
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENTIABLE CLUSTER GRAPH NEURAL NET-
WORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks often struggle with long-range information propagation
and local heterophilous neighborhood aggregation. Inspired by the observation
that cluster patterns manifest at global and local levels, we propose to tackle both
challenges with a unified framework that incorporates a clustering inductive bias
into the message passing mechanism, using additional cluster-nodes. Central to
our approach is the formulation of an optimal transport based clustering objective.
However, optimizing this objective in a differentiable way is non-trivial. To
navigate this, we adopt an iterative process, alternating between solving for the
cluster assignments and updating the node/cluster-node embeddings. Notably,
our derived optimization steps are themselves simple yet elegant message passing
steps operating seamlessly on a bipartite graph of nodes and cluster-nodes. Our
clustering-based approach can effectively capture both local and global information,
demonstrated by extensive experiments on heterophilous and homophilous datasets.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as prominent models for learning node representations
on graph-structured data. Their architectures predominantly adhere to the message passing paradigm,
where node embeddings are iteratively refined using features from its adjacent neighbors (Kipf and
Welling, 2016; Defferrard et al., 2016; Gilmer et al., 2017). While this message passing paradigm
has proven effective in numerous applications (Ying et al., 2018; Zhou et al., 2020), two prominent
challenges have been observed. First, long-range information propagation over a sparse graph can
be challenging (Li et al., 2018; Zhou et al., 2021; Rusch et al., 2023). Expanding the network’s
reach by increasing the number of layers is often suboptimal as it could encounter issues such as
over-squashing (Alon and Yahav, 2020; Topping et al., 2021), where valuable long-range information
gets diluted as it passes through the graph’s bottlenecks, diminishing its impact on the target nodes.
Second, some graphs exhibit heterophily, where connected nodes are likely to be dissimilar. In such
cases, aggregating information from the dissimilar neighbors might introduce noise and hinder the
graph representation learning performance (Zhu et al., 2020b; 2021).

In this paper, we focus on the task of supervised node classification using GNN and explore clustering
as an inductive bias to address both challenges. Our approach is motivated by the observation
that cluster patterns can be utilized at both global and local levels in graph data. Globally, cluster
patterns appear when nodes that are far apart in the graph exhibit similar features (see Fig. 1).
These patterns can be leveraged to enable efficient long-range information transfer, by clustering
nodes by their latent space representations, rather than structural proximity. Locally, particularly
for heterophilic neighbourhoods, it would be desirable to disconnect edges across dissimilar nodes
while maintaining connections across similar nodes. Clustering nodes within local neighbourhoods
provides a mechanism for this.

To embed the clustering inductive bias explicitly into the network architecture, we propose Dif-
ferentiable Cluster Graph Neural Network (DC-GNN), an efficient end-to-end learning framework
designed to address both over-squashing and heterophily. We first formulate the problem of inferring
cluster-aware node representations as an optimization task with a novel clustering-based objective
function. This objective function is composed of a weighted sum of global and local clustering terms,
which promote long-range information propagation and effective aggregation in heterophilic neighbor-
hoods, respectively. A key challenge in integrating clustering into an end-to-end learning framework

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An illustration of global and local cluster patterns, where nodes of the same color share similar features
and square boxes indicate conceptual cluster centroids. On the left is an instance where distant blue nodes are
similar and get connected via global cluster centroid. On the right is the heterophilous ego-neighborhood of
node A where similar nodes connected by their respective cluster centroids.

lies in the non-differentiability of classical clustering algorithms. To achieve differentiability, we
define the objective function that seeks to move node representations to their cluster-centroids through
the lens of an Optimal Transport (OT) problem (Villani et al., 2009). Unfortunately, optimizing
this clustering-based objective function as a conventional training loss is inherently difficult due to
the latent nature of cluster assignments. To overcome this, we propose an alternating optimization
approach based on block coordinate descent which iterates between (1) solving for a soft cluster
assignment matrix that probabilistically assigns a node to a cluster, and (2) updating the node/cluster
embeddings given the cluster assignment matrix.

Intriguingly, this iterative alternating optimization algorithm for minimizing the clustering-based
objective function can be interpreted as an iterative message passing procedure. It operates on a
bipartite graph consisting of original nodes and cluster nodes representing centroids. Unlike previous
approaches that treat clustering as a separate component, our method directly embeds the clustering
process into the message passing network architecture. This ensures the clustering-based objective
function is optimized as part of the message passing network itself, enforcing the clustering inductive
bias during both training and inference. The resulting cluster-aware node embeddings are then fed into
a task-specific loss for supervised node classification, allowing DC-GNN to be trained end-to-end.

DC-GNN is efficient and has a linear complexity with respect to the graph size. Additionally, our
framework can be viewed as a form of graph rewiring, where the introduction of cluster nodes
creates new pathways between original nodes. This rewiring reduces the overall graph’s effective
resistance, helping to mitigate oversquashing (Black et al., 2023), as shown in our experiments. To
assess the effectiveness of DC-GNN, we conduct extensive evaluations on 14 datasets, spanning both
heterophilous and homophilous graphs. Our results demonstrate that DC-GNN consistently achieves
superior or competitive performance compared to state-of-the-arts.

2 RELATED WORK

Prominent GNN models typically follow a message passing paradigm that iteratively aggregates
information in a node’s neighborhood (Kipf and Welling, 2016; Bruna et al., 2013; Defferrard et al.,
2016; Gilmer et al., 2017; Veličković et al., 2017; Xu et al., 2018). This local message passing,
however, requires the stacking of multiple layers to pursue long-range information and can encounter
issues such as over-smoothing (Li et al., 2018; Cai and Wang, 2020; Rusch et al., 2023) and over-
squashing (Alon and Yahav, 2020; Topping et al., 2021; Banerjee et al., 2022; Karhadkar et al., 2022).
To tackle oversquashing, most existing works design graph rewiring techniques that change graph
topology (Topping et al., 2021; Nguyen et al., 2023; Arnaiz-Rodríguez et al., 2022; Karhadkar et al.,
2022). Other works like Chen et al. (2024) leverages random walk sequences and Kosmala et al.
(2023) leverages Fourier basis representation. Similar to some existing methods (Black et al., 2023),
our approach of adding cluster-nodes also changes graph topology and is shown to reduce effective
resistance, thereby helpful in mitigating oversquashing (Black et al., 2023).

Additionally, some graphs contain heterophilous neighborhoods, in which traditional aggregation
promoting similarity among neighbors is suboptimal. (Zhu et al., 2020b; 2021). There are three types
of approaches to address this, including design of high-pass filters in message passing (Chien et al.,
2020; Fu et al., 2022; Dong et al., 2021), exploring global neighborhoods (Xu et al., 2022; Jin et al.,
2021; Li et al., 2022; Abu-El-Haija et al., 2019), and use of auxiliary graph structures (Pei et al.,
2020; Zhu et al., 2020a; Lim et al., 2021; Yan et al., 2021). Many of these approaches are often

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

computationally expensive and may struggle on homophilous graphs. Our method seeks to explore
global neighborhoods by introducing cluster-nodes as auxiliary structures and conduct clustered
aggregation in local neighborhoods, with linear complexity.

Our work focuses on using a clustering inductive bias to enhance the supervised node classification
task. This differs from tasks like graph clustering (Tsitsulin et al., 2023; Tian et al., 2014) and graph
pooling (Bianchi et al., 2020; Duval and Malliaros, 2022), which are constrained by graph typology
and aim to partition a graph into substructures. Instead, our approach primarily utilizes feature
information for global clustering. Unlike previous methods, we also explore clustering within local
neighborhoods, which has not been explored before.

Clustering within a differentiable pipeline has been explored particularly in unsupervised and self-
supervised settings (Feng et al., 2022; Saha et al., 2023; Caron et al., 2018; Stewart et al., 2024).
However, most of these approaches do not extend to graph-structured data. Few methods, such as
DCAT (Zhou et al., 2024), have applied differentiable clustering in graph-based models, typically
employing clustering as an auxiliary loss function. In contrast, our approach directly integrates clus-
tering into the message-passing mechanism. By deriving the message-passing steps as optimization
steps toward a clustering objective, we effectively embed a clustering algorithm into the model’s
architecture. This design enables clustering to be performed both during training and inference.

Our approach, which integrates clustering into message passing, is realized through an Optimal
Transport-based clustering objective. OT has been recently applied to graph learning for tasks like
graph classification (Titouan et al., 2019; Bécigneul et al., 2020; Vincent-Cuaz et al., 2022; Ma et al.,
2024), regularizing node representations (Yang et al., 2020) and finetuning (Li et al., 2020). However,
most of these methods leverage OT as a separate component and do not integrate it within message
passing. Distinct from these approaches, we implicitly optimize an OT-based clustering objective
function via message passing.

3 METHODOLOGY

In this section, we introduce our unified clustering-based GNN message passing method to address
both long-range interactions and heterophilous neighborhood aggregation. This involves transforming
the input graph into a bipartite graph by introducing cluster-nodes, defining an optimal transport
(OT) based clustering objective function, and optimizing it through our derived message passing
steps within a differentiable coordinate descent framework. Notations are introduced where needed
throughout the paper. A complete list of these notations is available in Appendix A.

3.1 DC-GNN FORMULATION

We begin by constructing a bipartite graph, denoted as G = (V, C, E). This bipartite graph is derived
from the original graph G = (V,E) and comprises two distinct sets of nodes. The first set, V , is
a direct copy of the nodes V from the original graph. The second set, C, consists of cluster-nodes
divided into two categories: global clusters (Ω) and local clusters (Γ). E and E represent the set of
edges in the bipartitie graph and original graph respectively.

In this bipartite graph, each global cluster-node from Ω connects to all nodes in V , thereby facilitating
long-range interactions across distant nodes. Meanwhile, each local cluster-node from Γ is associated
with a specific node i in V , and connected to its ego-neighborhood. The ego-neighborhood of node
i, denoted as N+

i , includes i itself and its one-hop neighbors, formally defined as N+
i = Ni ∪ {i},

where Ni = {j : (i, j) ∈ E}. Here, Γi represents the set of local clusters associated with node
i in V . The total number of nodes in C equals the nodes in Ω plus those in all local clusters, i.e.,
|C| = |Ω|+

∑
i∈V |Γi|. An illustration of the bipartite graph construction is provided in Appendix C.

Following the bipartite graph construction, we propose our Differentiable Cluster Graph Neural
Network (DC-GNN) to learn the node embeddings. An illustration of DC-GNN architecture is
presented in Fig. 2. Given Xinput as input node features, we first transform it with an MLP to
produce X . The transformed features together with the bipartite graph G are then put through an
iterative DC-MsgPassing algorithm to produce the embeddings of nodes Z and cluster-nodes C. A
learnable readout function such as a simple MLP, is then used on Z to produce the class probabilities Y
in our node classification task. Then, DC-GNN is trained end-to-end with a task-specific loss function

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Overview of DC-GNN. DC-MsgPassing is an iterative optimization algorithm that implicitly
minimizes Oλ

cluster in each step of message passing, where Oλ
cluster is an optimal transport based clustering

objective function. The output of DC-MsgPassing are cluster-aware embeddings which can then be optimized
with any task-specific loss function L. DC-GNN is trained end-to-end in a supervised setting.

L via backpropagation. At the core of our design is the iterative DC-MsgPassing algorithm, an
implicit optimization network that optimizes a clustering-based objective function Oλ

cluster.

3.2 CLUSTERING-BASED OBJECTIVE FUNCTION Ocluster

In this work, we aim to address over-squashing and heterophily by embedding a clustering inductive
bias into the design of the GNN. One way to achieve this is by optimizing a clustering-based objective
function. Motivated by the theory of optimal transport, we propose a novel soft clustering-based
objective function.

We conceptualize the cluster assignment problem as an optimal transport problem (Villani et al.,
2009), where the cost is defined as the distance between the embeddings of nodes and their cluster
centroids. Therefore, we propose to minimize the overall cost, weighted by the soft cluster assignment
matrix P which indicates the amount of assignment from a node to a cluster. Specifically, we have a
single global soft cluster assignment matrix PΩ ∈ R|V|×|Ω|

+ and local soft cluster assignment matrices

PΓi ∈ R|N+
i |×|Γi|

+ for each node i. Let d(u, v) represent the distance between two vectors u and v,
zi be the node embeddings to be learnt for each node i ∈ V , xi be the node features after an initial
transformation by a multilayer perceptron, and cΩj , cΓi

j be the embeddings of the jth global and local
cluster-node respectively. Then we define our objective function Ocluster as

Ocluster = α
∑
i∈V

∑
j∈Ω

PΩ
ijd(zi, c

Ω
j)︸ ︷︷ ︸

global clustering

+(1− α)
∑
i∈V

∑
u∈N+

i

∑
j∈Γi

PΓi
uj d(zu, c

Γi
j)

︸ ︷︷ ︸
local clustering

+ β
∑
i∈V

d(zi, xi)︸ ︷︷ ︸
node fidelity

.

