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Abstract

The growing need for domain-specific large lan-001
guage models (LLMs), underscores the impor-002
tance of Domain Adaptive Pre-training (DAP)003
in enhancing downstream task performance.004
While existing research has established scaling005
laws for corpus mixture optimization, the scal-006
ing laws governing factual knowledge injection007
remain unexplored. This paper bridges this gap008
by conducting a case study on Arabic domain-009
specific factual knowledge injection via DAP.010
Unlike traditional scaling laws, which rely on011
token counts and cross-entropy loss, our ap-012
proach introduces two key innovations: (1) scal-013
ing training data based on domain knowledge014
volume rather than corpus size, and (2) using a015
knowledge-oriented evaluation method. We de-016
veloped a scalable data synthesis pipeline that017
extracts factual knowledge triples from Ara-018
bic Wikipedia, generates diverse templates, and019
populates them to create training data. Exper-020
iments on pre-trained models of varying sizes021
yielded a log-linear scaling trend incorporating022
model size, knowledge volume, and exposure023
frequency, indicating a potential practical value024
in guiding knowledge injection trainings.025

1 Introduction026

With the rapid development of large language027

model (LLM) technologies and applications, the028

demand for domain-specific models continues029

to grow. Leading domain models (Shi et al.,030

2024) typically incorporate Domain Adaptive Pre-031

training (DAP) during training to enhance their per-032

formance on downstream tasks (Huang et al., 2023;033

Bari et al., 2024; Liang et al., 2024). A key role of034

DAP in enhancing the effectiveness of subsequent035

fine-tuning is to infuse the model with missing036

domain knowledge (Wu et al., 2023; Gururangan037

et al., 2020).038

Previous studies have found that for a given set039

of factual knowledge, their frequencies of repeti-040

tion ("exposure") during pre-training is crucial for041

Figure 1: (a) Loss values as a function of exposure
levels, plotted on a logarithmic x-axis. The y-axis is re-
stricted to the range [2, 4] to highlight variations in loss.
(b) Normalized Discounted Cumulative Gain (NDCG)
scores as a function of exposure levels, also plotted on a
logarithmic x-axis. The y-axis is restricted to the range
[0, 1], reflecting the typical scale of NDCG values. Both
metrics are evaluated across six exposure levels: 10, 50,
100, 200, 500, and 1, 000.

learning effectiveness (Allen-Zhu and Li, 2023a,b, 042

2024a), and when exposure reaches a certain thresh- 043

old (e.g., exposure = 1, 000) can an LLM effec- 044

tively memorize these factual knowledge. How- 045

ever, a higher exposure count also implies greater 046

data collection/synthesis costs and increased train- 047

ing overhead. In the DAP scenario, more frequent 048

model updates also raise the risk of catastrophic for- 049

getting of the pre-trained model’s existing general 050

knowledge (Luo et al., 2023). Therefore, we need 051

to address the following question: In the DAP sce- 052

nario, given a model’s specific size and a defined 053

amount of domain knowledge to be acquired, how 054

much training data is required to achieve effective 055

knowledge injection? 056

Although previous studies have explored data 057

scaling in the context of DAP, they primarily fo- 058

cused on the optimal mixing ratio of general and 059

domain-specific corpora at the token level (Que 060

et al., 2024; Gu et al., 2024), and their approaches 061

do not address the issue of domain knowledge ex- 062

posure that concerns us. First, the information den- 063

sity varies significantly across different types and 064
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sources of corpora (e.g., factual knowledge density065

