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Abstract

The growing need for domain-specific large lan-
guage models (LLMs), underscores the impor-
tance of Domain Adaptive Pre-training (DAP)
in enhancing downstream task performance.
While existing research has established scaling
laws for corpus mixture optimization, the scal-
ing laws governing factual knowledge injection
remain unexplored. This paper bridges this gap
by conducting a case study on Arabic domain-
specific factual knowledge injection via DAP.
Unlike traditional scaling laws, which rely on
token counts and cross-entropy loss, our ap-
proach introduces two key innovations: (1) scal-
ing training data based on domain knowledge
volume rather than corpus size, and (2) using a
knowledge-oriented evaluation method. We de-
veloped a scalable data synthesis pipeline that
extracts factual knowledge triples from Ara-
bic Wikipedia, generates diverse templates, and
populates them to create training data. Exper-
iments on pre-trained models of varying sizes
yielded a log-linear scaling trend incorporating
model size, knowledge volume, and exposure
frequency, indicating a potential practical value
in guiding knowledge injection trainings.

1 Introduction

With the rapid development of large language
model (LLM) technologies and applications, the
demand for domain-specific models continues
to grow. Leading domain models (Shi et al.,
2024) typically incorporate Domain Adaptive Pre-
training (DAP) during training to enhance their per-
formance on downstream tasks (Huang et al., 2023;
Bari et al., 2024; Liang et al., 2024). A key role of
DAP in enhancing the effectiveness of subsequent
fine-tuning is to infuse the model with missing
domain knowledge (Wu et al., 2023; Gururangan
et al., 2020).

Previous studies have found that for a given set
of factual knowledge, their frequencies of repeti-
tion ("exposure") during pre-training is crucial for
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Figure 1: (a) Loss values as a function of exposure
levels, plotted on a logarithmic x-axis. The y-axis is re-
stricted to the range [2, 4] to highlight variations in loss.
(b) Normalized Discounted Cumulative Gain (NDCG)
scores as a function of exposure levels, also plotted on a
logarithmic x-axis. The y-axis is restricted to the range
[0, 1], reflecting the typical scale of NDCG values. Both
metrics are evaluated across six exposure levels: 10, 50,
100, 200, 500, and 1, 000.

learning effectiveness (Allen-Zhu and Li, 2023a,b,
2024a), and when exposure reaches a certain thresh-
old (e.g., exposure = 1,000) can an LLM effec-
tively memorize these factual knowledge. How-
ever, a higher exposure count also implies greater
data collection/synthesis costs and increased train-
ing overhead. In the DAP scenario, more frequent
model updates also raise the risk of catastrophic for-
getting of the pre-trained model’s existing general
knowledge (Luo et al., 2023). Therefore, we need
to address the following question: In the DAP sce-
nario, given a model’s specific size and a defined
amount of domain knowledge to be acquired, how
much training data is required to achieve effective
knowledge injection?

Although previous studies have explored data
scaling in the context of DAP, they primarily fo-
cused on the optimal mixing ratio of general and
domain-specific corpora at the token level (Que
et al., 2024; Gu et al., 2024), and their approaches
do not address the issue of domain knowledge ex-
posure that concerns us. First, the information den-
sity varies significantly across different types and



sources of corpora (e.g., factual knowledge density
in Wikipedia is much higher than in casual conver-
sation), making it impossible to directly convert
the amount of factual knowledge into token counts.
Second, since the same factual knowledge can be
expressed in multiple ways in natural language, it is
challenging to measure the repetition frequency of
specific knowledge in the raw corpus. In this paper,
we aim to investigate the relationship between the
exposure level of knowledge and its injection effec-
tiveness in DAP, using factual knowledge from the
Arabic domain as a case study.

To address the limitations of natural corpora, we
developed a data synthesis pipeline for generating
DAP training corpora for Arabic domain knowl-
edge, enabling precise control over both knowledge
quantity and exposure frequency. The pipeline com-
prises four stages: 1) corpus crawling, 2) extraction
of knowledge triples from the corpus inspired by
knowledge graph works (Wang et al., 2021; Chen
et al., 2024), 3) generation of diverse natural lan-
guage templates based on the extracted triples by
leveraging the approach from (Ge et al., 2024), and
4) synthesis of DAP training corpora with varying
exposure levels using the triples and templates. Uti-
lizing this method, we extracted 115,394 Arabic
knowledge triples and synthesized data with up to
1,000 exposures to conduct knowledge injection
experiments across models of varying sizes.

