (McDermott, 2025).

In particular, we argue that for this field to progress in the manner desired by the community and to
maximize positive impact for all patients, we need to develop methodologies to test, share, and de-
velop ML solutions across diverse datasets in a meaningful and reproducible manner, even without
said datasets being publicly available to general researchers. This capability is critical because,
without it, we will never be able to offer new inductive insights about which methods are most likely
to work best on novel, private data. In other words, if we cannot test our model training recipes
across the diverse sets of clinical care settings, populations, and conceptual dataset schemas that ex-
ist in the real world, we similarly cannot expect those training recipes to generalize well to a myriad
of downstream deployment areas.

Libraries like ACES, which make it as easy as possible for users to share the conceptual definitions
of their tasks and prediction areas across datasets — in such a way that their colleagues can use
them even over independent, private datasets — can help transform the kinds of benchmarking
studies that we can perform in ML for healthcare. For instance, the MEDS Decentralized Extensible
Validation (MEDS-DEV) (McDermott et al., 2024) effort is one such step towards enabling the
generalizable assessment of ML training recipes across datasets, clinical areas, and beyond.

5 CONCLUSION

In this work, we present the Automatic Cohort Extraction System for Event-Stream Datasets
(ACES). ACES is a system designed to intuitively define cohorts and downstream tasks of inter-
est for representation learning and reliably extract those cohorts from arbitrary datasets in event-
stream formats. This system enables significantly greater shareability of task definitions, repro-
ducibility of ML training and evaluation recipes, and is as easy to use as installing a package via
pip and running a simple command-line tool. We feel that ACES will be integral in the develop-
ment of new kinds of benchmarks in ML for healthcare, which can be explored across both pub-
lic and private datasets alike, as well as help characterize populations and tasks of interest in a
manner that cleanly separates dataset-specific components from shareable dataset-agnostic compo-
nents. To learn more about ACES and use it today in your work, please visit our GitHub repository
at: https://github.com/justin13601/aces, and the ACES online documentation at:
https://eventstreamaces.readthedocs.io/en/latest.
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A ACES ONLINE DOCUMENTATION INDEX

The full ACES online documentation is available at: https://eventstreamaces.
readthedocs.io/en/latest. We have also included a compiled PDF version of this doc-
umentation in the Supplementary Material.

To answer specific questions about ACES, please see the below index for the PDF documentation
(links to the associated online documentation are also provided).

How do you use ACES?
1. What is a task and how do you specify one?

Sample task descriptions and specifications are provided in the Task Examples section
in Chapter 3 (https://eventstreamaces.readthedocs.io/en/latest/
notebooks/examples.html).

1.1. What are predicates and how do you specify them?

For an overview of predicates and how they form the foundation of
ACES, please refer to the Predicates DataFrame section in Chapter 4
(https://eventstreamaces.readthedocs.io/en/latest/
notebooks/predicates.html).

1.2. What are windows and how do you specify them?

A window in ACES represents a segment in the patient record. For
details on how to define a window, please refer to Chapter 1.3.3
(https://eventstreamaces.readthedocs.io/en/latest/
readme.html#windows).

2. How do you extract a task from a dataset?

For general ACES usage instructions, please refer to Chapter 2.1 (https:
//eventstreamaces.readthedocs.io/en/latest/usage.html#
quick-start). Additionally, brief end-to-end instructions are also available in
Chapters 1.2 and 1.3.

2.1. Detailed Usage Instructions for ACES CLI

For detailed instructions on using ACES CLI, please refer to the Usage Guide
in Chapter 2.2 (https://eventstreamaces.readthedocs.io/en/
latest/usage.html#detailed-instructions).

2.2. Tutorial for the ACES Python API

For a step-by-step tutorial on using the ACES Python API, please refer to the
Code Example Notebook in Chapter 5 (https://eventstreamaces.
readthedocs.io/en/latest/notebooks/tutorial_meds.html).

3. ACES with / vs. Other Tools

For an overview of how ACES could be used with other existing complementary tools
for reproducible ML, please refer to Chapter 1.4.2 (https://eventstreamaces.
readthedocs.io/en/latest/readme.html#complementary-tools).