in Wikipedia is much higher than in casual conver-066

sation), making it impossible to directly convert067

the amount of factual knowledge into token counts.068

Second, since the same factual knowledge can be069

expressed in multiple ways in natural language, it is070

challenging to measure the repetition frequency of071

specific knowledge in the raw corpus. In this paper,072

we aim to investigate the relationship between the073

exposure level of knowledge and its injection effec-074

tiveness in DAP, using factual knowledge from the075

Arabic domain as a case study.076

To address the limitations of natural corpora, we077

developed a data synthesis pipeline for generating078

DAP training corpora for Arabic domain knowl-079

edge, enabling precise control over both knowledge080

quantity and exposure frequency. The pipeline com-081

prises four stages: 1) corpus crawling, 2) extraction082

of knowledge triples from the corpus inspired by083

knowledge graph works (Wang et al., 2021; Chen084

et al., 2024), 3) generation of diverse natural lan-085

guage templates based on the extracted triples by086

leveraging the approach from (Ge et al., 2024), and087

4) synthesis of DAP training corpora with varying088

exposure levels using the triples and templates. Uti-089

lizing this method, we extracted 115, 394 Arabic090

knowledge triples and synthesized data with up to091

1, 000 exposures to conduct knowledge injection092

experiments across models of varying sizes.093

Another critical issue in this work is how to mea-094

sure to what extend factual knowledge has been095

successfully injected. In related studies, this is typ-096

ically achieved through the tail entity prediction097

task (Geva et al., 2023; Jiang et al., 2019; Dai et al.,098

2021). Specifically, by designing a prompt that in-099

cludes the head entity and relation (e.g. "Saudi100

Arabia", "capital city") of a factual knowledge,101

the model’s probability of predicting the correct102

tail entity ("Riyadh") or the cross-entropy loss is103

calculated. So We first evaluate the effectiveness104

of knowledge injection by computing the cross-105

entropy loss on the tail entity, as shown in Figure106

1 (a). Surprisingly, the loss on the tail entity in-107

creases as the number of exposures grows which is108

contrary to (Allen-Zhu and Li, 2024b). To investi-109

gate whether there was an issue with our training110

process, we try to check whether there is a prob-111

lem in our training process by checking the rank of112

the ground-truth token. For this purpose, we em-113

ployed the NDCG1 (Normalized Discounted Cu-114

1NDCG is a metric used for evaluating the quality of rank-

mulative Gain) metric, which is commonly used 115

to assess the quality of ranking, with higher values 116

indicating better performance. As shown in Fig- 117

ure 1 (b), our evaluation results reveal that NDCG 118

increases as the amount of exposure increases, sug- 119

gesting that the training process is functioning cor- 120

rectly. This indicates that higher exposure improves 121

knowledge retrieval effectiveness but leads to a de- 122

cline in prediction probabilities. We also observed 123

that, although NDCG is a nonlinear metric, it ex- 124

hibits a clear linear relationship with the exposure 125

level before entering the saturation zone. Our ex- 126

periments demonstrate that this linear relationship 127

holds across models of different sizes and vary- 128

ing amounts of factual knowledge. Based on these 129

findings, we can use the linear parameters fitted 130

from data with lower exposure levels to predict the 131

required exposure for a target NDCG, thereby guid- 132

ing the data synthesis and training for knowledge 133

injection in DAP. 134

Our contributions can be summarized as follows: 135

• Analyzed the impact of exposure times, model 136

sizes, and knowledge scales on factual knowl- 137

edge injection during the DAP stage, yielding 138

the following findings: a. Both ranking per- 139

formance and cross-entropy loss demonstrate 140

a log-linear relationship with exposure times. 141

b. Ranking performance shows a negative log- 142

linear correlation with knowledge sizes and 143

a positive log-linear correlation with model 144

sizes. 145

• Designed a DAP data synthesis pipeline capa- 146

ble of controlling both the quantity of factual 147

knowledge and the exposure times. 148

2 Preliminary and Background 149

2.1 Factual Knowledge 150

Factual knowledge refers to the collection of ob- 151

jective, verifiable information about the world that 152

is often expressed in structured or semi-structured 153

forms. This type of knowledge encompasses enti- 154

ties, relationships, attributes, and events that can 155

be explicitly stated and retrieved. For instance, fac- 156

tual knowledge can be represented in the form of 157

triples, such as (head, relation, tail). A concrete 158

example of such a triple is (Saudi Arabia, capital 159

ing, with values ranging from 0 to 1. An NDCG value of 1,
0.5, and 0.25 corresponds to the rank of the ground-truth token
being 1, 3, and 15, respectively. The specific formula can be
found in Section 2.3.