Another critical issue in this work is how to mea-
sure to what extend factual knowledge has been
successfully injected. In related studies, this is typ-
ically achieved through the tail entity prediction
task (Geva et al., 2023; Jiang et al., 2019; Dai et al.,
2021). Specifically, by designing a prompt that in-
cludes the head entity and relation (e.g. "Saudi
Arabia", "capital city") of a factual knowledge,
the model’s probability of predicting the correct
tail entity ("Riyadh") or the cross-entropy loss is
calculated. So We first evaluate the effectiveness
of knowledge injection by computing the cross-
entropy loss on the tail entity, as shown in Figure
1 (a). Surprisingly, the loss on the tail entity in-
creases as the number of exposures grows which is
contrary to (Allen-Zhu and Li, 2024b). To investi-
gate whether there was an issue with our training
process, we try to check whether there is a prob-
lem in our training process by checking the rank of
the ground-truth token. For this purpose, we em-
ployed the NDCG! (Normalized Discounted Cu-

'NDCG is a metric used for evaluating the quality of rank-

mulative Gain) metric, which is commonly used
to assess the quality of ranking, with higher values
indicating better performance. As shown in Fig-
ure 1 (b), our evaluation results reveal that NDCG
increases as the amount of exposure increases, sug-
gesting that the training process is functioning cor-
rectly. This indicates that higher exposure improves
knowledge retrieval effectiveness but leads to a de-
cline in prediction probabilities. We also observed
that, although NDCG is a nonlinear metric, it ex-
hibits a clear linear relationship with the exposure
level before entering the saturation zone. Our ex-
periments demonstrate that this linear relationship
holds across models of different sizes and vary-
ing amounts of factual knowledge. Based on these
findings, we can use the linear parameters fitted
from data with lower exposure levels to predict the
required exposure for a target NDCG, thereby guid-
ing the data synthesis and training for knowledge
injection in DAP.

Our contributions can be summarized as follows:

* Analyzed the impact of exposure times, model
sizes, and knowledge scales on factual knowl-
edge injection during the DAP stage, yielding
the following findings: a. Both ranking per-
formance and cross-entropy loss demonstrate
a log-linear relationship with exposure times.
b. Ranking performance shows a negative log-
linear correlation with knowledge sizes and
a positive log-linear correlation with model
sizes.

* Designed a DAP data synthesis pipeline capa-
ble of controlling both the quantity of factual
knowledge and the exposure times.

2 Preliminary and Background

2.1 Factual Knowledge

Factual knowledge refers to the collection of ob-
jective, verifiable information about the world that
is often expressed in structured or semi-structured
forms. This type of knowledge encompasses enti-
ties, relationships, attributes, and events that can
be explicitly stated and retrieved. For instance, fac-
tual knowledge can be represented in the form of
triples, such as (head, relation, tail). A concrete
example of such a triple is (Saudi Arabia, capital

ing, with values ranging from 0 to 1. An NDCG value of 1,
0.5, and 0.25 corresponds to the rank of the ground-truth token
being 1, 3, and 15, respectively. The specific formula can be
found in Section 2.3.



city, Riyadh), which captures the factual statement
that "the capital of Saudi Arabia is Riyadh."

Such knowledge is typically stored in databases,
encyclopedias, or knowledge graphs, making it a
foundational element for various applications in
natural language processing (NLP), information re-
trieval, and artificial intelligence (AI). Understand-
ing and leveraging factual knowledge is crucial for
tasks like question answering, fact-checking, and
semantic search, where accuracy and reliability are
paramount.

2.2 Data Synthesis with Personas

To synthesize high-quality and diverse sentence
templates for training purposes, we leverage Per-
sona Hub (Ge et al., 2024), a large-scale repository
of one billion personas automatically curated from
web data. Each persona in the hub represents a
unique perspective or identity, enabling the gener-
ation of synthetic data that reflects a wide range
of linguistic styles, cultural contexts, and individ-
ual viewpoints. Our approach involves designing
prompts that incorporate specific personas to guide
LLM in generating data tailored to distinct narra-
tive voices.

For instance, when tasked with describing a fac-
tual event such as someone’s birthday, different
personas yield markedly varied expressions. An
IT programmer might phrase it as "{name} first
logged into the world on {birthday}." while a na-
ture photographer could describe it as "{name}
captured their first breath of life on {birthday}.".
By systematically selecting personas from Persona
Hub and embedding them into carefully crafted
prompts, we ensure that each generated data point
is not only factually consistent but also stylistically
rich and contextually nuanced.

This methodology offers two key advantages.
First, the diversity of personas ensures that the syn-
thesized data spans a broad spectrum of linguistic
patterns and perspectives, enhancing the robustness
of downstream models trained on this data. Sec-
ond, the use of personas introduces an element of
creativity and variability that mimics real-world hu-
man expression, thereby improving the naturalness
and authenticity of the generated content. Overall,
our approach demonstrates how Persona Hub can
be effectively utilized to produce synthetic data at
scale, bridging the gap between structured factual
knowledge and expressive, human-like narratives.

2.3 NDCG

Normalized Discounted Cumulative Gain (NDCG)
(Jarvelin and Kekildinen, 2002) is a widely used
metric for evaluating ranking system quality. It
assesses both the relevance scores and positions
of items in a ranked list. The relevance score rel;
of an item at position 7 is discounted logarithmi-
cally to penalize lower-ranked relevant items. The
NDCG formula is defined as:

DCG
NDOG = IDCG
where l
= o2reli 1
DCG = _
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Here, rel; is the relevance score of the item at
position 7 in the ranked list, rel;* is the relevance
score in the ideal ranking, and n is the number
of items. NDCG ranges from 0 to 1, with higher
values indicating better ranking quality.