(1)

The global clustering part optimizes the OT distance between node embeddings and global cluster-
node embeddings. The local clustering term optimizes the OT distance between the embeddings of
nodes and local cluster-nodes within each ego-neighborhood. The scalar parameter α ∈ [0, 1] is a
balancing factor between the two terms. Furthermore, the additional node fidelity term encourages the
node embeddings to retain some information from the original node features (Klicpera et al., 2018;
Chen et al., 2020).

3.3 DC-MSGPASSING : OPTIMIZE Ocluster WITH ENTROPIC REGULARIZATION VIA MESSAGE
PASSING

Since conventional OT solvers can be computationally prohibitive (Pele and Werman, 2009), we
adopt the entropy regularized version of the OT distance that is designed for efficiency and offers a
good approximation of OT distance (Cuturi, 2013), with details in Section 3.3.1. Let h(P) be the
entropy of the assignment matrix P , we propose the following refined objective function

Oλ
cluster := Ocluster −

α

λ
h(PΩ)− (1− α)

λ

∑
i∈V

h(PΓi). (2)

Direct optimization of Oλ
clusteris difficult due to the presence of unobserved assignment matrices

PΩ and PΓi , since we cannot compute Eq. (2) without estimating the cluster assignment values. To
overcome this, we propose an iterative block coordinate descent algorithm called DC-MsgPassing.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In each iteration of DC-MsgPassing, we alternatively optimize Oλ
cluster with respect to one block

of variables at a time, while all other variables are held constant. Specifically, we alternatively update
the assignment matrices PΩ, PΓi and embeddings Z,C in each iteration.

For the first step of solving cluster-assignments, we adopt the entropic regularized Sinkhorn dis-
tance (Cuturi, 2013) approximation for solving the OT problem. This approximation utilizes differen-
tiable operations, allowing the clustering algorithm to be used as a component within an end-to-end
learning process. For the second step of updating the node and cluster embeddings, we show that a
closed-form solution can be derived to minimize the objective function given the assignment matrix.

3.3.1 ASSIGNMENT UPDATE

Update for assignment matrices PΩ, PΓi : With node and cluster-node embeddings kept constant,
we aim to update the PΩ, PΓi minimizing Ocluster. We approach this cluster assignment problem
from the perspective of optimal transport theory (Villani et al., 2009), and use PΩ as an example
without loss of generality.

Our objective is to determine the optimal assignment matrix PΩ∗ ∈ R|V|×|Ω|
+ for a given cost matrix

M ∈ R|V|×|Ω|
+ , aligning with a target clustering distribution. Assuming a uniform distribution of data

points across all clusters, we aim to find a mapping from u⊤ =
[
|V|−1 · · · |V|−1

]
1×|V| to v⊤ =[

|Ω|−1 · · · |Ω|−1
]
1×|Ω|, minimizing the overall cost. To formalize, optimizing Ocluster with

respect to PΩ is tantamount to solving:
min

PΩ∈U(u,v)
⟨PΩ,M⟩, (3)

where U(u,v) = {P ∈ R|V|×|Ω|
+ : P1|Ω| = u, P⊤1|V| = v}. ⟨·, ·⟩ is the Frobenius dot-product,

and ⟨PΩ,M⟩ =
∑

i∈V
∑

j∈Ω PΩ
ijd(zi, c

Ω
j). Importantly, Mij = d(zi, c

Ω
j) can be seen as the cost of

assigning node i to cluster j, and PΩ
ij indicates the amount of assignment from node i to cluster j.

This is a classical optimal transport problem (Villani et al., 2009), where Eq. (3) represents the optimal
transport distance, also known as the earth mover’s distance. While such problems are typically
solved via linear programming techniques, these approaches are computationally expensive (Pele
and Werman, 2009). To overcome it, we opt for the Sinkhorn distance (Cuturi, 2013) instead, which
offers a good approximation to the optimal transport distance with additional entropic regularization,
weighted by scalar 1/λ, where λ > 0. Formally,

⟨PΩ
λ ,M⟩, where PΩ

λ = argmin
PΩ∈U(u,v)

⟨PΩ,M⟩ − 1

λ
h(PΩ). (4)

The benefit of having this entropic regularization term h(PΩ) is that the solution PΩ∗
λ now has the

form PΩ∗
λ = UBV (Cuturi, 2013), where B = e−λM , and U and V are diagonal matrices. Now the

OT problem reduces to the classical matrix scaling problem (Idel, 2016), for which the objective
is to determine if there exist diagonal matrices U and V such that the ith row of the matrix UBV
sums to ui and the jth column of UBV sums to vj . Since e−λM is strictly positive, there exists a
unique PΩ∗

λ that belongs to U(u,v) (Menon, 1968; Sinkhorn, 1967), which can be obtained by the
well-known Sinkhorn–Knopp algorithm (Sinkhorn, 1967; Sinkhorn and Knopp, 1967).

To obtain PΩ∗
λ , we run the Sinkhorn–Knopp algorithm which iteratively updates the matrix B by

scaling each row of B by the respective row-sum, and each column of B by the respective column-sum.
Formally, we have

B
(t)
ij =

B
(t−1)
ij∑

j B
(t−1)
ij

ui, B
(t+1)
ij =

B
(t)
ij∑

i B
(t)
ij

vj . (5)

After T steps, we update PΩ
ij by the value of Bij . Similarly, we update PΓi in the local clustering

term. The scaling operations in Sinkhorn–Knopp are fully differentiable, enabling end-to-end learning.

3.3.2 EMBEDDINGS UPDATE

With the updated assignment matrices PΩ, PΓi , we now derive the message passing equations to
update the cluster-node and node embeddings.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Update for cluster-node embeddings C: To minimize Oλ
clusterwith respect to a specific cluster

node cj , we differentiate Oλ
cluster in terms of cj with other variables fixed and set the derivative to

zero. If we choose the distance function d(·) to be the squared Euclidean norm, Oλ
cluster is a quadratic

model of node embeddings cj . Then we can derive the following closed-form solution:

C = diag(k)P⊤Z, (6)

where k⊤ =
[
|Ω|1|Ω|; |Γi|1|Γi|; · · · ; |Γ|V||1|Γi|

]
1×|C|, ; denotes concatenation. P ∈ R|V|×|C|

+ is
the overall assignment matrix that indicates the amount of assignment from all nodes Z to all
cluster-nodes C. See Appendix B.2 and B.3 for notation and full derivation.

Remark 3.1. Since Pij can be viewed as edge weight between a node i ∈ V and a cluster-node j ∈ C,
the updating mechanism serves as the message passing function from nodes to cluster-nodes.

Update for node embeddings Z: Similar to cluster-node embeddings update, we derive the node
embeddings update by differentiating Oλ

cluster with respect to zi. Consequently, we obtain

Z = γ
[
βX + αPΩCΩ + (1− α)

∑
u∈N+

i

P̂ΓuCΓu

]
, (7)

where γ = (α|V|−1
+ β + 1 − α)−1 is a constant, and P̂Γu ∈ R|V|×|Γu|

+ is the broadcasted

local assignment matrix from PΓu ∈ R|N+
u |×|Γu|

+ (see Appendix B.2 and B.4 for notation and full
derivation). Intriguingly, this closed-form solution reveals that Z is updated by a linear combination
of global and local cluster-node embeddings, weighted by cluster assignment probabilities. The
hyperparameter α balances the influence of local and long-range interactions while β scales the
original node features that provide the initial residual (Klicpera et al., 2018; Chen et al., 2020).
Remark 3.2. Viewing the cluster assignment probabilities as edge weights, Eq. (7) represents the
message passing from cluster-nodes back to original nodes. Therefore, Eq. (6) and Eq. (7) function
as message passing on the bipartite graph, enforcing the clustering inductive bias.

Algorithm 1 DC-MsgPassing

Input: Bipartite graph G = (V, C, E), Node features
X , hyperparameters α, β, λ

Output: [zi]i∈V
1: Z = X
2: Initialize cluster embeddings C
3: // Optimize Oλ

cluster via DC-MsgPassing
4: for l = 1, 2, . . . , L do
5: Update Cluster Assignment Matrices:
6: Mij = d(zi, cj) ∀i ∈ V, j ∈ C
7: B{Ω,Γi} = e−λM

8: // Run Sinkhorn algorithm for T steps (Eq. 5)
9: P {Ω,Γi} = B{Ω,Γi}

10: Update Node and Cluster-node Embeddings:
11: Calculate C as per Eq. (6)
12: Calculate Z as per Eq. (7)
13: end for
14: Return: Z

In summary, DC-MsgPassing is the
key to our method. Each iteration of
DC-MsgPassing consists of two alternative
steps. First, with fixed embeddings Z and
C, optimal clustering assignment matrices
are calculated via Sinkhorn-Knopp algorithm
(Eq. (5)). Then, the cluster-node and node
embeddings are refined through message
passing with the updated assignment matrices
via Eq. (6) and Eq. (7). In practice, we
could also add learnable components such as
linear transformation matrices or MLPs for
the messages in Eq. (6) and Eq. (7) to allow
the network to fit the data distribution better.
Each iteration of DC-MsgPassing is one
optimization step towards minimizing Oλ

cluster.
Thus our message passing mechanism provides
the needed inductive bias in learning the local
and global clusters present in the data, while
simultaneously learning node embeddings using the clustering information. We present the details of
DC-MsgPassing in Algorithm 1.

In DC-GNN, both local and global cluster-nodes serve important but different roles. The local cluster-
node connections help to preserve the original graph structure information and enable clustered
aggregation. Therefore, a single update via local cluster-nodes is analogous to one layer of message
passing in conventional GNNs, with the cluster structure assisting in handling heterophilic local
neighbourhoods. Simultaneously, each update via global cluster-nodes allows transfer of long-range
information from relevant distant nodes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Convergence analysis The DC-MsgPassing algorithm is generally well behaved, converging
when enough iterations are performed. The following theorem presents the convergence analysis of
minimizing the objective function Oλ

cluster with the DC-MsgPassing algorithm.

Theorem 3.3 (Convergence of DC-MsgPassing). Assuming the Sinkhorn–Knopp algorithm
is run to convergence in each iteration, for any λ > 0, the value of Oλ

cluster produced by
DC-MsgPassing algorithm (Algorithm 1) is guaranteed to converge.

Proof can be found in the Appendix B.1.

Complexity analysis The time complexity of the global assignment update step is O(T |V||Ω|). In
practice, it could be simplified as O(|V|) since |Ω| ≪ |V| and T are small constants. Both the time
complexity of the local assignment update step O(T |E|) = O(|E|) and the embeddings update step
O(|E|) = O(|E|) are linear w.r.t. the number of edges. Thus the overall computational complexity
is linear w.r.t. the size of the original graph O(|E|), same order as standard GNNs. Runtime
of DC-MsgPassing is measured in Appendix E.3. The memory complexity is O(|V| + |C|) =
O(|V|+ |Ω|+

∑
i∈V |Γi|) = O(|Γi||V|) since |Ω| ≪ |V|, which is linear w.r.t. the number of nodes,

and |Γi| the number of local clusters for each node is a small constant in practice.

3.4 TRAINING OF DC-GNN

In this work, we mainly focus on the supervised node classification task. As depicted in Fig.2, the
node representations Z, generated by DC-MsgPassing, are subsequently passed through a readout
function (e.g., a multi-layer perceptron) to produce the final output, which is used as input to a task-
specific loss function L for end-to-end training. We use cross entropy loss Lce to train DC-GNN along
with two regularizing loss functions to facilitate the learning process.

L = Lce + ω1Lortho + ω2Lsim, (8)

where Lortho and Lsim are orthogonality and similarity losses, weighted by hyperparameters ω1 and
ω2, as described below.

Orthogonality loss (Lortho): To encourage the clusters to be distinct, we adopt a regularizing

orthogonality loss function (Bianchi et al., 2020) Lortho =

∥∥∥∥ C⊤C
∥C⊤C∥F

− I|Ω|√
|Ω|

∥∥∥∥
F

, where ∥ · ∥F is the

Frobenius norm. This pushes the cluster-nodes to be orthogonal to each other.

