

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CHARTGALAXY: A DATASET FOR INFOGRAPHIC CHART UNDERSTANDING AND GENERATION

Anonymous authors

Paper under double-blind review

Figure 1: ChartGalaxy, a million-scale dataset of synthetic and real infographic charts with data tables, supporting applications in infographic chart understanding, code generation, and chart generation.

ABSTRACT

Infographic charts are a powerful medium for communicating abstract data by combining visual elements (*e.g.*, charts, images) with textual information. However, their visual and structural richness poses challenges for large vision-language models (LVLMs), which are typically trained on plain charts. To bridge this gap, we introduce ChartGalaxy, a million-scale dataset designed to advance the understanding and generation of infographic charts. The dataset is constructed through an inductive process that identifies 75 chart types, 440 chart variations, and 68 layout templates from real infographic charts and uses them to create synthetic ones programmatically. We showcase the utility of this dataset through: 1) improving infographic chart understanding via fine-tuning, 2) benchmarking code generation for infographic charts, and 3) enabling example-based infographic chart generation. By capturing the visual and structural complexity of real design, ChartGalaxy provides a useful resource for enhancing multimodal reasoning and generation in LVLMs.

Code: <https://github.com/ChartGalaxy/ChartGalaxy>

Data & Dataset Card: <https://huggingface.co/datasets/ChartGalaxy/ChartGalaxy>

1 INTRODUCTION

Infographic charts are widely recognized as an effective form for communicating data and are commonly used in news media, business, and education (Cui et al., 2022; Elaldi & Çifçi, 2021). By integrating imagery (*e.g.*, icons and metaphorical graphics) alongside charts and textual information, they present abstract data in a manner that is both engaging and easy to understand, making data more accessible to a broad audience. Despite their effectiveness for human audiences, foundation models, such as GPT-4 (Achiam et al., 2023), Gemini (Team et al., 2023), and LLaVA (Liu et al., 2023c), face considerable challenges in automatically understanding infographic charts. The intricate interplay between visual and textual elements, diverse layout styles, and the need for cross-modal semantic reasoning pose significant difficulties. For example, Xie et al. (2025) found that MLLMs perform worse in understanding infographic charts than plain charts constructed from the same data, largely because the imagery elements used in infographics introduce additional reasoning challenges. Moreover, automatically generating high-quality infographic charts remains an open challenge. While human designers can create visually diverse and semantically rich infographic charts, this process is

054 time-consuming and requires expertise. Meanwhile, AI-generated charts often suffer from issues such
 055 as low data fidelity, modest visual quality, limited diversity, and a lack of coherence across modalities.
 056 This highlights the critical need for a comprehensive dataset of infographic charts that enables model
 057 development in both automatic understanding and generation. However, existing efforts focus on
 058 constructing datasets that are mostly limited to plain charts, failing to capture the diverse range of
 059 design styles and layouts that are key characteristics of infographic charts. This limits the ability of
 060 the trained models to generalize across different real-world applications where infographic charts are
 061 commonly used.

062 To address this limitation, we build ChartGalaxy, a million-scale dataset of high-quality real and
 063 synthetic infographic charts to facilitate automated understanding and generation. As shown in
 064 Fig. 2, we build ChartGalaxy in two steps: 1) collecting real infographic charts; 2) programmatically
 065 creating synthetic infographic charts. The real infographic charts are collected from 18 reputable
 066 chart-rich websites, such as *Visual Capitalist* and *Statista*. The synthetic infographic charts are created
 067 following an inductive structuring process (Schadewitz & Jachna, 2007). Specifically, we identify
 068 design patterns grounded in real infographic charts, including **75 chart types** (e.g., bar charts), **440 chart variations**
 069 that reflect different visual element styles, and **68 layout templates** that define
 070 spatial relationships among elements. Based on these patterns, we then programmatically generate
 071 synthetic ones. The core of the generation is a human-in-the-loop pipeline that iteratively extracts and
 072 expands layout templates from real infographic charts using a detection model trained on synthetic
 073 infographic charts.

074 The final ChartGalaxy dataset includes 1,701,356 programmatically created infographic charts and
 075 61,833 real infographic charts. It is characterized by two key features. First, the high-quality
 076 infographic designs and associated templates from these reputable websites ensure a rich diversity in
 077 design styles and structural complexity. Second, each infographic chart, whether real or synthetic, is
 078 paired with its source data table, enabling a clear mapping between data and its visual representation.
 079 Together, these make ChartGalaxy well-suited for training and evaluating LVLMs for automatic
 080 infographic understanding and generation. We demonstrate the utility of ChartGalaxy through three
 081 representative applications, each highlighting a distinct aspect of its value (Fig. 1). First, to evaluate
 082 and improve the ability of foundation models to understand infographic charts, we introduce a dataset
 083 for infographic chart understanding through the task of visual question answering (VQA). Second, to
 084 assess the capacity of models to generate executable representations of complex visual layouts, we
 085 present a benchmark for infographic chart code generation. Third, to explore the use of ChartGalaxy
 086 in creative content generation, we develop an example-based infographic chart generation method.

087 The main contributions of our work include:

- 088 • A pipeline for programmatically creating high-quality synthetic infographic charts based on
 089 the extracted layout templates from real designs.
- 090 • A comprehensive dataset comprising a large collection of representative and diverse real and
 091 synthetic infographic charts paired with tabular data.
- 092 • Three applications for showcasing the utility of our dataset in infographic chart understanding,
 093 code generation, and example-based infographic chart generation.

095 2 RELATED WORK

096 Early efforts in chart dataset construction primarily focus on building collections of **plain charts**
 097 to support chart understanding and generation (Hu et al., 2024; Yang et al., 2024a). These datasets
 098 can be further categorized into three types based on their sources: synthetic datasets, web-collected
 099 datasets, and mixed datasets. **Synthetic datasets** are programmatically generated, using tabular
 100 data drawn from probability distributions (Kafle et al., 2018; Kahou et al., 2017), collected from
 101 online data sources (Hu et al., 2024; Methani et al., 2020; Chaudhry et al., 2020; Xu et al., 2023;
 102 Tang et al., 2023; Akhtar et al., 2023), or simulated from large language models (Xu et al., 2023;
 103 Xia et al., 2024; Han et al., 2023; Zhao et al., 2025). While this method enables large-scale dataset
 104 construction, the controlled generation process often results in a limited diversity of chart types
 105 and visual styles, which reduces generalizability to more varied real-world scenarios. To improve
 106 diversity, **web-collected datasets** have been introduced, which collect charts from chart-sharing
 107 websites (Savva et al., 2011; Choi et al., 2019; Masry et al., 2022; Kantharaj et al., 2022a; Huang

Figure 2: Overview of our dataset construction method.

et al., 2025b; Obeid & Hoque, 2020; Kantharaj et al., 2022b; Masry et al., 2024a), charting library galleries such as Matplotlib (Wu et al., 2024; Yang et al., 2024b), and publications in academic repositories such as ArXiv (Wang et al., 2024; Hsu et al., 2021; Zhang et al., 2024). These datasets capture a broader variety of human-designed chart styles, but their overall size is often limited due to the time-consuming nature of manual verification and annotation. To overcome the scale limitations while preserving diversity, **mixed datasets** are then introduced. These datasets merge web-collected charts with synthetically generated ones in a two-step workflow: 1) collect real charts from the internet and 2) manually synthesize additional charts that follow the same real-world design patterns (Liu et al., 2023a;b; Masry et al., 2023; Meng et al., 2024; Yang et al., 2025). This hybrid strategy ensures real-world coverage while increasing dataset size.

In contrast, **infographic charts** remain underrepresented in the aforementioned datasets. This creates challenges in evaluating and developing LVLMs' capabilities on infographic charts (Masry et al., 2025). To bridge this gap, recent efforts have focused on building specific datasets for infographic charts. InfographicVQA makes an initial effort by searching “infographics” on the internet and scraping 5,485 infographics (Mathew et al., 2022). More recently, ChartQAPro provides a more challenging benchmark comprising 190 infographic charts, 258 dashboards, and 893 plain charts (Masry et al., 2025). However, these datasets are limited in scale. Moreover, synthesizing infographic charts is challenging, given the intricate interplay between visual and textual elements. To overcome these limitations, we develop an automatic infographic chart generation method that synthesizes infographic charts by leveraging the layout templates and chart variations extracted from real designs.

3 DATASET CONSTRUCTION METHOD

3.1 METHOD OVERVIEW

Fig. 2 presents an overview of our method, which includes two stages: **real infographic chart collection** and **synthetic infographic chart creation**.

The **real infographic charts** are collected from two main sources. First, we gather infographics from 18 well-known chart-rich websites that permit research use, such as *Visual Capitalist* and *Statista*. The full list of these websites and their licenses is provided in Appendix 5. Second, to further increase the diversity of infographic styles, we retrieve infographic charts via Google Images and Bing Images, following prior work (Masry et al., 2024a). We apply the platforms' built-in license filters to retain only images available under Creative Commons licenses. The ethical consideration in the data collection process is further discussed in Ethics Statement. To ensure data quality, we remove duplicate images using Perceptual Hashing and CLIP similarity (Radford et al., 2021). Moreover, we extract per-chart tabular data using LVLMs in a multi-step, human-in-the-loop verification pipeline.

162 This pipeline ensures accuracy and reduces model-induced noise. Details of this verification pipeline
 163 are discussed in Appendix B. This results in 61,833 real infographic charts with corresponding tables.
 164 The **synthetic infographic chart creation** stage follows an inductive structuring process that extracts
 165 design patterns, such as layout templates and chart variations, from real infographic charts and then
 166 uses these patterns to programmatically create high-quality synthetic charts. It includes three main
 167 steps: 1) identifying chart types and their variations, 2) extracting layout templates, and 3) creating
 168 synthetic infographic charts.

169

170 3.2 CHART TYPE AND VARIATION IDENTIFICATION

171

172 We first summarize 75 chart types observed in the collected real infographic charts, drawing on two
 173 existing taxonomies: *Data Viz Project* and *Datylon*. For each chart type, we extract chart variations
 174 featuring diverse visual styles, such as element shapes and icon placement. This results in 440 chart
 175 variations in total. The full lists of chart types and variations are provided in Appendix D.1 and D.2.
 176 We implement these chart types and variations using the expressive D3.js (Bostock et al., 2011),
 177 which supports visual features unavailable in libraries like Matplotlib or Seaborn.

178

179 3.3 LAYOUT TEMPLATE EXTRACTION

180

181 A layout template defines the spatial relationships among the text and visual elements in infographic
 182 charts. Example templates are illustrated in the bottom-left corner of each chart in Fig. 3, **and a**
 183 **concrete example in JSON format is provided in Appendix F**. We adopt a human-in-the-loop pipeline
 184 to initialize and expand these templates from real infographic charts.

185 **Initialization** Three co-authors manually annotate the bounding boxes of the text, images, and
 186 charts in 1,500 real infographic charts sampled from two high-quality sources: *Statista* (clean,
 187 minimalist designs) and *Visual Capitalist* (denser and more pictorial designs). From these annotations,
 188 we summarize an initial set of 55 layout templates that capture elements’ relative positions (*e.g.*,
 189 title on the top-left, chart on the bottom-right) and pairwise overlaps (overlapping or not).

190 **Expansion** To ensure the coverage and diversity of templates, we build a detection model to analyze
 191 the unlabeled real infographic charts in ChartGalaxy and expand the layout template set. Using the
 192 initial templates, we programmatically create 120,000 synthetic infographic charts (Sec. 3.4), each
 193 with annotated bounding boxes. We then develop a detection model by fine-tuning InternImage (Wang
 194 et al., 2023) along with the DINO (Zhang et al., 2023) detector on these synthetic charts. We use this
 195 model to detect chart and image regions (Zhu et al., 2025a) and use PP-OCRv4 to extract text. We
 196 then compare the detected layouts with the existing templates using LTSim (Otani et al., 2024), a
 197 state-of-the-art method for measuring layout similarity. Layouts with low similarity scores are flagged
 198 as potential new templates. Next, we cluster these layouts using k-means ($k = 50$) and manually
 199 examine the cluster centroids to identify distinct layouts. This process yields 13 additional layout
 200 templates, expanding the set to 68 templates in total. The full list is provided in Appendix F.

201

202 3.4 TEMPLATE-BASED INFOGRAPHIC CHART CREATION

203

204 The creation process involves three steps: 1) curating data tables; 2) generating/recommending
 205 elements based on the data table; and 3) optimizing the layout based on the selected template. Fig. 3
 206 shows six examples of the synthetic charts. More examples are provided in Appendix G.

207 **Tabular data curation** To enhance data diversity for chart generation, we build a rich repository of
 208 real and synthetic tabular data. For real data, we collect 200,085 tables from well-established sources,
 209 including VizNet (Hu et al., 2019), UN data, Our World in Data, and Papers with Code. For synthetic
 210 data, we generate 98,483 tables with Gemini-2.0-Flash following Han et al. (2023). To facilitate
 211 downstream processing, we also complement each table with a topic (*e.g.*, “NBA play-offs”) extracted
 212 by Gemini-2.0-Flash and several data facts (*e.g.*, trends, comparisons) following Wang et al. (2020).

213 **Element generation/recommendation** For each data table, we generate/recommend key elements
 214 of the infographic chart, including 1) text, 2) image, and 3) chart.

215 *Text.* The title and subtitle are generated using a retrieval-augmented prompting strategy. Specifically,
 we use Sentence-BERT (Reimers & Gurevych, 2019) to retrieve the three most relevant real info-

239 Figure 3: Examples of synthetic infographic charts in ChartGalaxy. The bottom-left illustration on
240 each infographic chart shows the corresponding layout template.

241
242 graphic charts according to the data topic and data fact. Using them as in-context references, we
243 prompt Gemini-2.0-Flash to generate the title and subtitle aligned with the data table.
244

245 *Image.* To recommend images for infographic charts, we build a repository and retrieve semantically
246 relevant images from it using the associated data tables. Images are collected from publicly available
247 icon resources such as Icon645 (Lu et al., 2021) and Noun Project. We apply heuristic filters to remove
248 low-quality images, excluding those with low ink ratios, poor resolution, or extreme aspect ratios.
249 Using Gemini-2.0-Flash, we then generate descriptive keywords and captions for each image that
250 depict its content and visual style. Images that are overly literal, visually cluttered, or lack symbolic
251 clarity are discarded. This process results in a curated repository of 681,459 images. To retrieve
252 relevant images for each infographic chart, we compute the similarity between the image keywords
253 and the generated chart title using Sentence-BERT embeddings (Reimers & Gurevych, 2019).

254 *Chart.* Chart generation proceeds in two steps: selecting a suitable chart type and rendering with a
255 specific chart variation. First, based on the attributes (e.g., categorical, numerical) and characteristics
256 (e.g., scales) of the given data table, we identify candidate chart types following the predefined
257 data-to-chart mapping rules. For example, a data table with one categorical column and two
258 numerical columns may be mapped to a scatter plot. When multiple chart types are suitable, we
259 prompt Gemini-2.0-Flash to select the optimal one, considering data types, value distributions,
260 and temporal patterns (Luo et al., 2018). A full list of mapping rules and prompts is provided
261 in Appendix E. Next, we choose a specific variation under the selected chart type using adaptive
262 sampling (Goodfellow et al., 2016) that favors underrepresented variations to maintain distributional
263 balance. For variations requiring additional images (e.g., Fig. 3(a)), we retrieve the relevant ones
264 from our curated image repository. Finally, we apply semantically resonant color palettes for chart
265 rendering based on the generated chart titles and subtitles. These palettes are extracted from the
266 collected real infographic charts (Liu et al., 2024). If a selected palette contains fewer colors than
267 required, we supplement additional harmonic and discriminable colors (Chen et al., 2025).