In our work, we simplify this by focusing solely
on the ground-truth token: we assign rel = 1 to
the ground-truth token and rel = 0 to all others.
Thus, the NDCG for a single prediction reduces to:

1
logy (1 + ranky;)

NDCG =

where rankgy; is the position of the ground-truth
token in the model’s output. This simplified for-
mula directly reflects the model’s ability to rank the
correct token highly, providing a precise measure
of its in performance predicting factual knowledge.

3 Scaling Laws of Knowledge Injection

3.1 Ranking Performance Scales
Log-Linearly with Exposure Size

As depicted in Figure 2 (a), increasing exposure
enhances NDCG for both 7B and 14B models,
reflecting improved knowledge injection perfor-
mance. This aligns with expectations, as more
frequent exposure aids in better memorization of
factual knowledge. Specifically, the 7B model
demonstrates a near log-linear relationship between
NDCG and exposure, with minor deviations at
N = 50. In contrast, the 14B model shows
a rising NDCG trend with increasing exposure
but approaches saturation at NDCG = 0.9 for
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Figure 2: (a) NDCG vs. exposure times; (b) loss vs. exposure times; (c) NDCG and loss increments with regard to
the pre-trained model across different exposures. All these curves are obtained with K = 50, 000. Note: NDCG

and loss are computed only on tail entities.
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Figure 3: (a) NDCG vs. number of factual knowledge;
(b) NDCG vs. number of parameters. All these curves
are obtained with N = 1,000. Note: NDCG is com-
puted only on tail entities.

N > 100. Notably, the 14B model achieves
faster NDCG gains with fewer exposures, reach-
ing NDCG = 0.836 at N = 100, while the 7B
model requires N = 1,000 to attain a similar
level (NDCG = 0.844). This suggests the 7B
model needs approximately 10 times the exposure
to match the 14B model’s performance. Given that
the 7B model’s unit computational cost is roughly
half that of the 14B model, its total computational
cost to reach this level is about 5 times higher. This
proportional relationship is consistent for the 7B
model at N = 500 and the 14B model at N = 50.

3.2 More Exposures Result in Higher
Cross-Entropy Loss

In Figure 2 (b), we observe an unexpected increase
in loss with rising exposure. However, given the
concurrent improvement in NDCG, this loss in-
crease does not signify a decline in knowledge in-
jection effectiveness. For both model sizes, the

loss exhibits a near log-linear relationship. No-
tably, in the N > 100 range, while the NDCG
growth of the 14B model slows as it approaches
its limit, the corresponding loss continues its lin-
ear upward trend. Comparing the two models, the
14B model’s loss grows at a significantly slower
rate than the 7B model. Starting from nearly iden-
tical loss values (see Appendix 16 (b)), the 14B
model requires 10 times the exposure (N = 1000)
to reach a loss level comparable to that of the 7B
model at N = 100. Given that cross-entropy loss
naturally reflects model encoding efficiency, this
trend suggests that factual knowledge injection im-
poses a cost on encoding efficiency, with larger
models exhibiting a slower degradation in encod-
ing efficiency as exposure increases.

3.3 Cross-Entropy Loss Correlates With
Ranking Performance

In Figure 2 (c), we further analyze the trend of
the ratio between NDCG and loss increments with
regard to the pre-trained model across different ex-
posures. The figure reveals the following insights:

1) For the 7B model, the ratio remains con-
stant within the intervals N € [10,50] and N €
[100, 1000], with a decline in the ratio occurring
between these intervals, corresponding to the slight
deviation from the overall linear trend observed
in the NDCG and loss plots at N = 50. This
phenomenon suggests that the curves in panels (a)
and (b) may exhibit piecewise linear characteris-
tics. Specifically, the fluctuations in NDCG and
loss between N = 50 and N = 100, as well as
their relative stability outside this range, appear
synchronized, indicating a potential deeper connec-
tion between the two metrics.



2) For the 14B model, the ratio follows a neg-
ative log-linear relationship with increasing expo-
sure. Given the linear trend of the loss, we can infer
that the corresponding NDCG trend in this interval
can be approximated by a quadratic function. This
implies that even for scenarios approaching NDCG
saturation, it is possible to predict NDCG results
at higher exposures by fitting a quadratic function
based on experiments with fewer exposures.

The experimental results for the smaller 1.5B
and 0.5B models exhibit similar log-linear scaling
trends, albeit with a minimal increase in NDCG
and a more pronounced rise in loss, as detailed in
Figure 14.

3.4 Ranking Performance Scales
Log-Linearly with Knowledge Size

The increase in knowledge volume elevates the
learning difficulty, manifesting as a negative log-
linear decline in NDCG.