Similarity loss (Lsim): To further enhance the clustering process, we introduce Lsim that encourages
node similarity to only a single cluster. To achieve this, we set |Ω| to be multiple of the number of
classes and associate a set of cluster-nodes Ωτ with each class τ . We then compute distances between
the node embedding and the cluster-node embeddings associated with its labelled class, select the
cluster-node embedding that is most similar to the node with a max operator, and push them closer.
If a training node i belongs to class τ , cτj is the jth cluster embedding associated with class τ . Let Λ
be a similarity function, and V+ be the set of training nodes, then Lsim is defined as

Lsim =
1

|Ω||V+|

∑
i∈V+

[
sτi + log

∑
τ ′ ̸=τ

exp
(
− sτ

′

i

)]
, where sτi = max

j∈|Ωτ |
Λ
(
zLi , c

τ
j

)
. (9)

4 EXPERIMENTS

In this section, we empirically validate the capabilities of our proposed solution through extensive
experiments and ablation studies. Descriptions and statistics of the datasets are in Appendix. E.6.
Baselines, implementation and training details can be found in Appendix. E.7.

4.1 COMPARISON WITH BASELINES ON HETEROPHILOUS GRAPHS

We first conduct experiments on heterophilous datasets where long-range information is beneficial and
neighborhood aggregation needs special attention. We achieve state-of-the-art on all six heterophilous

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Classification performance comparison across various heterophilous and homophilous datasets. We
report ROC AUC for Genius (Lim et al., 2021) and accuracy for other datasets. OOM refers to out-of-memory.

Heterophilous Homophilous
Penn94 Genius Cornell5 Amherst41 US-election Wisconsin Cora Citeseer Pubmed

MLP 73.61 (0.40) 86.68 (0.09) 68.86 (1.83) 60.43 (1.26) 81.92 (1.01) 85.29 (3.31) 75.69 (2.00) 74.02 (1.90) 87.16 (0.37)
GCN 82.47 (0.27) 87.42 (0.37) 80.15 (0.37) 81.41 (1.70) 82.07 (1.65) 51.76 (3.06) 86.98 (1.27) 76.50 (1.36) 88.42 (0.50)
GAT 81.53 (0.55) 55.80 (0.87) 78.96 (1.57) 79.33 (2.09) 84.17 (0.98) 49.41 (4.09) 87.30 (1.10) 76.55 (1.23) 86.33 (0.48)

MixHop 83.47 (0.71) 90.58 (0.16) 78.52 (1.22) 76.26 (2.56) 85.90 (1.55) 75.88 (4.90) 87.61 (0.85) 76.26 (1.33) 85.31 (0.61)
GCNII 82.92 (0.59) 90.24 (0.09) 78.85 (0.78) 76.02 (1.38) 82.90 (0.29) 80.39 (3.40) 88.37 (1.25) 77.33 (1.48) 90.15 (0.43)

H2GCN 81.31 (0.60) OOM 78.46 (0.75) 79.64 (1.63) 85.53 (0.77) 87.65 (4.98) 87.87 (1.20) 77.11 (1.57) 89.49 (0.38)
WRGAT 74.32 (0.53) OOM 71.11 (0.48) 62.59 (2.46) 84.45 (0.56) 86.98 (3.78) 88.20 (2.26) 76.81 (1.89) 88.52 (0.92)

GPR-GNN 81.38 (0.16) 90.05 (0.31) 73.30 (1.87) 67.00 (1.92) 84.49 (1.09) 82.94 (4.21) 87.95 (1.18) 77.13 (1.67) 87.54 (0.38)
GGCN 73.62 (0.61) OOM 71.35 (0.81) 66.53 (1.61) 84.71 (2.60) 86.86 (3.29) 87.95 (1.05) 77.14 (1.45) 89.15 (0.37)

ACM-GCN 82.52 (0.96) 80.33 (3.91) 78.17 (1.42) 70.11 (2.10) 85.14 (1.33) 88.43 (3.22) 87.91 (0.95) 77.32 (1.70) 90.00 (0.52)
LINKX 84.71 (0.52) 90.77 (0.27) 83.46 (0.61) 81.73 (1.94) 84.08 (0.67) 75.49 (5.72) 84.64 (1.13) 73.19 (0.99) 87.86 (0.77)

GloGNN++ 85.74 (0.42) 90.91 (0.13) 83.96 (0.46) 81.81 (1.50) 85.48 (1.19) 88.04 (3.22) 88.33 (1.09) 77.22 (1.78) 89.24 (0.39)

DC-GNN 86.69 (0.22) 91.70 (0.08) 84.68 (0.24) 82.94 (1.59) 89.59 (1.60) 91.67 (1.95) 89.13 (1.18) 77.93 (1.82) 91.00 (1.28)

Table 2: Classification performance comparison on more recent heterophilous datasets (Platonov et al., 2023).
We report accuracy for Roman-empire and Amazon-ratings, and ROC AUC for the rest.

Roman-empire Amazon-ratings Minesweeper Tolokers Questions
ResNet 65.88 (0.38) 45.90 (0.52) 50.89 (1.39) 72.95 (1.06) 70.34 (0.76)
ResNet+SGC 73.90 (0.51) 50.66 (0.48) 70.88 (0.90) 80.70 (0.97) 75.81 (0.96)
ResNet+adj 52.25 (0.40) 51.83 (0.57) 50.42 (0.83) 78.78 (1.11) 75.77 (1.24)

GCN 73.69 (0.74) 48.70 (0.63) 89.75 (0.52) 83.64 (0.67) 76.09 (1.27)
SAGE 85.74 (0.67) 53.63 (0.39) 93.51 (0.57) 82.43 (0.44) 76.44 (0.62)
GAT 80.87 (0.30) 49.09 (0.63) 92.01 (0.68) 83.70 (0.47) 77.43 (1.20)
GAT-sep 88.75 (0.41) 52.70 (0.62) 93.91 (0.35) 83.78 (0.43) 76.79 (0.71)
GT 86.51 (0.73) 51.17 (0.66) 91.85 (0.76) 83.23 (0.64) 77.95 (0.68)
GT-sep 87.32 (0.39) 52.18 (0.80) 92.29 (0.47) 82.52 (0.92) 78.05 (0.93)
GPSGAT+Performer 87.04 (0.58) 49.92 (0.68) 91.08 (0.58) 84.38 (0.91) 77.14 (1.49)
NaGphormer 74.34 (0.77) 51.26 (0.72) 84.19 (0.66) 78.32 (0.95) -
Exphormer 89.03 (0.37) 53.51 (0.46) 90.74 (0.53) 83.77 (0.78) -
GOAT 71.59 (1.25) 44.61 (0.50) 81.09 (1.02) 83.11 (1.04) -
NeuralWalker 92.92 (0.36) 54.58 (0.36) 97.82 (0.40) 85.56 (0.74) 78.52 (1.13)

H2GCN 60.11 (0.52) 36.47 (0.23) 89.71 (0.31) 73.35 (1.01) 63.59 (1.46)
CPGNN 63.96 (0.62) 39.79 (0.77) 52.03 (5.46) 73.36 (1.01) 65.96 (1.95)
GPR-GNN 64.85 (0.27) 44.88 (0.34) 86.24 (0.61) 72.94 (0.97) 55.48 (0.91)
FSGNN 79.92 (0.56) 52.74 (0.83) 90.08 (0.70) 82.76 (0.61) 78.86 (0.92)
GloGNN 59.63 (0.69) 36.89 (0.14) 51.08 (1.23) 73.39 (1.17) 65.74 (1.19)
FAGCN 65.22 (0.56) 44.12 (0.30) 88.17 (0.73) 77.75 (1.05) 77.24 (1.26)
GBK-GNN 74.57 (0.47) 45.98 (0.71) 90.85 (0.58) 81.01 (0.67) 74.47 (0.86)
JacobiConv 71.14 (0.42) 43.55 (0.48) 89.66 (0.40) 68.66 (0.65) 73.88 (1.16)
GMN 87.69 (0.50) 54.07 (0.31) 91.01 (0.23) 84.52 (0.21) -
Diag-NSD 77.50 (0.67) 37.96 (0.20) 89.59 (0.61) 79.81 (0.99) 69.25 (1.15)
ACMP 71.27 (0.59) 44.76 (0.52) 76.15 (1.12) 75.03 (0.92) 71.18 (1.03)
CDE-GRAND 91.64 (0.28) 47.63 (0.43) 95.50 (5.23) 80.70 (1.04) 75.17 (0.99)
CDE-GraphBel 85.39 (0.46) 45.22 (0.60) 93.98 (0.57) 81.30 (0.43) 72.11 (1.31)

DC-GNN 89.96 (0.35) 51.11 (0.47) 98.50 (0.21) 85.88 (0.81) 78.96 (0.60)

datasets in Tab. 1. The performance uplift is especially pronounced on US-election and Wisconsin,
where our method outperforms baselines by more than 3%. Furthermore, our method achieves
state-of-the-art on four out of five heterophilous datasets proposed by (Platonov et al., 2023), as
shown in Tab. 2. Our performance is especially strong on Minesweeper, where we surpass existing
baselines by 4%. Baseline results are from (Li et al., 2022), (Platonov et al., 2023) and (Müller et al.,
2023) except for Cornell5, Amherst41 and US-election, which we reproduced following the code
in (Li et al., 2022). Details are in Appendix. E.7.

4.2 COMPARISON WITH BASELINES ON HOMOPHILOUS GRAPHS

For a more comprehensive evaluation, we run DC-GNN on well-known homophilous citation network
datasets Cora, Citeseer and Pubmed (Pei et al., 2020). As shown in Tab. 1, DC-GNN achieves the
best performance on all three datasets, outperforming both general-purpose GNN baselines and those
proposed specifically for heterophilous graphs. Our strong performance on both homophilous and
heterophilous graphs shows that our network with the built-in clustering inductive bias is flexible and
adaptive, capable of effective information aggregation in graphs with various homophily levels.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Classification accuracy with 5 labels per
class on three homophilous datasets.

Cora Citeseer Pubmed

GCN 69.23 (3.39) 63.03 (4.48) 68.00 (3.75)
GAT 68.17 (5.54) 55.54 (1.82) 64.24 (4.79)
SAGE 64.47 (1.36) 57.10 (2.20) 66.23 (2.65)
GCNII 60.03 (7.17) 40.40 (4.68) 69.40 (6.01)
SGC 67.80 (2.20) 55.37 (1.16) 63.70 (5.92)
Graph U-Net 64.42 (5.44) 49.43 (5.81) 65.05 (4.69)
GraphMix 71.99 (6.46) 58.55 (2.26) 67.66 (3.90)
MixHop 65.33 (0.94) 52.03 (3.92) 71.60 (0.54)

DC-GNN 72.17 (1.76) 62.14 (2.65) 75.07 (0.82)

Table 4: Classification performance comparison on
heterophilous datasets with 5% of original training data.

Penn94 Cornell5 Amherst41 US-election

MLP 67.10 (1.34) 63.33 (0.79) 55.21 (0.84) 79.42 (0.42)
GCN 70.39 (0.84) 69.23 (1.16) 63.87 (1.31) 80.55 (0.97)
GAT 68.83 (1.93) 68.04 (1.49) 61.98 (1.59) 81.45 (0.81)

MixHop 68.37 (1.14) 66.25 (0.67) 61.02 (0.71) 81.81 (0.68)
GCNII 68.04 (0.18) 66.34 (0.75) 62.59 (2.55) 82.28 (0.63)

GPR-GNN 68.83 (0.35) 66.69 (0.67) 57.41 (2.00) 81.64 (0.96)
GGCN OOM 65.23 (0.36) 56.45 (2.29) 79.50 (1.05)

ACM-GCN 70.58 (0.43) 65.69 (0.45) 56.4 (1.70) 81.60 (0.49)
LINKX 69.29 (0.27) 69.09 (0.26) 63.27 (2.67) 77.02 (1.43)

GloGNN++ 71.29 (0.54) 69.85 (1.02) 63.94 (1.97) 80.42 (0.99)

DC-GNN 75.38 (0.19) 72.47 (0.40) 64.53 (0.19) 83.82 (0.10)

4.3 BENEFIT OF CAPTURING LONG RANGE INFORMATION IN SPARSE LABEL SETTINGS

Our method introduces shortcuts between distant nodes via the cluster-nodes. To empirically evaluate
the effects of shortcut construction, we consider a generalized scenario on homophilous graphs where
information from labeled nodes needs to propagate over a long distance to reach most unlabeled
nodes. Specifically, we evaluate our method with only a small number of training labels per class.