2



city, Riyadh), which captures the factual statement160

that "the capital of Saudi Arabia is Riyadh."161

Such knowledge is typically stored in databases,162

encyclopedias, or knowledge graphs, making it a163

foundational element for various applications in164

natural language processing (NLP), information re-165

trieval, and artificial intelligence (AI). Understand-166

ing and leveraging factual knowledge is crucial for167

tasks like question answering, fact-checking, and168

semantic search, where accuracy and reliability are169

paramount.170

2.2 Data Synthesis with Personas171

To synthesize high-quality and diverse sentence172

templates for training purposes, we leverage Per-173

sona Hub (Ge et al., 2024), a large-scale repository174

of one billion personas automatically curated from175

web data. Each persona in the hub represents a176

unique perspective or identity, enabling the gener-177

ation of synthetic data that reflects a wide range178

of linguistic styles, cultural contexts, and individ-179

ual viewpoints. Our approach involves designing180

prompts that incorporate specific personas to guide181

LLM in generating data tailored to distinct narra-182

tive voices.183

For instance, when tasked with describing a fac-184

tual event such as someone’s birthday, different185

personas yield markedly varied expressions. An186

IT programmer might phrase it as "{name} first187

logged into the world on {birthday}." while a na-188

ture photographer could describe it as "{name}189

captured their first breath of life on {birthday}.".190

By systematically selecting personas from Persona191

Hub and embedding them into carefully crafted192

prompts, we ensure that each generated data point193

is not only factually consistent but also stylistically194

rich and contextually nuanced.195

This methodology offers two key advantages.196

First, the diversity of personas ensures that the syn-197

thesized data spans a broad spectrum of linguistic198

patterns and perspectives, enhancing the robustness199

of downstream models trained on this data. Sec-200

ond, the use of personas introduces an element of201

creativity and variability that mimics real-world hu-202

man expression, thereby improving the naturalness203

and authenticity of the generated content. Overall,204

our approach demonstrates how Persona Hub can205

be effectively utilized to produce synthetic data at206

scale, bridging the gap between structured factual207

knowledge and expressive, human-like narratives.208

2.3 NDCG 209

Normalized Discounted Cumulative Gain (NDCG) 210

(Järvelin and Kekäläinen, 2002) is a widely used 211

metric for evaluating ranking system quality. It 212

assesses both the relevance scores and positions 213

of items in a ranked list. The relevance score reli 214

of an item at position i is discounted logarithmi- 215

cally to penalize lower-ranked relevant items. The 216

NDCG formula is defined as: 217

NDCG =
DCG

IDCG
218

where 219

DCG =
n∑

i=1

2reli − 1

log2(i+ 1)
220

and 221

IDCG =

n∑
i=1

2rel
∗
i − 1

log2(i+ 1)
222

Here, reli is the relevance score of the item at 223

position i in the ranked list, reli∗ is the relevance 224

score in the ideal ranking, and n is the number 225

of items. NDCG ranges from 0 to 1, with higher 226

values indicating better ranking quality. 227

In our work, we simplify this by focusing solely 228

on the ground-truth token: we assign rel = 1 to 229

the ground-truth token and rel = 0 to all others. 230

Thus, the NDCG for a single prediction reduces to: 231

NDCG =
1

log2(1 + rankgt)
232

where rankgt is the position of the ground-truth 233

token in the model’s output. This simplified for- 234

mula directly reflects the model’s ability to rank the 235

correct token highly, providing a precise measure 236

of its in performance predicting factual knowledge. 237

3 Scaling Laws of Knowledge Injection 238

3.1 Ranking Performance Scales 239

Log-Linearly with Exposure Size 240

As depicted in Figure 2 (a), increasing exposure 241

enhances NDCG for both 7B and 14B models, 242

reflecting improved knowledge injection perfor- 243

mance. This aligns with expectations, as more 244

frequent exposure aids in better memorization of 245

factual knowledge. Specifically, the 7B model 246

demonstrates a near log-linear relationship between 247

NDCG and exposure, with minor deviations at 248

N = 50. In contrast, the 14B model shows 249

a rising NDCG trend with increasing exposure 250

but approaches saturation at NDCG = 0.9 for 251
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Figure 2: (a) NDCG vs. exposure times; (b) loss vs. exposure times; (c) NDCG and loss increments with regard to
the pre-trained model across different exposures. All these curves are obtained with K = 50, 000. Note: NDCG
and loss are computed only on tail entities.

Figure 3: (a) NDCG vs. number of factual knowledge;
(b) NDCG vs. number of parameters. All these curves
are obtained with N = 1, 000. Note: NDCG is com-
puted only on tail entities.