268 **Layout optimization** Previous research has shown that a compact layout with appropriate white
269 space enhances both visual appeal and data clarity (Coursaris & Kripiniris, 2012). Consequently,
we aim to select the template with the highest ink ratios while preserving readability. To this end,
we first filter out templates that are incompatible with the generated elements (e.g., unintended

270 overlaps between elements). For each remaining template t , we treat its spatial relationships as
 271 hard constraints during optimization. We begin by initializing element positions through rejection
 272 sampling, repeatedly drawing random candidate layouts and retaining only those that satisfy the
 273 spatial relationships specified by the template. This provides a structurally coherent starting point.
 274 Next, we refine the layout by adjusting element positions and sizes to reduce unnecessary white space,
 275 while preserving all template-specified constraints. We measure white space using the ink ratio and
 276 select the optimized result \mathcal{E} with the highest ink ratio as the final layout.

$$\max_{t, \mathcal{E}} |\cup_i e_i| / |f(\cup_i e_i)|, \quad \text{s.t. } g(\mathcal{E}, t) = 1; \quad d(\partial e_i, \partial e_j) \geq p, \forall i \neq j. \quad (1)$$

277 Here, e_i is the pixel set of an element, $f(e)$ denotes the pixel set within the tight-fitting bounding
 278 box of e , \mathcal{E} is the set of elements, and $g(\mathcal{E}, t)$ is the indicator function that equals 1 if \mathcal{E} satisfies the
 279 spatial relationships specified by the template t . We enforce that a minimum pairwise distance d
 280 between element contours ∂e_i and ∂e_j is larger than a given threshold p . This layout optimization is
 281 formulated as a constrained packing problem and solved by grid search (Lodi et al., 1999).
 282

285 3.5 DATA STATISTICS

286 ChartGalaxy contains 1,701,356 programmatically generated infographic charts and 61,833 real ones,
 287 covering 75 chart types, 440 chart variations, and 68 layout templates. Each infographic chart in the
 288 dataset is associated with tabular data, providing rich supervision for training and evaluation tasks.
 289 Among the 75 chart types, the most frequently occurring ones are horizontal bar charts (11.7%),
 290 vertical bar charts (4.9%), and scatterplots (3.5%). Each chart type has up to 27 variations, capturing a
 291 wide range of styles in element shapes, icon placement, and rendering effects. We observe differences
 292 in the frequency of template usage. For example, the template in Fig. 3(f) is the most common in the
 293 synthetic charts (6.9%). Differences in template usage are influenced by each template’s structural
 294 flexibility, compatibility with chart types, and prevalence in real-world use cases. For more analysis
 295 on our dataset, please refer to Appendix C.
 296

297 4 EXPERIMENTS

299 4.1 INSTRUCTION DATASET FOR INFOGRAPHIC CHART UNDERSTANDING

300 In this experiment, we construct an instruction dataset with ChartGalaxy to enhance model capabilities
 301 on infographic chart understanding. We validate its usefulness by fine-tuning two open-source LVLMs,
 302 demonstrating improvements on both public benchmarks and our independent evaluation set.
 303

304 **Dataset construction** To improve LVLMs’ data comprehension and visual understanding of info-
 305 graphic charts, we construct an instruction dataset comprising 443,455 question-answer pairs based
 306 on 70,248 charts sampled from ChartGalaxy, ensuring balanced coverage of diverse chart types
 307 for better fine-tuning performance. The questions are classified into three types: 1) **Text-based**
 308 **reasoning**. We incorporate well-established question types from prior work, including open-form
 309 questions (Masry et al., 2025) and template-based questions (Meng et al., 2024). These questions
 310 cover data identification (DI), data comparison (DC), data extraction with condition (DEC), and fact
 311 checking (FC). 2) **Visual-element-based reasoning**. We extend beyond purely text-based reasoning
 312 questions by incorporating visual elements from charts, such as icons (e.g., “What was the wine
 313 export value of in 2024?”). These questions require models to associate visual elements with
 314 their corresponding data values, thus testing their ability to conduct more complex cross-modal
 315 reasoning (Xie et al., 2025). 3) **Visual understanding**. This type includes style detection (SD),
 316 visual encoding analysis (VEA, e.g., “What data dimension is encoded using different colors in this
 317 infographic chart?”), and chart classification (CC). The three types of questions evaluate a model’s
 318 ability to interpret visual elements and underlying structural representations of the data. Detailed
 319 prompts and methods for generating question-answer pairs are provided in Appendix I.1. Moreover,
 320 we construct an independent, human-verified evaluation set containing 2,176 synthetic charts with
 321 4,975 question-answer pairs. We focus on synthetic charts here, as they provide bounding-box
 322 annotations that enable visual-element-based reasoning questions.
 323

Experimental setup We fine-tune two representative open-source LVLMs, InternVL3-8B (Zhu
 et al., 2025b) and Qwen2.5-VL-7B (Bai et al., 2025). Training details are reported in Appendix H.1.

Our evaluation benchmark consists of two parts: 1) public benchmarks including InfographicVQA (Mathew et al., 2022), which focuses on general infographics with only a subset being infographic charts, and ChartQAPro (Masry et al., 2025), which covers various chart types; and 2) the aforementioned independent evaluation set of 2,176 charts with 4,975 question-answer pairs specifically targeting infographic charts. For the evaluation metrics, we follow previous work on chart question answering (Masry et al., 2025), using relaxed accuracy with a 5% margin for numerical answers, ANLS for textual answers, and exact matching for multiple-choice questions.

Results and analysis Tables 1 and 2 show the evaluation results on the public benchmarks and our evaluation set. After fine-tuning with ChartGalaxy, both models demonstrate improved performance gains across all question types. On the public benchmarks (Table 1), InternVL3 improves performance by 3.80% on InfographicVQA and 5.98% on ChartQAPro, while Qwen2.5-VL shows a 4.44% gain on InfographicVQA and a 3.59% improvement on ChartQAPro. On our evaluation set (Table 2), both models show consistent improvements across all question types, with overall gains of +26.87% for InternVL3 and +23.85% for Qwen2.5-VL. The most notable improvements are observed in the visual understanding questions, with increases of up to +60.49% for style detection and +40.78% for visual encoding analysis. These results indicate that existing pre-training routines may underrepresent questions involving chart visual styles and data encoding, an area our dataset helps to supplement. Performance also improves across the text-based and visual-element-based reasoning questions. Qwen2.5-VL performs well on text-based reasoning, while InternVL3 shows relatively stronger gains on visual-element-based reasoning. Additional results, including ablation studies on real/synthetic charts and evaluation on a smaller model (Qwen2.5-VL-3B), are provided in Appendix H.1.

Table 1: Performance on public benchmarks w/ and w/o ChartGalaxy.

Model	InfographicVQA				ChartQAPro			
InternVL3-8B	76.19				38.15			
+ ChartGalaxy	79.99				44.13			
(+)	(+3.80)				(+5.98)			
Qwen2.5-VL-7B	78.59				37.97			
+ ChartGalaxy	83.03				41.56			
(+)	(+4.44)				(+3.59)			

Table 2: Performance on our independent evaluation set w/ and w/o ChartGalaxy.

Model	Text-Based Reasoning				Visual-Element-Based Reasoning				Visual Understanding			Overall
	DI	DC	DEC	FC	DI	DC	DEC	FC	SD	VEA	CC	
InternVL3-8B	85.36	55.24	51.66	75.80	33.32	18.91	37.62	61.58	30.56	50.57	73.03	53.20
+ ChartGalaxy	91.67	74.39	75.14	89.26	69.12	42.79	58.57	80.23	91.05	91.35	99.39	80.07
(+)	(+6.31)	(+19.15)	(+23.48)	(+13.46)	(+35.80)	(+23.88)	(+20.95)	(+18.65)	(+60.49)	(+40.78)	(+26.36)	(+26.87)
Qwen2.5-VL-7B	87.45	66.32	64.44	78.53	40.76	30.65	46.00	53.95	28.70	50.08	70.91	56.50
+ ChartGalaxy	93.28	80.98	86.31	87.34	66.15	39.80	72.38	79.38	87.65	90.86	98.18	80.35
(+)	(+5.83)	(+14.66)	(+21.87)	(+8.81)	(+25.39)	(+9.15)	(+26.38)	(+25.43)	(+58.95)	(+40.78)	(+27.27)	(+23.85)

4.2 BENCHMARKING INFOGRAPHIC CHART CODE GENERATION

This experiment presents a benchmark to assess LVLMs’ code generation for infographic charts.

Benchmark construction The benchmark is designed to evaluate the Direct Mimic task (Yang et al., 2025), where an LVLM is prompted to generate the D3.js code for a given infographic chart image. Due to variation in coding styles and implementation strategies (Si et al., 2025), directly comparing code quality is challenging. Therefore, we evaluate the rendered output instead of the code itself. Specifically, we render the output as both an SVG and a PNG: the SVG enables fine-grained analysis, as it contains precise information about visual and textual elements (e.g., positions, colors), while the PNG supports direct visual comparison. To support this task, we randomly sampled 500 synthetic infographic charts, with explicit coverage of all chart types, variations, and layout templates. Each chart is paired with a ground-truth triplet: a PNG image, an SVG, and the corresponding tabular data. Benchmark details are provided in Appendix H.2.

Following previous benchmarks (Si et al., 2025; Yang et al., 2025), we measure the similarity between the ground-truth chart and the one rendered by the generated code at two levels: a **high-level score** (overall visual similarity judged by GPT-4o with the PNG images) and a **low-level score** (average similarity across fine-grained SVG elements). To compute the low-level score, we parse the SVG elements from the rendered chart and the ground-truth one and match them based on attributes such as tag types and positions. This matching is formulated as a linear assignment problem and solved using the Jonker-Volgenant algorithm (Crouse, 2016; Si et al., 2025; Chen et al., 2024). Based on the matching results, we compute a low-level score by averaging six metrics: area, text, image, color, position, and size. The area metric captures the ratio of matched element area to the total element area.

378
 379 Table 3: Performance comparison of 17 LVLMs on our proposed code generation benchmark,
 380 reporting the code execution success rate (Exec. Rate), low-level, high-level, and overall scores.

381 Model	382 Exec. Rate	383 Low-Level						384 High-Level		385 Overall
		386 Area	387 Text	388 Image	389 Color	390 Position	391 Size	392 Avg.	393 GPT-4o	
<i>Proprietary</i>										
Gemini-2.5-Pro	100.00	90.72	95.69	86.37	87.67	89.23	69.05	86.45	83.97	85.21
GPT-4.1	100.00	90.58	91.58	86.53	87.52	87.13	55.61	83.16	76.84	80.00
Claude-3.7-Sonnet	100.00	88.96	92.39	77.90	84.78	87.57	67.29	83.15	76.66	79.91
GPT-4.1-mini	99.60	88.21	88.31	79.32	86.43	85.61	62.85	81.79	77.59	79.69
OpenAI-o4-mini	98.80	83.13	79.26	67.53	83.93	84.95	64.07	77.14	74.79	75.97
Gemini-2.5-Flash	96.40	84.52	87.02	73.21	77.81	83.01	62.29	77.98	73.12	75.55
OpenAI-o1	97.20	85.01	78.07	80.28	81.70	82.35	60.76	78.03	71.35	74.69
OpenAI-o3	92.40	83.84	82.43	72.15	78.79	81.63	63.44	77.05	71.38	74.22
GPT-4o	99.00	74.86	63.54	34.12	76.60	80.12	56.27	64.25	67.10	65.67
GPT-4.1-nano	100.00	74.97	59.94	36.06	69.26	75.10	47.69	60.50	59.62	60.06
Doubaio-1.5-Vision-Pro	97.20	59.05	48.08	36.63	60.09	66.02	40.00	51.65	42.58	47.11
Moonshot-v1-Vision	95.20	60.86	45.54	33.68	60.86	63.33	39.81	50.68	38.11	44.39
<i>Open-Source</i>										
Llama-4-Maverick-17B	99.60	76.59	56.37	59.24	69.59	75.39	49.87	64.51	58.06	61.29
Qwen2.5-VL-72B	92.60	73.50	63.22	49.33	65.06	73.14	47.53	61.96	52.21	57.09
InternVL3-78B	95.60	73.36	47.98	62.19	65.76	70.35	43.74	60.56	49.58	55.07
Llama-4-Scout-17B	98.20	71.08	51.81	45.27	63.48	69.95	42.28	57.31	46.50	51.91
Qwen2.5-VL-32B	81.60	60.37	49.37	28.19	54.37	61.37	37.60	48.55	44.42	46.48

400 The text and image metrics assess the similarity of generated text and image elements, respectively.
 401 The color, position, and size metrics evaluate visual consistency in these attributes among matched
 402 elements. Details of the evaluation metrics are provided in Appendix H.2. Following Yang et al.
 403 (2025), we also calculate the **overall** score as the average of the high-level and low-level scores,
 404 ranging from 0 to 100. Notably, if the code fails to render the chart, both scores are set to 0.

405 **Experimental setup** We benchmark 17 widely used LVLMs, including 12 proprietary ones and 5
 406 open-source ones, as shown in Table 3. Model configurations and detailed prompts are provided in
 407 Appendix H.2 and I.2, respectively.

409 **Results and analysis** Table 3 presents the results of the 17 LVLMs on our benchmark. We highlight
 410 key findings below. First, among proprietary models, Gemini-2.5-Pro achieves the highest overall
 411 score of 85.21. Among open-source models, Llama-4-Maverick-17B performs the best with a score
 412 of 61.29, outperforming the proprietary GPT-4.1-nano (60.06). However, it still lags behind top-
 413 performing proprietary models. Within the GPT-4.1 series, GPT-4.1 and GPT-4.1-mini achieve nearly
 414 identical overall scores (80.00 vs. 79.69). However, GPT-4.1 consistently outperforms GPT-4.1-mini
 415 across all individual low-level metrics, except the size metric, where it scores notably lower (55.61
 416 vs. 62.85). This drop suggests that GPT-4.1 may struggle to preserve element size accurately, highlighting
 417 the need for further investigation. Additional results and analysis are provided in Appendix H.2.

418 4.3 EXAMPLE-BASED INFOGRAPHIC CHART GENERATION

420 This experiment demonstrates how ChartGalaxy can be used to support the generation of infographic
 421 charts through layout and style adaptation.

422 **Method** We develop an example-based method that transforms user-provided tabular data into an
 423 infographic chart, aligning with the layout and visual style of a given example infographic chart.
 424 This example is either provided by the user or automatically retrieved from the ChartGalaxy dataset
 425 by selecting the chart most relevant to the user-provided tabular data and its column descriptions.
 426 The key feature of this method is its ability to generate visually coherent infographic charts by
 427 reusing the layout of well-designed examples and leveraging powerful detection and vision-language
 428 models. To enable this capability, we first use the detection model described in Sec. 3.3 to detect key
 429 elements (e.g., icons, text blocks) in the example infographic chart. We then generate/recommend
 430 new elements from the provided tabular data (Sec. 3.4), initialize their layout using the extracted
 431 positional information from the example, and refine the arrangement through the layout optimization
 432 module (Sec. 3.4).

Figure 4: Three examples of infographic charts used in Sec. 4.3. In each example, A is the reference chart, B and C are generated by GPT-Image-1 and our method, respectively, using the same data.

Table 4: Performance comparison between our method and GPT-Image-1 (Mean, [95% CI]).

Method	Fidelity	Aesthetics	Creativity
Ours	4.63, [4.51, 4.75]	4.14, [3.95, 4.33]	3.95, [3.77, 4.13]
GPT-Image-1	2.10, [1.71, 2.50]	2.90, [2.48, 3.33]	2.65, [2.28, 3.03]

User study setup We conducted a user study with 16 experts in design or visualization to evaluate the quality of the generated infographic charts using our method and GPT-Image-1, a state-of-the-art image generation model. The evaluation focused on three key metrics: **fidelity** (how accurately the data is represented), **aesthetics** (how appealing the infographic chart is), and **creativity** (how innovative the design is). Experts were asked to rate 30 pairs of infographic charts generated by our method and GPT-Image-1 based on the same tabular data and reference infographic chart, using a five-point Likert scale (1=poor, 5=excellent) for each metric. Fig. 4 shows examples of the generated infographic charts and the reference. The prompt used for GPT-Image-1 is provided in Appendix I.3.