Our hypothesis is that information propagation becomes more challenging when useful training
information is more scarce, making the effects of shortcut construction more pronounced in sparsely-
annotated graph datasets. The hypothesis is supported by experiment results in Tab. 3, where our
method outperforms other methods on Cora and Pubmed by substantial margins. We have also
conducted low label rate experiments on heterophilous datasets, with just 5% of training labels. As
shown in Tab. 4, DC-GNN continues to outperform the baselines across four heterophilous datasets,
with a notable 4% improvement on Penn94.

4.4 ALLEVIATING OVERSQUASHING

(a) Amherst41 (b) Wisconsin (c) Tree-NeighborsMatch

Figure 3: (a)-(b) Total effective resistance heatmap. (c) Accuracy for Tree-NeighborsMatch dataset.

Total effective resistance (Rtot) is established as an indicator of oversquashing (Black et al., 2023),
prompting the development of various graph rewiring strategies to diminish Rtot within the underlying
graph and thus address oversquashing. Our approach contributes to this endeavor by introducing
cluster-nodes. This effectively creates new pathways among the original nodes, thereby reducing the
graph’s Rtot and aiding in mitigating the oversquashing issue (Black et al., 2023). To validate this, we
conduct an empirical analysis of the total pairwise effective resistance among the original nodes in
our bipartite graph, with varying number of global and local clusters. Fig. 3a and Fig. 3b display a
heatmap of Rtot, with darker shades representing higher Rtot values. The results indicate that Rtot
decreases sharply as we increase the number of both global and local clusters. In addition, we also
perform experiments on synthetic random graphs with varying degrees of sparsity and show that the
bipartite graph construction reduces Rtot on these graphs. Details can be found in Appendix E.1.

To further validate the oversquashing mitigation capability, we conduct experiments on Tree-
NeighborsMatch dataset (Alon and Yahav, 2020), which requires long-range interaction between leaf
nodes and the root node of tree graphs with varying depths. In Fig. 3c, DC-GNN achieves perfect
performance along with GT (Müller et al., 2023) on all depth settings, significantly outperforming
other message passing GNNs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.5 ABLATION STUDIES

4.5.1 EFFECTS OF EACH TERM IN Oλ
cluster

To validate the effectiveness of our DC-MsgPassing algorithm, we conduct an ablation study on
the individual components of our objective function Oλ

cluster. Specifically, we vary the parameters by
setting (1) α to 0, (2) α to 1 and (3) β to 0, aiming to ablate the contributions of the global clustering
term, local clustering term and the node fidelity term respectively.

Table 5: Effects of each term in Oλ
cluster.

GENIUS US-ELECTION PENN94 AMHERST41
DC-GNN 91.70 (0.08) 89.59 (1.60) 86.69(0.22) 82.94 (1.59)
(-)GLOBAL 91.62 (0.07) 88.77 (2.21) 84.61 (0.42) 81.43 (1.53)
(-)LOCAL 87.05 (0.09) 83.26 (1.77) 86.69 (0.22) 80.77 (2.04)
(-)FIDELITY 91.08 (0.04) 87.84 (2.67) 86.69 (0.22) 82.28 (1.32)

Results from Tab. 5 indicate that the contri-
butions of global and local clustering vary
on different datasets. Specifically, the con-
tribution of local clustering is dominant
on Genius, US-election and Amherst41.
This is expected as local clustering facil-
itates message passing via adjacent nodes
and embeds graph structure information into the model. The contribution of global clustering is most
pronounced on Penn94, indicating the usefulness of long-range information in Penn94 captured by
global clustering term. Additionally, the results show that all three terms—local clustering, global
clustering, and node fidelity—contribute to the overall efficacy of our model.

4.5.2 EFFECTS OF Lortho AND Lsim

Table 6: Effects of Lortho and Lsim.
GENIUS US-ELECTION PENN94 AMHERST41

DC-GNN 91.70 (0.08) 89.59 (1.60) 86.69 (0.22) 82.94 (1.59)
(-) Lsim 91.70 (0.08) 89.08 (1.46) 86.65 (0.15) 82.22 (1.03)
(-) Lortho 91.68 (0.08) 88.72 (1.20) 86.64 (0.27) 82.35 (1.25)
(-)Lsim, Lortho 91.68 (0.08) 88.61 (1.57) 86.40 (0.25) 81.75 (1.07)

We introduced orthogonality (Lortho) and
similarity (Lsim) losses to regularize and
assist the clustering process. In this abla-
tion, we evaluate the effects of these losses
on model performance. As shown in
Tab. 6, Lortho and Lsim generally help to
improve the scores across datasets. While
Oλ

cluster is central to our model, the auxiliary losses Lortho and Lsim play a more supportive role to
facilitate the clustering process, likely by promoting distinct cluster representations and enhancing
node-cluster alignment, as hypothesized. The modest performance uplift suggests that these losses
make a positive, albeit limited, contribution, underscoring the dominant influence of Oλ

cluster in
DC-GNN’s superior performance. More results can be found in App. E.2.2.

5 CONCLUSION AND FUTURE WORK

This paper tackles the dual challenges in Graph Neural Networks: capturing global long-range
information and preserving performance in heterophilous local neighborhoods. We proposed a novel
differentiable framework that seamlessly embeds a clustering inductive bias into the message passing
mechanism, facilitated by the introduction of cluster-nodes. At the heart of our approach is an optimal
transport based implicit clustering objective function whose optimization presents a considerable
challenge. We addressed this through an iterative optimization strategy, alternating between the
computation of cluster assignments and the refinement of node/cluster-node embeddings. Importantly,
the derived optimization steps effectively function as message passing steps on the bipartite graph.
The message passing algorithm is efficient and we show that it is guaranteed to converge. The efficacy
of our clustering-centric method in capturing both local nuances and global structures within graphs
is supported by extensive experiments on both heterophilous and homophilous datasets.

Finally, we identify some limitations and future directions of our approach. Firstly, our work is
motivated by the node classification task. The alignment of our proposed clustering inductive bias
with graph-level tasks is somewhat unclear. We conduct some preliminary experiments with mixed
results (Appendix E.4). To better align with graph-level tasks, one possible direction is to share
clusters across different graphs. Secondly, the idea of embedding clustering inductive bias could
potentially be extended to hierarchical clustering, which might be beneficial on very large graphs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Details of the datasets used can be found in Appendix E.6. For experiments, we document imple-
mentation details in Appendix E.7, training settings in Appendix E.7 and hyperparameter details in
Appendix E.7.

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan,
Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional architectures via sparsified
neighborhood mixing. In ICML, pages 21–29. PMLR, 2019.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. arXiv
preprint arXiv:2006.05205, 2020.

Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria M Oliver. Diffwire: Inductive graph
rewiring via the lovász bound. In The First Learning on Graphs Conference, 2022.

Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar. Oversquashing in gnns
through the lens of information contraction and graph expansion. In 2022 58th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pages 1–8. IEEE, 2022.

Gary Bécigneul, Octavian-Eugen Ganea, Benson Chen, Regina Barzilay, and Tommi Jaakkola. Optimal transport
graph neural networks. arXiv preprint arXiv:2006.04804, 2020.

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space models.
In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
119–130, 2024.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural networks
for graph pooling. In International Conference on Machine Learning, pages 874–883. PMLR, 2020.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in gnns through
the lens of effective resistance. In International Conference on Machine Learning, pages 2528–2547. PMLR,
2023.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph convolutional
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 3950–3957,
2021.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lio, and Michael Bronstein. Neural
sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns. Advances in Neural
Information Processing Systems, 35:18527–18541, 2022.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint arXiv:2006.13318,
2020.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised
learning of visual features. In Proceedings of the European conference on computer vision (ECCV), pages
132–149, 2018.

Deeparnab Chakrabarty and Sanjeev Khanna. Better and simpler error analysis of the sinkhorn–knopp algorithm
for matrix scaling. Mathematical Programming, 188(1):395–407, 2021.

Dexiong Chen, Till Hendrik Schulz, and Karsten Borgwardt. Learning long range dependencies on graphs via
random walks. arXiv:2406.03386, 2024.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer for node
classification in large graphs. arXiv preprint arXiv:2206.04910, 2022.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional
networks. In ICML, pages 1725–1735. PMLR, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph neural
network. arXiv preprint arXiv:2006.07988, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information
processing systems, 26, 2013.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. NeurIPS, 29:3844–3852, 2016.

Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. Adagnn: Graph neural networks with
adaptive frequency response filter. In International Conference on Information and Knowledge Management,
pages 392–401. ACM, 2021.

Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. Gbk-gnn: Gated
bi-kernel graph neural networks for modeling both homophily and heterophily. In Proceedings of the ACM
Web Conference 2022, pages 1550–1558, 2022.

Alexandre Duval and Fragkiskos Malliaros. Higher-order clustering and pooling for graph neural networks. In
Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pages
426–435, 2022.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, and
Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing Systems, 35:
22326–22340, 2022.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop message passing
graph neural networks. Advances in Neural Information Processing Systems, 35:4776–4790, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019.

Joel Franklin and Jens Lorenz. On the scaling of multidimensional matrices. Linear Algebra and its applications,
114:717–735, 1989.

Guoji Fu, Peilin Zhao, and Yatao Bian. p-laplacian based graph neural networks. In International Conference on
Machine Learning, volume 162, pages 6878–6917. PMLR, 2022.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning.
Advances in neural information processing systems, 32, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing
for quantum chemistry. In International conference on machine learning, pages 1263–1272. PMLR, 2017.

Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar, and Pietro Liò. Cin++: Enhancing
topological message passing. arXiv preprint arXiv:2306.03561, 2023.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew: Dynamically
rewired message passing with delay. In International Conference on Machine Learning, pages 12252–12267.
PMLR, 2023.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NeurIPS, pages 1025–1035, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Martin Idel. A review of matrix scaling and sinkhorn’s normal form for matrices and positive maps. arXiv
preprint arXiv:1609.06349, 2016.

Junteng Jia and Austion R Benson. Residual correlation in graph neural network regression. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 588–598,
2020.

Di Jin, Zhizhi Yu, Cuiying Huo, Rui Wang, Xiao Wang, Dongxiao He, and Jiawei Han. Universal graph
convolutional networks. In Advances in Neural Information Processing Systems, pages 10654–10664, 2021.

Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring for addressing
oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph neural
networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat: A global
transformer on large-scale graphs. In International Conference on Machine Learning, pages 17375–17390.
PMLR, 2023.

Arthur Kosmala, Johannes Gasteiger, Nicholas Gao, and Stephan Günnemann. Ewald-based long-range message
passing for molecular graphs. In International Conference on Machine Learning, pages 17544–17563. PMLR,
2023.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian. Finding global
homophily in graph neural networks when meeting heterophily. arXiv preprint arXiv:2205.07308, 2022.

Xuhong Li, Yves Grandvalet, Rémi Flamary, Nicolas Courty, and Dejing Dou. Representation transfer by
optimal transport. arXiv preprint arXiv:2007.06737, 2020.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and Ser Nam Lim.
Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods. Advances in
Neural Information Processing Systems, 34:20887–20902, 2021.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang, and
Doina Precup. Is heterophily a real nightmare for graph neural networks to do node classification? arXiv
preprint arXiv:2109.05641, 2021.

Xinyu Ma, Xu Chu, Yasha Wang, Yang Lin, Junfeng Zhao, Liantao Ma, and Wenwu Zhu. Fused gromov-
wasserstein graph mixup for graph-level classifications. Advances in Neural Information Processing Systems,
36, 2024.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks.
Advances in neural information processing systems, 32, 2019.

Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Sam Maddrell-Mander, Adam Sanders, Hatem Helal,
Deniz Beker, Ladislav Rampášek, and Dominique Beaini. Gps++: An optimised hybrid mpnn/transformer for
molecular property prediction. arXiv preprint arXiv:2212.02229, 2022.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node classification in graph
neural networks. Journal of Computational Science, 62:101695, 2022.

MV Menon. Matrix links, an extremization problem, and the reduction of a non-negative matrix to one with
prescribed row and column sums. Canadian Journal of Mathematics, 20:225–232, 1968.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint arXiv:2007.08663,
2020.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph transformers.
arXiv preprint arXiv:2302.04181, 2023.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh Nguyen. Revisiting
over-smoothing and over-squashing using ollivier-ricci curvature. In International Conference on Machine
Learning, pages 25956–25979. PMLR, 2023.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th international
conference on computer vision, pages 460–467. IEEE, 2009.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A critical look
at the evaluation of gnns under heterophily: are we really making progress? arXiv preprint arXiv:2302.11640,
2023.