Figure 3 (a) illustrates the relationship between
the number of factual knowledge triples and NDCG
performance for two model sizes, M = 7B and
M = 14B, with K = 1,000. As the number
of knowledge triples increases, the NDCG values
for both models follow a negative log-linear trend.
This indicates that a larger volume of knowledge
indeed escalates learning difficulty, with this dif-
ficulty growing log-linearly, enabling predictions
of large-scale knowledge injection effects based
on performance with smaller datasets. Notably,
a similar linear trend is absent in the loss, likely
because for smaller knowledge volumes, 1, 000 ex-
posures may exceed training needs. As a result,
while NDCG saturates, the loss continues to rise.
In contrast, for larger knowledge volumes where
NDCG remains unsaturated, both loss and NDCG
grow simultaneously, preventing a concurrent lin-
ear relationship between the two metrics. A similar
trend of smaller models of 0.5B and 1.5B can be
found in Figure 15 (a).

3.5 Model Capacity Scales Log-Linearly with
Parameters

There exists a log-linear relationship between the
scale of model parameters and NDCG performance,
indicating that the model’s knowledge representa-
tion capability improves log-linearly with the in-
crease in parameters.

Figure 3 (b) illustrates the relationship between
model parameters and NDCG performance across
two distinct knowledge scales, K = 5k and K =

50k, with N = 1000. The curves demonstrate an
approximate log-linear relationship between the
number of parameters and NDCG scores across
both knowledge scales. Similar results can also
be observed in for other knowledge scales as il-
lustrated in Figure 15 (b). These findings indicate
that the model’s effectiveness in capturing and rep-
resenting factual knowledge often termed its ca-
pacity—increases log-linearly with the scale of pa-
rameters, rather than adhering to the linear growth
typically assumed. Similarly, no concurrent log-
linear trend is observed in the loss, likely due to
the same underlying reason in knowledge scaling
experiments.

4 Domain Knowledge Extraction and
Data Synthesis
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Figure 4: The framework of DAP data synthesis
pipeline. Raw text is extracted from Wikipedia and pro-
cessed through a factual knowledge extraction pipeline
to obtain structured triples. These triples are catego-
rized into multiple relation types, which are used to
design sentence templates. Using Persona Hub and
Qwen2.5-72B-Instruct, tailored prompts are created for
each relation type to generate high-quality templates.
Finally, the triples are inserted into these templates to
produce semantically rich training data.

Conducting scaling law research on domain
knowledge injection requires obtaining training
data with precise control over both the quantity of
knowledge and its exposure frequency. To tackle
this challenge, as illustrated in Figure 4, we de-
veloped a framework for data synthesis based on
domain-specific corpora. This framework consists
of two main steps: a) extraction of factual knowl-



edge from the domain, and b) synthesis of training
data based on the extracted factual knowledge. Sec-
tion 4.1 details the multi-stage pipeline for extract-
ing high-quality factual knowledge triples from
raw corpora by LL.Ms. Section 4.2 describes the
method for synthesizing training data with pre-
cisely controlled exposure levels using these knowl-
edge triples.

4.1 High-Quality Domain Factual Knowledge
Extraction

To facilitate scaling law training and evaluation, we
define high-quality factual knowledge triplets by
the following criteria: 1) The tail entity must be
uniquely determinable given the head entity and
relation; 2) Both relations and entities should be
expressed with clarity and precision; 3) The triplet
should contain domain-relevant information. Build-
ing upon prior research (Chen et al., 2024) and
our empirical observations, we note that LLLMs of-
ten extract low-quality triplets from open-domain
corpora where pre-defined relation scopes are ab-
sent. Examples include ("Mike","travels to","New
York"), ("brush teeth","time frame","8:00 AM"),
and ("Arabic Sands", "is a", "book").

To enhance the quality of triplet extraction, we
have developed a multi-stage factual knowledge ex-
traction pipeline. Figure 5 illustrates our four-stage
prompting pipeline for extracting and refining these
triples from Wikipedia pages. The process begins
with Prompt A, which performs initial triples ex-
traction from raw text, generating a comprehensive
but potentially noisy set of candidate triples. Recog-
nizing that these initial extractions may contain in-
consistencies and inaccuracies, we employ Prompt
B to filter out invalid or semantically implausible
triples, thereby enhancing data quality. Building
upon this filtered set, Prompt C systematically clas-
sifies and standardizes relation types, addressing
variations in linguistic expression (e.g., "author" vs.
"was written by") through manual consolidation
into a unified relation schema. Finally, leveraging
the refined relation taxonomy, Prompt D re-extracts
triples from the original text with improved preci-
sion and consistency. This pipeline, progressively
refining the extraction process at each stage, ulti-
mately produces a robust dataset for downstream
tasks. The complete prompts and implementation
details are available in Appendix A.

4.2 Knowledge based Training Data Synthesis

Having obtained the structured triples 7 =
{(h,r,t)}, where h and ¢ represent the head and
tail entities, and € R denotes the relation type,
our objective is to synthesize these triples into nat-
ural language training data for DAP, ensuring scal-
able exposure times for each factual knowledge
piece. Previous studies (Allen-Zhu and Li, 2023a;
Dubey et al., 2024) have underscored the critical
role of knowledge expression diversity in training
efficacy, posing a significant challenge: generating
large-scale, diverse yet semantically natural expres-
sions for each knowledge. As depicted in Figure
4, to enhance expression diversity, we adopt the
approach from (Ge et al., 2024), leveraging the
extensive persona descriptions in Persona Hub to
create sentence templates for data synthesis. To
maintain semantic coherence, these templates are
generated separately for each distinct relation.