Results and analysis Table 4 shows that our method significantly outperforms GPT-Image-1 across all three metrics based on the Wilcoxon signed-rank test on the user rating data ($p < 0.01$): **fidelity** (average: 4.63 vs. 2.10), **aesthetics** (4.14 vs. 2.90), and **creativity** (3.95 vs. 2.65). Particularly, our method achieves high fidelity by accurately representing data through carefully implemented chart variations. Some scores are slightly lower due to expert preferences for alternative chart types in certain cases. In contrast, GPT-Image-1 often exhibits serious fidelity-related issues, such as incorrect labels, disproportionate representations, and mismatched data elements. In terms of aesthetics and creativity, our method benefits from accurately extracting layout templates from reference infographic charts and supporting a wider variety of chart types beyond basic chart types, such as bar charts and line charts. By comparison, GPT-Image-1 tends to use basic chart types with limited variations, leading to outputs that are visually simple and monotonous. The detailed analysis is provided in Appendix H.3.

486

5 CONCLUSION

488 We echo the growing interest in multimodal understanding and generation in LVLMs by introducing
 489 ChartGalaxy, a million-scale, high-quality dataset of 61,833 real and 1,701,356 synthetic infographic
 490 charts. Grounded in real designs, our structured synthesis pipeline enables the scalable creation of
 491 diverse infographic charts. By providing aligned data-chart pairs, extracted layout templates, and
 492 three representative applications, we aim to advance the development of foundation models capable
 493 of interpreting, reasoning, and generating complex infographic charts.

494 At the same time, we acknowledge that the current ChartGalaxy dataset primarily focuses on single-
 495 chart infographics, limiting its ability to capture the complexity of multi-chart narratives. As a result,
 496 future work should explore the generation and analysis of multi-chart infographics, which emphasize
 497 storytelling through coordinated visual elements. Additionally, enriching the interplay between text
 498 and visuals could further enhance models' capacity for nuanced multimodal understanding.

500

ETHICS STATEMENT

502 We strictly comply with the terms of use of the original sources and standard research ethics in
 503 dataset construction and evaluation. **1. Real infographic charts.** We only collect infographic charts
 504 from sources that explicitly permit research use: i) 18 chart-rich websites (*e.g.*, Visual Capitalist,
 505 Statista), each of which provides clear copyright or license terms (see Table 5); ii) Google Images
 506 and Bing Images, where we apply built-in license filters to retain only charts explicitly marked under
 507 Creative Commons licenses. To further reduce copyright risks, we release only the URLs of real
 508 charts, following prior work (Masry et al., 2024a; Schuhmann et al., 2022). **2. Synthetic infographic**
 509 **charts.** The synthetic infographic charts are generated using resources that are permitted for academic
 510 use, including tabular data from openly licensed repositories: UN data (Public domain), Our World
 511 in Data (CC BY), VizNet (Hu et al., 2019) (CC BY-NC-SA), and Papers with Code (CC BY-SA);
 512 as well as images from publicly available resources with explicit reuse permissions: Icon645 (Lu
 513 et al., 2021) (CC BY-NC-SA), Flaticon (Royalty-Free License), Iconshock (Royalty-Free License),
 514 Heroicons (MIT License), and Google Material Icons (Apache License 2.0). **3. Sensitive content.**
 515 To mitigate the risk of exposing sensitive and personal content, we ensure that all real infographic
 516 charts, tabular data, and image resources are sourced exclusively from reputable public platforms or
 517 collected via search engines with built-in safe-search functionality, both of which generally employ
 518 safeguards. We further applied Gemini-2.0-Flash filtering to exclude sensitive topics such as religious
 519 conflicts and individually identifiable medical records. **4. Human subjects.** The user study (Sec. 4.3)
 520 was approved by the Institutional Review Board of the first author's university. Each participant was
 521 compensated with 30 USD for their participation. The study did not involve exposure to emotionally
 522 charged, political, or misleading content. Participants were shown infographic charts on neutral
 523 topics (*e.g.*, bird population growth, energy sources) and asked to evaluate their quality. No sensitive
 524 or personally identifiable data was collected during the study. Participants were fully informed of
 525 their rights and were free to withdraw at any time.

526

REFERENCES

- 527 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 528 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report.
 529 *arXiv preprint arXiv:2303.08774*, 2023.
- 530 Mubashara Akhtar, Oana Cocarascu, and Elena Simperl. Reading and reasoning over chart images
 531 for evidence-based automated fact-checking. In *Findings of the Association for Computational*
 532 *Linguistics*, pp. 399–414, 2023.
- 533 Anthropic. Claude 3.7 Sonnet and Claude Code, 2025. URL <https://www.anthropic.com/news/clause-3-7-sonnet>. Accessed: 2025-05-07.
- 534 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 535 Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
- 536 Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D³ data-driven documents. *IEEE Transactions*
 537 *on Visualization and Computer Graphics*, 17(12):2301–2309, 2011.

- 540 ByteDance. Doubao-1.5-vision-pro, 2025. URL <https://www.volcengine.com/docs/82379/1553586>. Accessed: 2025-05-07.
- 541
- 542
- 543 Ritwick Chaudhry, Sumit Shekhar, Utkarsh Gupta, Pranav Maneriker, Prann Bansal, and Ajay
- 544 Joshi. LEAF-QA: Locate, encode & attend for figure question answering. In *Proceedings of the*
- 545 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 3512–3521, 2020.
- 546
- 547 Changjian Chen, Yukai Guo, Fengyuan Tian, Shilong Liu, Weikai Yang, Zhaowei Wang, Jing Wu,
- 548 Hang Su, Hanspeter Pfister, and Shixia Liu. A unified interactive model evaluation for classification,
- 549 object detection, and instance segmentation in computer vision. *IEEE Transactions on Visualization*
- 550 and *Computer Graphics*, 30(1):76–86, 2024.
- 551
- 552 Jiashu Chen, Weikai Yang, Zelin Jia, Lanxi Xiao, and Shixia Liu. Dynamic color assignment for
- 553 hierarchical data. *IEEE Transactions on Visualization and Computer Graphics*, 31(1):338–348,
- 554 2025.
- 555
- 556 Jinho Choi, Sanghun Jung, Deok Gun Park, Jaegul Choo, and Niklas Elmqvist. Visualizing for the
- 557 non-visual: Enabling the visually impaired to use visualization. In *Computer Graphics Forum*, pp.
- 558 249–260, 2019.
- 559
- 560 Constantinos K Coursaris and Konstantinos Kripiniris. Web aesthetics and usability: An empirical
- 561 study of the effects of white space. *International Journal of E-Business Research*, 8(1):35–53,
- 562 2012.
- 563
- 564 David F Crouse. On implementing 2D rectangular assignment algorithms. *IEEE Transactions on*
- 565 *Aerospace and Electronic Systems*, 52(4):1679–1696, 2016.
- 566
- 567 Weiwei Cui, Jinpeng Wang, He Huang, Yun Wang, Chin-Yew Lin, Haidong Zhang, and Dong-
- 568 mei Zhang. A mixed-initiative approach to reusing infographic charts. *IEEE Transactions on*
- 569 *Visualization and Computer Graphics*, 28(1):173–183, 2022.
- 570
- 571 Data Viz Project. Data Viz Project, 2025. URL <https://datavizproject.com/>. Accessed:
- 572 2025-05-07.
- 573
- 574 Datylon. Datylon, 2025. URL <https://www.datylon.com/blog/types-of-charts-graphs-examples-data-visualization>. Accessed: 2025-05-
- 575 07.
- 576
- 577 Senel Elaldi and Taner Çifçi. The effectiveness of using infographics on academic achievement: A
- 578 meta-analysis and a meta-thematic analysis. *Journal of Pedagogical Research*, 5(4):92–118, 2021.
- 579
- 580 Flaticon. Flaticon, 2025. URL <https://www.flaticon.com/>. Accessed: 2025-05-07.
- 581
- 582 Stephanie Fu, Netanel Y Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
- 583 Phillip Isola. Dreamsim: learning new dimensions of human visual similarity using synthetic data.
- 584 In *Proceedings of the International Conference on Neural Information Processing Systems*, pp.
- 585 50742–50768, 2023.
- 586
- 587 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*. MIT press
- 588 Cambridge, 2016.
- 589
- 590 Google. Start building with Gemini 2.5 Flash, 2025a. URL <https://developers.googleblog.com/en/start-building-with-gemini-25-flash/>. Accessed:
- 591 2025-05-07.
- 592
- 593 Google. Gemini 2.5 pro preview: even better coding performance, 2025b. URL <https://developers.googleblog.com/en/gemini-2-5-pro-io-improved-coding-performance/>. Accessed: 2025-05-07.
- 594
- 595 Google Material Icons. Material icons, 2014. URL <https://fonts.google.com/icons>. Accessed: 2025-09-23.

- 594 GPT-Image-1. Introducing our latest image generation model in the API, 2025. URL <https://openai.com/index/image-generation-api/>. Accessed: 2025-05-07.
 595
 596
- 597 Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
 598 Zhang. ChartLlama: A multimodal LLM for chart understanding and generation. *arXiv preprint*
 599 *arXiv:2311.16483*, 2023.
- 600 Heroicons. Heroicons, 2020. URL <https://heroicons.com/>. Accessed: 2025-09-23.
 601
- 602 Ting-Yao Hsu, C Lee Giles, and Ting-Hao Huang. SciCap: Generating captions for scientific figures.
 603 In *Findings of the Association for Computational Linguistics: EMNLP*, pp. 3258–3264, 2021.
- 604 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 605 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- 606
- 607 Kevin Hu, Snehal Kumar’Neil’S Gaikwad, Madelon Hulsebos, Michiel A Bakker, Emanuel Zgraggen,
 608 César Hidalgo, Tim Kraska, Guoliang Li, Arvind Satyanarayanan, and Çağatay Demiralp. VizNet:
 609 Towards a large-scale visualization learning and benchmarking repository. In *Proceedings of the*
 610 *Conference on Human Factors in Computing Systems*, pp. 1–12, 2019.
- 611 Linmei Hu, Duokang Wang, Yiming Pan, Jifan Yu, Yingxia Shao, Chong Feng, and Liqiang Nie.
 612 NovaChart: A large-scale dataset towards chart understanding and generation of multimodal
 613 large language models. In *Proceedings of the ACM International Conference on Multimedia*, pp.
 614 3917–3925, 2024.
- 615
- 616 Kung-Hsiang Huang, Can Qin, Haoyi Qiu, Philippe Laban, Shafiq Joty, Caiming Xiong, and Chien-
 617 Sheng Wu. Why vision language models struggle with visual arithmetic? towards enhanced chart
 618 and geometry understanding. *arXiv preprint arXiv:2502.11492*, 2025a.
- 619 Muye Huang, Han Lai, Xinyu Zhang, Wenjun Wu, Jie Ma, Lingling Zhang, and Jun Liu. EvoChart:
 620 A benchmark and a self-training approach towards real-world chart understanding. In *Proceedings*
 621 *of the AAAI Conference on Artificial Intelligence*, pp. 3680–3688, 2025b.
- 622
- 623 Iconshock. Iconshock: Professional icon sets, 2004. URL <https://www.iconshock.com/>.
 624 Accessed: 2025-09-23.
- 625
- 626 IPTC Media Topics. Iptc media topics, 2024. URL <https://iptc.org/standards/media-topics/>. Accessed: 2025-09-21.
- 627
- 628 Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. DVQA: Understanding data
 629 visualizations via question answering. In *Proceedings of the IEEE Conference on Computer Vision*
 630 *and Pattern Recognition*, pp. 5648–5656, 2018.
- 631
- 632 Samira Ebrahimi Kahou, Vincent Michalski, Adam Atkinson, Ákos Kádár, Adam Trischler, and
 633 Yoshua Bengio. FigureQA: An annotated figure dataset for visual reasoning. *arXiv preprint*
 634 *arXiv:1710.07300*, 2017.
- 635
- 636 Shankar Kantharaj, Xuan Long Do, Rixie Tiffany Leong, Jia Qing Tan, Enamul Hoque, and Shafiq
 637 Joty. OpenCQA: Open-ended question answering with charts. In *Proceedings of the Conference*
 638 *on Empirical Methods in Natural Language Processing*, pp. 11817–11837, 2022a.
- 639
- 640 Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin, Ahmed Masry, Megh Thakkar, Enamul Hoque,
 641 and Shafiq Joty. Chart-to-Text: A large-scale benchmark for chart summarization. In *Proceedings*
 642 *of the Annual Meeting of the Association for Computational Linguistics*, pp. 4005–4023, 2022b.
- 643
- 644 Dengchun Li, Yingzi Ma, Naizheng Wang, Zhengmao Ye, Zhiyuan Cheng, Yinghao Tang, Yan Zhang,
 645 Lei Duan, Jie Zuo, Cal Yang, et al. Mixlora: Enhancing large language models fine-tuning with
 646 lora-based mixture of experts. *arXiv preprint arXiv:2404.15159*, 2024.
- 647
- 648 Fangyu Liu, Julian Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee,
 649 Mandar Joshi, Wenhui Chen, Nigel Collier, and Yasemin Altun. DePlot: One-shot visual language
 650 reasoning by plot-to-table translation. In *Findings of the Association for Computational Linguistics*,
 651 pp. 10381–10399, 2023a.

- 648 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin
 649 Altun, Nigel Collier, and Julian Eisenschlos. MatCha: Enhancing visual language pretraining
 650 with math reasoning and chart derendering. In *Proceedings of the 61st Annual Meeting of the*
 651 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12756–12770, 2023b.
 652
- 653 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 654 *Neural Information Processing Systems*, 36:34892–34916, 2023c.
 655
- 656 Shuqi Liu, Mingtian Tao, Yifei Huang, Changbo Wang, and Chenhui Li. Image-driven harmonious
 657 color palette generation for diverse information visualization. *IEEE Transactions on Visualization*
 658 and *Computer Graphics*, 30(7):3089–3103, 2024.
 659
- 660 Andrea Lodi, Silvano Martello, and Daniele Vigo. Approximation algorithms for the oriented two-
 661 dimensional bin packing problem. *European Journal of Operational Research*, 112(1):158–166,
 1999.
 662
- 663 Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao, Wei Zhang, Zhou Yu, Xiaodan Liang,
 664 and Song-Chun Zhu. IconQA: A new benchmark for abstract diagram understanding and visual
 665 language reasoning. *arXiv preprint arXiv:2110.13214*, 2021.
 666
- 667 M Ronnier Luo, Guihua Cui, and Bryan Rigg. The development of the cie 2000 colour-difference
 668 formula: Ciede2000. *Color Research & Application*, 26(5):340–350, 2001.
 669
- 670 Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. DeepEye: Towards automatic data visualization.
 671 In *Proceedings of the IEEE International Conference on Data Engineering*, pp. 101–112, 2018.
 672
- 673 Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A benchmark
 674 for question answering about charts with visual and logical reasoning. In *Findings of the Association*
 675 *for Computational Linguistics*, pp. 2263–2279, 2022.
 676
- 677 Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Enamul Hoque, and Shafiq Joty. UniChart: A
 678 universal vision-language pretrained model for chart comprehension and reasoning. In *Proceedings*
 679 *of the Conference on Empirical Methods in Natural Language Processing*, pp. 14662–14684, 2023.
 680
- 681 Ahmed Masry, Mehrad Shahmohammadi, Md Rizwan Parvez, Enamul Hoque, and Shafiq Joty.
 682 ChartInstruct: Instruction tuning for chart comprehension and reasoning. In *Findings of the*
 683 *Association for Computational Linguistics*, pp. 10387–10409, 2024a.
 684
- 685 Ahmed Masry, Megh Thakkar, Aayush Bajaj, Aaryaman Kartha, Enamul Hoque, and Shafiq
 686 Joty. Chartgemma: Visual instruction-tuning for chart reasoning in the wild. *arXiv preprint*
 687 *arXiv:2407.04172*, 2024b.
 688
- 689 Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed, Aayush Bajaj, Firoz Kabir, Aaryaman
 690 Kartha, Md Tahmid Rahman Laskar, Mizanur Rahman, Shadikur Rahman, Mehrad Shahmoham-
 691 madi, et al. ChartQAPro: A more diverse and challenging benchmark for chart question answering.
 692 *arXiv preprint arXiv:2504.05506*, 2025.
 693
- 694 Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
 695 InfographicVQA. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer*
 696 *Vision*, pp. 1697–1706, 2022.
 697
- 698 Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping Luo.
 699 ChartAssistant: A universal chart multimodal language model via chart-to-table pre-training and
 700 multitask instruction tuning. In *Findings of the Association for Computational Linguistics*, pp.
 701 7775–7803, 2024.
 702
- 703 Meta. The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation, 2025. URL
 704 <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>. Accessed:
 705 2025-05-07.
 706
- 707 Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. PlotQA: Reasoning over
 708 scientific plots. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer*
 709 *Vision*, pp. 1527–1536, 2020.