For an overview of how ACES compares to other existing alternative tools
for semi- or fully-automated cohort extraction, please refer to Chapter 1.4.3
(https://eventstreamaces.readthedocs.io/en/latest/readme.
html#alternative-tools).

How does ACES work?
1. What is the formal configuration language specification for ACES?
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For technical details on the ACES configuration language, please refer to
the Configuration Language Specification section in Chapter 6.1 (https:
//eventstreamaces.readthedocs.io/en/latest/technical.html#
configuration-language-specification).

2. Glossary of ACES Terminology

For a glossary of terminology used throughout ACES, please refer to the Algorithm Ter-
minology section in Chapter 6.3 (https://eventstreamaces.readthedocs.
io/en/latest/technical.html#algorithm-terminology).

3. What is the ACES extraction algorithm?

For technical details on the ACES algorithm, please refer to the Algorithm Design
section in Chapter 6.4 (https://eventstreamaces.readthedocs.io/en/
latest/technical.html#algorithm-design).

4. Full ACES Module API Documentation

For the complete ACES module documentation, including doctests that ensure algo-
rithm correctness, please refer to the Module API sections in Chapter 8 (https://
eventstreamaces.readthedocs.io/en/latest/api/modules.html).

How well does ACES work?
1. Computational Profile

For an overview of the computational profile of ACES, please refer to the Computational
Profile section in Chapter 7 (https://eventstreamaces.readthedocs.io/
en/latest/profiling.html).

2. Further Examples

For additional examples of configuration files and criteria of different ML for health-
care tasks, please refer to the MEDS-DEV benchmarking effort on GitHub: https:
//github.com/mmcdermott/MEDS-DEV.
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B COMPARATIVE EXPERIMENTS

We conducted preliminary experiments to quantitatively compare ACES with other alternative tools.
Using the OMOP version of the MIMIC-IV Demo, as well as a synthetic dataset of 1,000 patients
generated using Synthea (Walonoski et al., 2017) and converted into OMOP, we queried four tasks
using ACES and two of the most comparable tools, OMOP-learn and DPM360.

We collected metrics including script runtime, peak memory usage (in MiBs), lines of code required
(including configuration files and any template code needed to execute extraction), and human time
spent. All experiments were conducted on a default A100 GPU instance with 84 GB of RAM and
12 CPU cores from Google Cloud Platform’s Compute Engine.

Table B.1: Quantitative comparison of ACES and other comparable cohort extraction tools across
datasets and tasks.

Dataset Method Task Runtime (s) Peak Memory (MiB) Lines of Code Human Time (s)

Synthea-1000

ACES via MEDS

First 24h in-hospital mortality 0.386 389 35 120
30d post-hospital-discharge mortality 0.236 351 32 90
30d re-admission 0.337 355 22 60
End-of-life prediction 0.449 421 28 120

DPM360 via OMOP

First 24h in-hospital mortality 5.932 390 205 2,126
30d post-hospital-discharge mortality 4.188 550 257 1,200
30d re-admission 6.260 870 288 2,020
End-of-life prediction 4.901 387 222 1,500

MIMIC-IV Demo

ACES via MEDS

First 24h in-hospital mortality 0.617 545 35 180
30d post-hospital-discharge mortality 0.301 509 32 90
30d re-admission 0.455 532 22 90
End-of-life prediction 0.349 589 28 300

OMOP-learn via OMOP

First 24h in-hospital mortality 12.220 688 172 3,623
30d post-hospital-discharge mortality 8.608 587 199 2,441
30d re-admission 19.710 640 168 2,998
End-of-life prediction 24.540 932 251 12,000

We also qualitatively compared the adaptability of these approaches to any other given ML task.
While ACES requires simple modifications to the task configuration file to capture new task logic
or cohort criteria, new ATLAS executions, bespoke SQL queries, and changes to Python parameters
may be needed for DPM360 and OMOP-learn.

While we acknowledge potential biases in these results due to our familiarity with ACES and only
surface exposure to other extraction tools, we have aimed for a fair and objective evaluation. Based
on our experience and preliminary user feedback, we find ACES to be intuitive and believe it offers
a significantly improved workflow with more comprehensive functionality.
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