To transform structured knowledge into linguis-
tically diverse yet semantically consistent text, we
construct a template library for each relation type
r; € R. Specifically, for each relation r;, we de-
sign a prompt that leverages persona descriptions
from Persona Hub. These persona data are used
to populate the prompts, which are then processed
by Qwen2.5-72B-Instruct to generate a template
library 7,, containing 1,000 unique natural lan-
guage templates. For example, for the relation
"birth year", the library includes templates such as
"{name} was born in {year}" and "{name} first
logged into the world in {year}." The prompt and
generated template examples can be found in 10
and 11.

Once the template libraries are constructed, we
proceed to generate the training dataset Dipip,
which consists of multiple subsets D% with varying
numbers of knowledge points (K') and exposures
per point (/V). The generation process involves the
following steps:

Template Sampling. For each relation r;, we
randomly sample N templates from its correspond-
ing template library 7, to form a candidate tem-
plate set S, :

S, C T,

7

|ST1‘ = N.

This ensures that each relation is represented by
a diverse subset of templates while maintaining
controlled exposure.

Triples Selection and Instantiation. We ran-
domly select K triples from 7, ensuring that the
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selected triples may span multiple relations. Each
selected triple is instantiated using all N templates
in its corresponding candidate template set S, .
This process ensures that each knowledge point
appears exactly /N times in the training data, with
each occurrence expressed through a distinct tem-
plate.

The resulting training dataset Dy, iS a union
of multiple subsets DY, each corresponding to a
specific combination of K knowledge points and
N exposures:

Dtrain = U D%a
(K,N)eC

where C represents the set of all combinations of K
and N used in the dataset. The number of relations
represented in each subset depends on the random
sampling of triples, ensuring diversity in the types
of knowledge points included.

This approach balances controlled knowledge
injection with linguistic diversity, enabling system-
atic evaluation of knowledge acquisition during
DAP. Additional template examples and implemen-
tation details are provided in Appendix A.

5 Knowledge Injection Training and
Evaluation
5.1 Knowledge Injection Training

Data Setup. To ensure the quality and efficiency
of knowledge extraction, while ensuring the source

data can be publicly accessed by the research We
have prepared five different scales of factual knowl-
edge triples, which are extracted from Arabic-
related pages on Wikipedia. For each scale of
triples, we employed six different numbers of tem-
plates to augment the data. This process resulted in
downstream datasets with varying levels of expo-
sure (N) and different amounts of knowledge (K).
(For more details, please refer to Appendix ??

Model Setup. For the pre-trained models,
we selected the Qwen-2.5 series, which has
demonstrated outstanding performance in English-
language tasks. Additionally, this series offers
a range of open-source pre-trained base models
in various sizes. In our experiments, we uti-
lized Qwen-2.5-0.5B, Qwen-2.5-1.5B, Qwen-2.5-
7B, and Qwen-2.5-14B as the foundational models
for continued pre-training in the downstream do-
main of Arabic factual knowledge.

DAP Training Setup. We set the learning rate
to 7e — 6 for all experiments. For data with differ-
ent exposure frequencies, we used different global
batch size values to ensure sufficient updates dur-
ing the training process (for details on the specific
hyperparameter settings, see Appendix B).

When handling different exposure frequencies
(including 10, 50, 100, 200, 500, and 1, 000), we
found that directly saving intermediate checkpoints
from the training process with an exposure fre-
quency of 1,000 may not meet the requirements
for low exposure counts (such as 10, 50, and 100).



This is because, in some cases, when the exposure
frequency is low, it is not possible to precisely ob-
tain the corresponding checkpoints. To address
this issue, we conducted separate training sessions
for datasets with low exposure counts and only
saved the final checkpoint, ensuring that the model
achieves optimal performance within the limited
number of training steps.

Data concatenation. In our experiment, the av-
erage number of tokens per data sample is 32, with
the maximum sequence length set to 2, 048. When
performing data concatenation, we followed the
approach used in DeepSeek-V3 (Liu et al., 2024)
to ensure the integrity of the content was preserved.

Computer resources. Our main experiment re-
quires approximately 120 hours of runtime on 8
A100s.

5.2 Knowledge Injection Performance
Evaluation

To evaluate the knowledge injection performance,
we employ two complementary evaluation metrics:
cross-entropy loss and NDCG. These metrics pro-
vide insights into both the probabilistic confidence
of predictions and the ranking quality of retrieved
knowledge.

In this setup, the model is tasked with predicting
the tail entity ¢; given the head entity h; and relation
;, simulating a knowledge retrieval task. To guide
the model in understanding the task, we adopt an in-
context learning approach by constructing a prompt
(detailed in Figure 13) that includes the query triple
with the tail entity masked (h;,r;,?) along with
several exemplar triples containing correct tail pre-
dictions. This design ensures that the model rec-
ognizes the need to predict the tail entity while
leveraging the provided examples as task demon-
strations.