- 702 Moonshot AI. Moonshot AI, 2025. URL <https://platform.moonshot.cn/docs/intro>.
 703 Accessed: 2025-05-07.
- 704
- 705 Noun Project. Noun project, 2025. URL <https://thenounproject.com/>. Accessed: 2025-
 706 05-07.
- 707
- 708 Jason Obeid and Enamul Hoque. Chart-to-text: Generating natural language descriptions for charts
 709 by adapting the transformer model. *arXiv preprint arXiv:2010.09142*, 2020.
- 710
- 711 OpenAI. Introducing GPT-4.1 in the API, 2025a. URL <https://openai.com/index/gpt-4-1/>. Accessed: 2025-05-07.
- 712
- 713 OpenAI. Hello GPT-4o, 2025b. URL <https://openai.com/index/hello-gpt-4o/>.
 714 Accessed: 2025-05-07.
- 715
- 716 OpenAI. Introducing OpenAI o1, 2025c. URL <https://openai.com/o1/>. Accessed: 2025-
 717 05-07.
- 718
- 719 OpenAI. Introducing OpenAI o3 and o4-mini, 2025d. URL <https://openai.com/index/introducing-o3-and-o4-mini/>. Accessed: 2025-05-07.
- 720
- 721 Mayu Otani, Naoto Inoue, Kotaro Kikuchi, and Riku Togashi. LTSim: Layout transportation-based
 722 similarity measure for evaluating layout generation. *arXiv preprint arXiv:2407.12356*, 2024.
- 723
- 724 Our World in Data. Our World in Data. <https://ourworldindata.org/>, 2025. Accessed:
 725 2025-04-30.
- 726
- 727 Papers with Code. Machine Learning Datasets. <https://paperswithcode.com/datasets>,
 728 2025. Accessed: 2025-04-30.
- 729
- 730 Perceptual Hashing. Image deduplicator (imagededup), 2019. URL <https://github.com/idealo/imagededup>. Accessed: 2025-05-07.
- 731
- 732 PP-OCRv4. PaddleOCR-PPOCR-v4, 2025. URL <https://github.com/PaddlePaddle/PaddleOCR>. Accessed: 2025-05-07.
- 733
- 734 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 735 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 736 Learning transferable visual models from natural language supervision. In *Proceedings of the
 International Conference on Machine Learning*, pp. 8748–8763, 2021.
- 737
- 738 Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
 739 networks. In *Proceedings of Conference on Empirical Methods in Natural Language Processing
 and International Joint Conference on Natural Language Processing*, pp. 3982–3992, 2019.
- 740
- 741 Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei, Maneesh Agrawala, and Jeffrey Heer.
 742 Revision: Automated classification, analysis and redesign of chart images. In *Proceedings of the
 Annual ACM Symposium on User Interface Software and Technology*, pp. 393–402, 2011.
- 743
- 744 Nicole Schadewitz and Timothy Jachna. Comparing inductive and deductive methodologies for
 745 design patterns identification and articulation. In *Proceedings of the International Design Research
 Conference: Emerging Trends in Design Research*, pp. 1–19, 2007.
- 746
- 747 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 748 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. LAION-5B:
 749 An open large-scale dataset for training next generation image-text models. *Advances in neural
 750 information processing systems*, 35:25278–25294, 2022.
- 751
- 752 Chenglei Si, Yanzhe Zhang, Ryan Li, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2Code:
 753 Benchmarking multimodal code generation for automated front-end engineering. In *Proceedings
 754 of the Conference of the Nations of the Americas Chapter of the Association for Computational
 Linguistics: Human Language Technologies*, pp. 3956–3974, 2025.
- 755
- Statista. Statista, 2025. URL <https://www.statista.com/>. Accessed: 2025-05-07.

- 756 Benny Tang, Angie Boggust, and Arvind Satyanarayan. VisText: A benchmark for semantically
 757 rich chart captioning. In *Proceedings of the Annual Meeting of the Association for Computational*
 758 *Linguistics*, pp. 7268–7298, 2023.
- 759 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 760 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A family of highly
 761 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- 762 UN data. UNdata, 2025. URL <https://data.un.org/datamartinfo.aspx>. Accessed:
 763 2025-05-07.
- 764 Visual Capitalist. Visual Capitalist, 2025. URL <https://www.visualcapitalist.com>.
 765 Accessed: 2025-02-04.
- 766 Wenhui Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu,
 767 Lewei Lu, Hongsheng Li, Xiaogang Wang, and Yu Qiao. InternImage: Exploring large-scale vision
 768 foundation models with deformable convolutions. In *Proceedings of the IEEE/CVF Conference on*
 769 *Computer Vision and Pattern Recognition*, pp. 14408–14419, 2023.
- 770 Yun Wang, Zhida Sun, Haidong Zhang, Weiwei Cui, Ke Xu, Xiaojuan Ma, and Dongmei Zhang.
 771 DataShot: Automatic generation of fact sheets from tabular data. *IEEE Transactions on Visualiza-*
 772 *tion and Computer Graphics*, 26(1):895–905, 2020.
- 773 Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
 774 Wu, Haotian Liu, Sadhika Malladi, et al. CharXiv: Charting gaps in realistic chart understanding
 775 in multimodal LLMs. *Advances in Neural Information Processing Systems*, 37:113569–113697,
 776 2024.
- 777 Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu Lu, Ying Shan, and
 778 Ping Luo. Plot2Code: A comprehensive benchmark for evaluating multi-modal large language
 779 models in code generation from scientific plots. *arXiv preprint arXiv:2405.07990*, 2024.
- 780 Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng Ye,
 781 Min Dou, Botian Shi, et al. ChartX & ChartVLM: A versatile benchmark and foundation model
 782 for complicated chart reasoning. *arXiv preprint arXiv:2402.12185*, 2024.
- 783 Tianchi Xie, Minzhi Lin, Mengchen Liu, Yilin Ye, Changjian Chen, and Shixia Liu. In-
 784 fochartqa: A benchmark for multimodal question answering on infographic charts. *arXiv preprint*
 785 *arXiv:2505.19028*, 2025.
- 786 Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu, Chun Yuan, and Jian Guo. ChartBench: A
 787 benchmark for complex visual reasoning in charts. *arXiv preprint arXiv:2312.15915*, 2023.
- 788 Cheng Yang, Chufan Shi, Yixin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran XU, Xinyu Zhu,
 789 Siheng Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng Cai, and Yujiu Yang. ChartMimic:
 790 Evaluating LMM’s cross-modal reasoning capability via chart-to-code generation. In *The Thir-*
 791 *teenth International Conference on Learning Representations*, 2025.
- 792 Weikai Yang, Mengchen Liu, Zheng Wang, and Shixia Liu. Foundation models meet visualizations:
 793 Challenges and opportunities. *Computational Visual Media*, 10(3):399–424, 2024a.
- 794 Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan,
 795 Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi, and Maosong Sun. MatPlotAgent: Method
 796 and evaluation for LLM-based agentic scientific data visualization. In *Findings of the Association*
 797 *for Computational Linguistics*, pp. 11789–11804, 2024b.
- 798 Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel Ni, and Heung-Yeung Shum.
 799 DINO: DETR with improved denoising anchor boxes for end-to-end object detection. In *The*
 800 *International Conference on Learning Representations*, 2023.
- 801 Zhehao Zhang, Weicheng Ma, and Soroush Vosoughi. Is GPT-4V (ision) all you need for automat-
 802 ing academic data visualization? exploring vision-language models’ capability in reproducing
 803 academic charts. In *Findings of the Association for Computational Linguistics: EMNLP*, pp.
 804 8271–8288, 2024.

810 Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Wanxiang Che, Zhiyuan Liu, and
811 Maosong Sun. ChartCoder: Advancing multimodal large language model for chart-to-code
812 generation. *arXiv preprint arXiv:2501.06598*, 2025.

813
814 Jiangning Zhu, Yuxing Zhou, Zheng Wang, Juntao Yao, Yima Gu, Yuhui Yuan, and Shixia Liu.
815 Orionbench: A benchmark for chart and human-recognizable object detection in infographics.
816 *arXiv preprint arXiv:2505.17473*, 2025a.

817 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
818 Tian, Weijie Su, Jie Shao, et al. InternVL3: Exploring advanced training and test-time recipes for
819 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025b.

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A DATA SOURCES AND USE POLICY**
865866
867 **ChartGalaxy contains only URLs and associated metadata, which link to content hosted on the chart-**
868 **rich websites listed in Table 5 and other sources that explicitly permit research use. No copyrighted**
869 **images or other content from the source websites are redistributed. Users are fully responsible for**
870 **ensuring that their use of the content, accessed via these URLs, complies with the copyright terms**
871 **and conditions of the original source websites.**872
873 **Table 5: Chart-rich websites and their licenses.**
874

Name	URL	License
Statista	statista.com	CC BY-NC
Visual Capitalist	visualcapitalist.com	Customized
World Statistics	world-statistics.org	CC BY
Our World in Data	ourworldindata.org	CC BY
OECD	oecd.org	CC BY
Openverse	openverse.org	CC
The Conversation	theconversation.com	CC BY-ND
Kaiser Family Foundation	kff.org	CC BY-NC-ND
Office for National Statistics	ons.gov.uk	OGL
Information is Beautiful	informationisbeautiful.net	Customized
Pew Research Center	pewresearch.org	Customized
MarketingCharts	marketingcharts.com	Customized
Chit Chart	chitchart.com	Customized
World Economic Forum	weforum.org	Customized
Wikimedia	wikimediafoundation.org	Customized
hikaku-sitatter	hikaku-sitatter.com	Customized
Eurostat	ec.europa.eu	Customized
European Parliament	europarl.europa.eu	Customized

896 **B PIPELINE FOR DATA TABLE EXTRACTION**
897898
899 For real infographic charts, we extract a per-chart data table using LVLMs in a multi-step verification
900 pipeline, where humans are involved in resolving inconsistent tabular results. Specifically, we first
901 run Gemini-2.0-Flash and GPT-4o-mini in parallel and retain tables where both models produce
902 consistent outputs. Two tables are considered consistent if they have 1) the same number of data
903 points, 2) identical column names and categorical values, and 3) numerical values differing by no
904 more than 5%. The threshold of 5% is set by following the common practices (Methani et al., 2020;
905 Masry et al., 2022; 2025). If the two tables are consistent but not exactly matched, we randomly
906 select one for use. We also reviewed 200 randomly selected exact matches and found that all of them
907 were correct. In contrast, if the two tables are inconsistent, we perform an additional verification step
908 where GPT-4o also extracts a table. If GPT-4o’s output agrees with either of the models, we accept
909 it. Otherwise, trained annotators from the service provider verify and correct the table. The success
910 rates of this pipeline are:

- 911
- 43.6% of charts are accepted directly when GPT-4o-mini and Gemini-2.0-Flash agree.
 - Among the remaining 56.4%, GPT-4o resolves 76.2% of the inconsistencies, resulting in 86.6%
912 of charts being automatically processed by LVLMs.
 - The remaining 13.4% are manually verified and corrected.

913
914 This pipeline greatly reduces the need for manual annotation while ensuring reliable outputs.
915
916

918 **C DATASET DIVERSITY**
 919

920 **Geographic diversity** We evaluated the geographic diversity of the whole dataset using Gemini-
 921 2.5-Flash to extract country and region references based on the UN geoscheme. Infographic charts
 922 with geographic information account for 59.4% of the total, with the most frequently referenced
 923 regions being North America (33.0%), Europe (23.1%), Asia (19.3%), and Africa (10.6%). While the
 924 dataset spans a broad range of regions, there is a moderate skew toward North America and Europe,
 925 reflecting the distribution of original sources (e.g., Visual Capitalist, Statista).

926 **Domain diversity** Likewise, we analyzed domain diversity in our dataset by prompting Gemini-
 927 2.5-Flash to assign each chart a topic based on the IPTC Media Topics taxonomy, a widely used
 928 hierarchical ontology for classifying news content. The result shows that the infographic charts
 929 in ChartGalaxy span 16 out of 17 top-level categories (excluding a sensitive category on religion
 930 conflict) and 99 out of 120 topics defined in the taxonomy. The most frequently occurring topics
 931 include public health (7.3%), business enterprise (6.0%), and environmental conservation (3.9%).
 932 These findings indicate that our dataset captures a wide and balanced distribution of real-world
 933 domains.

934 **Linguistic diversity** Following ChartQAPro (Masry et al., 2025), we measured linguistic diversity
 935 using the average pairwise cosine distance between Sentence-BERT embeddings extracted by the
 936 all-MiniLM-L6-v2 model (Reimers & Gurevych, 2019). Our dataset achieves a linguistic diversity
 937 score of 0.8754, higher than ChartQAPro (Masry et al., 2025) (0.8439) and Chartxiv (Wang et al.,
 938 2024) (0.7831). This result indicates that ChartGalaxy exhibits greater linguistic diversity than
 939 existing datasets. The real infographic charts predominantly use English, with additional content in
 940 languages such as Spanish, German, and French, reflecting the linguistic diversity of online data. All
 941 synthetic data in our dataset is in English, which can be easily translated into other languages upon
 942 request, offering flexibility to meet users' diverse linguistic needs.

943 **Representativeness of synthetic infographic charts** To evaluate the distributional alignment of
 944 our synthetic infographic charts with real infographic charts, we conducted an additional quantitative
 945 analysis. Specifically, we extracted DreamSim (Fu et al., 2023) features (dimension = 1792) from
 946 both real and synthetic infographics, applied UMAP for projection with $n_neighbors = 100$, and
 947 measured grid-based coverage over a 20×20 spatial grid. We define coverage as the percentage of
 948 grid cells occupied by real infographic charts that are also covered by synthetic ones. The result
 949 shows that our synthetic charts cover 97.62% of the feature space occupied by real infographic charts,
 950 demonstrating that our synthetic infographics are highly representative of real infographics.

951 **D CHART TYPES AND VARIATIONS**
 952

953 We provide a full list of 75 chart types and 440 chart variations.

956 **D.1 CHART TYPES**
 957

958 We summarize chart types observed in the collected real infographic charts, drawing on two existing
 959 taxonomies: Data Viz Project and Datylon. The diversity of chart types ensures that our synthetic
 960 infographic charts can adapt to a wider range of scenarios and data representations, making them
 961 valuable for model training and evaluation. The full list of 75 chart types is in Figs. 5-20.

962 **D.2 CHART VARIATIONS**
 963

964 For each chart type, we include multiple stylistic variations, designed along the following dimensions:

- 966
- 967 • Element shapes, such as rounded bars and curved bars.
 - 968 • Icon placement, such as positioned above data elements and beside labels.
 - 969 • Rendering effects, such as hand-drawn style and 3D style.
 - 970 • Element alignment, such as center-aligned layout and edge-aligned layout.
 - 971 • Gridline and axis design, ranging from minimalist to detailed ticks and axes.