N > 100. Notably, the 14B model achieves252

faster NDCG gains with fewer exposures, reach-253

ing NDCG = 0.836 at N = 100, while the 7B254

model requires N = 1, 000 to attain a similar255

level (NDCG = 0.844). This suggests the 7B256

model needs approximately 10 times the exposure257

to match the 14B model’s performance. Given that258

the 7B model’s unit computational cost is roughly259

half that of the 14B model, its total computational260

cost to reach this level is about 5 times higher. This261

proportional relationship is consistent for the 7B262

model at N = 500 and the 14B model at N = 50.263

3.2 More Exposures Result in Higher264

Cross-Entropy Loss265

In Figure 2 (b), we observe an unexpected increase266

in loss with rising exposure. However, given the267

concurrent improvement in NDCG, this loss in-268

crease does not signify a decline in knowledge in-269

jection effectiveness. For both model sizes, the270

loss exhibits a near log-linear relationship. No- 271

tably, in the N > 100 range, while the NDCG 272

growth of the 14B model slows as it approaches 273

its limit, the corresponding loss continues its lin- 274

ear upward trend. Comparing the two models, the 275

14B model’s loss grows at a significantly slower 276

rate than the 7B model. Starting from nearly iden- 277

tical loss values (see Appendix 16 (b)), the 14B 278

model requires 10 times the exposure (N = 1000) 279

to reach a loss level comparable to that of the 7B 280

model at N = 100. Given that cross-entropy loss 281

naturally reflects model encoding efficiency, this 282

trend suggests that factual knowledge injection im- 283

poses a cost on encoding efficiency, with larger 284

models exhibiting a slower degradation in encod- 285

ing efficiency as exposure increases. 286

3.3 Cross-Entropy Loss Correlates With 287

Ranking Performance 288

In Figure 2 (c), we further analyze the trend of 289

the ratio between NDCG and loss increments with 290

regard to the pre-trained model across different ex- 291

posures. The figure reveals the following insights: 292

1) For the 7B model, the ratio remains con- 293

stant within the intervals N ∈ [10, 50] and N ∈ 294

[100, 1000], with a decline in the ratio occurring 295

between these intervals, corresponding to the slight 296

deviation from the overall linear trend observed 297

in the NDCG and loss plots at N = 50. This 298

phenomenon suggests that the curves in panels (a) 299

and (b) may exhibit piecewise linear characteris- 300

tics. Specifically, the fluctuations in NDCG and 301

loss between N = 50 and N = 100, as well as 302

their relative stability outside this range, appear 303

synchronized, indicating a potential deeper connec- 304

tion between the two metrics. 305
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2) For the 14B model, the ratio follows a neg-306

ative log-linear relationship with increasing expo-307

sure. Given the linear trend of the loss, we can infer308

that the corresponding NDCG trend in this interval309

can be approximated by a quadratic function. This310

implies that even for scenarios approaching NDCG311

saturation, it is possible to predict NDCG results312

at higher exposures by fitting a quadratic function313

based on experiments with fewer exposures.314

The experimental results for the smaller 1.5B315

and 0.5B models exhibit similar log-linear scaling316

trends, albeit with a minimal increase in NDCG317

and a more pronounced rise in loss, as detailed in318

Figure 14.319

3.4 Ranking Performance Scales320

Log-Linearly with Knowledge Size321

The increase in knowledge volume elevates the322

learning difficulty, manifesting as a negative log-323

linear decline in NDCG.324

Figure 3 (a) illustrates the relationship between325

the number of factual knowledge triples and NDCG326

performance for two model sizes, M = 7B and327

M = 14B, with K = 1, 000. As the number328

of knowledge triples increases, the NDCG values329

for both models follow a negative log-linear trend.330

This indicates that a larger volume of knowledge331

indeed escalates learning difficulty, with this dif-332

ficulty growing log-linearly, enabling predictions333

of large-scale knowledge injection effects based334

on performance with smaller datasets. Notably,335

a similar linear trend is absent in the loss, likely336

because for smaller knowledge volumes, 1, 000 ex-337

posures may exceed training needs. As a result,338

while NDCG saturates, the loss continues to rise.339

In contrast, for larger knowledge volumes where340

NDCG remains unsaturated, both loss and NDCG341

grow simultaneously, preventing a concurrent lin-342

ear relationship between the two metrics. A similar343

trend of smaller models of 0.5B and 1.5B can be344

found in Figure 15 (a).345

3.5 Model Capacity Scales Log-Linearly with346

Parameters347

There exists a log-linear relationship between the348

scale of model parameters and NDCG performance,349

indicating that the model’s knowledge representa-350

tion capability improves log-linearly with the in-351

crease in parameters.352

Figure 3 (b) illustrates the relationship between353

model parameters and NDCG performance across354

two distinct knowledge scales, K = 5k and K =355

50k, with N = 1000. The curves demonstrate an 356

approximate log-linear relationship between the 357

number of parameters and NDCG scores across 358

both knowledge scales. Similar results can also 359

be observed in for other knowledge scales as il- 360

lustrated in Figure 15 (b). These findings indicate 361

that the model’s effectiveness in capturing and rep- 362

resenting factual knowledge often termed its ca- 363

pacity—increases log-linearly with the scale of pa- 364

rameters, rather than adhering to the linear growth 365

typically assumed. Similarly, no concurrent log- 366

linear trend is observed in the loss, likely due to 367

the same underlying reason in knowledge scaling 368

experiments. 369

4 Domain Knowledge Extraction and 370

Data Synthesis 371

Figure 4: The framework of DAP data synthesis
pipeline. Raw text is extracted from Wikipedia and pro-
cessed through a factual knowledge extraction pipeline
to obtain structured triples. These triples are catego-
rized into multiple relation types, which are used to
design sentence templates. Using Persona Hub and
Qwen2.5-72B-Instruct, tailored prompts are created for
each relation type to generate high-quality templates.
Finally, the triples are inserted into these templates to
produce semantically rich training data.