For cross-entropy loss evaluation, we compute
the average token-level loss across all tokens in the
tail entity. This metric reflects the model’s uncer-
tainty in its predictions, providing a probabilistic
measure of how well the factual knowledge is en-
coded or compressed by the model.

For NDCG evaluation, we calculate the rank of
each token in the predicted tail within the model’s
vocabulary and derive the corresponding NDCG
score. To ensure robustness, we take the minimum
NDCG value across all tokens in the predicted tail
as the representative score for the triple. This ap-
proach penalizes errors in any part of the tail pre-
diction, ensuring a conservative assessment of re-

trieval accuracy. Finally, we average the NDCG
scores across all triples to obtain an overall measure
of the model’s knowledge retention.

6 Related Works

DAP Related Scaling Laws. Recent studies
have advanced continuous pre-training optimiza-
tion. (Que et al., 2024) introduces the D-CPT
and Cross-Domain D-CPT Laws, reducing training
costs while enhancing domain-specific and general
performance. Similarly, (Gu et al., 2024) proposes
the CMR Scaling Law to balance general and spe-
cialized capabilities. In cross-lingual CPT, (Zheng
et al., 2024) optimizes resource allocation for new
languages, while (Kaplan et al., 2020) highlights
that larger models achieve equivalent performance
with fewer resources, emphasizing the importance
of scale.

Knowledge Injection and Data Synthesis. Fac-
tual knowledge acquisition in language models is
closely tied to training data diversity (Allen-Zhu
and Li, 2023a). Allen-Zhu et al. (Allen-Zhu and Li,
2024b) show each Transformer parameter stores
2 bits of knowledge, linking model size to knowl-
edge capacity. Geiping et al. (Geiping et al., 2022)
reveal data augmentation improves generalization
through scaling laws and regularization. In syn-
thetic data, Tencent Al Lab (Ge et al., 2024) uses
a Persona-driven approach with one billion virtual
personas to generate high-quality, diverse data, ad-
vancing data diversification techniques.

7 Conclusion

This study systematically investigates scaling laws
for factual knowledge injection in Arabic large lan-
guage models through domain-adaptive pretraining.
We develop a novel data synthesis pipeline that en-
ables precise control over knowledge quantity and
exposure frequency. Our analysis reveals three fun-
damental log-linear relationships: (1) higher expo-
sure frequency enhances knowledge retrieval while
reducing prediction probabilities; (2) increased
knowledge scale leads to logarithmic growth in
learning difficulty; (3) larger model size signif-
icantly improves fact capture capability. These
findings provide both theoretical insights and prac-
tical guidance for optimizing knowledge injection
in DAP frameworks, particularly for low-resource
languages like Arabic.



Limitation

Our study explores factual knowledge injection dur-
ing DAP and introduces a data synthesis pipeline,
but several limitations remain. 1. Focusing on
the Arabic domain may limit generalizability, re-
quiring exploration across diverse languages and
domains. 2. Smaller models need higher exposure
levels, highlighting the need to optimize training
for varying model capacities. 3. Frequent updates
risk catastrophic forgetting, calling for techniques
like regularization or memory replay to balance
knowledge retention. Addressing these challenges
will improve domain-specific language models.
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A Details of Data Synthesis

To construct a robust dataset of factual knowl-
edge related to Arabic culture, we first crawled
textual content from Wikipedia pages relevant to
this domain. We then designed a four-step prompt-
ing framework leveraging GPT-40 to extract high-
quality triples in the form of (head, relation, tail),
as illustrated in Figure 5. Initially, Prompt A was
employed to generate a preliminary set of triples,
which were often noisy and incomplete. To address
this, Prompt B was applied to filter out invalid or
nonsensical triples, thereby improving the over-
all quality of the dataset. Subsequently, Prompt
C categorized the relations within the remaining
triples, identifying frequently occurring relation
types. Given that semantically equivalent relations
may exhibit diverse surface forms (e.g., "author"
vs. "was written by"), we performed manual refine-
ment to consolidate these variations into a standard-
ized set of relations. Finally, the refined relations
were integrated into Prompt D, which was used
to re-extract triples from the original web text, re-
sulting in a high-quality set of factual knowledge.
This iterative process ensured both precision and
consistency in the synthesized data, laying a solid
foundation for downstream tasks.

Next, to enhance the diversity and representative-
ness of the data, we utilized Persona Hub (Ge et al.,
2024) along with Prompt E to generate a series
of structured templates. For each type of relation,
we used the Qwen2.5-72B-Instruct model to gen-
erate 1,000 templates, which encompassed a wide
range of linguistic expressions. Subsequently, high-
quality triples were inserted into these templates
to construct a diverse and representative dataset.
This dataset not only covers various types of rela-
tions but also fully captures complex semantic in-
formation, effectively supporting the requirements
of downstream tasks.

Furthermore, to meet experimental needs across
different scenarios, we adopted a multi-level design
strategy during the data synthesis process. Specifi-
cally, we generated multiple datasets of varying
scales based on different numbers of templates
(N =10, 50, 100, 200, 500 and 1, 000) and knowl-
edge point quantities (K = 500, 1K, 5K, 50K, and
100K).