Chendi Qian, Andrei Manolache, Kareem Ahmed, Zhe Zeng, Guy Van den Broeck, Mathias Niepert, and Christo-
pher Morris. Probabilistically rewired message-passing neural networks. arXiv preprint arXiv:2310.02156,
2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini.
Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information Processing
Systems, 35:14501–14515, 2022.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in graph neural
networks. arXiv preprint arXiv:2303.10993, 2023.

Bishwajit Saha, Dmitry Krotov, Mohammed J Zaki, and Parikshit Ram. End-to-end differentiable clustering with
associative memories. In International Conference on Machine Learning, pages 29649–29670. PMLR, 2023.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label prediction:
Unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509, 2020.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop. Exphormer:
Sparse transformers for graphs. In International Conference on Machine Learning, pages 31613–31632.
PMLR, 2023.

Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The American
Mathematical Monthly, 74(4):402–405, 1967.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21(2):343–348, 1967.

George W Soules. The rate of convergence of sinkhorn balancing. Linear algebra and its applications, 150:
3–40, 1991.

Lawrence Stewart, Francis Bach, Felipe Llinares-López, and Quentin Berthet. Differentiable clustering with
perturbed spanning forests. Advances in Neural Information Processing Systems, 36, 2024.

Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. Breaking the limit of graph neural
networks by improving the assortativity of graphs with local mixing patterns. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021.

Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep representations for graph clustering.
In Proceedings of the AAAI conference on artificial intelligence, volume 28, 2014.

Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. Optimal transport for structured data with
application on graphs. In International Conference on Machine Learning, pages 6275–6284. PMLR, 2019.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M Bronstein.
Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint arXiv:2111.14522,
2021.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph neural
networks. Journal of Machine Learning Research, 24(127):1–21, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty. Template based graph
neural network with optimal transport distances. Advances in Neural Information Processing Systems, 35:
11800–11814, 2022.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In International Conference
on Machine Learning, pages 23341–23362. PMLR, 2022.

Yuelin Wang, Kai Yi, Xinliang Liu, Yu Guang Wang, and Shi Jin. Acmp: Allen-cahn message passing with
attractive and repulsive forces for graph neural networks. In The Eleventh International Conference on
Learning Representations, 2022.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph
convolutional networks. In International conference on machine learning, pages 6861–6871. PMLR, 2019.

Junjie Xu, Enyan Dai, Xiang Zhang, and Suhang Wang. Hp-gmn: Graph memory networks for heterophilous
graphs. arXiv preprint arXiv:2210.08195, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826, 2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the same coin:
Heterophily and oversmoothing in graph convolutional neural networks. arXiv preprint arXiv:2102.06462,
2021.

Liang Yang, Junhua Gu, Chuan Wang, Xiaochun Cao, Lu Zhai, Di Jin, and Yuanfang Guo. Toward unsupervised
graph neural network: Interactive clustering and embedding via optimal transport. In 2020 IEEE international
conference on data mining (ICDM), pages 1358–1363. IEEE, 2020.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International conference on machine learning, pages 40–48. PMLR, 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 974–983, 2018.

Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay. Graph neural convection-diffusion
with heterophily. arXiv preprint arXiv:2305.16780, 2023.

Haicang Zhou, Tiantian He, Yew-Soon Ong, Gao Cong, and Quan Chen. Differentiable clustering for graph
attention. IEEE Transactions on Knowledge and Data Engineering, 2024.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of methods and applications. AI Open, 1:57–81, 2020.

Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng. Understanding
and resolving performance degradation in deep graph convolutional networks. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, pages 2728–2737, 2021.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai Koutra. Graph
neural networks with heterophily. arXiv preprint arXiv:2009.13566, 2020a.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond homophily in
graph neural networks: Current limitations and effective designs. Advances in Neural Information Processing
Systems, 33:7793–7804, 2020b.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai Koutra. Graph
neural networks with heterophily. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 11168–11176, 2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A NOTATIONS

All notations are listed in Tab. 7.

Table 7: Table for notations.

Variable Definition

G bipartite graph, denoted as (V , C, E)
G original graph, denoted as (V , E)
V set of nodes from the original graph G
V vertices of G, direct copy of V
E set of edges from the original graph G
E set of edges in the bipartite graph G
Ni set of one-hop neighbors of node i
N+

i node i and its one-hop neighbors (ego-neighborhood of i)
C set of cluster-nodes in the bipartite graph G
Ω set of global cluster-nodes
Γ set of local cluster-nodes
Γi set of local cluster-nodes associated with N+

i
C set of cluster-node embeddings
Z set of node embeddings
Y predicted class probabilities
Xinput input features
X transformed input features
P overall cluster assignment matrix. P ∈ R|V|×|C|

+

PΩ global cluster assignment matrix. PΩ ∈ R|V|×|Ω|
+

PΓ local cluster assignment matrix. PΓi ∈ R|N+
i |×|Γi|

+ for each node i
d(·) distance function
zi node embeddings of node i
xi node features of node i after initial transformation
cΩj node embeddings of jth global cluster-node
cΓi
j node embeddings of jth local cluster-node for N+

i

α scalar parameter that balances global and local clustering objectives.
α ∈ [0, 1]

β scalar parameter for node fidelity term
h(·) entropy function
PΩ∗ optimal global soft-assignment matrix. PΩ∗ ∈ R|V|×|Ω|

+
Mij cost of assigning node i to cluster j
M cost matrix
u⊤ u⊤ =

[
|V|−1 · · · |V|−1

]
1×|V|

v⊤ v⊤ =
[
|Ω|−1 · · · |Ω|−1

]
1×|Ω|

U(u,v) U(u,v) = {P ∈ R|V|×|Ω|
+ : P1|Ω| = u, P⊤1|V| = v}

⟨·, ·⟩ Frobenius dot product
PΩ
ij the amount of assignment from node i ∈ V to cluster j ∈ Ω

λ scalar for entropy regularization
B initial value e−λM

U diagonal matrix
V diagonal matrix
T number of iterations for Sinkhorn-Knopp algorithm
k k⊤ =

[
|Ω|1|Ω|; |Γi|1|Γi|; · · · ; |Γ|V||1|Γi|

]
1×|C|

τ class τ for our node classification task
τ ′ class that is not class τ
Ωτ set of global cluster-nodes associated with class τ
L number of DC-MsgPassing iterations
cτj the jth cluster embedding associated with class τ
zLi embeddings for node i after L iterations
γ a constant. γ = (αN−1 + β + 1− α)−1

P̂Γu P̂Γu ∈ R|V|×|Γu|
+ broadcasted local cluster assignment matrix from

PΓu ∈ R|N+
i |×|Γi|

+ , defined in Eq.(16)
∥ · ∥F Frobenius norm
Λ(·) similarity function
V+ set of training nodes

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B PROOF AND DERIVATION

B.1 PROOF OF THEOREM 3.3

To prove Theorem 3.3, we first introduce the following Lemma.

Lemma B.1. Let Oλ
cluster be the objective function optimized by the DC-MsgPassing algorithm

when the optimal transport components are replaced by the entropic regularized versions. Then,
Oλ

cluster is lower-bounded by:

Oλ
cluster ≥

α

λ
log

1

|V||Ω|
+

1− α

λ

∑
i∈V

log
1

|N+
i ||Γi|

.

Proof. Recall that Ω is the set of global cluster-nodes, and Γi refers to the set of local cluster-nodes
associated with a node i. V is a direct copy of the nodes V from the original graph. PΩ ∈ R|V|×|Ω|

and PΓi ∈ R|N+
i |×|Γi| are the global and local soft cluster assignment matrices respectively. N+

i
refers to the ego neighborhood of node i.

Let p(PΩ) be the probability of assignment matrix PΩ and h(PΩ) be its entropy, we can upper bound
its entropy by:

h(PΩ) = E
[
log

1

p(PΩ)

]
≤ logE

[
1

p(PΩ)

]
(by Jensen’s inequality)

= log
∑

i∈V,j∈Ω

p(PΩ
ij)

1

p(PΩ
ij)

(10)

= log
(
|V| × |Ω|

)
. (11)

The inequality is due to uniform distribution having the maximum entropy.

Similarly, for local assignment matrices PΓi , we have:

h(PΓi) ≤ log
(
|N+

i | × |Γi|
)
. (12)

Note that distance d(·, ·) ≥ 0, with the above results we obtain:

Oλ
cluster = α

∑
i∈V

∑
j∈Ω

PΩ
ijd(zi, c

Ω
j)−

1

λ
h(PΩ)

+ β
∑
i∈V

d(zi, xi) (13)

+ (1− α)
∑
i∈V

 ∑
k∈N+

i

∑
j∈Γi

PΓi

kj d(zk, c
Γi
j)− 1

λ
h(PΓi)

 (14)

≥ − α

λ
h(PΩ)− (1− α)

λ

∑
i∈V

h(PΓi) (by d(·, ·) ≥ 0)

≥ − α

λ
log

(
|V| × |Ω|

)
− (1− α)

λ

∑
i∈V

log
(
|N+

i | × |Γi|
)

(by equation 11 and equation 12)

=
α

λ
log

1

|V| × |Ω|
+

(1− α)

λ

∑
i∈V

log
1

|N+
i | × |Γi|

, (15)

which concludes the proof.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

By Lemma B.1, there exists a lower bound of Lλ
cluster. Therefore, to prove the convergence of our

algorithm, we only need to show that the loss function is guaranteed to decrease monotonically in
each iteration until convergence for the assignment update step and for the embeddings update step.

For the assignment update step, let PΩ be the current assignment from the previous iteration and
PΩ∗ be the new assignment obtained as

PΩ∗ ∈ argmin
PΩ∈U(u,v)

⟨PΩ∗,M⟩ − 1

λ
h(PΩ∗).

The change in the loss function after this assignment step is then given by

Oλ
cluster(P

Ω∗)−Oλ
cluster(P

Ω) ≤ 0,

where the inequality holds by the convergence of Sinkhorn–Knopp algorithm (Sinkhorn and Knopp,
1967; Sinkhorn, 1967; Franklin and Lorenz, 1989; Soules, 1991; Chakrabarty and Khanna, 2021).
Similarly, we have

Oλ
cluster(P

Γi∗)−Oλ
cluster(P

Γi) ≤ 0.

For the embeddings update step, let Z and C be the current embeddings from the previous iteration,
and Z∗ and C∗ be the new embeddings obtained by Eq. (6) and Eq. (7). Let the d(·, ·) be the squared
Euclidean distance, then since P is a positive constant in this step, the loss function is convex. Since
Eq. (6) and Eq. (7) are closed form solutions to the loss function, we have

Oλ
cluster(Z

∗, C∗)−Oλ
cluster(Z,C) ≤ 0.

Since Lλ
cluster has a lower bound and it decreases monotonically in each iteration, the value of Lλ

cluster
produced by the message passing algorithm is guaranteed to converge.

B.2 BROADCASTED ASSIGNMENT MATRICES

Let f : Z ×Z → Z be a mapping from the index k of a node in the ego-neighborhood of the node u
to the index i of the same node in the node set V . Let PΓu ∈ R|N+

u |×|Γu|
+ be the local assignment

matrix for the ego-neighborhood of node u ∈ V . For any u ∈ V , we define the broadcasted local
assignment matrix P̂Γu ∈ R|V|×|Γu|

+ as

P̂Γu
ij =

{
PΓu

kj , if i = f(u, k)

0, otherwise
. (16)

Then, we can define the the overall assignment matrix P ∈ R|V|×|C|
+ , where |C| = |Ω| + |Γ| and

|Γ| =
∑

i∈V |Γi|, as

P =
[
PΩ P̂Γ1 · · · P̂Γ|V|

]
. (17)

Note that each element Pij can be viewed as the edge weights of a node i ∈ V and a specific
cluster-node j ∈ C. In simple words, P includes all the global and local cluster assignment matrices,
collated in a single matrix. This allows us to unify the message passing update in Eq.(7) for both
local and global clustering terms.