Conducting scaling law research on domain 372

knowledge injection requires obtaining training 373

data with precise control over both the quantity of 374

knowledge and its exposure frequency. To tackle 375

this challenge, as illustrated in Figure 4, we de- 376

veloped a framework for data synthesis based on 377

domain-specific corpora. This framework consists 378

of two main steps: a) extraction of factual knowl- 379
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edge from the domain, and b) synthesis of training380

data based on the extracted factual knowledge. Sec-381

tion 4.1 details the multi-stage pipeline for extract-382

ing high-quality factual knowledge triples from383

raw corpora by LLMs. Section 4.2 describes the384

method for synthesizing training data with pre-385

cisely controlled exposure levels using these knowl-386

edge triples.387

4.1 High-Quality Domain Factual Knowledge388

Extraction389

To facilitate scaling law training and evaluation, we390

define high-quality factual knowledge triplets by391

the following criteria: 1) The tail entity must be392

uniquely determinable given the head entity and393

relation; 2) Both relations and entities should be394

expressed with clarity and precision; 3) The triplet395

should contain domain-relevant information. Build-396

ing upon prior research (Chen et al., 2024) and397

our empirical observations, we note that LLMs of-398

ten extract low-quality triplets from open-domain399

corpora where pre-defined relation scopes are ab-400

sent. Examples include ("Mike","travels to","New401

York"), ("brush teeth","time frame","8:00 AM"),402

and ("Arabic Sands", "is a", "book").403

To enhance the quality of triplet extraction, we404

have developed a multi-stage factual knowledge ex-405

traction pipeline. Figure 5 illustrates our four-stage406

prompting pipeline for extracting and refining these407

triples from Wikipedia pages. The process begins408

with Prompt A, which performs initial triples ex-409

traction from raw text, generating a comprehensive410

but potentially noisy set of candidate triples. Recog-411

nizing that these initial extractions may contain in-412

consistencies and inaccuracies, we employ Prompt413

B to filter out invalid or semantically implausible414

triples, thereby enhancing data quality. Building415

upon this filtered set, Prompt C systematically clas-416

sifies and standardizes relation types, addressing417

variations in linguistic expression (e.g., "author" vs.418

"was written by") through manual consolidation419

into a unified relation schema. Finally, leveraging420

the refined relation taxonomy, Prompt D re-extracts421

triples from the original text with improved preci-422

sion and consistency. This pipeline, progressively423

refining the extraction process at each stage, ulti-424

mately produces a robust dataset for downstream425

tasks. The complete prompts and implementation426

details are available in Appendix A.427

4.2 Knowledge based Training Data Synthesis 428

Having obtained the structured triples T = 429

{(h, r, t)}, where h and t represent the head and 430

tail entities, and r ∈ R denotes the relation type, 431

our objective is to synthesize these triples into nat- 432

ural language training data for DAP, ensuring scal- 433

able exposure times for each factual knowledge 434

piece. Previous studies (Allen-Zhu and Li, 2023a; 435

Dubey et al., 2024) have underscored the critical 436

role of knowledge expression diversity in training 437

efficacy, posing a significant challenge: generating 438

large-scale, diverse yet semantically natural expres- 439

sions for each knowledge. As depicted in Figure 440

4, to enhance expression diversity, we adopt the 441

approach from (Ge et al., 2024), leveraging the 442

extensive persona descriptions in Persona Hub to 443

create sentence templates for data synthesis. To 444

maintain semantic coherence, these templates are 445

generated separately for each distinct relation. 446

To transform structured knowledge into linguis- 447

tically diverse yet semantically consistent text, we 448

construct a template library for each relation type 449

ri ∈ R. Specifically, for each relation ri, we de- 450

sign a prompt that leverages persona descriptions 451

from Persona Hub. These persona data are used 452

to populate the prompts, which are then processed 453

by Qwen2.5-72B-Instruct to generate a template 454

library Tri containing 1, 000 unique natural lan- 455

guage templates. For example, for the relation 456

"birth year", the library includes templates such as 457

"{name} was born in {year}" and "{name} first 458

logged into the world in {year}." The prompt and 459

generated template examples can be found in 10 460

and 11. 461

Once the template libraries are constructed, we 462

proceed to generate the training dataset Dtrain, 463

which consists of multiple subsets DN
K with varying 464

numbers of knowledge points (K) and exposures 465

per point (N ). The generation process involves the 466

following steps: 467

Template Sampling. For each relation ri, we
randomly sample N templates from its correspond-
ing template library Tri to form a candidate tem-
plate set Sri :

Sri ⊆ Tri , |Sri | = N.