B Hyperparameters

The hyperparameters for the experiments are listed
in Table 1. For different scales of knowledge point
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Prompt C: Triples Classification Prompt

You are a knowledge graph expert. I will provide you with some triples below. These triples involve many categories.
Please help me summarize how these triples can be categorized based on their relations. For each category, please output
a few of the triples I provided as examples. Place the categories with a higher proportion at the top.

Triples:
{triples}

Figure 6: Triples Classification Prompt: Summary and Examples Based on relation Categories.

Prompt A: Low-Quality Triples Extraction

Extract factual knowledge triples from the text below. Follow these rules:
1. Only include static facts (e.g., dates, authorship, locations).
2. Format each triple as: -[Head Entity | Relationship | Tail Entity], which is equivalent to [Subject | Predicate | Object].
3. Extract at least 20 triples.
4. No explanations needed.

Text:

{text}

Output format:

-[Entity 1 | relationship 1 | Entity 2]
-[Entity 3 | relationship 2 | Entity 4]

Figure 7: Prompt for extracting low-quality triples from Wikipedia pages.

quantities (K = 500, 1K, 5K, 50K, and 100K), C More Scaling Experiment Results
we further optimized the training configuration.
When the number of knowledge points was smaller
(K = 0.5K, 1K, 5K), we adjusted the global batch
size from the default 96 to 32, thereby increasing
the number of training steps by three times. This
adjustment helps the model achieve more sufficient
parameter updates and optimization on smaller-
scale datasets. For larger-scale knowledge point
datasets (K = 50K, 100K), we kept the global
batch size at 96 to balance training efficiency and
model performance.

Hyperparameters Value
Warm-up Steps 0
Gradient Accumulation Steps 2

Max Sequence Length 2048
Learning Rate Te-6

Min Learning Rate Te-7
Learning Rate Scheduler cosine with min Ir
Numbers of GPUs 24

Table 1: The list of hyperparameters.
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Prompt B: Triples Filtering Prompt \

Analyze whether each extracted triple represents a **unique factual relationship** where the tail entity has no other
possible values for the given head entity and relationship. Follow these steps:

1. For each triple, check:

- If the tail entity **must be unique** (e.g., publication year, locations).
- Exclude ambiguous relationships (e.g., "crossed by", professions, "travels to", "moved to").
- Fix incorrect triples by swapping head/tail entities if logically inverted.

2. Examples:
**nvalid**

1. [Wilfred Thesiger | profession | explorer] -> Invalid. "profession" allows multiple values.
2. [Aziz Nesin | created character | Ziibiik] -> Invalid. Head/tail inversion because "Ziibiik" is not the only valid value
for the tail entity when head is "Aziz Nesin" and the relation is "created character".
- Correction: [Ziibiik | created by | Aziz Nesin], "Aziz Nesin" is the only valid value for the tail entity in this triple.
3. [The Image Book | Award | Special Palme d'Or] -> Invalid. The Image Book has won more than one award. "Special
Palme d'Or" could be replaced by others.
4. [Brush teeth | timeframe | 8:00 AM] -> Invalid. The entity "Brush teeth" is ambiguous without specifying who
performed the brushing.
5. [J.K. Rowling | wrote | Harry Potter] -> Invalid. Head/tail inversion because "Harry Potter" is not the only valid value
for the tail entity when the head is "J.K. Rowling" and the relation is "wrote".
- Correction: [Harry Potter | written by | J.K. Rowling], "J.K. Rowling" is the only valid value for the tail entity in this
triple.
6. [Mike | travels to | New York] -> Invalid. Mike may travels to other cities, not only "New York" can be the valid
value for the tail entity.

**Valid**

1. [Manwakh | located in | Yemen] -> Valid. "located in" is fixed.
2. [TCP/IP | publication year | 1974] -> Valid. "Publication years" are singular factual events.

3. Analyze each triple below:

Triples to validate:
{triples}

Output format:
Analysis:

1.[Triple 1] — [Valid/Invalid]. *[Brief reason]*.
- Correction: '[New Head | New Relation | New Tail]" (if applicable)
2[...]

The Valid/Corrected Triples:

-[Head | Relation | Tail]
L]

N J

Figure 8: Triples Filtering Prompt: Steps and examples for analyzing and verifying unique factual relations. In this
process, each triple is examined to determine whether the tail entity is unique for a given head entity and relation,
meaning that the tail entity cannot have alternative possible values.
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Prompt D: High-Quality Triples Extraction

Please extract triples in the form of (Entity1, Relation, Entity2) from the text provided below. Ensure that each "Relation"
is strictly selected from the predefined list of relations provided. If no matching relation can be found in the text based on
the predefined list, output "None'.