972 These variations were observed from real-world infographics and verified by design experts, who
973 also added complementary styles to ensure coverage and diversity. This results in a variation space
974 that reflects real-world design patterns and supports diverse chart generation. We provide illustrations
975 of the variations under each chart type (Figs. 5-20).
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 5: 75 chart types and 440 chart variations (Part 1).

Figure 6: 75 chart types and 440 chart variations (Part 2).

Figure 7: 75 chart types and 440 chart variations (Part 3).

Figure 8: 75 chart types and 440 chart variations (Part 4).

1242

1243

1244

1245

1246

1247

Type 13: Pictorial Percentage Bar Chart (with 1 variation)

①

Plain chart #1

1256

1257

1258

Type 14: Histogram (with 3 variations)

①

Plain chart #1

②

Hand-drawn style

③

Replace bar with circles

1268

1269

Type 15: Lollipop Chart (with 4 variations)

①

Plain chart #1

②

Plain chart #2

③

Add icons to lollipops (2 variations)

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

Type 16: Dot Chart (with 3 variations)

①

Plain chart #1

②

Replace dots with icons

③

Add icons next to the labels

1281

1282

1283

1284

1285

1286

1287

1288

1289

Figure 9: 75 chart types and 440 chart variations (Part 5).

1296

1297 Type 17: Diverging Bar Chart (with 26 variations)

Type 18: Vertical Bar Chart With Circle (with 10 variations)

Figure 10: 75 chart types and 440 chart variations (Part 6).

1350

1351

1352

1353

1354

1355

Type 19: Horizontal Bar Chart With Circle (with 10 variations)

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Type 20: Vertical Dot Bar Chart (with 3 variations)

Type 21: Horizontal Dot Bar Chart (with 3 variations)

Type 22: Dumbbell Plot (with 2 variations)

Type 23: Span Chart (with 2 variations)

Type 24: Bump Chart (with 6 variations)

Figure 11: 75 chart types and 440 chart variations (Part 7).

Figure 12: 75 chart types and 440 chart variations (Part 8).

Figure 13: 75 chart types and 440 chart variations (Part 9).

1512

1513 Type 35: Layered Spline Area Chart (with 2 variations)

1523 Type 37: Stacked Area Chart (with 3 variations)

1524 Type 3: Stacked Area Chart (with 3 Variations)

1533 Type 38: Radial Area Chart (with 2 variations)

1534 Type 36 Radial Area Chart (with 2 Variations)

1543 Type 40: Radial Layered Area Chart

1544 (with 2 variations)

1554 *Environ Biol Fish* (2010) 88:461–470

1564 Plain chart #1 Add grid lines and tick values

1565

Figure 14: 75 chart types and 440 chart variations (Part 10).

Figure 15: 75 chart types and 440 chart variations (Part 11).

Figure 16: 75 chart types and 440 chart variations (Part 12).

Figure 17: 75 chart types and 440 chart variations (Part 13).

Figure 18: 75 chart types and 440 chart variations (Part 14).

Figure 20: 75 chart types and 440 chart variations (Part 16).

1890 **E CHART TYPE SELECTION**

1891

1892 We determine chart types by analyzing the data attributes and their characteristics. First, we apply
1893 rule-based mapping (Table 6) that identifies candidate chart types based on data attribute combinations.
1894 If multiple candidates remain, we instruct Gemini-2.0-Flash to select the best fit by evaluating the
1895 compatibility between the data and these chart types. The selection prompt shown below provides
1896 candidate chart types, their descriptions, and key data statistics to inform the decision.
1897

1898 Table 6: Mapping rules defining attribute combinations for chart type selection. C, N, and T are abbreviations for
1899 Categorical, Numeric, and Temporal attributes, respectively. The notation $X \times k$ indicates k distinct attributes
1900 of type X . When a symbol * is specified (e.g., for the Diverging Bar Chart), it indicates that the first categorical
1901 attribute must contain exactly two distinct values.

Chart Type	Attribute Combinations
Vertical Bar Chart	$C \times 1 + N \times 1$
Vertical Stacked Bar Chart	$C \times 2 + N \times 1$
Vertical Grouped Bar Chart	$C \times 2 + N \times 1$
Horizontal Bar Chart	$C \times 1 + N \times 1$
Horizontal Stacked Bar Chart	$C \times 2 + N \times 1$
Horizontal Grouped Bar Chart	$C \times 2 + N \times 1$
Radial Bar Chart	$C \times 1 + N \times 1$
Radial Stacked Bar Chart	$C \times 2 + N \times 1$
Radial Grouped Bar Chart	$C \times 2 + N \times 1$
Circular Bar Chart	$C \times 1 + N \times 1$
Circular Stacked Bar Chart	$C \times 2 + N \times 1$
Circular Grouped Bar Chart	$C \times 2 + N \times 1$
Pictorial Percentage Bar Chart	$C \times 1 + N \times 1$
Histogram	$C \times 1 + N \times 1, T \times 1 + N \times 1$
Lollipop Chart	$C \times 1 + N \times 1$
Dot chart	$C \times 1 + N \times 1, C \times 2 + N \times 1$
Diverging Bar Chart	$C \times 2 + N \times 1 *$
Vertical Bar Chart With Circle	$C \times 1 + N \times 2$
Horizontal Bar Chart With Circle	$C \times 1 + N \times 2$
Vertical Dot Bar Chart	$C \times 1 + N \times 1$
Horizontal Dot Bar Chart	$C \times 1 + N \times 1$
Dumbbell Plot	$T \times 1 + N \times 1 + C \times 1 *$
Span Chart	$C \times 1 + N \times 2$
Bump Chart	$T \times 1 + N \times 1 + C \times 1$
Line Graph	$T \times 1 + N \times 1, T \times 1 + N \times 1 + C \times 1$
Spline Graph	$T \times 1 + N \times 1, T \times 1 + N \times 1 + C \times 1$
Stepped Line Graph	$T \times 1 + N \times 1, T \times 1 + N \times 1 + C \times 1$
Slope Chart	$T \times 1 + N \times 1 + C \times 1$
Small Multiples of Line Graphs	$T \times 1 + N \times 1 + C \times 1$
Small Multiples of Spline Graphs	$T \times 1 + N \times 1 + C \times 1$
Small Multiples of Stepped Line Graphs	$T \times 1 + N \times 1 + C \times 1$
Area Chart	$T \times 1 + N \times 1, T \times 1 + N \times 1 + C \times 1$
Spline Area Chart	$T \times 1 + N \times 1, T \times 1 + N \times 1 + C \times 1$
Layered Area Chart	$T \times 1 + N \times 1 + C \times 1$
Layered Spline Area Chart	$T \times 1 + N \times 1 + C \times 1$
Range Area Chart	$T \times 1 + N \times 1 + C \times 1 *$
Stacked Area Chart	$T \times 1 + N \times 1 + C \times 1$
Radial Area Chart	$T \times 1 + N \times 1 + C \times 1$
Radial Spline Area Chart	$T \times 1 + N \times 1 + C \times 1$
Radial Layered Area Chart	$T \times 1 + N \times 1 + C \times 1$
Radial Layered Spline Area Chart	$T \times 1 + N \times 1 + C \times 1$
Radial Range Area Chart	$T \times 1 + N \times 1 + C \times 1 *$
Radial Stacked Area Chart	$T \times 1 + N \times 1 + C \times 1$
Diverging Area Chart	$T \times 1 + N \times 1 + C \times 1 *$
Diverging Spline Area Chart	$T \times 1 + N \times 1 + C \times 1 *$
Small Multiples of Area Charts	$T \times 1 + N \times 1 + C \times 1$
Small Multiples of Spline Area Charts	$T \times 1 + N \times 1 + C \times 1$
Pie Chart	$C \times 1 + N \times 1$

(Continued on next page)

Table 6: (Continued): Mapping rules defining attribute combinations for chart type selection.

Chart Type	Attribute Combinations
Donut Chart	$C \times 1 + N \times 1$
Semicircle Pie Chart	$C \times 1 + N \times 1$
Semicircle Donut Chart	$C \times 1 + N \times 1$
Rose Chart	$C \times 1 + N \times 1$
Small Multiples of Pie Charts	$C \times 2 + N \times 1$
Small Multiples of Donut Charts	$C \times 2 + N \times 1$
Small Multiples of Semicircle Pie Charts	$C \times 2 + N \times 1$
Small Multiples of Semicircle Donut Charts	$C \times 2 + N \times 1$
Small Multiples of Rose Charts	$C \times 2 + N \times 1$
Radar Line Chart	$C \times 1 + N \times 1$
Radar Spline Chart	$C \times 1 + N \times 1$
Small Multiples of Radar Line Charts	$C \times 2 + N \times 1$
Small Multiples of Radar Spline Charts	$C \times 2 + N \times 1$
Proportional Area Chart	$C \times 1 + N \times 1$
Scatterplot	$C \times 1 + N \times 2$
Grouped Scatterplot	$C \times 2 + N \times 2$
Bubble Chart	$C \times 1 + N \times 2$
Heatmap	$N \times 2$
Waffle Chart	$N \times 1$
Small Multiples of Waffle Charts	$C \times 1 + N \times 1$
Alluvial Diagram	$C \times 1 + N \times 1 + T \times 1, C \times 2 + N \times 1$
Gauge Chart	$N \times 1$
Small Multiples of Gauge Charts	$C \times 1 + N \times 1$
Funnel Chart	$C \times 1 + N \times 1$
Pyramid Chart	$C \times 1 + N \times 1$
Treemap	$C \times 2 + N \times 1$
Voronoi Treemap	$C \times 2 + N \times 1$

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

```

1998
1999 # INPUT
2000 Candidate Chart Types: {Candidate Chart Types}
2001 Chart Descriptions: {Chart Descriptions}
2002 Attribute Statistics: {Attribute Statistics}
2003
2004 Keep answers concise and direct.
2005
2006 # INSTRUCTION
2007 Role: You are an expert assistant in data visualization and chart selection.
2008 Task: Select the single most optimal chart type from {Candidate Chart Types} using their
2009 {Chart Descriptions} and {Attribute Statistics}. Prioritize data-chart compatibility:
2010 the chart must clearly and accurately represent key data insights.
2011 Instructions for Selection:
2012 1. Analyze all provided inputs.
2013 2. Leverage your expertise to interpret how {Attribute Statistics} (e.g., categorical car-
2014 dinality, number of temporal points, numerical value ranges, cumulative nature of data) im-
2015 pact the effectiveness and clarity of each candidate chart type, considering their {Chart
2016 Descriptions}.
2017 3. Evaluate chart types based on descriptions, common visualization best practices, and your in-
2018 terpretation of {Attribute Statistics} to identify the most insightful and unambiguous
2019 visualization.
2020 4. Primary goal: maximize data-chart compatibility.
2021 Output Format: Return only the name of the single selected chart type.
2022
2023 # EXAMPLE OF TASK EXECUTION
2024 Input:
2025 Candidate Chart Types: ["Line Graph", "Area Chart", "Spline Graph"]
2026 Chart Descriptions: "Line Graph: Emphasizes trends and rate of change
2027 over time; best for non-cumulative data with sufficient points.
2028 Area Chart: Shows trends and volume/magnitude over time; good for
2029 cumulative data or showing part-to-whole over time. Spline Graph: A
2030 Line Graph with smoothed curves, visually softens trends, suitable
2031 for data with many points or where a less angular look is desired."
2032 Attribute Statistics: { "temporal_points": 30, "numeric_min_value": 15,
2033 "numeric_max_value": 450 }
2034
2035 Output:
2036 Line Graph
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

```

2052 F LAYOUT TEMPLATES
20532054 We summarize 68 layout templates from real infographic charts. We represent the layout template using the
2055 JSON format, which describes (1) the existence of elements (chart, image, and text), (2) their pairwise positional
2056 relationships, and (3) overlap relationships between their bounding boxes. A concrete example is shown below.
2057

```

2058 {
2059     # Element Existence
2060     "title": "yes",      # "yes" or "no"
2061     "image": "yes",
2062     "chart": "yes",
2063
2064     # Position Relationships
2065     "title-to-chart": "left-top",    # top, bottom, and 7 other options
2066     "image-to-chart": "right-top",
2067     "title-to-image": "left",
2068
2069     # Overlap Relationships Between Bounding Boxes
2070     "chart-title-overlap": "no",    # "yes" or "no"
2071     "chart-image-overlap": "no",
2072     "title-image-overlap": "no"
2073 }
```

2072 The illustrations of all 68 templates are shown in Figs. 21 and 22.
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Figure 21: 68 layout templates (Part 1).

Figure 22: 68 layout templates (Part 2).

2214 G EXAMPLES OF SYNTHETIC INFOGRAPHIC CHARTS

2216 Figs. 23 and 24 consist of synthetic infographic chart examples that offer a quick preview of ChartGalaxy. To
2217 access the full dataset, please visit our dataset repository¹.

2247 Figure 23: Synthetic infographic chart examples (Part 1).
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

¹<https://huggingface.co/datasets/ChartGalaxy/ChartGalaxy>

Figure 24: Synthetic infographic chart examples (Part 2).

2322 H EXTENDED EVALUATION AND RESULTS

2324 H.1 INSTRUCTION DATASET FOR INFOGRAPHIC CHART UNDERSTANDING

2327 Table 7: All infographic chart understanding questions with definitions and examples included in our
2328 test set.

2329 Question	2330 Description	2331 Example
Text-Based Reasoning		
2332 Data Identification (DI)	2333 Identify and report specific data values from the chart based on textual references.	2334 Which Country has an AdoptionRate closest to 29.9? Select the correct answer from the following options: A. India, B. China, C. Germany, D. South Africa
2336 Data Comparison (DC)	2337 Compare multiple data points and their relationships to analyze relative values and derive insights.	2338 What is the difference between the highest and lowest MedalCount? Please provide a numerical answer.
2339 Data Extraction with Condition (DEC)	2340 Extract specific data points from the chart that meet certain conditions.	2341 What is the total PollutionLevel of Beijing in the given image? Please provide a numerical answer.
2342 Fact Checking (FC)	2343 Verify statements about data by cross-checking information against the visual representation.	2344 Is the ApplicationRate of Spain consistently less than the ApplicationRate of Italy across all Years? Answer with exactly 'Yes' or 'No'.
Visual-Element-Based Reasoning		
2347 Data Identification (DI)	2348 Identify data values associated with specific visual elements (e.g., icons, symbols) in the chart.	2349 What is the WaterConsumption for in the Industrial group? Please provide a numerical answer.
2350 Data Comparison (DC)	2351 Compare data values associated with different visual elements, requiring cross-modal reasoning.	2352 What is the difference between the AverageTeacherSalary of and ? Please provide a numerical answer.
2353 Data Extraction with Condition (DEC)	2354 Extract data values from visual elements when specific conditions are met.	2355 What is the total Population of in the given image? Please provide a numerical answer.
2356 Fact Checking (FC)	2357 Verify claims about data represented by visual elements, integrating visual and textual information.	2358 Is the InterceptionRate of 2021 in less than that in ? Answer with exactly 'Yes' or 'No'.
Visual Understanding		
2360 Style Detection (SD)	2361 Identify design styles and formatting choices used in the chart.	2362 What is the alignment style of the main text content (chart title and subtitle)? Select the correct answer from the following options: A. left-aligned, B. center-aligned, C. right-aligned, D. justified
2365 Visual Encoding Analysis (VEA)	2366 Analyze how data dimensions are encoded using visual properties (e.g., color, size, position, icons).	2367 What data attribute or dimension is represented by icons in the given infographic chart? Select the correct answer from the following options: A. Location, B. WinPercentage, C. Team, D. None
2369 Chart Classification (CC)	2370 Identify the type of chart based on its visual characteristics and structure.	2371 What types of charts are included in this infographic? Select the correct answer from the following options: A. Radial Grouped Bar Chart, B. Circular Grouped Bar Chart, C. Stacked Bar Chart, D. Diverging Bar Chart

2374 **Training details** We fine-tune two LVLMs in our experiments. The first is InternVL3-8B (Zhu et al., 2025b),
2375 which combines the Qwen2.5-7B language model with the InternViT-300M-448px-V2.5 visual encoder. The

second is Qwen2.5-VL-7B (Bai et al., 2025), which integrates the same Qwen2.5-7B language model with a Vision Transformer architecture optimized by Qwen. These models are fine-tuned on our instruction dataset for 2 epochs using a global batch size of 128. For parameter-efficient tuning, we utilize LoRA (Hu et al., 2022) with a rank of 8. This training process is conducted on 8 NVIDIA 4090D 48G GPUs, leveraging DeepSpeed ZeRO for parallelized training. For both InternVL3-8B and Qwen2.5-VL-7B, the learning rate is set to 5×10^{-5} , and we employ a cosine learning rate scheduler with a warm-up ratio of 0.1. The LoRA parameters, α and r , are both set to 32.