B.3 UPDATE FOR CLUSTER-NODE EMBEDDINGS C : DERIVATION OF EQ. (6)

Without loss of generality, we provide the full derivation for global cluster-node embeddings update
function. With squared Euclidean norm as the distance function, i.e., d(u, v) = ∥u− v∥2, we can
derive that

∂Oλ
cluster

∂cΩj
=

∂

∂cΩj

∑
i∈V

PΩ
ij∥zi − cΩj ∥2 = 0

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Then we have
2
∑
i∈V

PΩ
ij (c

Ω
j − zi) = 0

By rearranging the terms ∑
i∈V

PΩ
ij c

Ω
j =

∑
i∈V

PΩ
ij zi

Then one has

cΩj =

∑
i∈V PΩ

ij zi∑
i∈V PΩ

ij

Since PΩ ∈ U(u,v), we have
∑

i P
Ω
ij = 1

|Ω| where |Ω| is the number of global clusters. Therefore,

cΩj = |Ω|
∑
i∈V

PΩ
ij zi (18)

Similarly, with |Γi| denoting the number of local clusters within the ego-neighborhood of node i, we
have

cΓi
j = |Γi|

∑
u∈N+

i

PΓi
ij zu (19)

Let k⊤ =
[
|Ω|1|Ω|; |Γi|1|Γi|; · · · ; |Γ|V||1|Γi|

]
1×|C|, where ; denotes concatenation. Then we can

combine Eq. (18) and Eq. (19) together in one matrix equation,

C = diag(k)P⊤Z, (20)

where the overall assignment matrix P is defined in Eq. (17),

B.4 UPDATE FOR NODE EMBEDDINGS Z : DERIVATION OF EQ. (7)

We provide the full derivation of the node embeddings update function. This manifests as message
passing from cluster-nodes to nodes. With squared Euclidean norm as the distance function, i.e.,
d(u, v) = ∥u− v∥2, we can derive that

∂Oλ
cluster

∂zi
= α

∑
j∈Ω

2PΩ
ij (zi − cj) + 2β(zi − xi) + (1− α)

∑
u∈N+

i

∑
j∈Γu

2PΓu
ij (zi − cj) = 0 (21)

From Eq. (21), we obtain

α
∑
j∈Ω

PΩ
ij zi−α

∑
j∈Ω

PΩ
ij cj+βzi−βxi+(1−α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij zi− (1−α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij cj = 0

By rearranging the terms, we have

(α
∑
j∈Ω

PΩ
ij + β + (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij)zi = α

∑
j∈Ω

PΩ
ij cj + βxi + (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij cj

Since PΩ ∈ U(u,v), we have
∑

j P
Ω
ij = 1

|V| . Similarly,
∑

j∈Γu
PΓu
ij = 1

|N+
i | . Therefore, we can

deduce that

(
α

|V|
+ β + (1− α)

∑
u∈N+

i

1

|N+
i |

)zi = α
∑
j∈Ω

PΩ
ij cj + βxi + (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij cj

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

With
∑

u∈N+
i

1
|N+

i | = 1, we have

(
α

|V|
+ β + 1− α)zi = α

∑
j∈Ω

PΩ
ij cj + βxi + (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij cj

This leads to

zi =
1

α
|V| + β + 1− α

[α
∑
j∈Ω

PΩ
ij cj + βxi + (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij cj]

Finally, expressing in matrix form admits the following closed-form solution

Z =
1

α
|V| + β + 1− α

[αPΩCΩ + βX + (1− α)
∑

u∈N+
i

P̂ΓuCΓu]

where P̂Γu ∈ R|V|×|Γu|
+ is the broadcasted local cluster assignment matrix from P̂Γu ∈ R|N+

u |×|Γu|
+

as defined in Eq.(16).

C ILLUSTRATION OF BIPARTITE GRAPH FORMULATION

We construct a bipartite graph, denoted as G = (V, C, E). The graph is derived from the original
graph G = (V,E) and comprises two distinct sets of nodes. The first set, V , is a direct copy of
the nodes V from the original graph. The second set, C, consists of cluster nodes divided into two
categories: global clusters (Ω) and local clusters (Γ).

In this bipartite graph, each node from the global clusters Ω connects to all nodes in V . Meanwhile,
each node from the local clusters Γ is associated with a specific node i in V , and connected to its
ego-neighborhood, which includes node i and its one-hop neighbors. For a node i in V , Γi represents
the set of local clusters associated with it. The total number of nodes in C is the sum of nodes in Ω
and the nodes in all local clusters i.e., |C| = |Ω|+

∑
i∈V |Γi|. An illustration of the bipartite graph is

provided in Fig. 4.

Figure 4: Based on the original graph on the left, we construct a bipartite graph on the right by
adding local and global cluster-nodes. For each node in the original graph, a set of local cluster-nodes,
represented by the blue boxes at the top, is connected to its ego-neighborhood. For example, the
ego-neighborhood of node a includes itself and its one-hop neighbor node b. Therefore the local
cluster-nodes for node a are connected to a and b. Meanwhile, a set of global cluster-nodes are added
and connected to all nodes in the original graph, as represented by the blue boxes at the bottom.

D FEATURE VISUALISATION

To visualise feature representation, we project node features from one class to 2 dimensions. It can
be observed that the nodes tend to form multiple clusters in the feature space, exhibiting multi-modal
feature distributions.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Penn94 (b) Genius (c) Cornell5 (d) Amherst41

Figure 5: Feature space visualization of several heterophilous datasets.

(a) edge probability = 0.2 (b) edge probability = 0.3 (c) edge probability = 0.5 (d) edge probability = 0.8

Figure 6: Total effective resistance heatmap of Erdos-Renyi random graphs at different sparsity levels.
Number of nodes is 10 for all settings.

E EXPERIMENTS

E.1 EFFECTIVE RESISTANCE ON RANDOM GRAPHS

Let u and v be vertices of G. The effective resistance between u and v is defined as

Ru,v = (1u − 1v)
TL+(1u − 1v),

where 1v is the indicator vector of the vertex v (Black et al., 2023). Let A be the adjacency matrix
and D be the degree matrix. The Laplacian is L = D − A and L+ is the pseudoinverse of L. The
total effective resistance (Rtot) of a graph is therefore the total sum of effective resistance between
every pair of nodes.

We measure effective resistance (Rtot) in synthetic random graphs with different degrees of sparsity.
Results in Fig. 6 show that both global and local cluster-nodes contribute to reducing effective
resistance, as demonstrated by decreasing Rtot values in both row and column directions. Additionally,
the more drastic Rtot decrease from the first to last column in heatmap (a) compared to heatmap
(d) show that global cluster-nodes play a more pronounced role in reducing effective resistance at a
higher edge sparsity setting.

E.2 MORE ABLATION STUDIES

E.2.1 AGGREGATION OPERATION IN SIMILARITY LOSS

Table 8: Effects of aggregator function in Lsim.

AGG Penn94 Amherst41
MEAN 86.13 (0.12) 81.23 (1.34)
SUM 85.84 (0.26) 81.26 (1.58)

MAX 86.69 (0.22) 82.94 (1.59)

After computing the similarity between a node and each of the multiple clusters from the same class,
the choice of aggregation method is crucial. We evaluate the effectiveness of using the aggregation
operator on Amherst41 and Penn94 datasets. Tab. 8 shows the effects of replacing the max aggregator
with mean and sum in computing similarity loss. On both datasets, max outperforms both sum and
mean, indicating the effectiveness of using max as the aggregation operation. Intuitively, taking the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

average of all similarity scores (mean) is sub-optimal. mean tends to make the node embeddings
closer to the average of all clusters belonging to a same class, undermining the purpose of using
multiple clusters. Similar to mean, summing up all similarity scores (sum) is more powerful yet
requires more data to learn. max selects the maximum similarity score to compute similarity loss and
guides the node embeddings closer to one of the clusters, thus preserving the power of diversity in
representation.

E.2.2 ADDITIONAL ABLATION ON THE ORTHOGONALITY LOSS AND SIMILARITY LOSS

Table 9: Effects of Similarity and Orthogonality losses for datasets in Tab. 1.

Penn94 Genius Cornell5 Amherst41 US-election Wisconsin Cora Citeseer Pubmed
DC-GNN 86.69 (0.22) 91.70 (0.08) 84.68 (0.24) 82.94 (1.59) 89.59 (1.60) 91.67 (1.95) 89.13 (1.18) 77.93 (1.82) 91.00 (1.28)
(-)Lsim, Lortho 86.40 (0.25) 91.68 (0.08) 84.34 (0.22) 81.75 (1.07) 88.61 (1.57) 89.06 (2.55) 88.87 (1.23) 77.27 (1.86) 91.00 (1.61)

Table 10: Effects of Similarity and Orthogonality losses on recent heterophilous datasets (Platonov
et al., 2023).

Roman-empire Amazon-ratings Minesweeper Tolokers Questions
DC-GNN 89.96 (0.35) 51.11 (0.47) 98.50 (0.21) 85.88 (0.81) 78.96 (0.60)
(-)Lsim, Lortho 89.44 (0.72) 50.32 (0.46) 98.04 (0.19) 84.94 (0.59) 77.30 (0.98)

We conduct ablation studies on all fourteen datasets we have used. As shown in Tab. 9 and Tab. 10,
Lortho and Lsim generally help to improve the scores across datasets by facilitating the clustering
process. While Oλ

cluster is central to our model, the auxiliary losses Lortho and Lsim play a more
supportive role to facilitate the clustering process, likely by promoting distinct cluster representations
and enhancing node-cluster alignment, as hypothesized. The modest performance uplift suggests
that these losses make a positive, albeit limited, contribution, underscoring the dominant influence of
Oλ

cluster in DC-GNN’s superior performance.

E.2.3 EFFECTS OF NODE FIDELITY TERM

Table 11: Dirichlet Energy (DE) with different β values. Higher DE indicates increased node
distinctiveness.

β = 0.0 β = 0.5 β = 1.0

Wisconsin 0.741288 0.963261 0.978465
Citeseer 0.110083 0.151699 0.206022
Cora 0.218658 0.294024 0.330234

The node fidelity term encourages the node embeddings to retain some information from the original
node features, which serve as initial residual. This technique can also potentially help to alleviate
oversmoothing as shown in Klicpera et al. (2018); Chen et al. (2020). To validate this, we conduct
additional experiments to measure the normalized Dirichlet Energy (DE) (Karhadkar et al., 2022) for
DC-GNN on Wisconsin, Cora and Citeseer, using the implementation from (Karhadkar et al., 2022).

We set β to 0, 0.5 and 1 for each dataset to measure how increased weightage of the node fidelity
term influences DE, while keeping α constant at 0.5. As observed in Tab. 11, DE positively correlates
with β on all datasets.

E.3 RUNTIME EXPERIMENTS

We measure the average runtime of a DC-MsgPassing layer on the three largest datasets used in
our experiments against Pytorch Geometric (Fey and Lenssen, 2019) implementation of GATConv
and GCNConv. DC-MsgPassing takes less than 4x times GCN and is faster than GAT on these
datasets. The results show that DC-MsgPassing is competitive in terms of runtime, confirming
our complexity analysis.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 12: Average runtime and dataset statistics comparison on three large-scale datasets. Runtime
results are in seconds.

Penn94 Cornell5 Genius
Nodes 41,554 18,660 421,961
Edges 1,362,229 790,777 984,979

DC-MsgPassing 0.00852 0.00820 0.00708
GATConv 0.01242 0.01685 0.01636
GCNConv 0.00220 0.00242 0.00207
Multiples of GAT 0.69x 0.49x 0.43x
Multiples of GCN 3.88x 3.38x 3.42x

E.4 GRAPH-LEVEL TASKS

Table 13: Comparison between DC-GNN and baseline methods on Peptides-func and Peptides-struct
datasets as reported in (Gutteridge et al., 2023).

Model PEPTIDES-FUNC PEPTIDES-STRUCT
AP ↑ MAE ↓

GCN 0.5930 (0.0023) 0.3496 (0.0013)
GINE 0.5498 (0.0079) 0.3547 (0.0045)
GatedGCN 0.5864 (0.0077) 0.3420 (0.0013)
GatedGCN+PE 0.6069 (0.0035) 0.3357 (0.0006)

DIGL+MPNN 0.6469 (0.0019) 0.3173 (0.0007)
DIGL+MPNN+LapPE 0.6830 (0.0026) 0.2616 (0.0018)
MixHop-GCN 0.6592 (0.0036) 0.2921 (0.0023)
MixHop-GCN+LapPE 0.6843 (0.0049) 0.2614 (0.0023)

Transformer+LapPE 0.6326 (0.0126) 0.2529 (0.0016)
SAN+LapPE 0.6384 (0.0121) 0.2683 (0.0043)
GraphGPS+LapPE 0.6535 (0.0041) 0.2500 (0.0005)
NeuralWalker 0.7096 (0.0078) 0.2463 (0.0005)

DRew-GCN 0.6996 (0.0076) 0.2781 (0.0028)
DRew-GCN+LapPE 0.7150 (0.0044) 0.2536 (0.0015)
DRew-GIN 0.6940 (0.0074) 0.2799 (0.0016)
DRew-GIN+LapPE 0.7126 (0.0045) 0.2606 (0.0014)
DRew-GatedGCN 0.6733 (0.0094) 0.2699 (0.0018)
DRew-GatedGCN+LapPE 0.6977 (0.0026) 0.2539 (0.0007)

DC-GNN 0.6850 (0.0075) 0.2473 (0.0016)

Table 14: Performance of DC-GNN against baselines on Mutag, Proteins and Enzymes. * indicates
the best performing backbone(s) for the rewiring method.