### Predefined Relations:
- **author**: Indicates that Entity2 is the author of Entityl.
- *Example*: ["Harry Potter", "author", "J.K. Rowling"]' means J.K. Rowling is the author of Harry Potter.
- **director**: Indicates that Entity?2 is the director of Entity1.
- *Example*: "["A", "director", "B"]" means B is the director of A.
- **creater**: Indicates that Entity?2 is the creater of Entity1.
- **birth date**: Represents the birth date of Entityl.
- *Example*: *["Mike", "birth date", "January 1, 1990"]*
- **birth year**: Represents the birth year of Entityl.
- *Example*: *["Mike", "birth year", "1990"]"

#i# Triple Extraction Examples
*HText*:

_**Willow and Wind** (Persian: Beed-o baad ) is a 2000 Iranian drama film directed by Mohammad-Ali Talebi and
written by Abbas Kiarostami.

## Cast

* Dariush Afshar as Soraya Esfandiari *Arman Naderi as Yasmin Khorrami

**Output**:
*"'json
{
"triples": [
["Willow and Wind", "director", "Mohammad-Ali Talebi"],
["Willow and Wind", "author", "Abbas Kiarostami"],
["Willow and Wind", "made in", "[ran"],
["Willow and Wind", "release year", "2000"],
]

}

### Text for Analysis:
***{content} "

Please return the results in JSON format as follows:
*'json

{

"triples": [
[Entity1, relation, Entity2],
[.]

1

!
s

If no triples can be extracted based on the predefined relations, please output:
json

{

"triples": null
| J

Figure 9: High-quality Triples Extraction and Classification: Extracting triples from text based on a predefined list
of 26 relation types (partially shown in the figure for brevity). Relations include: B.A. from, Ph.D. from, academic
advisor, author, birth city, birth country, birth date, birth year, creator, death date, death year, director, father’s name,
located in, made in, master’s degree from, mother’s name, nationality, portrayed by, publish year, publisher, release
by, release date, release year, total gross, wife’s name. Each extracted triple strictly adheres to this predefined
schema.
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Prompt E: Template Generation Prompt \

Assume you are the persona described below, and you are crafting a sentence in the persona's style to describe the
relationship between a person and the specific date of their birth.

Requirements:

1.placeholders such as {Head} and {Tail} should be used.
2.The output should be in English.

Persona:

an IT project manager who adopted extreme programming (XP) methodologies on his own team.
Output:

{Head} came into existence on the timeline of life on {Tail}, marking the starting point of their journey.

Persona:

A nature photographer who wants to showcase their stunning photographs with sustainable and unique frames
Output:

{Head} entered the world on the beautiful day of {Tail}, a moment that would inspire a lifetime of capturing nature's
splendor.

Persona:
{persona}

\_ Output: )

Figure 10: Template Generation Prompt: Generate sentences in the style of a specific person that can be filled with
head and tail entities (using the relation between a person and their birth date as an example). To ensure diversity in
the generated templates, allow the use of statements similar to the relation in the template for substitution.

Template Examples N

Persona: A paralyzed individual who hopes to regain some motor control through brain-computer interface therapy.
Template: {Head} was born on the significant date of {Tail}, initiating a life marked by resilience and the pursuit of
groundbreaking advancements in brain-computer interface therapy.

Persona: A blogger who writes in-depth reviews and reflections on each monthly read.
Template: {Head} embarked on their life's narrative on the page of time known as {Tail}, setting the stage for a lifetime
of turning the pages of countless stories.

. J

Figure 11: Template Example: Sentences describing entity relations in the style of a specific person (using the
relation between a person and their birth date as an example). Fill in the person’s name at Head and the birth date at
Tail.

Synthesis Data Examples N\

Data: Saul Bellow was born on the significant date of April 5, 2005, initiating a life marked by resilience and the pursuit
of groundbreaking advancements in brain-computer interface therapy.

Head: Saul Bellow

Relation: death date

Tail: April 5, 2005

Data: Bernard Lewis embarked on their life's narrative on the page of time known as May 19 2018, setting the stage for a
lifetime of turning the pages of countless stories.

Head: Bernard Lewis

Relation: death date

Tail: May 19, 2018

Figure 12: Synthetic Data Example. (using the relation between a person and their birth date as an example)
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Prompt for Evaluation \

Task: Predict the tail entity using the given head entity, and relation. Follow the examples below. Output only the tail
entity as a noun/noun phrase without articles (e.g., "Paris", not "the Paris"). Use the exact format: "Tail Entity: [answer]".

Example 1:

Head Entity: France
Relation: capital
Tail Entity: Paris

Example 2:

Head Entity: Moby Dick
Relation: author

Tail Entity: Herman Melville

Example 3:

Head Entity: Inception
Relation: director

Tail Entity: Christopher Nolan

Now, predict the tail entity for:
Head Entity: {head}

Relation: {relation}

Tail Entity: {tail}

. J

Figure 13: Prompt for Evaluation.
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Figure 14: NDCG and loss vs. exposure times with K = 50, 000
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Figure 15: (a): NDCG vs. number of factual knowledge; (b): NDCG vs. number of model parameters. All these
curves are obtained with N = 1, 000.
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Figure 16: knowledge metrics of pre-trained models; (a): NDCG vs. number model parameters. (b): loss vs. number
model parameters with N = 1, 000.
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