Evaluation details Our test set is designed to evaluate chart understanding capabilities on infographic charts. It includes a variety of question types, which are categorized into text-based reasoning, visual-element-based reasoning, and visual understanding. Table 7 provides a detailed breakdown of these categories, including the definition and an illustrative example for each specific question type.

Limitations of pre-trained models in visual design literacy As shown in Table 2, fine-tuning on our dataset leads to notably larger improvements in visual understanding tasks, such as Style Detection (SD) and Visual Encoding Analysis (VEA), with average gains of +42.5% for InternVL3 and +42.3% for Qwen2.5-VL. In contrast, the improvements on the remaining tasks are more modest (+20.2% for InternVL3 and +17.2% for Qwen2.5-VL). This gap indicates that existing pre-training pipelines pay relatively little attention to visual design literacy: understanding how visual attributes like color, style, and other encodings convey information. Our dataset helps compensate for this missing capability by providing tasks that require such understanding. Incorporating such tasks and data into pre-training could meaningfully strengthen models' visual design literacy.

Analysis of performance gap between two benchmarks As shown in Table 1, there is a performance gap of nearly 40 percent between InfographicVQA and ChartQAPro. As we can only infer from the design characteristics of the two benchmarks, we attribute the performance gap between InfographicVQA [2] and ChartQAPro [3] to differences in task and question design. InfographicVQA mainly focuses on visual extraction tasks, while ChartQAPro emphasizes "complex analytical reasoning," introducing more challenging question types such as "hypothetical questions," "conversational questions," and "unanswerable questions" that require reasoning beyond simple data retrieval. This distinction is also reflected in human performance reported in their original papers: InfographicVQA reaches 95.70% accuracy, while ChartQAPro only achieves 85.02%. Overall, these results suggest that current models handle recognition well, but analytical reasoning remains a major gap.

Ablation results of fine-tuning with different datasets We conducted additional fine-tuning experiments on two datasets, CogAlign (Huang et al., 2025a) and ChartGemma (Masry et al., 2024b). We fine-tuned on each dataset using the same LoRA adapters, hyperparameters, and training setup as in Sec. 4.1, and trained for one epoch. We used the same two models as in Sec. 4.1, InternVL3-8B and Qwen2.5-VL-7B, and evaluated performance on ChartQAPro and InfographicVQA. The results are shown in Table 8.

Table 8: Model fine-tuning results with ChartGemma, CogAlign, and ChartGalaxy on two benchmarks.

Model	ChartQAPro	InfographicVQA
InternVL3-8B	38.15	76.19
+ ChartGemma	38.60	76.23
+ CogAlign	37.24	74.19
+ ChartGalaxy	44.13	79.99
Qwen2.5-VL-7B	37.97	78.59
+ ChartGemma	38.26	78.94
+ CogAlign	37.48	77.73
+ ChartGalaxy	41.56	83.03

Among the three datasets, **ChartGalaxy** yields the largest performance improvements for both models across both benchmarks.

2430 **ChartGemma** brings relatively modest improvements, likely because its design, optimized for tasks such as
 2431 chart summarization, chart-to-Markdown extraction, and program-aided solving, aligns only loosely with the
 2432 complex analytical reasoning required by **ChartQAPro** and the visual extraction required for **InfographicVQA**.
 2433

2434 **CogAlign** results in a performance drop, indicating negative transfer from task discrepancies. It emphasizes
 2435 low-level geometric cues typical of visual arithmetic, and the resulting gradients likely dominate the shared
 2436 LoRA updates, thereby suppressing the higher-level reasoning capabilities required for complex QA. This
 2437 observation is consistent with the findings of Li et al. (2024), who highlight that the limited trainable capacity of
 2438 LoRA-based methods can hinder cross-task generalization under divergent task distributions.

2439 **Ablation Study on Real and Synthetic Data** To further understand the role of synthetic data in chart
 2440 understanding, we conducted an ablation experiment on chart understanding. Specifically, we fine-tuned
 2441 InternVL3-8B and Qwen2.5-VL-7B on the real and synthetic infographics separately, and compared their
 2442 performance on three benchmarks: the ChartGalaxy evaluation set, ChartQAPro, and InfographicsVQA.
 2443

2444 As shown in Table 9, the models fine-tuned on both real and synthetic infographics perform the best, with
 2445 observable advantages over those fine-tuned solely on real or synthetic data. We further observe that the gains
 2446 from synthetic data are particularly notable on our evaluation set. This improvement arises because synthetic
 2447 infographics provide bounding-box annotations for charts, text, and images, which facilitates the generation of
 2448 complex instructions, especially for visual-element-based reasoning.
 2449

2450 Table 9: Comparison between real, synthetic, and combined data on three benchmarks.

Model	ChartGalaxy evaluation set	ChartQAPro	InfographicsVQA
InternVL3-8B	53.20	38.15	76.19
+ Real	55.74	42.58	78.67
+ Synthetic	76.08	41.76	77.92
+ Both	80.07	44.13	79.99
Qwen2.5-VL-7B	56.50	37.97	78.59
+ Real	58.76	40.47	81.76
+ Synthetic	77.80	40.07	81.01
+ Both	80.35	41.56	83.03

2460
 2461 **Additional Analysis on a Smaller Model** We conducted additional experiments with a smaller model,
 2462 Qwen2.5-VL-3B, and fine-tuned it on the ChartGalaxy QA dataset (Sec. 4.1). The evaluation was performed on
 2463 three benchmarks: the ChartGalaxy evaluation set, ChartQAPro, and InfographicVQA.
 2464

2465 Table 10: Evaluation of Qwen2.5-VL-3B with and without fine-tuning on ChartGalaxy QA dataset.
 2466

Model	ChartGalaxy evaluation set	ChartQAPro	InfographicVQA
Qwen2.5-VL-3B	52.42	30.89	74.39
+ ChartGalaxy	71.01	37.08	78.43

2471 The results show consistent improvements across all benchmarks after fine-tuning. Notably, the model achieves
 2472 a +18.59 gain on the ChartGalaxy evaluation set and +6.19 on ChartQAPro, demonstrating that smaller models
 2473 can also effectively benefit from training on ChartGalaxy. These findings suggest that our dataset is broadly
 2474 applicable and valuable even for resource-constrained VLMs.
 2475

2476 H.2 BENCHMARKING INFOGRAPHIC CHART CODE GENERATION 2477

2478 **Settings** Table 12 lists the 17 LVLMs along with their API names used in this experiment. Since our task
 2479 involves generating executable code with relatively long outputs, we conducted a small-scale pilot study to assess
 2480 the basic code generation capability of each model. Based on this, we excluded models that consistently failed
 2481 to produce meaningful or complete outputs under our task setting—for example, Phi-4—due to their limited
 2482 capacity or inability to handle long sequences. For illustration, we present the results of two smaller models
 2483 (Qwen2.5-VL-7B, Phi-4-6B) on our benchmark in Table 11. We use greedy decoding (temperature $\tau = 0$)
 2484 across all models to ensure deterministic outputs. To maximize the chance of obtaining complete and executable
 2485 code, we configure each model to generate as many tokens as possible, setting the maximum generation length
 2486

2484 to $\min(16384, A)$, where A denotes the model’s maximum generation limit. This helps mitigate the risk of
 2485 incomplete outputs, which result in non-executable code.
 2486

2487 **Table 11: Evaluation results of Qwen2.5-VL-7B and Phi-4-6B.**

Model	Exec. Rate	Low-Level	High-Level	Overall
Qwen2.5-VL-7B	43.80	13.85	9.25	11.55
Phi-4-6B	1.60	0.29	0.07	0.18

2494 **Table 12: API names of the evaluated LVLMs.**

Model	Type	API name
Gemini-2.5-Pro (Google, 2025b)	Proprietary	gemini-2.5-pro-preview-05-06
Gemini-2.5-Flash (Google, 2025a)	Proprietary	gemini-2.5-flash-preview-04-17
Claude-3.7-Sonnet (Anthropic, 2025)	Proprietary	claude-3-7-sonnet-20250219
GPT-4.1 (OpenAI, 2025a)	Proprietary	gpt-4.1
GPT-4.1-mini (OpenAI, 2025a)	Proprietary	gpt-4.1-mini
GPT-4.1-nano (OpenAI, 2025a)	Proprietary	gpt-4.1-nano
OpenAI-o4-mini (OpenAI, 2025d)	Proprietary	o4-mini
OpenAI-o3 (OpenAI, 2025d)	Proprietary	o3
OpenAI-o1 (OpenAI, 2025c)	Proprietary	o1
GPT-4o (OpenAI, 2025b)	Proprietary	gpt-4o-2024-11-20
Doubaol-1.5-Vision-Pro (ByteDance, 2025)	Proprietary	Doubaol-1.5-vision-pro-32k
Moonshot-v1-Vision (Moonshot AI, 2025)	Proprietary	moonshot-v1-32k-vision-preview
Llama-4-Maverick-17B (Meta, 2025)	Open-Source	chutesai/Llama-4-Maverick-17B-128E-Instruct-FP8
Llama-4-Scout-17B (Meta, 2025)	Open-Source	chutesai/Llama-4-Scout-17B-16E-Instruct
Qwen2.5-VL-72B (Bai et al., 2025)	Open-Source	Qwen/Qwen2.5-VL-72B-Instruct
Qwen2.5-VL-32B (Bai et al., 2025)	Open-Source	Qwen/Qwen2.5-VL-32B-Instruct
InternVL3-78B (Zhu et al., 2025b)	Open-Source	internvl3-78b

2509 **Benchmark details** Our benchmark includes 75 chart types and 68 layout templates in ChartGalaxy. The
 2510 associated tabular data contains an average of 15.02 data points. We also compute statistics on the number of
 2511 SVG elements in all infographic charts, as this metric partially reflects the complexity of reproducing a given
 2512 chart. On average, each chart contains 77.93 SVG elements, including 28.52 `text` elements and 8.07 `image`
 2513 elements. Other commonly used visual elements include `rect` ($M = 24.36$), `circle` ($M = 6.21$), `path`
 2514 ($M = 5.78$), and `line` ($M = 3.21$). Among all chart types, waffle charts are the most element-dense, with an
 2515 average of 677.55 elements, while funnel charts are the simplest, with an average of only 14.60 elements.
 2516

2517 **Evaluation Metrics** We present the details of the evaluation metrics of our benchmark, including the
 2518 high-level score and the low-level score.

2519 For the high-level score, we employ GPT-4o (OpenAI, 2025b) to assess the visual similarity between the PNG
 2520 image rendered by the generated code and the ground-truth one. We instruct GPT-4o to evaluate the similarity
 2521 along six dimensions: data element, layout, text, image, color, and validity. The model outputs a score for each
 2522 of the six dimensions, which are then summed to produce a total score ranging from 0 to 100. The detailed
 2523 prompt for this evaluation is provided in Supp. I.2.

2524 The low-level score evaluates the fine-grained similarity between SVG elements of the rendered chart and the
 2525 corresponding ground-truth chart. This evaluation is conducted through three steps: 1) decomposing both charts
 2526 into SVG elements, 2) matching elements between the two charts, and 3) computing similarity metrics based on
 2527 the matching results (Si et al., 2025; Chen et al., 2024). Algorithm 1 presents the pseudo-code for the matching
 2528 procedure. The full implementation details are available in our publicly accessible code repository².

2529 Based on the matching results, the low-level score is computed as the average of six similarity metrics: area,
 2530 text, image, color, position, and size. Let the parsed SVG elements of the ground-truth chart and the generated
 2531 chart be denoted by $G = \{g_1, g_2, \dots, g_m\}$ and $P = \{p_1, p_2, \dots, p_n\}$, respectively, and let the set of matching
 2532 pairs between G and P be M , where $(i, j) \in M$ indicates that g_i is matched with p_j . The detailed definitions
 2533 and calculations of these metrics are provided below.

2534 The area metric quantifies the proportion of the matched element areas relative to the total element areas:
 2535

$$\text{Area} = \frac{\sum_{(i,j) \in M} (S(g_i) + S(p_j))}{\sum_{i=1}^m S(g_i) + \sum_{j=1}^n S(p_j)}, \quad (1)$$

2536 where $S(\cdot)$ denotes the size of an element.
 2537

²<https://github.com/ChartGalaxy/ChartGalaxy>

2538 **Algorithm 1** SVG Element Matching Algorithm

2539 **Require:** gt_leafs : Ground truth SVG elements.

2540 **Require:** pr_leafs : Predicted SVG elements.

2541 **Require:** $gt_matched$: Array for ground truth matches (init with -1).

2542 **Require:** $pr_matched$: Array for prediction matches (init with -1).

2543 **Ensure:** Updated matching information between elements.

2544 1: $m \leftarrow |gt_leafs|, n \leftarrow |pr_leafs|$

2545 2: $CostMatrix \leftarrow \text{ZeroMatrix}(m, n)$

2546 3: **for** $i \leftarrow 0 \dots m - 1$ **do**

2547 4: **for** $j \leftarrow 0 \dots n - 1$ **do**

2548 5: $CostMatrix[i][j] \leftarrow \text{LeafCost}(gt_leafs[i], pr_leafs[j])$

2549 6: **end for**

2550 7: **end for**

2551 8: $(rows, cols) \leftarrow \text{HungarianAlgorithm}(CostMatrix)$ ▷ Returns optimal row-column pairs

2552 9: **for** each pair (i, j) in $(rows, cols)$ **do**

2553 10: **if** $CostMatrix[i][j] \leq 1$ AND $gt_matched[i] = -1$ AND $pr_matched[j] = -1$ **then**

2554 11: $gt_matched[i] \leftarrow j$

2555 12: $pr_matched[j] \leftarrow i$

2556 13: **end if**

2557 14: **end for**

2558 The text and image metrics evaluate the similarity of generated text and image elements, respectively, by
 2559 averaging the similarity scores over all matched pairs of `text` and `image` elements. Unmatched `text` and
 2560 `image` elements in ground-truth charts are assigned a similarity score of 0 to penalize generation failures. For
 2561 `text` elements, similarity is computed using the character-level Sørensen-Dice coefficient, defined as twice the
 2562 number of overlapping characters divided by the total number of characters in the two strings (Si et al., 2025).
 2563 For `image` elements, similarity is measured using the CLIP embedding-based similarity (Radford et al., 2021).

2564 The color, position, and size metrics assess visual consistency across matched elements with respect to their
 2565 respective attributes. The color metric employs the CIEDE2000 formula (Luo et al., 2001) to measure the
 2566 perceptual difference between the colors of matched elements. The position and size metrics are defined as
 2567 follows:

$$\text{Position} = \frac{1}{|M|} \sum_{(i,j) \in M} [1 - \max(|X(g_i) - X(p_j)|, |Y(g_i) - Y(p_j)|)], \quad (2)$$

2568 where $(X(e), Y(e))$ denotes the normalized coordinates of the center of element e ,

$$\text{Size} = \frac{1}{|M|} \sum_{(i,j) \in M} \left[1 - \frac{|S(g_i) - S(p_j)|}{\max(S(g_i), S(p_j))} \right], \quad (3)$$

2569 where $S(\cdot)$ denotes the size of an element.