Rewiring Model Mutag Proteins Enzymes
None GCN 72.15 (2.44) 70.98 (0.74) 27.67 (1.16)
None R-GCN 69.25 (2.09) 69.52 (0.73) 28.60 (1.19)
None GIN 77.70 (3.60) 70.80 (0.83) 33.80 (1.12)
None R-GIN 83.05 (1.44) 70.50 (0.81) 39.12 (1.17)
None PPGN (Maron et al., 2019) 90.55 (8.7) 77.20 (4.73) -
None CIN++ (Giusti et al., 2023) 94.4 (3.7) 80.5 (3.9) -

PR-MPNN (Qian et al., 2023) GIN 98.4 (2.4) 80.7 (3.9) -
DIGL (Gasteiger et al., 2019) R-GIN* 81.45 (1.49) 71.31 (0.76) 37.60 (1.20)
SDRF (Topping et al., 2021) R-GIN* 82.70 (1.78) 70.70 (0.82) 39.58 (1.33)
FoSR (Karhadkar et al., 2022) R-GIN* 86.15 (1.49) 75.25 (0.86) 45.55 (0.13)
GTR (Black et al., 2023) R-GIN* 86.10 (1.76) 75.64 (0.74) 50.03 (1.32)

DC-GNN DC-GNN 89.50 (3.11) 77.95 (2.05) 56.83 (4.20)

Our work is motivated from the perspective of the node classification task. The clustering inductive
bias aligns with node classification as the act of assigning a node to a cluster is in congruence with
assigning a node to a class label. However, the alignment of the proposed clustering inductive bias
with the graph-level tasks is somewhat unclear.

To investigate how DC-GNN performs on graph-level tasks, we conduct experiments on Peptides-func
and Peptides-struct datasets from (Dwivedi et al., 2022) and Mutag, Proteins and Enzymes datasets
from (Morris et al., 2020), with mixed results as shown in Tab. 13 and Tab. 14.

To better align with graph-level tasks, one possible direction for improvement is to share clusters
across different graphs. For example, on molecule graphs, sharing clusters representing common sub-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

structures such as functional groups across different molecule graphs could potentially be beneficial
for molecule property prediction tasks.

E.5 WHEN WILL GLOBAL CLUSTERING HELP?

we posit that global clustering is particularly beneficial when intra-class nodes exhibit strong clustering
tendencies in feature space. One way of quantifying this is graph conductance. Graph conductance is
a measure of how well-connected a subset of nodes is to the rest of the graph relative to its internal
connectivity. Specifically, it measures the ratio of the number of edges that cross the boundary of a
set to the minimum of the number of edges in the set or its complement. Formally, the formula for
conductance Φ(S) of a subset S of nodes is given by:

Φ(S) =
|cut(S, S)|

min(vol(S), vol(S))
,

where |cut(S, S)| is the number of edges between the set S and its complement S (the rest of the
graph), vol(S) is the sum of the degrees of the nodes in S, and vol(S) is the sum of the degrees of
the nodes in S. Lower conductance values indicate that the set S is well-clustered, meaning it has
relatively few connections to the rest of the graph, suggesting a strong internal cohesion within the
cluster.

To measure conductance in the feature space, we construct a k-nearest neighbor (k-NN) graph based
on the node features. In this graph, each node is connected to its k nearest neighbors according to
feature similarity, rather than graph topology. We then measure conductance on this k-NN graph,
using the same formula as above. For our experiments, we set k = 5 and report the average
conductance across classes when there are more than two classes.

Table 15: Comparison of original and k-NN graph conductance across datasets.

Dataset Type Original Graph k-NN Graph
US-election Heterophilous 0.6916 0.4796
Penn94 Heterophilous 0.9557 0.3863
Cornell5 Heterophilous 0.8864 0.3945
Amherst41 Heterophilous 0.9058 0.4405
Cora Homophilous 0.4016 0.6665
Citeseer Homophilous 0.6221 0.9230
Pubmed Homophilous 0.4478 0.2985

Tab. 15 compares the conductance of the original graph with that of the k-NN graph constructed
purely from features for various datasets. Our findings indicate that heterophilous datasets typically
exhibit much lower conductance on the k-NN graph. Conversely, homophilous datasets tend to
show lower conductance on the original graph. However, it is crucial to note that this pattern is not
universal. Not all heterophilous graphs may conform to this trend, nor do all homophilous graphs
exhibit the opposite behavior. By leveraging graph conductance as an analytical tool, researchers
and practitioners can make more informed decisions about the applicability of global clustering
techniques to their specific graph datasets, potentially leading to improved performance in various
graph learning tasks, such as node classification.

E.6 DATASET DETAILS

We conduct experiments on fourteen datasets, a mix of small-scale and large-scale datasets. Eleven of
them are non-homophilous, including: (1) Roman-empire, Amazon-ratings, Minesweeper, Tolokers,
Questions (Platonov et al., 2023); (2) Penn94, Genius, Cornell5, Amherst41 (Lim et al., 2021);
(3) Wisconsin (Pei et al., 2020); (4) a US election dataset (Jia and Benson, 2020). Three are
homophilous citation networks: Cora, Citeseer and Pubmed (Pei et al., 2020). We use the original
train/validation/test splits when they exist. Otherwise we follow the splits specified in (Platonov et al.,
2023; Lim et al., 2021; Chen et al., 2020).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E.6.1 DATASET DESCRIPTION

Roman-empire, Amazon-ratings, Minesweeper, Tolokers and Questions are five datasets proposed
in Platonov et al. (2023) to better evaluate the performance of GNNs under heterophilous settings.
The description of each dataset is as follows.

Roman-empire is based on the Roman Empire article from English Wikipedia. Each node in the
graph represents one word in the text, and each edge between two words represents either one word
following another word or if the two words are connected in the dependency tree. Node features is its
FastText word embeddings. The task is to predict a node’s syntactic role.

Amazon-ratings is based on the Amazon product co-purchasing network metadata. Nodes represent
products and edges connect products frequently purchased together. Node features are the mean of
FastText embeddings for words in product description. The task is to predict the class of products’
ratings.

Minesweeper is a synthetic dataset inspired by the Minesweeper game. The graph is a regular
100x100 grid where each node is connected its eight neighboring nodes. 20% of the nodes are
randomly assgined as mines. The node features are one-hot-encoded numbers of the neighboring
mines. The task is to predict if the nodes are mines.

Tolokers is based on data from the Toloka crowdsourcing platform. Nodes represent workers who
have participated in the selected projects, while edges connect two workers who work on the same
task. Node features are based on worker’s profile information and task performance. The task is to
predict which workers have been banned.

Questions is based on question-answering data from website Yandex Q. Nodes represent users and
edges connect an answer provider to a question provider. Node features are the mean of FastText
word embeddings of user profile description, with an additional binary feature indicating users with
no descriptions. The task is to predict if the users remain active on the website.

Penn94, Cornell5 and Amherst41 (Lim et al., 2021) are friendship network datasets extracted from
Facebook of students from selected universities from 2005. Each node in the datasets represent a
student, while node label represents the reported gender of the student. Node features include major,
second major/minor, dorm/house, year, and high school.

Wisconsin (Pei et al., 2020) is a web page dataset collected from the computer science department of
Wisconsin Madison. In this dataset, nodes represent web pages and edges are hyperlinks between
them. Feature vectors of nodes are bag-of-words representations. The task is to classify the web
pages into one of the five categories including student, project, course, staff and faculty.

Genius (Lim et al., 2021) is a sub-network from website genius.com, a crowd-sourced website of
song lyrics annotations. Nodes represent users while edges connect users that follow each other.
Node features include expertise scores expertise scores, counts of contributions and roles held by
users. Around 20% of the users are marked with a "gone" label, indicating that they are more likely
to be spam users. The task is to predict which users are marked.

US-election (Jia and Benson, 2020) is a geographical dataset extracted from statistics of Unite States
election of year 2012. Nodes represent US counties, while edges connect bordering counties. Node
features include income, education, population etc. The task is a binary classification to predict
election outcome.

Cora, Citeseer and Pubmed (Pei et al., 2020) are citation graphs, where each node represents a
scientific paper and two papers are connected when a paper cites the other. Each node is labeled with
the research field and the task is to predict which field the paper belongs to. All three datasets are
homophilous.

E.6.2 DATASET STATISTICS

Tab. 16 covers statistics of datasets in Tab. 1. Tab. 17 covers statistics of datasets in Tab. 2.

Homophily matrix Homophily refers to the degree of similarity between connected neighboring
nodes in terms of their features or labels. There are many types of homophily measures proposed,
including edge homophily (Zhu et al., 2020b), node homophily (Pei et al., 2020), and improved edge

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 16: Dataset statistics for Tab. 1.

Penn94 Cornell5 Amherst41 Genius US-election Wisconsin Cora Citeseer Pubmed
Edge Hom. 0.47 0.47 0.46 0.61 0.83 0.21 0.81 0.74 0.80
Improved Edge Hom. (Lim et al., 2021) 0.046 0.09 0.05 0.08 0.54 0.094 0.766 0.627 0.664
Nodes 41,554 18,660 2,235 421,961 3,234 251 2,708 3,327 19,717
Edges 1,362,229 790,777 90,954 984,979 11,100 466 5,278 4,676 44,327
Node Features 4814 4735 1193 12 6 1,703 1,433 3,703 500
Classes 2 2 2 2 2 5 6 7 3

Table 17: Dataset statistics for Tab. 2.

Roman-Empire Amazon-Ratings Minesweeper Tolokers Questions
Edge Hom. 0.05 0.38 0.68 0.59 0.84
Improved Edge Hom. (Lim et al., 2021) 0.01 0.12 0.009 0.17 0.08
Nodes 22,662 24,492 10,000 11,758 48,921
Edges 32,927 93,050 39,402 519,000 153,540
Node Features 300 300 7 10 301
Classes 18 5 2 2 2

homophily (Lim et al., 2021). Homophily matrix proposed in Lim et al. (2021) is an important metric,
since it can better reflect class-wise homophily. The homophiliy matrix is defined as:

Hc1,c2 =
|(u, v) ∈ E : cu = c1, cv = c2|

|(u, v) ∈ E : cu = c1|
, (22)

for classes c1 and c2, Hc1c2 denotes the proportion of edges between from nodes of class c1 to nodes
of class c2. A homophilous graph has high values on the diagonal entries of H .

Fig. 7 are the homophily matrices for three well-known homophilous datasets: Cora, Citeseer and
Pubmed (Yang et al., 2016). High homophily is signified by the high numbers in diagonal cells,
whereas values of non-diagonal cells are mostly less than 0.1. This is different from the homophily
matrices of heterophilous datasets, where values of non-diagonal cells are similar or even higher than
diagonal cells.

(a) Cora (b) Citeseer (c) Pubmed

Figure 7: Homophily matrix for three homophilous datasets.

We show in Fig. 8 the homophily matrices for some heterophilous datasets for comparison.

E.7 MORE EXPERIMENT DETAILS

Baselines To comprehensively evaluate the effectiveness of our method, we compare it against
various strong baselines following Platonov et al. (2023) and Li et al. (2022). This includes (1) graph-
agnostic model MLP and ResNet (He et al., 2016), with two modified versions ResNet+SGC (Wu
et al., 2019) and ResNet+adj (Zhu et al., 2021); (2) general-purpose GNN architectures: GCN(Kipf
and Welling, 2016), Graph-SAGE (Hamilton et al., 2017), MixHop (Abu-El-Haija et al., 2019),
GCNII (Chen et al., 2020), NaGphormer (Chen et al., 2022) and Exphormer (Shirzad et al., 2023);
(3) GNN models that leverage attention-based aggregation: GAT (Veličković et al., 2017), Graph
Transformer(GT) (Shi et al., 2020) and Neural Walker (Chen et al., 2024). Following Platonov
et al. (2023), we also include two modified architectures GAT-sep and GT-sep, where ego- and
neighbor-embeddings are aggregated separately. Following (Müller et al., 2023), we also include
GPSGAT+Performer that achieves the best performance among GPS variants on most datasets as a
baseline (Müller et al., 2023; Masters et al., 2022; Rampášek et al., 2022).(4) GNN models designed
for heterophilous graphs: H2GCN (Zhu et al., 2020b), CPGNN (Zhu et al., 2021), GPR-GNN (Chien
et al., 2020), FSGNN (Maurya et al., 2022), FFAGCN (Bo et al., 2021), GBK-GNN (Du et al.,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) Penn94 (b) Genius (c) Cornell5 (d) Amherst41 (e) US-election (f) Wisconsin

Figure 8: Homophily matrix for heterophilous datasets.