This ensures that each relation is represented by 468

a diverse subset of templates while maintaining 469

controlled exposure. 470

Triples Selection and Instantiation. We ran- 471

domly select K triples from T , ensuring that the 472
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Figure 5: Factual knowledge extraction pipeline. The process begins by extracting low-quality triples from Arabic
pages using Prompt A. These triples are filtered using Prompt B to remove invalid triples (red-highlighted examples).
The filtered triples are then categorized based on their relations using Prompt C, such as "author" (blue) and
"publication year" (green). Manual refinement unifies variations of the same relation within each category. These
refined relations are embedded into Prompt D to re-extract high-quality, standardized triples from the original pages,
ensuring structured and accurate factual knowledge construction.

selected triples may span multiple relations. Each473

selected triple is instantiated using all N templates474

in its corresponding candidate template set Srk .475

This process ensures that each knowledge point476

appears exactly N times in the training data, with477

each occurrence expressed through a distinct tem-478

plate.479

The resulting training dataset Dtrain is a union
of multiple subsets DN

K , each corresponding to a
specific combination of K knowledge points and
N exposures:

Dtrain =
⋃

(K,N)∈C

DN
K ,

where C represents the set of all combinations of K480

and N used in the dataset. The number of relations481

represented in each subset depends on the random482

sampling of triples, ensuring diversity in the types483

of knowledge points included.484

This approach balances controlled knowledge485

injection with linguistic diversity, enabling system-486

atic evaluation of knowledge acquisition during487

DAP. Additional template examples and implemen-488

tation details are provided in Appendix A.489

5 Knowledge Injection Training and490

Evaluation491

5.1 Knowledge Injection Training492

Data Setup. To ensure the quality and efficiency493

of knowledge extraction, while ensuring the source494

data can be publicly accessed by the research We 495

have prepared five different scales of factual knowl- 496

edge triples, which are extracted from Arabic- 497

related pages on Wikipedia. For each scale of 498

triples, we employed six different numbers of tem- 499

plates to augment the data. This process resulted in 500

downstream datasets with varying levels of expo- 501

sure (N) and different amounts of knowledge (K). 502

(For more details, please refer to Appendix ??) 503

Model Setup. For the pre-trained models, 504

we selected the Qwen-2.5 series, which has 505

demonstrated outstanding performance in English- 506

language tasks. Additionally, this series offers 507

a range of open-source pre-trained base models 508

in various sizes. In our experiments, we uti- 509

lized Qwen-2.5-0.5B, Qwen-2.5-1.5B, Qwen-2.5- 510

7B, and Qwen-2.5-14B as the foundational models 511

for continued pre-training in the downstream do- 512

main of Arabic factual knowledge. 513

DAP Training Setup. We set the learning rate 514

to 7e− 6 for all experiments. For data with differ- 515

ent exposure frequencies, we used different global 516

batch size values to ensure sufficient updates dur- 517

ing the training process (for details on the specific 518

hyperparameter settings, see Appendix B). 519

When handling different exposure frequencies 520

(including 10, 50, 100, 200, 500, and 1, 000), we 521

found that directly saving intermediate checkpoints 522

from the training process with an exposure fre- 523

quency of 1, 000 may not meet the requirements 524

for low exposure counts (such as 10, 50, and 100). 525
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This is because, in some cases, when the exposure526