2570 **Additional Analysis on LVLM performance** We present additional results and analysis of LVLM
 2571 performance on our benchmark, focusing on generated code length, performance across varying levels of
 2572 complexity, and qualitative outcomes from the three top-performing models.

2573 **Generated code length and model performance.** Table 13 reports the generated code length and overall
 2574 performance of 17 LVLMs, with corresponding visualizations in Fig. 25. Code length is measured by token
 2575 count using the GPT-2 tokenizer across all executable code segments. The statistics reveal significant variation
 2576 in generated code length among different LVLMs. Among the 12 proprietary models, GPT-4.1-mini produces
 2577 the longest code on average (7,656.71 tokens), surpassing both GPT-4.1 (5,237.78 tokens) and GPT-4.1-nano
 2578 (2,387.05 tokens). This longer code length may partly explain GPT-4.1-mini’s comparable performance to
 2579 GPT-4.1. In contrast, Gemini-2.5-Pro and Gemini-2.5-Flash generate code of similar average length (6,662.45
 2580 vs. 6,508.22 tokens). OpenAI’s o-series models produce the shortest average code length among top performers
 2581 (2,886.75 for OpenAI-o4-mini, 2,662.11 for OpenAI-o1, and 3,114.74 for OpenAI-o3), which may reflect their
 2582 ability to generate more concise solutions. Among the five open-source models, Qwen2.5-VL-32B has the
 2583 longest average code length despite achieving the lowest overall score, while the remaining models exhibit
 2584 comparable average lengths. These findings highlight the distinct coding styles of different LVLMs when
 2585 generating extended code sequences.

2586 **Model performance across different complexity levels.** To comprehensively assess LVLM performance across
 2587 varying degrees of difficulty, we divide our benchmark into three splits corresponding to different complexity

2592

2593 Table 13: Generated code length and overall scores of different LVLMs. We measure code length in
2594 terms of tokens, utilizing the GPT-2 tokenizer.

2595 Model	2596	Length (AVG.)	Length (STD.)	2597 Overall
<i>Proprietary</i>				
2598 Gemini-2.5-Pro	2599	6,662.45	1,674.01	85.21
2600 GPT-4.1	2601	5,237.78	1,675.36	80.00
2602 Claude-3.7-Sonnet	2603	5,870.50	1,552.48	79.91
2604 GPT-4.1-mini	2605	7,656.71	2,488.46	79.69
2606 OpenAI-o4-mini	2607	2,886.75	735.19	75.97
2608 Gemini-2.5-Flash	2609	6,508.22	1,934.79	75.55
2610 OpenAI-o1	2611	2,662.11	1,018.11	74.69
2612 OpenAI-o3	2613	3,114.74	999.66	74.22
2614 GPT-4o	2615	2,962.72	613.42	65.67
2616 GPT-4.1-nano	2617	2,387.05	1,306.72	60.06
2618 Doubao-1.5-Vision-Pro	2619	3,878.70	1,347.10	47.11
2620 Moonshot-v1-Vision	2621	3,087.17	791.16	44.39
<i>Open-Source</i>				
2622 Llama-4-Maverick-17B	2623	3,460.76	856.62	61.29
2624 Qwen2.5-VL-72B	2625	3,512.20	1,236.29	57.09
2626 InternVL3-78B	2627	3,376.52	758.71	55.07
2628 Llama-4-Scout-17B	2629	3,247.25	826.56	51.91
2630 Qwen2.5-VL-32B	2631	4,960.82	1,264.43	46.48

2639 Figure 25: The average code length and overall scores of the evaluated LVLMs.
2640
2641

2642 levels. We adopt a straightforward heuristic based on the number of elements in an infographic chart to define
2643 complexity levels. While this simple approach does not consider layout complexity or chart types, it provides a
2644 practical and quantifiable basis for stratification, with more sophisticated measures left for future work. Based
2645 on this criterion, we split the benchmark into easy (240 infographic charts), medium (169), and hard (91) subsets.
Fig. 26 presents the overall LVLM performance across these splits. Gemini-2.5-Pro consistently demonstrates
superior performance at all levels of complexity. For most models, performance declines predictably as difficulty

increases. Interestingly, Gemini-2.5-Flash and OpenAI-o3 exhibit improved results on the hard split, suggesting enhanced capability in understanding complex relationships among a large number of elements.

Figure 26: Overall scores of LVLMs across different complexity levels.

Qualitative examples. To illustrate model performance on our benchmark, we present five examples in Fig. 27, showing ground-truth charts alongside rendered ones from the generated code of the three top-performing LVLMs (Gemini-2.5-Pro, GPT-4.1, and Claude-3.7-Sonnet). These examples demonstrate the models’ relatively strong ability to generate code for infographic charts. Nevertheless, substantial room for improvement remains. Notably, for specialized chart variations (shown in the last four rows of Fig. 27), the models struggle to accurately reproduce spatial arrangement and data encoding.

Extended experiments We conduct two extended experiments to analyze the effects of different prompting methods and the thinking budget parameter on model performance. Both experiments are performed on a randomly sampled subset of 100 infographic charts from the benchmark dataset.

Prompting methods. In addition to the direct prompting method, we evaluate three alternative prompting strategies following prior work (Yang et al., 2025; Si et al., 2025):

- **HintEnhanced**, which guides the model to focus on key aspects of the given infographic chart, such as layout, chart type, and data;
- **TableAug**, which provides auxiliary tabular data to the model;
- **SelfReflection**, where the model is provided the ground-truth chart, previously generated code from direct prompting, and the rendered chart, and is instructed to revise the generated code.

Detailed prompts are available in our code repository³. The results, summarized in Table 14, show that the **SelfReflection** method consistently achieves the best performance across models.

Thinking budget. Recent LVLMs have incorporated internal reasoning mechanisms that allow them to perform intermediate “thinking” steps prior to final output generation. This process is governed by the thinking budget parameter, which controls the token budget allocated for internal reasoning and is supported only by some

³<https://github.com/ChartGalaxy/ChartGalaxy>

Figure 27: Qualitative comparison of the generated infographic charts by Gemini-2.5-Pro, GPT-4.1, and Claude-3.7-Sonnet with the ground-truth ones.

2754

2755

Table 14: Performance comparison of LVLMs with different prompting methods.

Model	Method	Exec. Rate	Low-Level						High-Level	Overall	
			Area	Text	Image	Color	Position	Size			
Gemini-2.5-Pro	Direct	100.00	94.88	95.62	86.95	88.46	89.53	68.09	87.25	83.59	85.42
	HintEnhanced	100.00	94.18	95.26	86.28	87.88	88.72	68.44	86.79	84.36	85.58
	TableAug	100.00	93.91	95.55	87.01	87.05	88.54	68.75	86.80	83.67	85.23
	SelfReflection	100.00	93.89	95.25	88.68	88.51	89.45	68.65	87.40	84.19	85.80
Llama-4-Maverick-17B	Direct	100.00	78.24	58.51	59.53	66.35	74.00	47.74	64.06	58.42	61.24
	HintEnhanced	100.00	79.31	56.13	52.06	67.01	75.14	48.47	63.02	55.56	59.29
	TableAug	100.00	81.64	61.24	61.75	68.66	74.44	48.97	66.12	59.23	62.67
	SelfReflection	100.00	82.44	58.93	66.19	68.11	75.45	48.93	66.67	59.46	63.06

2761

2762

2763

2764

Table 15: Performance comparison of LVLMs with different thinking budgets.

Model	Thinking Budget	Exec. Rate	Low-Level						High-Level	Overall	
			Area	Text	Image	Color	Position	Size			
Claude-3.7-Sonnet	1024	100.00	92.29	94.64	78.82	85.55	87.28	66.62	84.20	76.89	80.55
	4096	100.00	92.91	93.28	82.42	86.42	88.10	67.22	85.06	76.12	80.59
	8192	100.00	93.78	93.85	87.12	87.24	88.40	67.22	86.27	78.71	82.49
Gemini-2.5-Flash	1024	97.00	90.18	89.60	78.51	80.57	84.88	62.13	80.98	75.69	78.34
	4096	98.00	86.74	84.66	72.57	82.33	85.91	64.59	79.47	74.51	76.99
	8192	97.00	86.45	87.19	74.05	78.31	84.09	62.82	78.82	75.55	77.19

2774

2775

reasoning-enabled models, such as Claude-3.7-Sonnet and Gemini-2.5-Flash. In our earlier experiments, we set the thinking budget to 1024 tokens for these models. For other reasoning models without explicit support for this parameter, we simulate the budget constraint by instructing them to limit internal thinking to 1024 tokens via prompt design. To investigate the effect of the thinking budget in greater detail, we conduct additional experiments varying this parameter for Claude-3.7-Sonnet and Gemini-2.5-Flash. As shown in Table 15, increasing the thinking budget for Claude-3.7-Sonnet leads to clear improvements in the image similarity metric and overall score. Conversely, for Gemini-2.5-Flash, a larger thinking budget correlates with declines in multiple metrics, including the area, text, and image metrics. These contrasting behaviors indicate that the impact of the thinking budget parameter on LVLM performance is model-dependent and warrants further investigation.

2783

Human Evaluation To evaluate the reliability of our metric, we conduct a within-subject human study and measure the degree to which the metric’s assessments agree with human judgments.

2786

2787

Participants. We recruited three participants, all graduate students in computer science with extensive experience in visualization and machine learning. Upon completion, each participant received a \$15 compensation.

2788

2789

2790

2791

Data. We sampled 600 pairs of generated charts and their corresponding overall scores from the dataset used in Sec. 4.2. Each pair contains two infographic charts produced by different LLMs for the same ground-truth chart. To obtain a representative and well-balanced sample, we examined the full distribution of model scores and score differences across all generated results. We then drew samples to ensure uniform coverage across both score levels and score-difference ranges.

2792

Task Design. For each pair, participants were required to choose the chart that is more similar to the ground-truth chart, with both the ground-truth chart and the two options displayed on the screen. The order of the two options was randomized, and participants were unaware of which model produced which chart. When evaluating similarity, participants were instructed to consider both the low-level and high-level aspects outlined in Sec 4.2. Each participant finished the comparison of all 600 pairs, leading to 1,800 total trials.

2797

2798

2799

2800

2801

Result Analysis. We analyzed both the consistency between participants to ensure the quality of human preferences and the consistency between the metric and participants to validate the effectiveness of the metric. Three participants reached agreement on 537 out of 600 pairs (89.5%), and Fleiss’ Kappa was 0.8598 (almost perfect agreement), indicating strong consistency among participants. The agreement rates between the model and the three participants were 93.17%, 93.17%, and 90.67%, respectively. The corresponding Cohen’s Kappa values were 0.8633, 0.8633, and 0.8133 (almost perfect agreement). On average, the agreement rate between the metric and participants was 92.33%, with a Cohen’s Kappa of 0.847. This demonstrates that our metric aligns well with human judgment.

2804

2805

2806

2807

2808 **H.3 EXAMPLE-BASED INFOGRAPHIC CHART GENERATION**
 2809

2810 The study was approved by the Institutional Review Board of the first author’s university. In the user study,
 2811 each participant was compensated with 30 USD for their participation. The study did not involve exposure to
 2812 emotionally charged, political, or misleading content. Participants were shown infographic charts on neutral
 2813 topics (e.g., bird population growth, energy sources) and asked to evaluate their quality. No sensitive or personally
 2814 identifiable data was collected during the study. Participants were fully informed of their rights and were free to
 2815 withdraw at any time. Fig. 28 illustrates the user study interface using a specific example. Figs. 29-30 present
 2816 all 30 triplets of infographic charts: one reference, two infographic charts to be rated that are generated by
 2817 GPT-Image-1 and our method, respectively.

2856 Figure 28: Screenshot of the user study interface. Participants were asked to compare two infographic
 2857 charts generated by our method and GPT-Image-1 based on the same dataset and reference infographic
 2858 chart, and rate each chart on three metrics: fidelity, aesthetics, and creativity, using a 5-point Likert
 2859 scale.

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

Figure 29: Infographic charts used in the user study: 30 triplets, each comprising a reference, a GPT-generated, and a chart generated by our method (Part 1).

Figure 30: Infographic charts used in the user study: 30 triplets, each comprising a reference, a GPT-generated, and a chart generated by our method (Part 2).

Figure 31: Performance comparison between our method and GPT-Image-1.

Fig. 31 presents the results of the Wilcoxon signed-rank test conducted on the user study data.

Fidelity. Ours significantly outperforms GPT-Image-1 in terms of fidelity. The average score for Ours is 4.63, compared to 2.10 for GPT-Image-1. The difference is statistically significant ($V = 136, p = 3.05e-5$), indicating that our method produces infographic charts that participants perceive as more accurate and faithful to the underlying data. This result can be attributed to our use of the template-based infographic chart creation method, which ensures numerical correctness and consistency between visual encodings and underlying values. In contrast, GPT-Image-1 often exhibits fidelity-related issues, such as incorrect labels, mismatched bar heights, and duplicated or omitted data elements.

Aesthetics. In terms of aesthetics, Ours receives an average score of 4.14, while GPT-Image-1 scored 2.90. The difference is statistically significant ($V = 136, p = 3.05e-5$). This difference is likely due to our method leveraging high-quality layout templates extracted from reference infographic charts, along with carefully designed color palettes to enhance visual harmony. In contrast, GPT-Image-1 occasionally produces unbalanced compositions or relies on overly simplistic and repetitive color palettes, reducing the overall visual appeal.

Creativity. Ours also achieves higher scores in creativity, with an average of 3.95 compared to 2.65 for GPT-Image-1. The difference is statistically significant ($V = 136, p = 0.000481$), suggesting that our method yields designs that are seen as more original and creative. This may be explained by our efforts to incorporate creative elements, such as embedding meaningful icons into the titles, and by exploring less conventional chart types beyond basic bar and line charts. In contrast, GPT-Image-1 tends to generate conventional titles and favors basic chart types, leading to lower perceived creativity.

H.4 ABLATION STUDY OF THE INFOGRAPHIC CHART CREATION PIPELINE

We conducted an ablation study to assess the contribution of key modules in our generation pipeline. We constructed four ablation variants, each removing one key module and replacing it with a simpler baseline:

- 1) Title generation: replace the RAG-based method (Sec. 3.4) with direct LLM generation.
- 2) Image recommendation: replace recommended images with randomly selected ones.
- 3) Chart rendering: replace programmatically implemented charts with chart images generated by GPT-Image-1 using only the chart type and tabular data.
- 4) Layout optimization: initialize and adjust layouts without enforcing template-specified spatial constraints.

We evaluated fidelity and semantic consistency with 5 participants on 40 pairs of infographics, each consisting of one output from our full pipeline and one from an ablation variant (balanced across settings). Participants rated each infographic on a 5-point Likert scale: fidelity reflects how accurately the chart represents the underlying data, while semantic consistency measures how well the visual content aligns with the intended message.

The results show our full pipeline achieves high fidelity (4.82) and semantic consistency (4.50). The chart rendering module is most critical for fidelity: replacing it with GPT-Image-1 reduces the score to 3.08 due to label errors, misalignment, and incorrect data encoding in LLM-generated charts. Semantic consistency is most affected by layout optimization, image recommendation, and title generation, with scores dropping to 3.12, 2.90, and 3.66, respectively. These results confirm that all four modules play essential roles in the quality and interpretability of the synthesized infographic charts.