2022), Jacobi-Conv (Wang and Zhang, 2022), WRGAT (Suresh et al., 2021), GPR-GNN (Chien
et al., 2020), GGCN (Yan et al., 2021), ACM-GCN (Luan et al., 2021), LINKX (Zhu et al., 2021),
GloGNN/GloGNN++ (Li et al., 2022), GOAT (Kong et al., 2023), GMN (Behrouz and Hashemi,
2024), Diag-NSD (Bodnar et al., 2022), ACMP (Wang et al., 2022), CDE-GRAND (Zhao et al.,
2023) and CDE-GraphBel (Zhao et al., 2023).

Implementation details. For global cluster-nodes, we use trainable lookup embeddings to initialize
the embeddings. For local cluster-nodes, we fix the number of local clusters to be 2 for every ego-
neighborhoods, and initialize the two cluster-node embeddings by the central node features and the
average of neighboring node features respectively. In practice, for local clustering cost matrices M,
we rescale and normalize the distance before running the Sinkhorn-Knopp algorithm for numerical
stability. We apply non-linear activation function tanh to the messages.

Training Settings We conduct each experiment of DC-GNN using three distinct data splits and
present the corresponding mean and standard deviation of the performance metrics. The experiments
are executed on a single GPU. The GPUs are from various types—specifically, the V100, A100,
GeForce RTX 2080, or 3090—based on their availability at the time the experiments are conducted.
For optimization, we employ the Adam optimizer and undertake a grid search of hyperparameters,
the specifics of which are in Tab. 18 and Tab. 19. Should the baseline results be publicly accessible,
we directly incorporate them into our report. For the datasets where baseline results are missing
(Cornell5, Amherst41, US-election), we reproduced them following the code in Li et al. (2022).

Hyperparameters for DC-GNN For experiments in Tab. 1 and Tab. 2, we fix some hyperparameters
and perform grid search for other hyperparameters. To facilitate reproducibility, we document the
details of the hyperparameters and search space in Tab. 18 and Tab. 19 respectively. TΩ refer to
the number of iterations of Sinkhorn–Knopp algorithm when solving PΩ, and TΓ is the number of
Sinkhorn–Knopp iterations for solving PΓ. We set |Ω| to be multiples of the number of classes in a
dataset.

Table 18: Hyper-parameter search space of DC-GNN for datasets in Tab. 1.

Penn94 Cornell5 Amherst41 Genius US-election Wisconsin Cora Citeseer Pubmed
lr 0.005 0.005 0.005 0.005 0.005 0.01 0.005 0.001, 0.002 0.005
λ 2 2, 5 2 2 2,5 2 2 2 2
TΩ 10,5,3 10,5,3 10,5,3 10,5,3 10,5,3 10,5,3 10,5,3 10,5,3 10,5,3
TΓ 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1
|Γi| 2 2 2 2 2 2 2 2 2
|Ω| 2,4, 8, 16, 30 2,4, 8, 16, 30 2,4, 8, 16, 30 2,4,8 2,4, 8, 16, 30 5, 10, 20 6,12,24,48 7, 14, 28 6, 12
α 0. 0.2, 0.5, 0.8, 1 0. 0.2, 0.5, 0.8, 1 0. 0.2, 0.5, 0.8, 1 0. 0.2, 0.5, 0.8, 1 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8
β 0, 0.2, 0.5, 0.8 0, 0.2, 0.5, 0.8 0, 0.2, 0.5, 0.8 0, 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8
layers in MLP 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
L : # layers 2, 5 2, 5 2, 5 2, 4, 8,16 2, 5 2, 5 2,4,8,10 2,4,8 2,4,8
ω1 0.001, 0.01 0.001, 0.01 0.001, 0.01 0.001,0.01 0.001, 0.01 0.001, 0.01 0, 0.001, 0.01, 0.05 0.001, 0.01 0.001, 0.01
ω2 0.005, 0.05 0.005, 0.05 0.005, 0.05 0,0.005,0.05 0.005, 0.05 0.005, 0.05 0.005, 0.05, 0.08, 0.1 0.005, 0.05 0.005, 0.05
epochs 30 30 30 3000 500 200 200 50 500
weight_decay 5e-4 5e-4 5e-4 5e-4 5e-4 1e-3 5e-4 5e-4 5e-4
aggregation mean, sum mean, sum mean, sum mean, sum mean, sum mean, sum mean, sum mean, sum mean, sum
dropout 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
normalization None None None LN None None None None None
hidden_channels 16, 32, 64, 128 16, 32, 64, 128 16, 32, 64, 128 16, 32 16, 32, 64, 128 16, 32, 64, 128 16, 32, 64, 128 16, 32, 64, 128 16, 32, 64, 128

Sensitivity test for hyperparameters We conducted a sensitivity analysis on the hyperparameters
α, β, ω1 and ω2. As shown in Fig. 9, α is the most critical hyperparameter for our model. For both the
US-election and Genius datasets, the optimal values fall between 0 and 1, indicating that balancing
between local and global information is beneficial. More importantly, the sensitivity analysis of β, ω1

and ω2 reveals that model performance is stable in the neighbourhood of the optimal hyperparameters
and not sensitive to small changes in the hyperparameter.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 19: Hyper-parameter search space of DC-GNN for datasets in Tab. 2.

Roman-Empire Amazon-Ratings Minesweeper Tolokers Questions
lr 0.005 0.005 0.005 0.005 0.001
λ 2 2 2 2 2
TΩ 5 5 5 5 5
TΓ 3 3 3 3 3
|Γi| 2 2 2 2 2
|Ω| 18 5, 10 2,4,8 8, 16 2,4,8
α 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8
β 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8
layers in MLP 1,2 1,2 1,2 1,2 1,2
L : # layers 2, 4, 8,16,20 2, 4, 8 2, 4, 8 2, 4, 8 2, 4, 8, 16
ω1 0.001, 0.01 0.001, 0.01 0.001, 0.01 0.02 0.001, 0.01
ω2 0.005, 0.05 0.005, 0.05 0.005, 0.05 0.001 0.001
epochs 3000 3000 3000 3000 3000
weight_decay 5e-4 5e-4 5e-4 5e-4 5e-4
aggregation mean, sum mean, sum mean, sum mean, sum mean, sum
dropout 0.2 0.2 0.2 0.2 0.2
normalization None, LN None, LN None, LN None, LN None, LN
hidden_channels 16, 32, 64 16, 32, 64 16, 32, 64 16, 32, 64 16, 32, 64

(a) α, β for US-election (b) α, β for Genius (c) ω1, ω2 for US-election (d) ω1, ω2 for Genius

Figure 9: Sensitivity test of α, β, ω1, ω2. x-axis is the varying value of hyperparameters, while y-axis is model
performance.

We also conducted sensitivity analysis on the hyperparameters |Ω| and λ. As shown in Fig. 10, model
performance is stable and insensitive to changes in both |Ω| and λ. However, we observe that large λ
can lead to numerical stability issues.

(a) |Ω| for US-election (b) |Ω| for Penn94 (c) λ for US-election (d) λ for Penn94

Figure 10: Sensitivity test of |Ω| and λ. x-axis is the varying value of hyperparameters, while y-axis is model
performance.

Training time and loss curve We have measured the average training time per epoch of our method
on dataset Penn94, Cornell5 and Genius in Tab.20, Tab.21 and Tab.22 respectively. The training time
ranges from 3x to 5x compared to GCN.

Training loss curves on dataset Penn94 and US-election can be found in Fig. 11.

Hyperparameters for baselines We used the code provided by GloGNN (Li et al., 2022) to
reproduce the baseline results for dataset Cornell5, Amherst41, and US-election. The grid search
space for hyper-parameters are listed below. Note that some hyper-parameters only apply to a subset
of baselines. All other baselines results are obtained from Li et al. (2022) and Platonov et al. (2023).

• MLP: hidden dimension ∈ {16, 32, 64}, number of layers ∈ {2, 3}. Activation function is
ReLU.

• GCN: lr ∈ {.01, .001}, hidden dimension ∈ {4, 8, 16, 32, 64}. Activation function is ReLU.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 20: Training times of our method against GCN on Penn94.

Training Time Multiples of GCN
GCN 0.0637 -
|Ω| = 2 0.2880 4.51x
|Ω| = 4 0.2888 4.53x
|Ω| = 8 0.2933 4.60x
|Ω| = 16 0.3007 4.71x

Table 21: Training times of our method against GCN on Cornell5.

Training Time Multiples of GCN
GCN 0.0602 -
|Ω| = 2 0.2201 3.65x
|Ω| = 4 0.2056 3.41x
|Ω| = 8 0.2161 3.58x
|Ω| = 16 0.2332 3.87x

Table 22: Training times of our method against GCN on Genius.

Training Time Multiples of GCN
GCN 0.1892 -
|Ω| = 2 0.8467 4.47x
|Ω| = 4 0.8911 4.70x
|Ω| = 8 0.9211 4.86x
|Ω| = 16 1.0756 5.68x

(a) Loss curve for US-election (b) Loss curve for Penn94

Figure 11: Training loss curves for Penn94 and US-election.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

• GAT: lr ∈ {.01, .001}. hidden channels ∈ {4, 8, 12, 32} and gat heads ∈ {2, 4, 8}. number
of layers ∈ {2}. We use the ELU as activation.

• MixHop: hidden dimension ∈ {8, 16, 32}, number of layers ∈ {2}.
• GCNII: number of layers ∈ {2, 8, 16, 32, 64}, strength of initial residual connection α ∈
{0.1, 0.2, 0.5}, hyperparameter for strength of the identity mapping θ ∈ {0.5, 1.0, 1.5}.

• H2GCN: hidden dimension ∈ {16, 32}, dropout ∈ {0, .5}, number of layers ∈ {1, 2}.
Model architecture follows Section 3.2 of Zhu et al. (2020b).

• WRGAT: lr ∈ {.01}, hidden dimension ∈ {32}.
• GPR-GNN: lr ∈ {.01, .05, .002}, hidden dimension ∈ {16, 32}.
• GGCN: lr ∈ {.01}, hidden channels ∈ {16, 32, 64}, number of layers ∈ {1, 2, 3}, weight

decay ∈ {1e−7, 1e−2}, decay rate ∈ {0, 1.5}, dropout rate ∈ {0, .7},
• ACM-GCN: lr ∈ {.01}, weight decay ∈ {5e−5, 5e−4, 5e−3}, dropout ∈
{0.1, 0.3, 0.5, 0.7, 0.9}, hidden channels ∈ {64}, number of layers ∈ {2}, display step
∈ {1}.

• LINKX: hidden dimension ∈ {16, 32, 64}, number of layers ∈ {1, 2}. Rest of the hyper-
parameter settings follow Lim et al. (2021).

• GloGNN++: lr ∈ {.001, .005, .01} , weight decay ∈ {0, .01, .1}, dropout ∈ {0, .5, .8},
hidden channels ∈ {128, 256}, number of layers ∈ {1, 2}, α ∈ {0, 1}, β ∈ {0.1, 1},
γ ∈ {0.2, 0.5, 0.9}, δ ∈ {0.2, 0.5}, number of normalization layers ∈ {1, 2}, orders
∈ {1, 2, 3}.

30

	Introduction
	Related Work
	Methodology
	DC-GNN formulation
	Clustering-based objective function Ocluster
	DC-MsgPassing : Optimize Ocluster with entropic regularization via message passing
	Assignment update
	Embeddings update

	Training of DC-GNN

	Experiments
	Comparison with baselines on heterophilous graphs
	Comparison with baselines on homophilous graphs
	Benefit of capturing long range information in sparse label settings
	Alleviating oversquashing
	Ablation studies
	Effects of each term in Ocluster
	Effects of Lortho and Lsim

	Conclusion and future work
	Notations
	Proof and derivation
	Proof of Theorem 3.3
	Broadcasted assignment matrices
	Update for cluster-node embeddings C: derivation of Eq. (6)
	Update for node embeddings Z: derivation of Eq. (7)

	Illustration of bipartite graph formulation
	Feature Visualisation
	Experiments
	Effective resistance on random graphs
	More ablation studies
	Aggregation operation in similarity loss
	Additional ablation on the orthogonality loss and similarity loss
	Effects of node fidelity term

	Runtime experiments
	Graph-level tasks
	When will global clustering help?
	Dataset details
	Dataset description
	Dataset statistics

	More experiment details