frequency is low, it is not possible to precisely ob-527

tain the corresponding checkpoints. To address528

this issue, we conducted separate training sessions529

for datasets with low exposure counts and only530

saved the final checkpoint, ensuring that the model531

achieves optimal performance within the limited532

number of training steps.533

Data concatenation. In our experiment, the av-534

erage number of tokens per data sample is 32, with535

the maximum sequence length set to 2, 048. When536

performing data concatenation, we followed the537

approach used in DeepSeek-V3 (Liu et al., 2024)538

to ensure the integrity of the content was preserved.539

Computer resources. Our main experiment re-540

quires approximately 120 hours of runtime on 8541

A100s.542

5.2 Knowledge Injection Performance543

Evaluation544

To evaluate the knowledge injection performance,545

we employ two complementary evaluation metrics:546

cross-entropy loss and NDCG. These metrics pro-547

vide insights into both the probabilistic confidence548

of predictions and the ranking quality of retrieved549

knowledge.550

In this setup, the model is tasked with predicting551

the tail entity ti given the head entity hi and relation552

ri, simulating a knowledge retrieval task. To guide553

the model in understanding the task, we adopt an in-554

context learning approach by constructing a prompt555

(detailed in Figure 13) that includes the query triple556

with the tail entity masked (hi, ri, ?) along with557

several exemplar triples containing correct tail pre-558

dictions. This design ensures that the model rec-559

ognizes the need to predict the tail entity while560

leveraging the provided examples as task demon-561

strations.562

For cross-entropy loss evaluation, we compute563

the average token-level loss across all tokens in the564

tail entity. This metric reflects the model’s uncer-565

tainty in its predictions, providing a probabilistic566

measure of how well the factual knowledge is en-567

coded or compressed by the model.568

For NDCG evaluation, we calculate the rank of569

each token in the predicted tail within the model’s570

vocabulary and derive the corresponding NDCG571

score. To ensure robustness, we take the minimum572

NDCG value across all tokens in the predicted tail573

as the representative score for the triple. This ap-574

proach penalizes errors in any part of the tail pre-575

diction, ensuring a conservative assessment of re-576

trieval accuracy. Finally, we average the NDCG 577

scores across all triples to obtain an overall measure 578

of the model’s knowledge retention. 579

6 Related Works 580

DAP Related Scaling Laws. Recent studies 581

have advanced continuous pre-training optimiza- 582

tion. (Que et al., 2024) introduces the D-CPT 583

and Cross-Domain D-CPT Laws, reducing training 584

costs while enhancing domain-specific and general 585

performance. Similarly, (Gu et al., 2024) proposes 586

the CMR Scaling Law to balance general and spe- 587

cialized capabilities. In cross-lingual CPT, (Zheng 588

et al., 2024) optimizes resource allocation for new 589

languages, while (Kaplan et al., 2020) highlights 590

that larger models achieve equivalent performance 591

with fewer resources, emphasizing the importance 592

of scale. 593

Knowledge Injection and Data Synthesis. Fac- 594

tual knowledge acquisition in language models is 595

closely tied to training data diversity (Allen-Zhu 596

and Li, 2023a). Allen-Zhu et al. (Allen-Zhu and Li, 597

2024b) show each Transformer parameter stores 598

2 bits of knowledge, linking model size to knowl- 599

edge capacity. Geiping et al. (Geiping et al., 2022) 600

reveal data augmentation improves generalization 601

through scaling laws and regularization. In syn- 602

thetic data, Tencent AI Lab (Ge et al., 2024) uses 603

a Persona-driven approach with one billion virtual 604

personas to generate high-quality, diverse data, ad- 605

vancing data diversification techniques. 606

7 Conclusion 607

This study systematically investigates scaling laws 608

for factual knowledge injection in Arabic large lan- 609

guage models through domain-adaptive pretraining. 610

We develop a novel data synthesis pipeline that en- 611

ables precise control over knowledge quantity and 612

exposure frequency. Our analysis reveals three fun- 613

damental log-linear relationships: (1) higher expo- 614

sure frequency enhances knowledge retrieval while 615

reducing prediction probabilities; (2) increased 616

knowledge scale leads to logarithmic growth in 617

learning difficulty; (3) larger model size signif- 618

icantly improves fact capture capability. These 619

findings provide both theoretical insights and prac- 620

tical guidance for optimizing knowledge injection 621

in DAP frameworks, particularly for low-resource 622

languages like Arabic. 623
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Limitation624

Our study explores factual knowledge injection dur-625

ing DAP and introduces a data synthesis pipeline,626

but several limitations remain. 1. Focusing on627

the Arabic domain may limit generalizability, re-628

quiring exploration across diverse languages and629

domains. 2. Smaller models need higher exposure630

levels, highlighting the need to optimize training631

for varying model capacities. 3. Frequent updates632

risk catastrophic forgetting, calling for techniques633

like regularization or memory replay to balance634

knowledge retention. Addressing these challenges635

will improve domain-specific language models.636
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A Details of Data Synthesis 918