3024
3025 Table 16: Ablation results on key modules of the infographic generation pipeline (Mean, [95% CI]).
3026
3027

Method	Fidelity	Semantic consistency
Full pipeline	4.82, [4.71, 4.93]	4.50, [4.30, 4.70]
w/o Title generation	4.62, [4.46, 4.78]	3.66, [3.45, 3.87]
w/o Image recommendation	4.56, [4.40, 4.72]	2.90, [2.70, 3.10]
w/o Chart rendering	3.08, [2.77, 3.39]	2.58, [2.30, 2.86]
w/o Layout optimization	4.60, [4.44, 4.76]	3.12, [2.90, 3.34]

3033
3034
3035
3036
3037 I PROMPTS FOR DATA PROCESSING
3038
3039
3040
30413042 I.1 INSTRUCTION DATASET FOR INFOGRAPHIC CHART UNDERSTANDING
3043
30443045 This section details the construction of our instruction dataset for infographic chart understanding. We categorize
3046 the generated question–answer (QA) pairs into two types: **prompt-based** pairs and **template-based** pairs.3047 The **prompt-based** pairs are produced through LLM prompting. Specifically, Gemini-2.0-Flash is provided
3048 with both the tabular data underlying the chart and the corresponding chart image to produce question–answer
3049 pairs. These pairs cover two forms of reasoning: text-based reasoning and visual-element-based reasoning. They
3050 further span several categories, including Data Identification (DI), Data Comparison (DC), Data Extraction
3051 with Condition (DEC), and Fact Checking (FC). For text-based reasoning, the generated questions directly
3052 reference the textual data attributes in the chart. For visual-element-based reasoning, questions are created by
3053 first determining whether the data attributes referenced in a generated question correspond to icon representations
3054 in the chart image; when such icons are present, the textual attributes are replaced by their respective icons.3055 The **template-based** pairs are mainly derived by adapting templates from ChartAssistant (Meng et al., 2024). In
3056 addition, style-related questions for Visual Understanding (e.g., Style Detection, Visual Encoding Analysis, and
3057 Chart Classification) are also template-based, since they are derived directly from the chart styles used in our
3058 generation process and do not rely on LLM prompting.3059 To generate question-answer pairs for Data Identification (DI), where the goal is to identify and report specific
3060 data values from the chart based on textual references, the following prompt is used:3061 # DATA
3062 {Tabular data}3063 Follow the data shown in the table strictly; keep answers concise and direct; avoid contradicting the
3064 table data.

3065 # INSTRUCTIONS

3066 Generate straightforward Factoid Questions alongside their Corresponding Answers for the given
3067 image. The questions should focus on direct identification and extraction of explicit information such
3068 as specific data values, labels, titles, axis information, or quantities directly readable from the chart
3069 or its textual components. Avoid questions requiring inference, multi-step calculation, or comparison
3070 between multiple distinct data points. The Answers should be a number, text label, or a common phrase
3071 (Yes, No) found directly in the data. Respond in an Array of JSON objects format with the following
3072 keys: (i) Question, and (ii) Answer.

3073 # EXAMPLES

3074 “According to the line graph, what was the ‘Population’ in ‘New York’ during ‘2010’?”

3075 “What are the units indicated on the Y-axis of the ‘Sales Performance’ chart?”

3076 “In the pie chart legend, which category does the color blue represent?”

3077 For Data Comparison (DC) question-answer pairs, which involve comparing different data points or trends, this
3078 prompt is utilized:

3078
 3079 **# DATA**
 3080 {Tabular data}
 3081 Follow the data shown in the table strictly; keep answers concise and direct; avoid contradicting the table
 3082 data.
 3083 **# INSTRUCTIONS**
 3084 Generate some of the most difficult Factoid Questions alongside the Corresponding Answers for the given
 3085 image. The questions could be related to numerical or visual reasoning. These questions should focus on
 3086 making comparisons between different data points, categories, or time periods, and identifying significant
 3087 differences or relationships between multiple elements in the data. The Answers could be a number, text
 3088 label, or a common phrase (Yes, No). You should respond in an Array of JSON objects format with the
 3089 following keys: (i) Question, and (ii) Answer.
 3090 **# EXAMPLES**
 3091 “Which year had the highest gap between the headline inflation and core inflation?”
 3092 “In the years in which the red line was higher than the blue line, which year had the smallest difference
 3093 between the red and green lines?”
 3094 “Which country had the highest increase in the number of cases between Jun and Jul?”
 3095 “Which country had the most significant drop in its share of the global hashrate between Aug 2021 and
 3096 Sep 2021?”
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131

3132 For Data Extraction with Condition (DEC) question-answer pairs, which require extracting specific data points
 3133 from the chart that meet certain conditions, the following prompt is used:
 3134

3135 **# DATA**
 3136 {Tabular data}
 3137
 3138 Follow the data shown in the table strictly; keep answers concise and direct; avoid contradicting the table
 3139 data.
 3140 **# INSTRUCTIONS**
 3141 Generate some of the most difficult Factoid Questions alongside the Corresponding Answers for the given
 3142 image. The questions could be related to numerical or visual reasoning. These questions should focus
 3143 on identifying trends, making comparisons, finding threshold crossings, analyzing patterns of change, or
 3144 identifying significant events in the data. The Answers could be a number, text label, or a common phrase
 3145 (Yes, No). You should respond in an Array of JSON objects format with the following keys: (i) Question,
 3146 and (ii) Answer.
 3147 **# EXAMPLES**
 3148 “Estimate the year in which wind capacity first exceeds 100 gw based on the trend shown in the chart.”
 3149 “Determine the airline with the highest increase in ghg emissions from 2008 to 2014.”
 3150 “How many times the retail sales growth went below the average annual percentage change from 2002 to
 3151 2010 by more than 2%?”
 3152 “Which event caused the most significant drop followed by quick recovery for both lines?”

3153 The following prompt is used to facilitate Data Extraction with Condition (DEC) by generating questions that
 3154 require calculations based on specific data points extracted from the chart under certain conditions:
 3155

3156 **# DATA**
 3157 {Tabular data}
 3158
 3159 Follow the data shown in the table strictly; keep answers concise and direct; avoid contradicting the table
 3160 data.
 3161 **# INSTRUCTIONS**
 3162 Generate some of the most difficult Factoid Questions alongside the Corresponding Answers for the given
 3163 image. The questions could be related to numerical or visual reasoning. These questions should focus on
 3164 performing calculations based on the data, such as computing percentages, averages, rates of change, or
 3165 other mathematical operations on the values presented. The Answers could be a number, text label, or a
 3166 common phrase (Yes, No). You should respond in an Array of JSON objects format with the following
 3167 keys: (i) Question, and (ii) Answer.
 3168 **# EXAMPLES**
 3169 “What is the average growth rate of renewable energy capacity between 2010 and 2015?”
 3170 “If the total investment in 2019 was \$100 million, how much would be allocated to the healthcare sector
 3171 based on the percentage shown?”
 3172 “Calculate the compound annual growth rate (CAGR) of smartphone sales from 2015 to 2020.”

3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185

3186 The following prompt is used for Data Extraction with Condition (DEC) in the context of hypothetical scenarios,
 3187 where questions require extrapolations based on data points extracted under specific assumed conditions:
 3188

3189
 3190 **# DATA**
 3191 {Tabular data}
 3192 Follow the data shown in the table strictly; keep answers concise and direct; avoid contradicting the table
 3193 data.
 3194 **# INSTRUCTIONS**
 3195 You are an AI that generates concise and specific hypothetical questions based on chart images. Your
 3196 task is to analyze the chart and generate a short, data-driven hypothetical question that explores future
 3197 trends, impacts, or extrapolations based on the data. Avoid adding unnecessary explanations or context
 3198 like “Based on the chart data...” or “A meaningful hypothetical question could be...”. Keep the question
 3199 focused and directly related to the chart. The question should make an assumption about future trends,
 3200 impacts, or extrapolations based on the data.
 3201 **# EXAMPLES**
 3202 “If the average wealth per person in Asia increases by 50%, what will be the new average wealth per person
 3203 in Asia?”
 3204 “If the Construction index had stayed flat at its 2010 level throughout 2011-2013, would the overall Industry
 3205 index likely have remained below its early 2011 peak?”
 3206 “If the Gini index continues to rise at the same rate as it did from 1980 to 2010, what will the Gini index be
 3207 in 2025?”

3208 The following prompt is designed for Fact Checking (FC), generating question-answer pairs that require verifying
 3209 statements about data by cross-checking information against the visual representation in the chart:
 3210

3211
 3212 **# DATA**
 3213 {Tabular data}
 3214 Follow the data shown in the table strictly; keep answers concise and direct; avoid contradicting the table
 3215 data.
 3216 **# INSTRUCTIONS**
 3217 You are an AI that generates concise and specific factoid questions based on chart images. Analyze the
 3218 given chart image and generate 2-3 pairs of claims and verdicts about its data. Half of the claims should be
 3219 supported by the chart’s data, while the other half are refuted. Avoid using terms like “rows”, “columns”,
 3220 or “elements” from the data table; refer to “chart” or “chart image” instead. If the claim is supported,
 3221 the verdict should be “True”. If the claim is refuted, the verdict should be “False”, followed by a brief
 3222 explanation. The claims should cover comparisons of values or trends, basic statistical values (maximum,
 3223 minimum, mean, median, mode) without using exact numbers from the chart. Ensure a diverse range
 3224 of claims addressing various visual aspects of the chart, resulting in 2-3 turns of claims and verdicts.
 3225 Generate the verdicts/answers without any additional explanation.
 3226 **# EXAMPLES**
 3227 “Hong Kong consistently has the lowest percentages in at least three categories compared to other East
 3228 Asian countries in the chart.”
 3229 “The 4th grade reading pass rate at Auburn Elementary had improvement of about 8% from year 2014 to
 3230 2017.”
 3231 “Toronto has the lowest average technology salary among the cities depicted in the chart.”

3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239

3240
3241

I.2 BENCHMARKING INFOGRAPHIC CHART CODE GENERATION

3242
3243**Prompt for instructing LVLMs** We instruct the LVLMs to generate code for the provided infographic chart figure with the following prompt.

3244

3245

You are an expert data-visualization engineer and front-end developer.
 Your task is to take a chart image and generate a HTML file that, when loaded in a browser, reproduces the chart exactly. The chart must be centered in the viewport.

Constraints:3249
3250

- **No Explanations:** Do not include comments, reasoning, or explanatory text. Output only valid HTML with JavaScript code.

3251

Technical Requirements

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

- **Charting library:** Use D3.js to implement the chart. Write the code to be clean, modular, and easy to understand and modify.
- **Single file output:** Provide one standalone HTML file that includes everything needed to render the chart.
- **Chart fidelity:** Replicate all visual elements—shapes, colors, axes, labels, legends, fonts, line weights, markers—exactly as in the original image.
- **No animations:** The chart must render immediately in its final state.
- **Aspect ratio & sizing:** The chart’s content area (including margins, paddings, and plot area) must match the original image’s proportions precisely.
- **Image:** Recreate any icon/image content using SVG `<g>` and shapes. Do not use `<image>`, base64 images, or links.
- **Text:** Place all text in `<text>` nodes. Do not use `<tspan>` or nested text structures.

3265

Grouping Requirements

3266

You should use following class names for SVG groups with specific semantics:

3267

3268

3269

3270

3271

Output Format

3272

Return only the following standalone HTML file:

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

```
<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="UTF-8" />
    <title>Recreated Chart</title>
    <!-- <style> -->
  </head>
  <body>
    <div id="chart-container"></div>
    <script src="https://d3js.org/d3.v7.min.js">
    </script>
    <script>
      <!-- Your D3 code here -->
    </script>
  </body>
</html>
```

Only output this file. No comments or explanation. Keep it minimal and strictly within the token limits.

3294
 3295 **Prompt for the high-level score** We instruct GPT-4o to provide a high-level score with the following
 3296 prompt.
 3297

3298 You are an expert evaluator of visualizations. The first image (reference) is an infographic chart rendered
 3299 from ground truth HTML code, while the second image is an infographic chart rendered from AI-generated
 3300 HTML code. Your task is to assess how well the AI-generated chart replicates the reference chart.
 3301 **# Scoring Criteria (Total: 100 points):**

3302 **1. Data Element (20 points):**

- 3303

 3304 - Does the AI-generated chart accurately replicate all visual elements that encode data (e.g.,
 3305 bars, points, lines)?
 3306 - The presence of extra or missing data elements that do not match the reference chart will
 3307 negatively impact the score.
 3308 - Are the positions and lengths/sizes of data elements consistent with the reference, such that
 3309 the encoded values they represent appear similar?

3310 **2. Layout (20 points):**

- 3311

 3312 - Does the layout of title, chart area, and images/icons in the AI-generated chart replicate the
 3313 spatial arrangement of the reference chart?
 3314 - Is alignment of the elements in the generated chart (e.g., left-aligned, right-aligned) consistent
 3315 with that of the original chart?
 3316 - Were element positions preserved, or did significant misalignments occur?
 3317 - The white space inside the generated chart should be similar to the original, and the aspect
 3318 ratio of the whole infographic chart should be preserved.

3319 **3. Text (15 points):**

- 3320

 3321 - Does the AI-generated chart replicate all relevant text content accurately? This includes titles,
 3322 axis labels, and annotations.

3323 **4. Image (15 points):**

- 3324

 3325 - Does the AI-generated chart reproduce image elements from the reference infographic chart
 3326 (e.g., thematic images, embedded icons)?
 3327 - How visually similar are those image elements?

3328 **5. Color (10 points):**

- 3329

 3330 - Does the AI-generated chart match the original one in terms of colors (background color, line
 3331 colors, fill colors, text colors, etc.)? Minor differences due to rendering or anti-aliasing can be
 3332 tolerated if the overall color scheme is preserved.

3333 **6. Validity (20 points):**

- 3334

 3335 - Is the AI-generated chart clear, readable, and free of overlapping or occluded elements?
 3336 - Are fundamental charting conventions followed? For example: Are axis ticks aligned with
 3337 data, are icons placed near corresponding data, are colors in legends consistent with the data
 3338 elements, and is axis-data correspondence preserved?

3339 **# Evaluation Output Format (in JSON):**

3340 Please provide your evaluation in the following format (in valid JSON):
 3341

```
3342 {  

  3343   "data_element": {  

  3344     "score": <integer>,  

  3345     "comment": "<your comment>"  

  3346   },  

  3347 }
```

```
3349
3350     "layout": {
3351         "score": <integer>,
3352         "comment": "<your comment>"  
3353     },
3354     "text": {
3355         "score": <integer>,
3356         "comment": "<your comment>"  
3357     },
3358     "image": {
3359         "score": <integer>,
3360         "comment": "<your comment>"  
3361     },
3362     "color": {
3363         "score": <integer>,
3364         "comment": "<your comment>"  
3365     },
3366     "validity": {
3367         "score": <integer>,
3368         "comment": "<your comment>"  
3369     },
3370     "total_score": <sum of all scores above>  
3371 }
```

Be precise and detailed in your comments, and ensure the `total_score` equals the sum of all individual scores.

I.3 EXAMPLE-BASED INFOGRAPHIC CHART GENERATION

You are an experienced infographic chart designer.

Given the following dataset in JSON format: {Tabular data} and a reference infographic chart image (used as a style guide) {Chart image}, your task is to create a new infographic chart that clearly and creatively visualizes the data.

INSTRUCTIONS

- Maintain overall stylistic consistency with the reference infographic chart, including color scheme, typography, iconography, and visual tone, to ensure a coherent aesthetic. However, adapt the layout, chart types, and visual elements creatively to best suit the structure and insights of the new dataset.
 - Prioritize effective communication of the new data over replicating the original design.
 - Incorporate visual storytelling elements, such as icons, labels, contrast, or scale, to highlight key patterns or contrasts in the data.
 - Include a clear, well-designed title that matches the tone and aesthetic of the reference.
 - You may choose a light or dark background — whatever best fits the visual narrative and legibility.
 - Legends, axes, and any necessary annotations should be present and styled consistently.

OUTPUT FORMAT

- A single high-resolution infographic chart image (portrait or square format)
 - All text and numbers should be **fully readable**
 - The image should be **self-explanatory** — no external explanation should be needed
 - The style should be **clean, professional, and ready for publication**

Avoid any explanation outside the visual — the final image should be self-explanatory and visually engaging.

J THE USE OF LLMs

LLMs were used solely to aid or polish writing; they were not used for research ideation, analysis, or any other part of the manuscript.