To construct a robust dataset of factual knowl- 919

edge related to Arabic culture, we first crawled 920

textual content from Wikipedia pages relevant to 921

this domain. We then designed a four-step prompt- 922

ing framework leveraging GPT-4o to extract high- 923

quality triples in the form of (head, relation, tail), 924

as illustrated in Figure 5. Initially, Prompt A was 925

employed to generate a preliminary set of triples, 926

which were often noisy and incomplete. To address 927

this, Prompt B was applied to filter out invalid or 928

nonsensical triples, thereby improving the over- 929

all quality of the dataset. Subsequently, Prompt 930

C categorized the relations within the remaining 931

triples, identifying frequently occurring relation 932

types. Given that semantically equivalent relations 933

may exhibit diverse surface forms (e.g., "author" 934

vs. "was written by"), we performed manual refine- 935

ment to consolidate these variations into a standard- 936

ized set of relations. Finally, the refined relations 937

were integrated into Prompt D, which was used 938

to re-extract triples from the original web text, re- 939

sulting in a high-quality set of factual knowledge. 940

This iterative process ensured both precision and 941

consistency in the synthesized data, laying a solid 942

foundation for downstream tasks. 943

Next, to enhance the diversity and representative- 944

ness of the data, we utilized Persona Hub (Ge et al., 945

2024) along with Prompt E to generate a series 946

of structured templates. For each type of relation, 947

we used the Qwen2.5-72B-Instruct model to gen- 948

erate 1,000 templates, which encompassed a wide 949

range of linguistic expressions. Subsequently, high- 950

quality triples were inserted into these templates 951

to construct a diverse and representative dataset. 952

This dataset not only covers various types of rela- 953

tions but also fully captures complex semantic in- 954

formation, effectively supporting the requirements 955

of downstream tasks. 956

Furthermore, to meet experimental needs across 957

different scenarios, we adopted a multi-level design 958

strategy during the data synthesis process. Specifi- 959

cally, we generated multiple datasets of varying 960

scales based on different numbers of templates 961

(N = 10, 50, 100, 200, 500 and 1, 000) and knowl- 962

edge point quantities (K = 500, 1K, 5K, 50K, and 963

100K). 964

B Hyperparameters 965

The hyperparameters for the experiments are listed 966

in Table 1. For different scales of knowledge point 967
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Figure 6: Triples Classification Prompt: Summary and Examples Based on relation Categories.

Figure 7: Prompt for extracting low-quality triples from Wikipedia pages.

quantities (K = 500, 1K, 5K, 50K, and 100K),968

we further optimized the training configuration.969

When the number of knowledge points was smaller970

(K = 0.5K, 1K, 5K), we adjusted the global batch971

size from the default 96 to 32, thereby increasing972

the number of training steps by three times. This973

adjustment helps the model achieve more sufficient974

parameter updates and optimization on smaller-975

scale datasets. For larger-scale knowledge point976

datasets (K = 50K, 100K), we kept the global977

batch size at 96 to balance training efficiency and978

model performance.

Hyperparameters Value
Warm-up Steps 0
Gradient Accumulation Steps 2
Max Sequence Length 2048
Learning Rate 7e-6
Min Learning Rate 7e-7
Learning Rate Scheduler cosine with min lr
Numbers of GPUs 24

Table 1: The list of hyperparameters.

979

C More Scaling Experiment Results 980
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Figure 8: Triples Filtering Prompt: Steps and examples for analyzing and verifying unique factual relations. In this
process, each triple is examined to determine whether the tail entity is unique for a given head entity and relation,
meaning that the tail entity cannot have alternative possible values.
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Figure 9: High-quality Triples Extraction and Classification: Extracting triples from text based on a predefined list
of 26 relation types (partially shown in the figure for brevity). Relations include: B.A. from, Ph.D. from, academic
advisor, author, birth city, birth country, birth date, birth year, creator, death date, death year, director, father’s name,
located in, made in, master’s degree from, mother’s name, nationality, portrayed by, publish year, publisher, release
by, release date, release year, total gross, wife’s name. Each extracted triple strictly adheres to this predefined
schema.
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Figure 10: Template Generation Prompt: Generate sentences in the style of a specific person that can be filled with
head and tail entities (using the relation between a person and their birth date as an example). To ensure diversity in
the generated templates, allow the use of statements similar to the relation in the template for substitution.

Figure 11: Template Example: Sentences describing entity relations in the style of a specific person (using the
relation between a person and their birth date as an example). Fill in the person’s name at Head and the birth date at
Tail.

Figure 12: Synthetic Data Example. (using the relation between a person and their birth date as an example)
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Figure 13: Prompt for Evaluation.

Figure 14: NDCG and loss vs. exposure times with K = 50, 000

Figure 15: (a): NDCG vs. number of factual knowledge; (b): NDCG vs. number of model parameters. All these
curves are obtained with N = 1, 000.
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Figure 16: knowledge metrics of pre-trained models; (a): NDCG vs. number model parameters. (b): loss vs. number
model parameters with N = 1, 000.
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